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ABSTRACT
In hospitals, scheduled operations can often be cancelled in large numbers due to
the unavailability of beds for post-operation recovery. Operating theatre scheduling
is known to be an NP-hard optimisation problem. Previous studies have shown that
the correct scheduling of surgical procedures can have a positive impact on the avail-
ability of beds in hospital wards, thereby allowing a reduction in number of elective
operation cancellations. This study proposes an exact technique based on the parti-
tioned graph colouring problem for constructing optimal master surgery schedules,
with the goal of minimising the number of cancellations. The resultant schedules
are then simulated in order to measure how well they cope with the stochastic na-
ture of patient arrivals. Our results show that the utilisation of post-operative beds
can be increased, whilst the number of cancellations can be decreased, which may
ultimately lead to greater patient throughput and reduced waiting times. A scenario-
based model has also been employed to integrate the stochastic-nature associated
with the bed requirements into the optimisation process. The results indicate that
the proposed model can lead to more robust solutions.

KEYWORDS
OR in Health Services; Optimisation; Scheduling; Graph Colouring; Integer
Programming

1. Introduction

Operating theatres are very costly parts of a hospital system and often have a large
impact on other departments (Beliën, Demeulemeester, & Cardoen, 2006; Macario,
Vitez, Dunn, & McDonald, 1995). Banditori, Cappanera, and Visintin (2013) have
shown that operating theatres are the source of almost 70% of hospital admissions.
Operations in theatres are usually carried out in blocks of time that are allocated to
a specific specialty. The schedule that determines these allocations is known as the
Master Surgery Schedule (MSS), and typically it will specify a weekly timetable for
each operating theatre, Monday to Friday (Rowse, Lewis, Harper, & Thompson, 2015).
An example of a master surgery schedule is shown in Figure 1. Each surgery requires
various members of hospital staff, including surgeons, anaesthetists, nurses and techni-
cians, in addition to vital equipment and a variety of consumables. Therefore, careful
planning is needed to ensure the smooth running of the hospital within tight resource
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Theatre1 Theatre2 Theatre3 Theatre4 Theatre5 Theatre6 Theatre7 Theatre8 Theatre9 Theatre10 Theatre11

 MON-AM Trauma OMFS ENT Renal Urology CEPOD Colorectal Thoracic Cardiac Neuro Gynae

MON-PM Trauma OMFS ENT Renal Urology CEPOD Colorectal Thoracic Cardiac Neuro Gynae

 TUE-AM Trauma OMFS Vascular Thoracic Urology CEPOD Colorectal Cardiac Cardiac Neuro Gynae

TUE-PM Trauma OMFS Vascular Thoracic Urology CEPOD Colorectal Cardiac Cardiac Neuro Gynae

WED-AM Trauma Vascular ENT Gen Surg Urology CEPOD Colorectal Thoracic Cardiac Neuro Gynae

WED-PM Trauma Vascular ENT Gen Surg Urology CEPOD Colorectal Thoracic Cardiac Neuro Gynae

THU-AM Trauma Trauma OMFS Vascular Urology CEPOD Colorectal Thoracic Cardiac Neuro Gynae

THU-PM Trauma Trauma OMFS Vascular Urology CEPOD Colorectal Thoracic Cardiac Neuro Gynae

FRI-AM Trauma OMFS Vascular Renal Urology CEPOD Colorectal Thoracic Cardiac Neuro Gynae

FRI-PM Trauma OMFS ENT Renal Urology CEPOD Colorectal Thoracic Cardiac Neuro Gynae

Figure 1. An example of a master surgery schedule

and budgetary constraints.
Surgical admissions into hospitals can be broadly classified into two categories: elec-

tive and non-elective admissions. Non-elective (emergency) patients often require an
operation to be performed as soon as possible, whereas elective patients are scheduled
in advance. Elective patients can also be grouped into inpatients and day cases. In-
patients require a ward bed for post-operative recovery, whereas day cases often leave
the hospital on the same day as the operation. Generally, non-elective patients require
treatment more urgently than elective patients. Indeed, their admission can often lead
to the cancellation of elective operations, particularly if this results in no bed being
available for an elective admission. Consequently, this work focuses on the scheduling
of elective inpatients while taking into account the impact of non-elective admissions
on hospital resources. Rowse (2015) reported that the cancellation of operations in
hospitals due to the unavailability of beds post-surgery is a very common problem.
Cancellations will often upset the flow of patients through the hospital system and
will negatively affect the patient experience, including increased levels of anxiety and
higher costs due to ongoing care issues. In this research, we aim to minimise the num-
ber of cancellations of elective surgery through careful scheduling of the operating
theatres.

In this paper we discuss the development of a partitioned graph colouring based
optimisation model for the construction of the MSS. The developed model captures
resource constraints to ensure that the number of beds required does not exceed the
number of beds available, and seeks to minimise the number of unused beds. This
setting allows for the cancellations of elective operations arising due to the MSS to be
minimised. The Critical Care Unit (CCU) is also accommodated in our model, which is
a special ward in which patients who require the highest level of care are treated. The
running costs of this ward are very high due to the fact that patients are often cared
for on a one-to-one basis using specialist life-saving equipment. In practice, the beds
in the CCU are prioritised to emergency patients over elective surgical patients. The
model therefore needs to consider situations where patients are deemed well enough
to leave the CCU and move onto another surgical ward for further post-operative
recovery, or where they pass away while at the CCU. Our proposed model is then
simulated to measure how well its solutions are able to cope with unexpected changes
in patient demand.

Robustness can be defined as the ability to withstand or overcome changes in data,
variables or assumptions. A robust schedule should be more impervious to uncertainty
than a non-robust schedule. Solution methods are often designed to optimise a single
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problem instance, assuming that data is known precisely and accurately. If robustness
is not taken into account this solution may actually be of very poor quality when
used in real-life (Bertsimas & Sim, 2004). To improve the robustness of solutions, our
proposed optimisation model is extended in this study to become a scenario-based
optimisation model in which more scenarios of bed requirements are incorporated into
a single optimisation model. The model allows a reduction in quality in return for a
more robust solution when the data changes.

The paper is structured as follows. Section 2 overviews the master surgery scheduling
problem. Sections 3 and 4 then describe the new partitioned graph colouring based
optimisation model and introduce a deterministic model for the construction of the
master surgery schedule that incorporates bed constraints. In Section 5, the results
and the performance of this new model are presented. The deterministic model is
also extended in this section into a scenario-based optimisation model to improve the
robustness of solutions. Simulation of the resulting solutions is then performed in order
to obtain a measure of their robustness. Section 6 provides conclusions and areas for
further work.

2. Background

The field of automated timetabling is quite prominent in the wider area of operational
research with applications in education, transport, advertising, in addition to health-
care. A number of studies have looked into the area of surgical scheduling over the
past two decades, with Samudra et al. (2016) providing a good overview. The practical
importance of the problem is due to the operating theatres having major impacts on
other departments such as surgical wards and intensive care units.

Typically the problem involves assigning the correct patient to appropriate surgical
teams at the right time, while maximising resource utilisation. However, van Oostrum,
Bredenhoff, and Hans (2010) have noted that in many cases, the methodologies and
processes used to create these timetables are not implemented. van Oostrum et al.
(2008) argued that the main uncertainties related to operating theatre scheduling
are the stochastic durations of surgical operations, personnel availability, no-shows of
patients and the occurrence of emergency surgical procedures.

Despite the importance of the issue, there has also been very little previous research
that considers the downstream effects of surgery schedules. Beliën et al. (2006) cre-
ated a tool that visualises the effect of a schedule on resources, including beds, staff,
equipment and so on; however, they did not create a model that closes the informa-
tion feedback loop by generating a schedule that considers its effect on the demand
for beds. Vanberkel and Blake (2007) simulated patients’ waiting times in different
scenarios of bed availability (but did not produce a schedule), and concluded that
longer waiting times are more dependent on the availability of post-operative beds
as opposed to the availability of operating theatres themselves. van Oostrum et al.
(2010) and Santibáñez, Begen, and Atkins (2007) also discussed the potential benefits
of a systematic approach to surgery scheduling, such as the use of a master surgi-
cal scheduling approach, including the increased utilisation of the resources, reduced
cancellation of surgeries, increased efficiency and patient throughput and lower wait
times. They also suggest that a systematic approach could increase transparency and
fairness in surgeons’ time allocation.

Several studies found that exact methods, such as mixed integer programming tech-
niques, perform well on the construction of the surgery schedule (Cardoen, Demeule-
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meester, & Belin, 2010; Kumar, Costa, Fackrell, & Taylor, 2018; Marques, Captivo, &
Barros, 2019). Blake and Carter (1997) discussed the scope of surgical process schedul-
ing research and emphasised the importance of communication between the operating
theatres and other hospital departments. Vissers, Adan, and Bekkers (2005) employed
a mixed integer linear programming model for constructing a master surgery schedule
for a thoracic surgery department with a cycle length of four weeks. Four resources
were considered in their model including operating theatre time, medium care beds,
intensive care beds and nursing staff. Kuo, Schroeder, Mahaffey, and Bollinger (2003)
developed a linear programming technique to optimise the allocation of operating room
time among a group of surgeons while simultaneously optimising the associated finan-
cial return. Their results indicated a potential 15% increase in revenue in their case
studies. A column generation approach was developed by van Oostrum et al. (2008) to
construct a master surgery schedule that maximises the utilisation of operation room
and levels the subsequent hospital bed requirements in wards and critical care units.
To deal with the stochastic nature of the duration of surgical procedures, planned
slack is included in the construction of MSSs. Neyshabouri and Berg (2017) applied
a two-stage robust optimisation to address the uncertainty in length of stay in the
downstream unit and developed a column-and-constraint generation exact technique
to solve the problem. Their model allows for the hospital manager to adjust the level of
risk. M’Hallah and Visintin (2019) addressed the problem of constructing MSS using a
stochastic model and solved it using a sample average approximation technique. Their
research provides evidence that it is fundamental to consider the stochastic-nature of
the problem.

Beliën and Demeulemeester (2007) have proposed a number of mixed integer pro-
gramming models and a simulated annealing meta-heuristic method for constructing
the master surgery schedule. They built a model that involves demand constraints for
operating theatre blocks for each surgical group, and capacity constraints to limit the
number of available operating theatre blocks on each day. Results revealed the success
of the meta-heuristic approach but it was observed to need very long computation
times. Their best performing exact method overall was achieved using quadratic pro-
gramming models. A hybrid method that combines quadratic program technique and
simulated annealing, yields satisfying results with regard to both quality of solutions
and computation times. Beliën, Demeulemeester, and Cardoen (2009) subsequently de-
veloped a decision support system for the construction of a master surgery schedule in a
medium-sized Belgian hospital. They used mixed integer programming techniques and
a simulated annealing meta-heuristic approach and found, due to the multi-objective
nature of the problem, that the different models may provide different solutions, and
decision makers have the responsibility to then choose the best solution among these.
Fügener, Hans, Kolisch, Kortbeek, and Vanberkel (2014) proposed a model for plan-
ning the MSS aiming to minimise downstream costs (fixed costs, overcapacity costs,
staffing costs, and additional weekend staffing costs) by levelling bed demand and
reducing weekend bed requests. Exact, incremental improvement heuristics, a 2-opt
heuristic and simulated annealing algorithms were employed to minimise these costs.
van Essen, Bosch, Hans, van Houdenhoven, and Hurink (2014) employed an ILP and
a local search for optimising the operating room schedule with the goal of reducing
the number of required beds. The empirical results show that the ILP with simplified
objective function performs better than the local search heuristic method.

As an alternative to mathematical programming techniques and heuristic optimi-
sation methods, Vanberkel et al. (2011) proposed a decision support tool based on a
queueing theory approach to build the master surgery schedule. They argued that the
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Figure 2. (a) A graph with n = 6 vertices, and (b) an optimal solution using 3 colours

department of surgery has the largest impact on other departments in the hospital,
and in particular, the activities in the operating theatres. They also stated that more
invasive surgeries require more care during a patient’s post-surgery recovery. They
suggest that giving consideration to this downstream effect of the operating theatre is
essential for balancing the workload of the hospital. In their model, therefore, they de-
scribed the workload for downstream departments as a function of the master surgery
schedule.

3. Partitioned Graph Colouring Problem

We start this section with some basic definitions concerning graph colouring. For more
details we refer to (Lewis, 2016). Let G = (V,E) be a simple graph with n vertices
and m edges. The standard graph colouring problem consists of assigning a colour to
each vertex in V , such that no adjacent vertices are assigned to the same colour. The
objective is to then minimise the number of colours used. Figure 2 shows a small graph
coloured with three colours.

The partitioned graph colouring problem is a generalisation of the above. It is
defined on an undirected graph G = (V,E) as before, but the vertex set V has also been
partitioned into u mutually exclusive nonempty subsets (partitions) Q = (V1, . . . , Vu)
with V = V1 ∪ · · · ∪ Vu and Vi ∩ Vj = ∅ ∀Vi, Vj ∈ V and i 6= j. The aim is to find
a subset V ∗ ⊆ V that contains exactly one vertex from each partition Vk ∈ Q and a
colouring for V ∗ so that, in the graph induced by V ∗, no adjacent vertices have the
same colour. As before, the objective is to minimise the number of colours used. Note
that the partitioned graph colouring problem reduces to the classical graph colouring
problem when all the subsets Vi have cardinality one. An example of the partitioned
graph colouring problem is shown in Figure 3.

Li and Simha (2000) originally noted the partitioned graph colouring problem, and
were motivated by wavelength routing and assignments in an optical network. The
same authors proved that the problem is NP-complete. In this context several ap-
proaches have since been proposed: a memetic algorithm (Pop, Hu, & Raidl, 2013),
an ant colony optimisation algorithm (Fidanova & Pop, 2015), tabu search (Noronha
& Ribeiro, 2006), branch-and-cut (Frota, Maculan, Noronha, & Ribeiro, 2010) and
branch-and-price (Hoshino, Frota, & de Souza, 2011). Further information can be
found at Campêlo, Corrêa, and Frota (2004).

Graph colouring has been applied to a wide area of operational research with appli-
cations in education and transport, in addition to healthcare. Our reason for choosing it
was driven by three motivations: (i) Graph colouring algorithms are reasonably generic
and are easy to implement and maintain. Thus we expect that our implementation
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Figure 3. (a) Shows a partitioned graph colouring problem instance where Q = {{1, 2}, {3}, {4, 5}}, and (b)

a solution using two colours

Table 1. Graph colouring in some selected timetabling and scheduling problems

Problem Domain Reference

Round-robin sports scheduling Lewis and Thompson (2011)
Exam timetabling Hussin, Basari, Shibghatullah, Asmai, and Othman (2011)
Course timetabling Burke, Marecek, Parkes, and Rudová (2010)
Job shop scheduling problem Kouider, Haddadéne, Ourari, and Oulamara (2017)
Nurse scheduling Anane (2014)

can be applicable to other variants of scheduling problems with minimal adaptation.
(ii) The success of graph colouring in solving several NP-hard optimisation problems
generally and complex timetabling and scheduling problems specifically (Table 1). (iii)
Partitioned graph colouring is appropriate for the construction of the MSS due to the
NP-hard nature of the problem, together with the benefit of being able to generate
and limit the number of candidate schedules which can also help to reduce the size
of the problem. To the best of the authors’ knowledge, the use of graph colouring for
surgery scheduling remains unexplored in the literature.

Before presenting a mathematical formulation for the partitioned graph colouring
problem, it is worth noting that, as in Frota et al. (2010), a pre-processing phase is
used that removes from the input graph all edges joining pairs of vertices belonging to
the same set in the partition. Assuming that this pre-processing has been executed, a
partitioned graph colouring problem can be formulated by the following binary integer
programming problem. We define two matrices Xn×q and Yq such that (n is the number
of vertices and q is the maximum number of colours defined by the user):

xij =

{
1 if vertex vi is coloured with colour j

0 otherwise, and
(1)

yj =

{
1 if colour j is used in the solution

0 otherwise.
(2)

The objective is then to minimise the number of colours being used:

min:

q∑
j=1

yj (3)
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S1 Theatre1 Theatre2 Theatre3 S2 Theatre1 Theatre2 Theatre3 S3 Theatre1 Theatre2 Theatre3

 MON-AM  MON-AM  MON-AM 

MON-PM MON-PM MON-PM

 TUE-AM  TUE-AM  TUE-AM 

TUE-PM TUE-PM TUE-PM

WED-AM WED-AM WED-AM 

WED-PM WED-PM WED-PM

THU-AM THU-AM THU-AM

THU-PM THU-PM THU-PM

FRI-AM FRI-AM FRI-AM

FRI-PM FRI-PM FRI-PM

Figure 4. An example of the scheduling rules

subject to:

xij + xlj ≤ yj , ∀{vi, vl} ∈ E, ∀j ∈ {1, . . . , q} (4)

∑
i∈Vp

q∑
j=1

xij = 1, ∀Vp ∈ Q. (5)

Here, Constraint (4) ensures that no pair of adjacent vertices have the same colour.
Also, variable yj is set to one if and only if colour j is being used. Constraint (5) then
specifies that each partition has exactly one vertex that is assigned to a colour.

4. Optimisation of the Master Surgery Schedule

4.1. Overall Model

As noted, a partitioned graph colouring optimisation model is adopted here for the
construction of the master surgery schedule, taking into account constraints on the
operating theatres and post-surgery hospital ward bed requirements.

In our model, each surgical specialty represents a partition, and each partition has
a number of vertices that represent plans. A plan for a specialty defines the operating
theatre that the specialty has use of and on which sessions of the week. They reflect a
specialty’s preferences of theatres and days through the use of scheduling rules. The
goal is to then select one plan (vertex) for each specialty (partition) that, when put
together, forms the entire master surgery schedule. An example of the scheduling rules
is shown in Figure 4. In this example, there are three operating theatres and three
specialties S1, S2 and S3. Operating theatre sessions coloured black denote that the
specialty must not be allocated to these sessions; operating theatre sessions coloured
grey denote that the specialty must be allocated to these sessions; operating theatre
sessions coloured white denote that the specialty could be allocated to these sessions.

In this example, assume that S1 requires 12 sessions, S2 requires 1 session and S3

requires 10 sessions. We now need to enumerate all possible plans (vertices) for each
specialty. There are

(
10
2

)
= 45 possible plans for S1,

(
10
1

)
= 10 possible plans for S2 and

only one possible plan for S3. The first plans for S1, S2 and S3 are shown in Figure 5.
The construction of the master surgery schedule problem can now be considered as a
partitioned graph colouring problem using the plans as the vertices, and adding edges
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S1 Theatre1 Theatre2 Theatre3 S2 Theatre1 Theatre2 Theatre3 S3 Theatre1 Theatre2 Theatre3

 MON-AM S1 S1  MON-AM S2  MON-AM S3

MON-PM S1 S1 MON-PM MON-PM S3

 TUE-AM S1  TUE-AM  TUE-AM S3

TUE-PM S1 TUE-PM TUE-PM S3

WED-AM S1 WED-AM WED-AM S3

WED-PM S1 WED-PM WED-PM S3

THU-AM S1 THU-AM THU-AM S3

THU-PM S1 THU-PM THU-PM S3

FRI-AM S1 FRI-AM FRI-AM S3

FRI-PM S1 FRI-PM FRI-PM S3

Figure 5. The first plans of specialty S1, S2 and S3

between any pair of plans deemed to be conflicting. In this example, an edge between
the first plan of S1 and the first plan of S2 would be added, because they require use
of Theatre-2 at same time.

Note that in our case study and for some of the specialties, the enumeration al-
gorithm can pair the allocated sessions so that, if a specialty has been allocated to
an AM operating theatre session, then it will also be allocated to a PM operating
theatre session if further sessions are required. In this way we reflect the hospital’s
policy that these specialties have whole day sessions rather than half day sessions. In
our previous example, if S1 is preferred to have whole day operating theatre sessions,
then the number of possible plans reduces from 45 to 5.

Following the construction of the vertices (plans) in our partitioned graph colour-
ing model, we now need to determine the number of patients who will require ward
(including any CCUs) beds for each generated plan for each ward and for each day.
We define bed requirements as the number of patients in beds for pre-operative and
post-operative care. (The generation of the bed requirements will be discussed in Sec-
tion 4.2.) This means that additional bed constraints must also be added to our model
to ensure that the number of beds required does not exceed the number of beds avail-
able on each ward on each day. Figure 6 provides an example of bed requirements for
two wards and one critical care unit, showing the number of surgical inpatients who
require beds for the first plans of specialties S1 and S3 and the third plan of specialty
S2. In this example, the bed constraint is violated on Ward-1 on Wednesday, as shown
in bold.

Mathematically, let:

• a(l)
ik be the number of beds required on ward k for plan i on day l,

• b(l)ik be the number of beds required on CCU k for plan i on day l,

• c(l)
k be the number of beds available on ward k on day l, and

• d(l)
k be the number of beds available on CCU k on day l.

The bed constraints for each ward on each day can now be formulated as:

∑
i∈V

q∑
j=1

a
(l)
ik xij ≤ c

(l)
k , ∀k, ∀l, (6)
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S1 Theatre1 Theatre2 Theatre3 S2 Theatre1 Theatre2 Theatre3 S3 Theatre1 Theatre2 Theatre3

 MON-AM S1 S1  MON-AM  MON-AM S3

MON-PM S1 S1 MON-PM MON-PM S3

 TUE-AM S1  TUE-AM S2  TUE-AM S3

TUE-PM S1 TUE-PM TUE-PM S3

WED-AM S1 WED-AM WED-AM S3

WED-PM S1 WED-PM WED-PM S3

THU-AM S1 THU-AM THU-AM S3

THU-PM S1 THU-PM THU-PM S3

FRI-AM S1 FRI-AM FRI-AM S3

FRI-PM S1 FRI-PM FRI-PM S3

Ward1 Ward2 CCU1 Ward1 Ward2 CCU1 Ward1 Ward2 CCU1

MON 9 6 2 MON 0 3 0 MON 3 0 5

TUE 8 5 1 TUE 0 3 0 TUE 2 0 3

WED 9 4 2 WED 0 3 0 WED 4 0 2

THU 9 7 3 THU 0 2 0 THU 2 0 3

FRI 5 3 1 FRI 0 0 0 FRI 2 0 2

SAT 5 3 0 SAT 0 0 0 SAT 0 0 2

SUN 6 5 1 SUN 0 1 0 SUN 1 0 4

Ward1 Ward2 CCU1

MON 12 9 7

TUE 10 8 4

Capacity WED 13 7 4

Ward1 12 THU 11 9 6

Ward2 9 FRI 7 3 3

CCU1 10 SAT 5 3 2

SUN 7 6 5

Figure 6. Illustrative diagram showing the number of beds required for three plans

and the bed constraints for each CCU on each day can be formulated as:

∑
i∈V

q∑
j=1

b
(l)
ik xij ≤ d

(l)
k , ∀k, ∀l. (7)

where xij = 1 if plan i is coloured with colour j, and 0 otherwise.
Our main objective in this problem is to utilise the beds on the wards and critical

care units (which are expensive resources) as fully as possible. This is equivalent to
minimising the number of unused beds on the wards and CCUs at any given time.
This objective can be used as part of the hospitals’ capacity planning strategy. If the
optimal solution has spare capacity (i.e. empty beds on the wards) and there is enough
operating theatre time for more operations, then there could be scope for increasing
the number of patients brought in for surgery. The formulation of the partitioned
graph colouring based model for the construction of the master surgery schedule is
therefore as follows.
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min: α

q∑
j=1

yj +
∑
∀k

∑
∀l

(c
(l)
k −

∑
xi∈V

q∑
j=1

a
(l)
ik xij) +

∑
∀k

∑
∀l

(d
(l)
k −

∑
xi∈V

q∑
j=1

b
(l)
ik xij) (8)

subject to:

xij + xlj ≤ yj , ∀{vi, vl} ∈ E, ∀j ∈ {1, . . . , q} (9)

∑
i∈Vp

q∑
j=1

xij = 1, ∀Vp ∈ Q (10)

∑
i∈V

q∑
j=1

a
(l)
ik xij ≤ c

(l)
k , ∀k, ∀l (11)

∑
i∈V

q∑
j=1

b
(l)
ik xij ≤ d

(l)
k , ∀k, ∀l (12)

The first term in Equation (8) gives the number of colours used in a solution multi-
plied by the weighting coefficient α. The value of α needs to be determined manually
and is used to balance this objective against the sum of the remaining terms, which
capture the level of bed utilisation in the solution.

4.2. Bed Requirements

Our method used to generate the bed requirements is presented in Algorithm 1. As in
(Rowse et al., 2015), a probability table of which ward(s) or critical care unit(s) each
specialty sends their patients to for post-operative recovery is used in the generation
of bed requirements. In our model, patients admitted to the CCU may move onto
another ward (i.e. another probability table is used) if they are deemed well enough
to leave it or, with a given mortality rate, they die while in the CCU. Table 2 provides
an example of these.

Table 2. An example of three specialties, two wards, and one CCU, showing (left)
the probability table of which ward or CCU each specialty sends their patients to,

and (right) which ward each specialty sends their patients to after leaving the CCU

First probability table pre-CCU Second probability table post-CCU

W1 W2 CCU1 W1 W2 CCU1

S1 0.80 0.17 0.03 S1 0.95 0.05 0.00
S2 0.00 1.00 0.00 S2 0.00 0.00 0.00
S3 0.98 0.00 0.02 S3 1.00 0.00 0.00
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Whenever a surgical specialty is scheduled to operate in a theatre, a bed is required
for the total duration of the patients’ pre-operative (pre-op) and post-operative (post-
op) Length of Stay (LoS). The number of arrivals per session are user-specified pa-
rameters. Here, we employ the conditional probability of failure method (Kaplan &
Meier, 1958) to estimate the post-operative LoS duration for each patient. Given the
distribution of patients’ post-operative LoSs for each specialty and CCU from activity
data, the conditional probability of a given patient leaving the hospital or CCU on day

l is d(l)
n(l) , where d(l) is the number of patients leaving on day l, and n(l) is the number

of patients in the hospital at the start of day l. We may assign a specified propor-
tion of patients into beds on wards few days before day of surgery for pre-operative
LoS. For example, for the Trauma specialty 80% are admitted to hospital on the day
of surgery, 10% has pre-operative LoSs of 1 day and 10% has pre-operative LoSs of
2 days. These are user-specified parameters. The number of operations per session
controls how many arrivals enter the system and is calculated (for each specialty) by
dividing the session duration into the average duration of surgical procedures. We ap-
preciate that the duration of operations may vary depending on the medical needs of
the patients. However, discussions with hospital staff have described that the number
of sessions per specialty remain constant but often overrun, causing more time to be
used in the session than was allocated.

5. Computational Experiments

We use a large teaching hospital in Cardiff, Wales as our case study. A recent study
performed on the hospital revealed that over 25,000 surgical operations are performed
annually, with approximately 18% of operations being cancelled, with non-clinical
hospital reasons such as the lack of available beds post-surgery accounting for 54%
of these. Additionally, around 30% of patients, after leaving the operation theatres,
are assigned to an undesirable ward that does not necessarily have the equipment
or specialist nurses due to unavailability of beds in the usual (preferred) ward. Such
patients are referred to as outliers by the hospital.

In our case-study hospital there are 14 operating theatres (OT1, . . . , OT14), eigh-
teen specialties (S1, . . . , S18) including Cardiac, Thoracic, Trauma, among others, ten
wards (W1, . . . ,W10) including Vascular, Urology General/Liver, among others, and
one critical care unit (CCU1). One of the operating theatres is dedicated to non-elective
surgical operations only (i.e., no elective patient can be admitted to this theatre). This
theatre generates a high demand for beds, so it is deemed necessary to include it in
our model. Elective operations are performed during one of two operating sessions per
day (AM and PM), over five working days per week, Monday to Friday. The usage of
beds at the hospital wards and critical care unit is modelled for seven days a week,
Monday to Sunday.

In total, for our case study there were 1,449 vertices, 146,940 edges and 77 bed con-
straints. Table 3 provides the number of vertices for each specialty (|Vi|), the number
of required sessions, the number of operations carried out per session and a list of
operating theatres that the specialty can use. Table 4 provides the number of beds
available at each hospital ward and critical care unit (CCU) and specifies the special-
ties that are assigned to each ward. These characteristics provide a rough idea about
the size of the problem instance.

Table 5 shows a probability table indicating which ward or CCU each specialty
sends their patients to. It also shows which ward each specialty sends their patients
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Algorithm 1: Construction of bed requirements

foreach Vp ∈ Q do
foreach vertex vi ∈ Vp do

foreach operating session j do
if specialty p is scheduled in j then

For each new arrival, decide on which ward or CCU they go to
given the probability table;
if Some patients go to CCU then

Fill in beds with pre-op LoS before they go to CCU;
Send those patients to the CCU and update the bed
requirements with their CCU LoSs;

Calculate how many patients are discharged from the CCU on
each day of the week;

Put new arrivals straight from surgery into all other wards (not
CCU);

Fill in bed requirements with pre-op LoS for these patients;
Send these patients from surgery straight to other wards (not
the CCU) and update the bed requirements with their
post-op LoS;

Reduce the number of CCU discharges to other wards due to
some patients dying in CCU according to the mortality rate;

else
Send patients from surgery straight to wards and update the
bed requirements with their pre-op and post-op LoSs;

end

end

end
foreach day l in the planning horizon do

if anyone is discharged on day l then
Distribute these patients between the other wards using a
probability table;
foreach ward k do

if Any CCU discharges are sent to ward k then
Send these patients to ward k and update the bed
requirements with their post-op LoSs;

end

end

end

end

end

end

to after leaving the CCU.
Our experimentation was conducted on an Intel i7-6500U CPU at 2.50GHz and

2.60GHz with 8.00GB RAM, using the open-source optimisation software COIN Cbc
2.9.9 together with C++ under a Windows 10 operating system.

As mentioned earlier, our model allows more than one colour to be used in a solution,
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Table 3. Specialties in our case-study problem

specialty name |Vi|
number of
sessions

operations
per session

accessible theatres

S1 Cardiac 1 20 1 OT11, OT12
S2 CEPOD 1 10 4 OT6
S3 Colorectal 5 8 1 OT8
S4 ENT 60 5 1 OT3
S5 General 210 8 3 OT4, OT9
S6 Liver 5 2 2 OT9
S7 Neuro 1 20 2 OT13, OT14
S8 Ophthalmology 5 2 1 OT3
S9 Oral 455 6 1 OT3, OT5, OT11
S10 Paeds ENT 10 1 3 OT3
S11 Paeds general 5 8 1 OT5
S12 Paeds ortho 5 2 2 OT2
S13 Renal 455 6 2 OT4, OT8, OT9
S14 Scoliosis 10 4 3 OT2
S15 Thoracic 5 8 1 OT11
S16 Trauma 5 12 5 OT1, OT2
S17 Urology 1 10 2 OT7
S18 Vascular 210 8 2 OT2, OT4

though this is heavily penalised (in our case by setting α = 100, 000). When multiple
colours are present in a solution, this implies that some of the solution’s selected plans
are clashing. We found this extra flexibility to be useful in practical circumstances in
that it is often better for a user to be given a solution with some clashes, rather than
no solution at all. Indeed, if a decision maker were to be given a solution featuring
clashes, they might then choose to revisit the problem and loosen some constraints or
add additional resources. On the other hand, we also found that limiting the number of
colours was also useful in that it reduced the search space of the problem significantly.
We therefore chose to set q = 2 in this study.

As part of our trials, a simulation tool was also developed to provide measures on
how well our MSS schedules perform if they are to be used in a real-world setting. A
snapshot of future bed requirements for each ward and each critical care unit for the
optimal MSS schedule is produced using the same method described in Section 4. Each
generated MSS is simulated 1000 times, each with a different set of bed constraints,
and the number of times where the bed constraints are violated is reported.

Table 6 presents the objective function values obtained from five runs (each with a
different seed value), and the percentage of simulations of the optimal MSS solutions
in which at least one of the bed constraints is violated. A comparison of the optimal
solution produced using our model and the current MSS used in the hospital is also

Table 4. Wards and critical care units in our case-study problem

ward name capacity specialties using each ward

W1 Paeds 28 S2, S10, S11, S12, S14

W2 ENT/Oral 19 S2, S4, S8, S9

W3 Vascular 38 S2, S18

W4 Trauma 83 S2, S16

W5 Renal 20 S13

W6 General/Liver 76 S2, S5, S6

W7 Urology 19 S17

W8 Colorectal 20 S3

W9 Cardiothoracic 50 S1, S15

W10 Neuro 53 S2, S7

CCU1 Critical Care 27 S2, S5, S7, S16, S18
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Table 5. Probability tables

First probability table pre-CCU

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 CCU1

S1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
S2 0.18 0.11 0.08 0.05 0.00 0.27 0.00 0.00 0.00 0.14 0.17
S3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
S4 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S5 0.00 0.00 0.00 0.00 0.00 0.63 0.00 0.00 0.00 0.00 0.37
S6 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
S7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.07
S8 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S9 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S10 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S11 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S12 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S13 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
S14 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
S16 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.01
S17 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
S18 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

Second probability table post-CCU

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 CCU1

S1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
S2 0.22 0.13 0.09 0.06 0.00 0.33 0.00 0.00 0.00 0.17 0.00
S3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
S4 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S5 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
S6 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
S7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
S8 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S9 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S10 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S11 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S12 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S13 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
S14 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
S16 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S17 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
S18 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

provided in Table 6. The table shows that in an average of 45% of the simulations, there
were too many beds required on at least one of the wards i.e. this would have resulted
in a violated bed constraint in our model and would also result in a cancellation in
reality. In run 1 for instance, it is worse than for the current MSS used, though the
utilisation of beds has been improved significantly.

5.1. Scenario-based Optimisation Model

Scenario-based optimisation was first proposed by Calafiore and Campi (2005) to help
improve the robustness of solutions. Here we employ the same strategy and extend
our model to become a scenario-based optimisation model in which more scenarios
of bed requirements are incorporated. Algorithm 1 is used to generate ρ different
scenarios which are then embedded into our model to create more bed constraints.
This could potentially allow the produced schedule to cope with the stochastic-nature
associated with the bed requirements. Constraints (11) and (12) are therefore replaced
by Constraints (13) and (14).
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Table 6. Summary of experimental results

Run
Unused

beds
Violation

Execution
time (s)

1 1110 57.0% 11
2 1066 50.9% 10
3 1069 43.6% 12
4 1174 35.9% 10
5 1075 38.8% 12

Average 1098.8 45.24% 11

Current MSS 1244 54.0%

∑
i∈V

q∑
j=1

a
(l)
tikxij ≤ c

(l)
tk , ∀k, ∀l, ∀t = 1, . . . , ρ (13)

∑
i∈V

q∑
j=1

b
(l)
tikxij ≤ d

(l)
tk , ∀k, ∀l, ∀t = 1, . . . , ρ (14)

Here, the number of scenarios, ρ, is a parameter chosen by the decision maker.
When ρ = 1, the model reduces to the model described in Section 4. Table 7 shows
the average results from five runs on various ρ values.

Table 7. Summary of experimental results using scenario-
based optimisation model

ρ Feasibility
Unused

beds
Violation

Execution
time (s)

1 100% 1098.80 45.24% 11.0
2 80% 1110.50 45.18% 11.0
3 80% 1113.25 43.25% 12.0
4 80% 1113.50 44.20% 12.8
5 80% 1115.75 41.58% 13.8
6 80% 1124.00 39.58% 17.5
7 60% 1108.67 41.03% 19.0
8 40% 1109.50 39.50% 17.5
9 40% 1114.00 42.30% 20.5
10 40% 1115.50 38.55% 35.0

As expected, the results presented here indicate that, in general, increasing the
number of scenarios ρ, worsens the average objective function values (i.e. the average
number of unused beds) of feasible solutions; however, it also increases robustness
of the resulting schedule with respect to the average percentage of simulations in
which the optimal schedule would have resulted in at least one of the bed constraints
being violated. Indeed, the results show that there is a trade-off between increasing
the number of scenarios ρ, and the percentage of problem instances that result in no
feasible solutions. This is due to the fact that the problem is now more constrained,
because additional scenarios are included in the model, which seems to be the price
to pay for more robust solutions. Table 7 also shows that the execution time increases
rapidly as the value of ρ increases. However, even when ρ is assigned to 10 scenarios,
the execution time remains reasonable, with an average execution time of just 35
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seconds. Given that the construction of the MSS is a tactical level decision, made a
few times per year, a run time of a few hours is reasonable. The main concern is that
finding a feasible solution is extremely unlikely with a large number of scenarios (i.e.
when ρ > 10 in this case).

6. Conclusions

In many hospitals there is an increasing number of operations being cancelled due to
factors such as the unavailability of beds for post-operative recovery (Bowers, 2013).
This study has investigated an optimisation model for tackling problems associated
with theatre scheduling with the aim of reducing the number of cancellations of surgical
procedures. To these ends a partitioned graph colouring formulation has been devel-
oped to solve the problem of constructing operating theatre schedules. The proposed
model aims to choose an optimal plan from a set of possible plans for each surgical
specialty, whilst minimising the number of unused bed days over the scheduling hori-
zon, subject to constraints concerning the operating theatres and bed demands. The
proposed model has then been validated to measure how well the produced sched-
ules cope with unexpected changes in patient demand. Our model has the ability to
efficiently manage the scarce hospital resources, and allow hospital managers to inves-
tigate various what-if scenarios such as the implications of increasing the number of
beds in hospital wards. This study has shown that optimal and feasible master surgery
schedules for our large case study hospital can usually be found in short amounts of
computational time; however, the validation of the robustness of the produced solu-
tion has revealed that the percentage of simulations that violated bed constraints is
reasonably high. In the context of elective operation scheduling, a timetable must be
produced some time in advance of the actual dates of operations and will be based
on several assumptions such as the current bed occupancy on different wards and
staff availability. A robust schedule will mean that more operations will be able to
take place, even if there are significant changes to these factors. The proposed par-
titioned graph colouring model is extended in this study to become a scenario-based
optimisation model to ensure more robust master surgery schedules that safeguard
against this uncertainty. A disadvantage to applying the scenario-based optimisation
technique, however, is the massively increasing complexity of the solution space as the
number of scenarios increases. In this situation, finding a feasible solution is highly
unlikely. Given this conclusion, a sensible question to ask is whether it is better to
use the scenario-based optimisation model to construct the master surgery schedule,
or to continue with a more classical deterministic model? Our results suggest that the
scenario-based optimisation model is better to use than the deterministic technique
in terms of robustness of solutions. One may notice that the deterministic model is a
special case of the scenario-based model with only one scenario, and hence will be at
least as good as the deterministic model. As a future work, we would like to investi-
gate the high number of violations. There is, therefore, additional scope to extend the
scenario-based optimisation model to (for example) include bed transference between
wards within each bed constraint.

Our method used to generate the bed requirements does not take into account that
patients can be discharged at any point throughout the day. The estimation of the LoS
duration for each patient has been calculated on a daily basis for each day after surgery.
In reality, if a patient is discharged in the morning, a new patient can be admitted the
same day that afternoon. It would be interesting to examine in future work whether
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this results in different optimal solutions being found. It would also be interesting to
investigate the modelling of surgical patients based on their specific surgical procedure
within each specialty, which may affect the optimal solutions that can be found from
our proposed model. Decision makers in hospital may decide to move towards the use
of whole day operating theatre sessions, as opposed to the current half-day sessions,
and/or move to a seven-day, as opposed to the current five-day working week. It would
be of interest to investigate these scenarios.
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