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Abstract

We define and analyse three learning dynamics for two-player zero-sum discounted-

payoff stochastic games. A continuous-time best-response dynamic in mixed strate-

gies is proved to converge to the set of Nash equilibrium stationary strategies.

Extending this, we introduce a fictitious-play-like process in a continuous-time

embedding of a stochastic zero-sum game, which is again shown to converge to

the set of Nash equilibrium strategies. Finally, we present a modified δ-converging

best-response dynamic, in which the discount rate converges to 1, and the learned

value converges to the asymptotic value of the zero-sum stochastic game. The

critical feature of all the dynamic processes is a separation of adaption rates: be-

liefs about the value of states adapt more slowly than the strategies adapt, and in

the case of the δ-converging dynamic the discount rate adapts more slowly than

everything else.
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vergence.
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1 Introduction

Evolutionary and learning approaches to game theory justify equilibrium play as

the end point of a dynamic process resulting from adaptations made by bound-

edly rational players. However to date there has been only limited success in

applying the evolutionary or adaptive learning approach to stochastic games. The

continuous-time best-response dynamic, a staple of evolutionary game theory, has

thus far only been studied in normal-form and extensive-form games. We therefore

define and investigate best-response dynamics for two-player zero-sum stochastic

games.

The standard best-response dynamic in a game is specified as a differential

inclusion with a constant revision rate; see Matsui (1989), Gilboa and Matsui

(1991), Hofbauer (1995), and Balkenborg et al. (2013). A state in the dynamic

specifies the strategy profile of all players, and the frequency of a strategy in-

creases only if it is a best response to the current state. It is worth noting that

the continuous-time best-response dynamic is equivalent to a continuous-time fic-

titious play (Brown, 1949) after a time rescaling. The best-response dynamic

has been analyzed in various classes of normal-form games (also called strategic-

form games or one-shot games); see Hofbauer and Sigmund (1998) and Sandholm

(2010). In particular, the convergence of a continuous-time best-response dynamic

to the set of Nash equilibria has been shown in Harris (1998), Hofbauer (1995),

and Hofbauer and Sorin (2006) for two-player zero-sum games, in Harris (1998) for

weighted-potential games, and in Berger (2005) for 2× n games. For convergence

in extensive-form games of perfect information, see Xu (2016).

In a stochastic game (Shapley, 1953) players are in some state each time a

decision is to be made; the actions of players in the current state determine not

only the instantaneous payoffs but also the transition probability to the state for

the next decision making. Thus, each player has to balance between the two

sometimes contradictory goals, namely the better instantaneous payoff today and

the better state distribution tomorrow. Meanwhile, the other players are also

maximizing their own goals, which makes the decision problem of each player

even more complicated. The existence of Nash equilibrium in a stochastic game

has been proved for several classes of stochastic games; see Solan (2009) for a

survey.

The question addressed in this paper is whether boundedly rational players

can reach an equilibrium in a stochastic game. In particular, if players are unable

or unprepared to carry out equilibrium calculations or solve Bellman equations for
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future reward, could they learn the Nash equilibrium strategy in the end? In the

present paper, we focus on zero-sum stochastic games with discounted payoff, as

is introduced by Shapley (1953), and consider best-response dynamics.

We first point out that it is non-trivial to define a best-response dynamic in

a stochastic game, and indeed no established notion is available in the literature

yet. Some discrete-time algorithmic approaches that achieve convergence have

been presented (e.g., Borkar, 2002; Szepesvári and Littman, 1999; Vrieze and Tijs,

1982), but their convergence has been proved using ad hoc methods instead of

considering an underlying dynamic. Perkins (2013) studies a continuous-time

best-response dynamic in a stochastic game in which an agent does not anticipate

changes to future payoffs as a result of strategy evolution. In his model, a player

can calculate the expected future discounted payoff starting at each state for any

given stationary strategy profile. When a player is calculating the best response

at a state, she assumes that her total payoff will consist of the instantaneous

payoff for taking that action against the opponent’s action in that state, followed

by a future payoff that is determined by the current strategies of both players.

Convergence is shown only when the players are sufficiently impatient.

In the present paper, we construct best-response dynamics in which the future

payoffs are learned separately from the strategies, to circumvent the problems

encountered by Perkins (2013). We suppose that players are myopic learners who

cannot calculate the future expected discounted payoff in a zero-sum stochastic

game. Instead, they assume an (initially) arbitrary set of continuation payoffs,

one for each state. These continuation payoffs allow the definition of an auxiliary

game for each state, in which the payoff to an action is given by the instantaneous

payoff plus the expected continuation payoff at the subsequent state.

In all our learning dynamics, the continuation payoffs are updated more slowly

as time goes on, at rate 1/t. In this way, a continuation payoff is simply the time

average of payoffs in the corresponding auxiliary game. As players do not have the

ability to calculate the true continuation payoff for the current mixed strategies

in the stochastic game, they view this time average as the current best estimate.

We first consider a best-response dynamic in which each player plays a mixed

strategy in each auxiliary game, and continuously adjusts this auxiliary game

strategy in the direction of the best response to the current mixed strategy of

the opponent in that auxiliary game. Here, the speed of strategy adjustment

in the best-response dynamic is independent of calendar time t. The key to the

convergence of this best-response dynamic is simply the different adjustment speed

between the best-response dynamic on players’ strategies and the slow adaptation
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of the continuation payoffs. The slowly evolving auxiliary games allow the players

to learn to play close to an equilibrium of the auxiliary game; this in turn allows

the continuation payoffs to converge, so that the strategy profile being played

approaches an equilibrium strategy profile in the stochastic game. We show in

Section 3 that this dynamic converges at rate 1/t in payoff terms.

In the best-response dynamic so far proposed, both players update and play

mixed strategies in all states at all times. To introduce a more natural learning

model of play between two players, we also introduce a continuous-time state-

dependent fictitious play process, in which actual play of the game takes place

in real time. In this process, the game transitions through the states according

to a controlled continuous-time Markov chain, where the controlling parameter

is the action profile currently being played in the state. While the game is in

a state, each player plays a best response to her belief about the opponent’s

action in that state as well as the current continuation payoffs. Specifically, each

player observes the action taken by the opponent and updates her belief about

the opponent’s behavior in the current state at constant rate in the direction of

the currently-observed action. The continuation payoffs of all states are updated

as in the best-response dynamic, tracking the empirical time average of auxiliary

game payoffs. There is no need for these to be updated only in the current state,

since these are unobserved hypothetical quantities anyway. Again, the separation

of adjustment speeds ensures convergence of this state-dependent fictitious play

process.

We finish by progressing further and propose a variant of the best-response

dynamic such that the payoff in each auxiliary game converges to the correspond-

ing asymptotic value of the zero-sum stochastic game when the discount factor

increases to 1. This is achieved by once again evolving a parameter slowly in

comparison to the others; in this case the discount factor adjusts towards 1 even

more slowly than the continuation payoffs. So far as we can ascertain, this is the

first adaptive dynamical procedure which converges to the asymptotic value of a

zero-sum stochastic game.

We postpone the literature review of stochastic games, and the positioning of

our work within that literature, to Section 6.

2 The Game Models

We begin by reviewing relevant results in two-player zero-sum normal-form games.

These results will be used for the convergence within auxiliary games in the best-
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response dynamics for stochastic games. We then define zero-sum stochastic games

and introduce the concepts that are central to the development of our learning

dynamics in the rest of the paper.

2.1 Zero-sum Normal-form Games

In a two-player zero-sum game G where Player 1 and 2’s finite pure strategy sets

are A1 are A2, respectively, the (a1, a2) element r(a1, a2) in the payoff matrix

denotes the payoff to Player 1 when Player 1 plays a1 and Player 2 plays a2. We

can then linearly extend the payoff function to mixed strategies, i.e. r(x1, x2) is

defined for any x1 ∈ ∆(A1) and x2 ∈ ∆(A2). For convenience, we may write

x = (xi)i=1,2 as a strategy profile. Recall the value of the zero-sum game G is

v(G) := max
x1∈∆(A1)

min
x2∈∆(A2)

r(x1, x2) = min
x2∈∆(A2)

max
x1∈∆(A1)

r(x1, x2). (2.1)

An optimal strategy of Player 1 guarantees the payoff no less than v(G), regardless

of the strategy of Player 2; similarly, an optimal strategy of Player 2 guarantees

the payoff to Player 1 no more than v(G). An optimal strategy profile is also a

Nash equilibrium in G. (We use “optimal” here to mean a minimax strategy in a

zero-sum game.)

The best-response dynamics have been well studied by authors including Brown

(1949), Matsui (1989), Gilboa and Matsui (1991), Hofbauer (1995), Hofbauer and

Sigmund (1998), Fudenberg and Levine (1998), Harris (1998), Hopkins (1999),

Benäım et al. (2005), Berger (2005), Hofbauer and Sorin (2006), Leslie and Collins

(2006), Sandholm (2010), and Viossat and Zapechelnyuk (2013). They are moti-

vated as a model of learning either by individuals constantly updating their mixed

strategies towards a best response to opponent mixed strategies (e.g. Leslie and

Collins, 2006), as a continuous-time fictitious play process in which beliefs are con-

tinuously adjusted towards observed opponent best responses (e.g. Harris, 1998),

as a version of Bayesian updating process with a prior in a Dirichlet distribution

(e.g. Fudenberg and Levine, 1998), or as a limiting process that can be used to

study discrete time fictitious play (e.g. Benäım et al., 2005). Others consider the

best-response dynamics simply as a method for calculating equilibrium (Brown,

1949). Under these dynamics, strategies evolve at a constant rate in the direction

of the current best response, defined for Player 1 and 2 respectively as

br1(x2) := argmax
ρ1∈∆(A1)

r(ρ1, x2) and br2(x1) := argmin
ρ2∈∆(A2)

r(x1, ρ2).
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The best-response dynamic in a normal-form game is therefore defined by

ẋi ∈ bri(x−i)− xi, ∀i = 1, 2, (2.2)

where the dot represents derivative with respect to time, and we have suppressed

the time argument t. Since best-response strategies are in general not unique,

this is actually a differential inclusion. In normal-form games the set bri(x−i) is

upper semi-continuous in x−i, so a solution trajectory of (2.2) exists, though not

necessarily unique; see Aubin and Cellina (1984) and Benäım et al. (2005).

Given a strategy profile x = (x1, x2), we define the energy to be

w(x) := max
ρ1∈∆(A1)

r(ρ1, x2)− min
ρ2∈∆(A2)

r(x1, ρ2). (2.3)

It is straightforward to see that

|r(x)− v(G)| ≤ w(x), ∀x ∈ ∆(A1)×∆(A2), (2.4)

and that w(x) = 0 if and only if x1 and x2 are optimal strategies of Player 1 and

2, respectively.

Harris (1998) and Hofbauer and Sorin (2006) show the following result:

Theorem 2.1. Given a zero-sum normal-form game G, along every solution tra-

jectory (x(t))t≥0 of (2.2), w(x(t)) is a Lyapunov function with

d
dt
w(x(t)) = −w(x(t)) for almost all t. (2.5)

Hence

w(x(t)) = e−tw(x(0)) (2.6)

and every solution trajectory of (2.2) converges to the set of optimal strategy pro-

files. That is,

||x(t)− Z||∞ := inf
z∈Z
||x(t)− z||∞ → 0, as t→∞,

where Z denotes the set of optimal strategy profiles in G.

Sketch Proof. In a solution trajectory (x(t))t≥0 of the best-response dynamic

(2.2), ẋ(t) exists for almost all t ≥ 0. Let us write b(t) := x(t) + ẋ(t) whenever

x(t) is differentiable. Hofbauer and Sorin (2006) show, by a version of the envelope

theorem, that

d
dt

max
ρ1∈∆(A1)

r(ρ1, x2(t)) = r(b1(t), ẋ2(t)) and d
dt

min
ρ2∈∆(A2)

r(x1(t), ρ2) = r(ẋ1(t), b2(t)).

6



Therefore, for almost all t ≥ 0,

d
dt
w(x(t)) = r(b1(t), ẋ2(t))− r(ẋ1(t), b2(t))

= r(b1(t), b2(t)− x2(t))− r(b1(t)− x1(t), b2(t)) (2.7)

= −r(b1(t), x2(t)) + r(x1(t), b2(t))

= −w(x(t)).

2.2 Zero-sum Stochastic Games

Our objective in this article is to develop similar results for a stochastic game,

defined in this section. A two-player zero-sum discounted-payoff stochastic game

is a tuple Γ = 〈I, S, A, P, r, δ〉 constructed as follows.

• Let I = {1, 2} be the set of players.

• Let S be a set of finitely many states.

• For each player i in state s, Ais denotes a set of finitely many actions. For

each state s, we put the set of action pairs As := A1
s × A2

s.

• For each state pair (s, s′) and each action pair a ∈ As, we define Ps,s′(a) to

be the transition probability from state s to state s′ given the action pair a.

• We define rs(·) to be the stage payoff function for Player 1. That is, when

the process is in a state s, rs(a) is the instantaneous payoff to Player 1 for

the action pair a ∈ As. Note that, in a zero-sum game, Player 2 always

receives stage payoff −rs(a).

• δ is a discount factor that affects the importance of future stage payoffs

relative to the current stage payoff.

In any state s, Player i plays an action xis ∈ ∆(Ais) =: ∆i
s. That is, xis(a

i)

denotes the probability that when in state s, player i selects action ai ∈ Ais. In

this paper, we only consider stationary strategies for both players. A stationary

strategy xi ∈ ∆i := ×s∈S∆i
s of player i specifies for each state s a mixed strategy

xis to be played whenever the state is s. We denote a strategy profile by x =

(x1, x2) = ((x1
s)s∈S, (x

2
s)s∈S), and the set of strategy profiles by ∆ := ∆1 × ∆2.

Given a strategy profile x in ∆, for any state s, we may write

rs(xs) = rs(x
1
s, x

2
s) =

∑
a∈A1

s×A2
s

x1
s(a

1)x2
s(a

2)rs(a),

7



and similar treatment applies to a transition probability Ps,s′(xs). To ease the

exposition, we denote a stochastic game Γ starting from a state s by Γs. We can

then define the expected discounted payoff for Player 1 under the strategy profile

x in Γs as

Us(x) := E

[
(1− δ)

∞∑
n=0

δnrsn(xsn)

∣∣∣∣s0 = s

]
, (2.8)

where {sn}n∈{0,1,2,...} is a stochastic process representing the state of the process

at each iteration, and (1 − δ) is to normalize the discounted payoff. Of course,

Player 2 has an expected discounted payoff −Us(x). Define

b1 := min
s∈S,a∈As

rs(a), b2 := max
s∈S,a∈As

rs(a), and B := [b1, b2]. (2.9)

Then Us(x) is in B for any strategy profile x starting in any state s.

Shapley (1953) proves that for every two-player zero-sum discounted-payoff

stochastic game Γs, there exists a unique value Vals, called the value of state s,

equal to the expected discounted payoff of Player 1 that she can guarantee by

an optimal strategy. Shapley (1953) further shows the existence of a stationary

optimal strategy profile, also called a Nash equilibrium; for any stationary optimal

strategy profile x̃, Vals satisfies equations

Vals = (1− δ)rs(x̃s) + δ
∑
s′∈S

Ps,s′(x̃s)Vals′ ∀s ∈ S. (2.10)

We can also study the asymptotic behavior in a stochastic game Γs(δ) where δ

increases to 1. Given a finite stochastic game, for each state s ∈ S, the asymptotic

value limδ→1 Vals(δ) exists; see Bewley and Kohlberg (1976) and Mertens and

Neyman (1981).

2.3 An Auxiliary Game

A central concept in stochastic games is that of the auxiliary game formed by

composing the stage game payoffs with the expected future discounted payoffs

(Shapley, 1953). If Player 1 knows (or assumes) that the future discounted payoff

achievable from every state s′ is given by us′ , then the expected future discounted

payoff achievable by playing mixed strategy xs in state s is given by

fs,~u(xs) := (1− δ)rs(xs) + δ
∑
s′∈S

Ps,s′(xs)us′ , ∀xs ∈ ∆1
s ×∆2

s, (2.11)

where ~u is the vector of continuation payoffs us. The auxiliary game with payoff

fs,~u(·) is denoted as Gs,~u. Since the stage games are zero-sum, Gs,~u is also zero-sum,

and Player 2 receives payoff −fs,~u(·).
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To define a best-response dynamic in a stochastic game and to show the con-

vergence, we will apply the continuous-time best-response dynamic in auxiliary

games. It will therefore be convenient to consider best responses and energy in

these auxiliary games. We denote the best responses in the auxiliary game in state

s with the continuation payoff vector ~u by

br1
s,~u(x

2
s) = argmax

ρ1s∈∆1
s

fs,~u(ρ
1
s, x

2
s) and br2

s,~u(x
1
s) = argmin

ρ2s∈∆2
s

fs,~u(x
1
s, ρ

2
s).

Similarly, we denote the energy in the same auxiliary game by

ws,~u(xs) = max
ρ1s∈∆1

s

fs,~u(ρ
1
s, x

2
s)− min

ρ2s∈∆2
s

fs,~u(x
1
s, ρ

2
s). (2.12)

3 The Best-response Dynamic in a Stochastic

Game

Our first process is a continuous-time dynamical system in which continuation

payoffs evolve slowly, while strategies follow a best-response dynamic defined in

the auxiliary games. All strategies and continuation payoffs evolve at all times;

we will consider a more plausible model of actual play in Section 4. Nevertheless,

we can motivate the dynamic in this section as follows. At each time instant, each

player knows x(t), i.e., both her own and her opponent’s mixed strategies, and

estimates each continuation payoff us(t) as the average auxiliary game payoff in

state s up to time t. Each player i thus learns the current auxiliary games Gs,~u(t)

in all states s, and then calculates the auxiliary game payoffs fs,~u(t)(x(t)) for the

current mixed strategy as well as the best responses bris,~u(t)(x
−i(t)). Meanwhile,

the strategies are adapted, at constant rate, towards the best responses.

Formally, we pick an arbitrary initial vector ~u(1) = (us(1))s∈S with us(1) ∈ B
for every s ∈ S, where B is the bounding interval defined in (2.9). Suppose that

the initial stationary strategy profile (xs(1))s∈S is given. We define the following

dynamical system for every state s ∈ S at every time t ≥ 1 u̇s(t) =
fs,~u(t) (xs(t))− us(t)

t
, (3.1)

ẋis(t) ∈ bris,~u(t)(x
−i
s (t))− xis(t), i = 1, 2, (3.2)

and call such a dynamical system the best-response dynamic in stochastic game

Γ. Note that (3.1) is equivalent to us(t) =
∫ t

1
fs,~u(τ)(x(τ)) dτ , which is the average

auxiliary game payoff up to time t, while (3.2) indicates that xs(t) follows a best-

response dynamic in the auxiliary game Gs,~u(t). We start the dynamic at t = 1

simply for notational convenience in (3.1).
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Theorem 3.1. Let Γ be a two-player zero-sum stochastic game, and let x(t) and

~u(t) be any solution trajectory of the best-response dynamic (3.1) and (3.2).

(i) For each state s, as t → ∞, both fs,~u(t)(xs(t)) and us(t) converge to Vals,

and x1(t) and x2(t) converge to the set of stationary optimal strategies of

Player 1 and 2, respectively.

(ii) There exists a constant K such that, for all s ∈ S, |Vals − us(t)| ≤ Kt−1,

i.e. the continuation payoffs converge to Vals at rate t−1.

Sketch proof. The critical observation is that with |fs,~u(t)(xs(t))−us(t)| bounded,

(3.1) implies that |u̇s(t)| → 0 as t→∞. This means that the continuation payoffs

~u(t) move very slowly, and the same energy-based arguments as used in Theorem

2.1 can be used to show that ws,~u(t)(xs(t))→ 0. This in turn tells us that

|fs,~u(t)(xs(t))− v(Gs,~u(t))| → 0,

by (2.4).

If it were the case that fs,~u(t)(xs(t)) = v(Gs,~u(t)) then (3.1) would become,

essentially, a time rescaling of the scheme of Vigeral (2010); the remainder of our

proof of part (i) of the theorem is simply a generalisation of that of Vigeral (2010).

Part (ii) of the theorem simply considers more carefully the bounds we place

on the rates of convergence of each part of the dynamical system, and notes that

the slowest rate is 1/t.

The full proof is given in Appendices B and C.

The dynamical system (3.1)–(3.2) can also be viewed as a feedback system

in which (fs,~u(t)(a))a∈As,s∈S transforms strategies to payoffs and the best-response

dynamic (3.2) transforms the payoffs back to strategies. Several recent works (e.g.

Hofbauer and Sandholm, 2009; Sandholm, 2010; Fox and Shamma, 2013) consider

evolutionary dynamics under this separation framework, with Zusai (2019) provid-

ing both a helpful summary of the concept, and using it to show the dynamic sta-

bility of general “economically reasonable” myopic dynamics in single-population

games in which the equilibria are statically stable.

4 Continuous-time state-dependent fictitious play

In this section, we present a continuous-time embedding of actual play in a stochas-

tic game, in which players transition through the state space, and always play an

auxiliary-game best response to the current beliefs about opponent strategies.
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Each player plays an action in the current state at every time instant; the holding

time in the current state and the distribution over successor states depends on

the players’ current actions. In this learning process, players update their actions,

beliefs about opponent strategies, and continuation payoffs in continuous time,

while playing the continuous-time embedding of the game.

We start by introducing our model of a continuous-time embedding of a stochas-

tic game, which is closely related to the models in Guo and Hernández-Lerma

(2005), Levy (2013), and Neyman (2017). In order to ensure that all states are

visited at a comparable rate, we restrict to an irreducible stochastic game Γ, which

requires

min
s,s′∈S

(
min
a∈As

Ps,s′(a)

)
> 0.

In the continuous-time embedding of an irreducible game Γ, given any states s, s′

and a pure action profile as, let qs,s′(as) be the transition rate from state s to

s′ when action as is being played. Thus if action as is played at time t then the

probability of a transition from state s to s′ 6= s in time [t, t+h] is simply qs,s′(as)h+

o(h), and the probability of staying in state s during [t, t+h] is 1+qs,s(as)h+o(h)

(and thus qs,s(as) = −
∑

s′ 6=s qs,s′(as)). We define a regular embedding of a game

Γ to satisfy that qs,s′(as) ∈ (λmin, λmax) for each tuple (s, s′, as) with s′ 6= s,

for some 0 < λmin < λmax. This condition ensures that the holding times are

non-pathological. A consistent regular embedding of Γ further requires that the

transitions in the continuous-time embedding follow the same distribution over

successor states as the transitions in the original game: given any s, as, and any

pair of states s′ and s′′ both different from s, Ps,s′(as)/Ps,s′′(as) = qs,s′(as)/qs,s′′(as).

The definition of the transition rate can be linearly generalized for a mixed strategy

profile.

Consider now two boundedly-rational players playing this continuous-time em-

bedding of the game. At time t they find themselves in state s, with beliefs x−is (t)

about opponent play in this state. In the spirit of fictitious play, players will play

an auxiliary-game best response to these beliefs, which requires the use of some

continuation payoffs ~u. We make the following modelling assumptions, along the

lines of other models of boundedly-rational learning (see, e.g., Harris, 1998):

(i) Each player believes that in each state s the exponentially weighted average

play of player −i in state s up to time t is the best estimate of the stage-game

mixed strategy in s.

(ii) Each player ignores strategic consideration in the dynamic adaptive process

and believes that the realization of her plays in this process will not affect
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her opponent’s predetermined strategy. The players will therefore play best

responses to current beliefs; to do so requires some estimate of continuation

payoffs.

(iii) Although a player has beliefs about opponent mixed strategy in all states,

and could in theory calculate a solution to either (2.8) or Bellman’s equation

to find self-consistent continuation payoffs, she is unable or unwilling to do

so. Hence the player takes the continuation payoffs for each state s′ to be the

historical time average of the believed auxiliary game payoffs fs′,~u(·)(xs′(·)).

The consequences of these assumptions are that, when the players are in a

state s at a time t in the learning process, each player i plays a best-response

action, denoted by bis(t), to belief x−is (t) in auxiliary game Gs,~u(t), as if the payoff

against x−is (t) in this auxiliary game is the final payoff she will receive in Γ. At

the same time, Player i updates her belief x−is (t) at a constant rate towards the

observed best response, b−is (t), of the opponent −i, and updates the continuation

payoffs ~u(t) in all states, to ensure they are always the average of fs,~u(t)(xs(t)).

We formalise the dynamics as follows. Define an indicator function 1s(t) such

that 1s(t) = 1 if the players are in state s at time t, otherwise 1s(t) = 0. We pick

an arbitrary initial vector ~u(1) = (us(1))s∈S with us(1) ∈ B for every s ∈ S, where

B is the bounding interval defined in (2.9). Suppose that the initial stationary

strategy profile (xs(1))s∈S is given. The continuation payoffs and beliefs evolve

according to

∀s ∈ S ∀t ≥ 1,

 u̇s(t) =
fs,~u(t) (xs(t))− us(t)

t
(4.1)

ẋis(t) ∈ 1s(t)
(
bris,~u(t)(x

−i
s (t))− xis(t)

)
. (4.2)

Equation (4.2) is simply the best-response dynamic (3.2) activated whenever play-

ers are in state s; (4.1) ensures that the continuation payoffs are the time average

of fs,~u(t) (xs(t)).

Once again, the continuation payoffs us(t) are updated more slowly than the

belief x−is (t). The continuation vector ~u(t) may be viewed as a preference pa-

rameter in auxiliary game Gs,~u(t). In the literature of evolutionary game theory,

preference update is often more slowly than behaviour update; see, e.g., Ely and

Yilankaya (2001) and Sandholm (2001). The model is therefore consistent with

this theory.

A natural question is why we don’t assume that players use us(t) = fs,~u(t) (xs(t))

to calculate the best responses in the dynamic instead of us(t) evolving towards

fs,~u(t) (xs(t)). Firstly, note that we make a bounded-rationality assumption that
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players would like to maximise the discounted payoff in the stochastic game but

do not know how to calculate (2.8) or solve Bellman’s equation. Hence a belief is

needed on the continuation payoff in order to calculate a best-response action bis(t)

based on this belief and the behaviour of the other player. However, a player knows

that neither belief us(t) nor payoff fs,~u(t) (xs(t)) is likely the true discounted payoff

Us(x(t)). In this case, she understands that if she forces us(t) = fs,~u(t) (xs(t)), then

the resultant new payoff in (2.11) is not the old fs,~u(t) (xs(t)), which means the

guess us(t) is not internally consistent until the full Bellman equations are solved;

evolving towards reasonable values is a sensible boundedly-rational approach. A

secondary consideration is that removing this boundedly-rational assumption, and

allowing players to use correct continuation payoffs given current strategy beliefs,

is only known to converge when the players are sufficiently impatient (Perkins,

2013).

Under the assumption that players adjust their continuation payoff estimates

towards fs,~u(t) (xs(t)), a second obvious question is why in (4.1) the target payoff is

fs,~u(t) (xs(t)) instead of fs,~u(t)(bs(t)). After all, action profile bs(t) is played and the

perceived instantaneous payoff should be the latter one. However, we would like

to emphasise that the belief about players’ actions is xs(t), and so the current best

estimate for the continuation payoff in state s is fs,~u(t) (xs(t)); the action b−is (t) is

simply the new information at time t that will be used by player i to update her

belief x−is (t).

Denote the set of stationary optimal strategy profiles by Z, and define the

distance in the space of stationary strategy profiles by the infinity norm.

Theorem 4.1. Let Γ be a two-player irreducible zero-sum stochastic game, and

let ~u(t) and x(t) evolve according to the learning dynamic (4.1) and (4.2) in a

regular embedding of Γ. Then, given any µ > 0, there exists a time t̄ such that for

each t̂ > t̄,

P
(
|us(t)− Vals| < µ and ||x(t)− Z||∞ < µ ∀t ∈ [µt̂, t̂]

)
> 1− µ.

The proof is given in Appendix D. We first show in Lemma D.1 and Corollary

D.2 that with high probability, for a sufficiently long period, players stay in each

state for at least a fixed proportion of that period of time, irrespective of what

actions they play in the embedding process. We then build on the proof of Theorem

3.1 to give convergence of first the xs(t) to a neighbourhood of the auxiliary game

equilibria, then the convergence of the continuation payoffs, conditional on the

event that all states are updated in a sufficient proportion of the time.
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5 The δ-converging Best-response Dynamic

In addition to its own interest, the study of the value of a zero-sum stochastic

games is essential to the study of related non-zero-sum stochastic games; see, e.g.,

Dutta (1995) and Hörner et al. (2011). In particular, for Folk Theorem, it is

often assumed that players are patient in a non-zero-sum stochastic game; the

asymptotic value with the discount factor converging to 1 in the corresponding

zero-sum stochastic game gives the limit of individually rational payoff in the

non-zero-sum stochastic game.

The asymptotic value exists in a finite zero-sum stochastic game: Bewley

and Kohlberg (1976) prove the existence by a semi-algebraic approach, and Oliu-

Barton (2014) prove it by an approach of asymptotically optimal strategies. Based

on the existence result, we present below a δ-converging best-response dynamic as

an adaptive approach to compute the asymptotic value. Note that neither of the

previous approaches (Bewley and Kohlberg, 1976; Oliu-Barton, 2014) are read-

ily accessible in computation: the former uses the Tarski-Seidenberg elimination

theorem from real algebraic geometry, while the latter needs stationary optimal

strategies in an infinite sequence of zero-sum stochastic games.

It is also worth noting that the asymptotic value in discounted payoff is equal

to the value in limit average payoff for any finite zero-sum stochastic game. For

the formulation of value in limit average payoff, let us first observe that the value

exists in a stochastic game where the interaction lasts only for a natural number T

stages and the final payoff is the average of these T stage payoffs. If T increases to

∞, then the payoff at each given stage is insignificant as compared to the payoffs

in all other stages. Mertens and Neyman (1981) prove that a value exists under

the condition that the limsup average stage payoff is applied as T increases to

∞. Moreover, this value is the same as the asymptotic value in discounted payoff

when δ increases to 1. So far no direct computational method to reach the value

in limit average payoff is available in the literature.

As δ is not a constant in the following model, let us rewrite (2.11):

fs,~u,δ(xs) = (1− δ)rs(xs) + δ
∑
s′∈S

Ps,s′(xs)us′ , ∀xs ∈ ∆1
s ×∆2

s. (5.1)

Similarly to the best-response dynamic in Section 3, pick an arbitrary δ(2) ∈ (0, 1),

and ~u(2) = (us(2))s∈S with us(2) ∈ B for each s ∈ S, where B is the bounding

interval defined in (2.9) (starting the process at t = 2 is once again solely for

notational convenience). We show here that given any state s in a zero-sum

stochastic game, us(t) of any solution trajectory to the following system with
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initial time t = 2 converges to the asymptotic value of Γs:
δ̇(t) =

1− δ(t)
t log t

(5.2)

u̇s(t) =
fs,~u(t),δ(t) (xs(t))− us(t)

t
(5.3)

ẋis ∈ bris,~u(t)(x
−i
s )− xis, i = 1, 2. (5.4)

We call such a dynamic a δ-converging best-response dynamic. Again, one can

show the existence of a solution trajectory to the dynamical system from any initial

condition ((xs(2))s∈S, ~u(2), δ(2)), by the results in Aubin and Cellina (1984).

Theorem 5.1. Let Γ be a two-player zero-sum stochastic game, and let x(t), ~u(t)

and δ(t) evolve according to the δ-converging best response dynamic (5.2)–(5.4).

Then for each state s, as t → ∞, both fs,~u(t)(x(t)) and us(t) converge to the

asymptotic value of Γs.

The only difference between this δ-converging best-response dynamic and the

best-response dynamic in Section 3 is the evolution of the discount factor δ(t)

given by (5.2). Note that this discount factor adapts even more slowly than both

continuation payoffs and players’ actions, and is independent of players’ actions

and continuation payoffs, taking values δ(t) = 1 − c(log t)−1 for a constant c

determined by the initial condition δ(2). The specific formulation (5.2) is just

one example of a sufficiently slow δ-increasing process, satisfying the important

condition that δ(t) → 1 and δ̇(t) = o(1/t). To see why we need (5.2), first note

that the speed difference between (5.3) and (5.4) allows each player to learn an

approximately optimal action in each auxiliary game equipped with the current

continuation payoff vector, as we have discussed before. The slowness of discount

factor adaption allows the continuation payoff vector defined in (5.3) to eventually

converge to a small set of vectors in which each one is approximately valid as the

continuation payoff vector for all the time when δ(t) is sufficiently close to 1. The

proof is given in Appendix E.

6 Discussion

We note that several alternative approaches to learning in stochastic games might

also be considered appropriate. We could translate the stochastic game into a

normal-form game with actions equal to the stationary pure strategies of the

stochastic game, and payoffs given by the corresponding discounted payoffs U i
s(·)

in the stochastic game, perhaps aggregated over s. Standard learning dynamics
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can be deployed in the normal-form representation, and will converge since the

game is zero-sum. However, a mixed strategy in the normal form does not cor-

respond to a stationary mixed strategy in the stochastic game. To illustrate this

point, consider a one-player stochastic game with two states, α and β. β is an

absorbing state with stage payoff −4. There are two actions, a and b in state α.

If the player selects a then she receives payoff rα(a) = 0 and the state in the next

stage is still α with probability 1; if the player selects b then she receives rα(b) = 1

and Pα,α(b) = Pα,β(b) = 1
2
. A mixed strategy in the normal-form representation

corresponds to using pure strategy a for all time with probability 1− ρ, and pure

strategy b for all time with probability ρ, for some ρ ∈ [0, 1]. A stationary mixed

strategy in the stochastic game will correspond to selecting a with probability 1−ρ
(and b with probability ρ) independently each time state α is encountered. Thus

convergence of the dynamics in the normal-form representation does not necessar-

ily result in convergence to a stationary Nash equilibrium in the stochastic game,

as the normal-form representation and the original stochastic game are related but

different games.

Another natural approach is to note that the stationary strategy space ∆ is a

compact and convex space. Results of Hofbauer and Sorin (2006) on dynamics in

compact and convex strategy spaces might then be applied. Note however that the

state transition formulation makes the payoff structure more complex than those

studied by Hofbauer and Sorin (2006). In particular, they consider only those

games with payoff concave in Player 1’s strategy space and convex in Player 2’s

strategy space. Consider again the game introduced in the previous paragraph.

We abuse the notation and denote by ρ the strategy that assigns probability ρ to

playing b in state α. The expected discounted payoff in state α satisfies

Uα(ρ) = (1− δ)ρ+ δ
((

1− ρ+
ρ

2

)
Uα(ρ) +

ρ

2
· (−4)

)
.

It follows that

Uα(ρ) =
1− 3δ
1−δ
ρ

+ δ
2

and
d2Uα(ρ)

dρ2
= −(1− 3δ)(1− δ)δ

(1− δ + δρ
2

)3
.

If δ > 1/3, then the second derivative is positive, and hence Uα(ρ) is convex in ρ,

taking us outside of the framework of Hofbauer and Sorin (2006).

One may also be tempted to apply the convergence result of the best-response

dynamic defined on convex/concave envelopes of the payoff function in a con-

tinuous quasiconcave-quasiconvex zero-sum game, proved by Barron et al. (2009).

However, they also show that the envelopes are necessary by a counterexample that
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the dynamic may not converge with respect to the payoff function itself. The con-

struction of convex/concave envelopes makes the learning procedure much more

complicated than the implementation of best-response strategies only. Relying on

these earlier results in normal-form games is thus not appropriate.

There exist other learning methods explicitly designed for stochastic games,

such as Szepesvári and Littman (1999), Vrieze and Tijs (1982) and Borkar (2002).

Note however that Szepesvári and Littman (1999) requires the solution of a linear

program on every iteration of learning, Vrieze and Tijs (1982) presents a somewhat

unnatural dynamic relying on very specific starting beliefs, and Borkar (2002)’s

results are weaker than ours, albeit using players that require less information

about the game. These results can be viewed as computational techniques to find

the value.

The most well-known algorithm to compute the value of a zero-sum stochastic

game with discounted payoff is still the value iteration process in Shapley (1953).

However, this algorithm needs to compute the values of all zero-sum auxiliary

games in each round. A continuous-time extension of this value iteration process

is presented in Vigeral (2010) as follows. In a zero-sum stochastic game with

discounted payoff, the so-called Shapley operator v(·,·) is nonexpansive. That is,

for each pair of continuation payoff vectors (~u, ~u′),

max
s∈S
|vs,~u − vs,~u′ | ≤ δmax

s∈S
|us − u′s|.

By this property, Vigeral (2010) proves that the dynamic system

u̇s(t) = vs,~u(t) − us(t), ∀s ∈ S (6.1)

converges to the value of the zero-sum stochastic game. The basic idea of the

proof is derived from the property that in the state with the maximum distance

of |v
s, ~u(t)

− us(t)|, this distance is always decreasing, which follows an interme-

diate result (B.13) in our proof of Theorem 3.1.i. Vigeral (2010) also shows the

convergence of a variation of dynamic (6.1) with discount factor increasing to 1,

analogous to our δ-converging result in Section 5. Our results can therefore be

considered as a boundedly-rational extension of Vigeral (2010) in which players

do not calculate values of games, and simply play best responses to current be-

liefs; the end product of this myopic adjustment process is an optimal stationary

strategy profile, and associated values, in the zero-sum stochastic game.

We would like to emphasize again that our work focuses on stochastic games

with discounted payoff. In addition to expected discounted payoffs defined in (2.8),

one can also apply limit average payoffs, in which the players only care about the
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long-run average payoffs, and the payoff at any given stage is insignificant as

compared with all the other stage payoffs. Schoenmakers et al. (2007) provide

a counterexample demonstrating that a natural fictitious play dynamic need not

converge in the case of limit average payoffs, and we leave it an open question as

to whether a dynamic such as those present in this article may converge.

Finally we note that our results, like the vast majority of those in learning in

games, consider the setting where all players use the same algorithm. Stronger

results would provide consistency results for a learner that deploys the algorithm

without knowing what algorithm the other players would use, along the lines of

Fudenberg and Levine (2014). However we are aware of no results along these

lines that apply to stochastic games.
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Appendix A Properties of Zero-sum Normal-form

Games

We present two standard preliminary results for a zero-sum normal-form game G

with payoff function u.

Lemma A.1. Given a positive finite number c, if we modify the payoff function

u to u′ with the property |u′(a1, a2)−u(a1, a2)| ≤ c for all (a1, a2) ∈ A1×A2, then

for any (mixed) strategy profile (x1, x2), |u′(x1, x2)− u(x1, x2)| ≤ c.

Proof. This follows from the linear property of u.

Lemma A.2. Given a positive finite number c, if we modify the payoff function

u to ū with the property |ū(a1, a2)− u(a1, a2)| ≤ c for all (a1, a2) ∈ A1 ×A2, then

|v(Ḡ)− v(G)| ≤ c, where Ḡ is the game with the modified payoff function ū.

Proof. For any optimal strategy profile (x1, x2) in G and any optimal strategy

profile (x̄1, x̄2) in Ḡ, we have

u(x1, x̄2) ≥ u(x1, x2) and ū(x̄1, x̄2) ≥ ū(x1, x̄2).

Thus

u(x1, x2)− ū(x̄1, x̄2) ≤ u(x1, x̄2)− ū(x1, x̄2) ≤ max
a1,a2
|ū(a1, a2)− u(a1, a2)| ≤ c,

by Lemma A.1. Similarly, we can show that

ū(x̄1, x̄2)− u(x1, x2) ≤ max
a1,a2
|ū(a1, a2)− u(a1, a2)| ≤ c.

Appendix B Proof of Theorem 3.1.(i)

With similar argument to the standard best response differential inclusion (2.2),

from any initial condition (xs(1), us(1))s∈S, there exists a solution trajectory (xs(t), us(t))s∈S,t≥1

for the best-response dynamic (3.1)–(3.2), where xs(t) and fs,~u(t) (xs(t)) are dif-

ferentiable for almost all t ≥ 1 in all states s; see Aubin and Cellina (1984).

It then follows that the derivatives of vs,~u(t) exist for almost all t ≥ 1 at all s.

Fix a solution trajectory (us(t), xs(t))s∈S,t≥1 throughout the proof. For each state

s ∈ S, at each time t ≥ 0, we denote the value of the auxiliary game Gs,~u(t) by

vs,~u(t) := v(Gs,~u(t)), which is defined in (2.1), and recall from (2.12) that the en-

ergy in Gs,~u(t) under xs(t) is denoted by ws,~u(t)(xs(t)). We study this energy before

proving the convergence of the auxiliary game play xs(t).

19



Lemma B.1. For any state s, ws,~u(t)(xs(t)) is Lipschitz continuous with respect

to t.

Proof. It is clear from the definition that fs,~u(xs) is Lipschitz with respect to both

~u and xs. Both ~u(t) and xs(t) are Lipschitz with respect to t, by the definition of a

trajectory. Hence fs,~u(t)(xs(t)) is Lipschitz with respect to t. From Theorem A.4 in

Hofbauer and Sandholm (2009), it follows that both maxρ1∈∆1
s
fs,~u(t)(ρ

1, x2
s(t)) and

minρ2∈∆2
s
fs,~u(t)(x

1
s(t), ρ

2) are Lipschitz continuous with respect to t. Therefore,

ws,~u(t)(xs(t)) = max
ρ1∈∆1

s

fs,~u(t)(ρ
1, x2

s(t))− min
ρ2∈∆2

s

fs,~u(t)(x
1
s(t), ρ

2)

is Lipschitz continuous with respect to t.

From the definition (3.1) of the dynamical system, u̇s(t) exists everywhere for

all states s. From definitions (2.11) and (2.12) of the energy for auxiliary game

Gs,~u(t), we observe that D~uws,~u(t)(xs(t)) always exists. Finally, from (2.7) in the

proof of Theorem 2.1, we may infer that ẋsDxsws,~u(t)(xs(t)) exists for almost all t.

We can then conclude by the chain rule that

d
dt
ws,~u(t)(xs(t)) = ~̇u ·D~uws,~u(t)(xs(t)) + ẋsDxsws,~u(t)(xs(t)). (B.1)

holds for almost all t. Throughout the proofs in the present paper, all statements

about derivatives are to be taken to hold where the derivatives exist, which is

everywhere except on a set of time of measure 0.

Lemma B.2. For each state s in S, |fs,~u(t) (xs(t))− vs,~u(t)| → 0 as t increases to

infinity.

Proof. First note that, by (2.4), |fs,~u(t) (xs(t)) − vs,~u(t)| → 0 is an immediate

consequence of ws,~u(t)(xs(t)) → 0, which we prove below by extending Theorem

2.1.

Suppose that an arbitrarily small ε > 0 is given. The definitions of the bound-

ing constants b1 and b2 in (2.9) imply that in any state s,

|fs,~u(t) (xs(t))− us(t)| ≤ b2 − b1, ∀t ≥ 1. (B.2)

Therefore, it follows from the definition of the dynamic (3.1) that there exists

tε > 1 such that

|u̇s(t)| =
|fs,~u(t) (xs(t))− us(t)|

t
≤ ε ∀t ≥ tε, ∀s ∈ S. (B.3)

Note, from (2.11) and (2.12), that a change in continuation payoffs ~u with

maximal change ε corresponds to a change in ws,~u(x) of at most 2δε. Hence

20



~̇u · D~uws,~u(t)(xs(t)) ≤ 2δmaxs′∈S u̇s′ . Furthermore, Harris (1998) and Hofbauer

and Sorin (2006) show that

ẋsDxsws,~u(t)(xs(t)) ≤ −ws,~u(t)(xs(t)). (B.4)

Therefore, (B.1) implies that

ẇs,~u(t) ≤ −ws,~u(t) + 2δε (B.5)

for all time t ≥ tε and for all s ∈ S. This in turn implies that, for sufficiently

large t, ws,~u(t)(xs(t)) < 2ε for all states s ∈ S.2 Since ε > 0 is arbitrarily small,

ws,~u(t)(xs(t)) converges to 0, and the result follows.

Lemma B.2 shows that for large t the auxiliary game play will be close to the

equilibrium determined by current continuation payoffs. Note that (B.4) is the

only line in the proof of Theorem 3.1 where we use a property of the best-response

dynamic (3.2), and other revision protocols that give rise to the conclusion of

Lemma B.2 would also result in an equivalent of Theorem 3.1.(i). For the rest of

the proof, we only need the formulation of continuation payoff adjustment (3.1)

and the auxiliary game structure (2.11).

Let ε > 0 be arbitrary, and let t1(ε) be such that for all t ≥ t1(ε) and all states

s in S,

|fs,~u(t) (xs(t))− vs,~u(t)| ≤ (1− δ)ε/16. (B.6)

Such a t1(ε) exists by Lemma B.2. For the rest of the proof we will assume that

t ≥ t1(ε) and hence that (B.6) holds.

It remains to show that the continuation payoffs will converge to the correct val-

ues, i.e. those of a Nash equilibrium. This part of the proof extends the approach

of Vigeral (2010), who proves that continuation payoffs converge to equilibrium

values if the payoff adjustment dynamics (3.1) are modified to (6.1) so that us(t)

moves in the direction of the value of the auxiliary game instead of in the direc-

tion of the current payoff in the auxiliary game. We start with some preliminary

definitions:

• For any time t ≥ 1, we mark a state

sf (t) ∈ argmax
s∈S

|fs,~u(t) (xs(t))− us(t)|, (B.7)

2If ws,~u(t)(xs(t)) ≥ (1+δ)ε then, by (B.5), ẇs,~u(t) ≤ −(1−δ)ε. So, eventually, ws,~u(t)(xs(t)) ≤
(1 + δ)ε. Once ws,~u(t)(xs(t)) is less than or equal to (1 + δ)ε it will never increase above this

level again. The result follows.
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which, by (3.1), implies that

sf (t) ∈ argmax
s∈S

|u̇s(t)|. (B.8)

• We also, for any time t ≥ 1, mark a state

sv(t) ∈ argmax
s∈S

|vs,~u(t) − us(t)|. (B.9)

Recall that Lemma B.2 shows that fs,~u(t)(x(t)) becomes close to vs,~u(t)(t) for all s.

By showing that |vsv(t),~u(t) − usv(t)(t)| → 0 and |fsf (t),~u(t)(xsf (t)(t))− usf (t)(t)| → 0

we will show that, in the limit, for each s, all of fs,~u(t)(xs(t)), us(t) and vs,~u(t) are

equal. This is sufficient to prove the theorem. Below is a technical lemma.

Lemma B.3. At any time t ≥ t1(ε), if

|usf (t)(t)− fsf (t),~u(t)

(
xsf (t)(t)

)
| ≥ ε, (B.10)

then for any state s with the property∣∣|usf (t)(t)− vsf (t),~u(t)| − |us(t)− vs,~u(t)|
∣∣ ≤ (1− δ)ε

8
, (B.11)

we have
d
dt
|us(t)− vs,~u(t)| ≤ −

3(1− δ)ε
4t

. (B.12)

This lemma says that if the maximal distance between us(t) and fs,~u(t)xs(t) is

big enough, then the absolute value between some us(t) and vs,~u(t) is decreasing

at a rate at least linear in 1/t. (Since this rate would result in the absolute value

becoming negative, condition (B.10) cannot always hold, as we will see in Lemma

B.4.)

Proof. From Lemma A.2 and the definition (B.8) of sf (t) as the maximiser of

|u̇s(t)|, it follows that

∀s ∈ S,
∣∣v̇s,~u(t)

∣∣ ≤ δmax
s∈S
|u̇s(t)| = δ

∣∣u̇sf (t)(t)
∣∣ . (B.13)

Now fix a state s with the property (B.11) at time t ≥ t1(ε). We may infer

from (B.11) and the fact that |vs,~u(t) − fs,~u(t)(xs(t))| ≤ (1 − δ)ε/16 for all s, by

(B.6), that

|us(t)− fs,~u(t) (xs(t)) | − |usf (t)(t)− fsf (t),~u(t)

(
xsf (t)(t)

)
|

≥(|us(t)− vs,~u(t)| − |vs,~u(t) − fs,~u(t)(xs(t))|)

− (|usf (t)(t)− vsf (t),~u(t)|+ |vsf (t),~u(t) − fsf (t),~u(t)

(
xsf (t)(t)

)
|)

≥|us(t)− vs,~u(t)| − |usf (t)(t)− vsf (t),~u(t)| −
(1− δ)ε

8

≥− (1− δ)ε
4

. (B.14)
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Thus, from the dynamic (3.1) for us(t), it follows that for this s,

|u̇s(t)| =

∣∣fs,~u(t)(xs(t))− us(t)
∣∣

t

≥
∣∣fsf (t),~u(t)(xsf (t)(t))− usf (t)(t)

∣∣
t

− (1− δ)ε
4t

≥
∣∣u̇sf (t)(t)

∣∣ (1− 1− δ
4

)
(B.15)

=
∣∣u̇sf (t)(t)

∣∣ 3 + δ

4
, (B.16)

where the last inequality holds since
∣∣u̇sf (t)(t)

∣∣ ≥ ε/t by (B.10) and (3.1). Com-

bining our inequalities (B.13) and (B.16) we see that∣∣v̇s,~u(t)

∣∣ ≤ 4δ

3 + δ
|u̇s(t)| < |u̇s(t)| . (B.17)

Suppose now that us(t) > vs,~u(t). The closeness of vs,~u(t) and fs,~u(t)(xs(t)) given

by (B.6), along with the conditions (B.10) and (B.11) of the lemma, give that

us(t)− vs,~u(t)

≥|usf (t)(t)− vsf (t),~u(t)| −
(1− δ)ε

8

≥
(
|usf (t)(t)− fsf (t),~u(t)

(
xsf (t)(t)

)
| − |fsf (t),~u(t)

(
xsf (t)(t)

)
− vsf (t),~u(t)|

)
− (1− δ)ε

8

≥
(

1− 3(1− δ)
16

)
ε.

Invoking (B.6) once more we see that

us(t) ≥ fs,~u(t)(xs(t)) +

(
1− (1− δ)

4

)
ε > fs,~u(t)(xs(t))

and so, by the definition of the dynamic (3.1), u̇s(t) = (fs,~u(t)(x(t))−us(t))/t < 0.

Combined with (B.17), this implies that

d
dt

(
us(t)− vs,~u(t)

)
< 0.

Recalling the lower bound of |u̇s(t)| in (B.16) and the upper bound of
∣∣v̇s,~u(t)

∣∣ in

(B.13), we may then infer that

d
dt

(
us(t)− vs,~u(t)

)
≤ −3 + δ

4

∣∣u̇sf (t)(t)
∣∣+ δ

∣∣u̇sf (t)(t)
∣∣ = −3

4
(1− δ)

∣∣u̇sf (t)(t)
∣∣ .

A near-identical calculation shows the same conclusion if us(t) < vs,~u(t). Thus,

we have
d
dt

∣∣us(t)− vs,~u(t)

∣∣ ≤ −3

4
(1− δ)

∣∣u̇sf (t)(t)
∣∣ . (B.18)

The result then follows on noting, once again, that
∣∣u̇sf (t)(t)

∣∣ = |fsf (t),~u(t)(xsf (t)(t))−
usf (t)|/t ≥ ε/t using (B.10) to bound |fsf (t),~u(t)(xsf (t)(t))− usf (t)| below by ε.
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This now puts us in a position to prove the important final lemma.

Lemma B.4. There exists time t2(ε) such that for all t ≥ t2(ε),

max
s∈S
|us(t)− vs,~u(t)| = |usv(t)(t)− vsv(t),~u(t)| ≤

(
1 +

3(1− δ)
16

)
ε (B.19)

and

max
s∈S
|us(t)− fs,~u(t)(xs(t))| = |usf (t)(t)− fsf (t),~u(t)

(
xsf (t)(t)

)
| ≤

(
1 +

1− δ
2

)
ε.

(B.20)

Proof. Fix ε > 0, let t1(ε) be defined as in (B.6), so that |fs,~u(t) (xs(t))− vs,~u(t)| ≤
(1 − δ)ε/16 for all s for t ≥ t1(ε). We start by showing that condition (B.11) of

Lemma B.3 always holds for state sv(t) when t ≥ t1(ε):∣∣|usf (t)(t)− vsf (t),~u(t)| − |usv(t)(t)− vsv(t),~u(t)|
∣∣

= |usv(t)(t)− vsv(t),~u(t)| − |usf (t)(t)− vsf (t),~u(t)|

≤ (|usv(t)(t)− fsv(t),~u(t)(xsv(t)(t))|+ |fsv(t),~u(t)(xsv(t)(t))− vsv(t),~u(t)|)

− (|usf (t)(t)− fsf (t),~u(t)(xsf (t)(t))| − |fsf (t),~u(t)(xsf (t)(t))− vsf (t),~u(t)|)

≤ (|usv(t)(t)− fsv(t),~u(t)(xsv(t)(t))| − |usf (t)(t)− fsf (t),~u(t)(xsf (t)(t))|) +
(1− δ)ε

8

≤ (1− δ)ε
8

, (B.21)

where the penultimate inequality is since t ≥ t1(ε), so that |fs,~u(t)(xs(t))−vs,~u(t)| ≤
(1−δ)ε/16, and the final inequality is because sf (t) maximizes |us(t)−fs,~u(t)(xs(t))|.

Since condition (B.11) holds for sv(t), it follows that, for any t ≥ t1(ε) such

that property (B.10) holds (i.e. |usf (t)(t)−fsf (t),~u(t)

(
xsf (t)(t)

)
| ≥ ε), the conclusion

of Lemma B.3 holds for sv(t), i.e.

d|usv(t)(t)− vsv(t),~u(t)|
dt

≤ −3(1− δ)ε
4t

. (B.22)

Hence, since |usv(t)(t)−vsv(t),~u(t)| is bounded below, there must exist a time t2(ε) ≥
t1(ε) at which property (B.10) ceases to hold, i.e. such that

|usf (t2(ε))(t2(ε))− fsf (t2(ε)),~u(t2(ε))

(
xsf (t2(ε))(t2(ε))

)
| < ε.

Since |vs,~u(t) − fs,~u(t)(x(t))| ≤ (1− δ)ε/16 when t ≥ t1(ε) by (B.6), and by (B.21),

at time t2(ε) we have that

|usv(t2(ε))(t2(ε))− vsv(t2(ε)),~u(t2(ε))| ≤
(

1 +
3(1− δ)

16

)
ε.
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So far, we have shown that there exists a time t2(ε) when the desired result

holds. We now show that the desired result holds for arbitrary t > t2(ε), by

checking two cases.

Case 1: (B.10) does not hold at t, so that |usf (t)(t)− fsf (t),~u(t)

(
xsf (t)(t)

)
| < ε,

and (B.20) follows immediately. Furthermore, by (B.6) and (B.21),

|usv(t)(t)− vsv(t),~u(t)| ≤
(

1 +
3(1− δ)

16

)
ε.

Case 2: (B.10) holds at t. Then, the existence of time t2(ε) implies that there

exists a time t3(ε) with t2(ε) < t3(ε) ≤ t such that

|usf (t−3 (ε))(t
−
3 (ε))− fsf (t−3 (ε)),~u(t−3 (ε))

(
xsf (t−3 (ε))(t

−
3 (ε))

)
| < ε,

where t−3 (ε) denotes the left limit of t3(ε), and

|usf (t3(ε))(t3(ε))− fsf (t3(ε)),~u(t3(ε))

(
xsf (t3(ε))(t3(ε))

)
| = ε.

Without loss of generality, we assume that (B.10) holds throughout the time period

[t3(ε), t]. By the continuity of u and v, we may infer from Case 1 that

|usv(t3(ε))(t3(ε))− vsv(t3(ε)),~u(t3(ε))| ≤
(

1 +
3(1− δ)

16

)
ε.

From (B.22), it further implies that

∀t′ ∈ [t3, t], |usv(t′)(t
′)− vsv(t′),~u(t′)| ≤

(
1 +

3(1− δ)
16

)
ε. (B.23)

To show (B.20), from (B.21) and (B.6), we may infer that for all t′ ∈ [t3(ε), t],∣∣|usf (t′)(t
′)− fsf (t′),~u(t′)

(
xsf (t′)(t

′)
)
| − |usv(t′)(t

′)− vsv(t′),~u(t′)|
∣∣ ≤ 3(1− δ)ε

16
. (B.24)

From (B.23) and (B.24), it follows that

∀t′ ∈ [t3, t], |usf (t′)(t
′)− fsf (t′),~u(t′)

(
xsf (t′)(t

′)
)
| ≤

(
1 +

3(1− δ)
8

)
ε.

Proof of Theorem 3.1.(i). From Lemma B.4, we see that for each state s,

|fs,~u(t)(xs(t))− us(t)| → 0 and |us(t)− vs,~u(t)| → 0, as t→∞. (B.25)

Let Z denote the set of optimal strategy profiles for zero-sum auxiliary games

Gs,(Vals)s∈S , where vector (Vals)s∈S is a solution to equation (2.10). It follows that

x(t) converges to the set Z as t → ∞. We now only need to know that Vals

is unique for each s, and each z ∈ Z is an optimal strategy profile in stochastic

game Γs regardless of the initial state s. This is proved in Theorem 2 of Shapley

(1953).
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Appendix C Proof of Theorem 3.1.(ii)

Proof of Theorem 3.1.(ii): We consider any solution trajectory (xs(t), us(t))s∈S,t≥1

of the best-response dynamic in a zero-sum stochastic game with a discount factor

δ < 1. From Lemma B.2, it follows that |fs,~u(t) (xs(t))−vs,~u(t)| decreases to 0 in all

states s. We can adopt a similar approach to Harris (1998) to find the convergence

rate.

Tightening up the analysis in Lemma B.2, from (3.1), (B.2), and (B.1), we

may infer that

∀s, ẇs ≤ −ws +
2δ(b2 − b1)

t
.

Note that when ws(t) >
4δ(b2−b1)

t
, ẇs < −ws

2
< −2δ(b2−b1)

t
. Thus, as before, ws(t)

converges to 0 at rate 1/t, and hence fs,~u(t) (xs(t)) converges to vs,~u(t) at rate 1/t

in all states s. We now consider two cases.

Case 1: There exists time t̄ such that for all t > t̄,

max{|fsv(t),~u(t)

(
xsv(t)(t)

)
− vsv(t),~u(t)|, |fsf (t),~u(t)

(
xsf (t)(t)

)
− vsf (t),~u(t)|}

>
1− δ

4
|usf (t)(t)− fsf (t),~u(t)

(
xsf (t)(t)

)
|. (C.1)

Then for all s ∈ S, us(t), fs,~u(t)(xs(t)), and vs,~u(t) all converge at the same rate as

of fsf (t),~u(t)

(
xsf (t)(t)

)
converging to vsf (t),~u(t), i.e., 1/t. Together with the argument

in Theorem 2 in Shapley (1953), as we have used in the proof of Theorem 3.1.i,

they all converge to Vals at rate 1/t.

Case 2: For any t̄, there exists some time t > t̄ at which (C.1) does not hold.

Then, at this t, by the definition of sv(t) in (B.9),

|usv(t)(t)− fsv(t),~u(t)

(
xsv(t)(t)

)
| − |usf (t)(t)− fsf (t),~u(t)

(
xsf (t)(t)

)
|

≥(|usv(t)(t)− vsv(t),~u(t)| − |fsv(t),~u(t)

(
xsv(t)(t)

)
− vsv(t),~u(t)|)

− (|usf (t)(t)− vsf (t),~u(t)|+ |fsf (t),~u(t)

(
xsf (t)(t)

)
− vsf (t),~u(t)|)

≥− 1− δ
2
|usf (t)(t)− fsf (t),~u(t)

(
xsf (t)(t)

)
|.

Thus,

|usv(t)(t)− fsv(t),~u(t)

(
xsv(t)(t)

)
| ≥

(
1− 1− δ

2

)
|usf (t)(t)− fsf (t),~u(t)

(
xsf (t)(t)

)
|.
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Similarly to (B.15), we may further infer that∣∣∣∣dusv(t)(t)

dt

∣∣∣∣ =
|fsv(t),~u(t)

(
xsv(t)(t)

)
− usv(t)(t)|

t

≥
(
1− 1−δ

2

)
|usf (t)(t)− fsf (t),~u(t)

(
xsf (t)(t)

)
|

t

=

(
1− 1− δ

2

) ∣∣∣∣dusf (t)(t)

dt

∣∣∣∣ .
Along the argument in the proof of Lemma B.3, we have∣∣∣∣dvsv(t),~u(t)

dt

∣∣∣∣ ≤ δ

∣∣∣∣dusf (t)(t)

dt

∣∣∣∣
by (B.13), and we can further deduce that

d|usv(t)(t)− vsv(t),~u(t)|
dt

≤ −
∣∣∣∣dusv(t)(t)

dt

∣∣∣∣+

∣∣∣∣dvsv(t),~u(t)

dt

∣∣∣∣
≤
(
−
(

1− 1− δ
2

)
+ δ

) ∣∣∣∣dusf (t)(t)

dt

∣∣∣∣
= −1− δ

2

∣∣∣∣dusf (t)(t)

dt

∣∣∣∣
= −1− δ

2t
|fsf (t),~u(t)

(
xsf (t)(t)

)
− usf (t)(t)| (C.2)

From the assumption that (C.1) does not hold, it follows that

|fsf (t),~u(t)

(
xsf (t)(t)

)
− usf (t)(t)|

≥|fsv(t),~u(t)

(
xsv(t)(t)

)
− usv(t)(t)|

≥|usv(t)(t)− vsv(t),~u(t)| − |fsv(t),~u(t)

(
xsv(t)(t)

)
− vsv(t),~u(t)|

≥|usv(t)(t)− vsv(t),~u(t)| −
1− δ

4
|fsf (t),~u(t)

(
xsf (t)(t)

)
− usf (t)(t)|,

and hence

|fsf (t),~u(t)

(
xsf (t)(t)

)
− usf (t)(t)| ≥

|usv(t)(t)− vsv(t),~u(t)|
1 + 1−δ

4

.

Combined with (C.2), we observe that

d|usv(t)(t)− vsv(t),~u(t)|
dt

≤ −1− δ
2t

|usv(t)(t)− vsv(t),~u(t)|
1 + 1−δ

4

.

Thus, usv(t)(t) converges to vsv(t),~u(t) at rate 1/t. Recall that fs,~u(t) (xs(t)) converges

to vs,~u(t) at rate 1/t in all states s. Therefore, for all s ∈ S, us(t), fs,~u(t)(xs(t)),

and vs,~u(t) all converge at rate 1/t. Together with the argument in Theorem 2 in

Shapley (1953), as we have used in the proof of Theorem 3.1.i, they all converge

to Vals at rate 1/t.
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Appendix D Proof of Theorem 4.1

We start by proving a seemingly-obvious result about the occupation times of

states in a controlled Markov chain, which is needed to ensure that the action is

updated sufficiently frequently in every state despite only the action at the current

state being updated at any particular time. The reason we cannot apply standard

ergodicity results directly to the controlled Markov chain is because the transition

rates of the chain are probably continually evolving under the control parameter

x(t); the result is likely to already exist elsewhere, but we have not managed to

find it and hence include the proof here for completeness.

Lemma D.1. Consider a continuous-time controlled Markov chain on a finite

state space S. Let the transition rates between states s and s′ be given by qs,s′(x(t))

where x(t) is an arbitrary control parameter, and define

qs(x(t)) := −qs,s(x(t)) =
∑
s′ 6=s

qs,s′(x(t)).

Assume that:

• there exists η > 0 such that qs,s′(x(t))/qs(x(t)) ≥ η for all s, s′, and t, so

that when a jump occurs the probability of jumping to any state is bounded

below by η, and

• there exist λmin and λmax such that 0 < λmin < qs(x(t)) < λmax for all s and

t, so that the holding times in states are well-behaved.

Let Q > 0 and ε > 0. Then, there exists a ∆T > 0 such that for all T ≥ 0, all

s ∈ S, and irrespective of x(t)t≥0,

P

(∫ T+∆T

T

1s(t) dt ≥ Q

)
≥ 1− ε. (D.1)

Proof. We construct a proof using a coupling argument, linking our original pro-

cess to one in which simple renewal-reward arguments (e.g., Grimmett and Stirza-

ker, 2001) show the probability of the event we care about is sufficiently high.

Throughout, we assume nothing about the control parameter x(t), and we show

that our result holds irrespective of x(t).

First note that our Markov model can be implemented using a sequence of

independent uniform random variables as follows. If the kth state is sk and the

process arrives here at time tk, a uniform random variable Uk ∼ Unif(0, 1) is

sampled; the state remains at sk until tk+1 which satisfies∫ tk+1

tk

qsk(x(τ)) dτ = − log(1− Uk); (D.2)
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a further uniform random variable Vk+1 ∼ Unif(0, 1) is then sampled to deter-

mine the state transition, with the next state sk+1 being selected using the in-

verse cumulative distribution function method on the probability mass function

(qsk,s(x(tk+1))/qsk(x(tk+1)))s 6=sk . If transition rates did not depend on x(t), (D.2)

would result in the standard exponential holding times

tk+1 − tk = − log(1− Uk)
qsk

,

with jump chain transition probabilities qsk,sk+1
/qsk , as in Grimmett and Stirzaker

(2001, Section 6.9). When we have non-constant transition rates, it is an easy

calculation to see that the instantaneous transition rates in the above construction,

if the state is s at time t, are given by qs,s′(x(t)); thus the construction is a valid

implementation of the state sequence.

Without loss of generality, we will show (D.1) for a state s∗ ∈ S, for T = 0.

We start modifying our process by introducing a new state s†. Suppose that at

time tk a state transition occurs from a state sk−1 6= s∗, and we have sampled a Vk

to determine the state sk. If in the original process we would have transitioned to

s∗ (i.e. Vk < qsk−1,s∗(x(t))/qsk−1
(x(t))) then in our modified process we transition

to sk = s∗ only if Vk < η ≤ qsk−1,s∗(x(t))/qsk−1
(x(t)); otherwise we transition to s†.

We stay at either of s∗ or s† until tk+1 satisfying (D.2) for sk = s∗ then transition

to a successor state sk+1 determined by using Vk+1 in the inverse cdf method

on (qs∗,s(x(tk+1))/qs∗(x(tk+1)))s/∈{s∗,s†} (i.e. we use the transition rates for state s∗

irrespective of whether we are in s∗ or s†). When the original process is in a state

other than s∗, the modified process is in the same state; when the original process

is in s∗, the modified process is in either s∗ or s†. The modified process therefore

spends no more time in s∗ than the original process, in any interval [T, T + ∆T ].

Our next modification homogenises the holding times, and amalgamates all

states other than s∗. We introduce a new state sequence s̃k such that if Vk < η and

s̃k−1 6= s∗ then s̃k = s∗; otherwise s̃k = s−, where s− is a new state amalgamating

all states other than s∗. This means that if sk = s∗ in the first modification

then s̃k = s∗ , whereas if sk 6= s∗ in the first modification then s̃k = s−. We

also define new holding times, such that the holding time in state s̃k is given by

− log(1 − Uk)/λs̃k with λs∗ = λmax and λs− = λmin. This means that the kth

holding time when s̃k = s∗ is bounded above by the kth holding time in the

original process, whereas the kth holding time when s̃k = s− is bounded below by

the kth holding time in the original process. Once again, the s̃k process spends

no more time in s∗ than the original process, in any interval [T, T + ∆T ].

Finally note that the s̃k process has a very simple transition structure: when in
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state s∗, wait for an Exp(λmax) holding time then transition to s−; when in state

s− wait for an Exp(λmin) holding time then transition to s∗ with probability η,

otherwise return to s− and restart the clock. Simple renewal-reward theory (e.g.

Grimmett and Stirzaker, 2001) easily gives that there exists a ∆T such that (D.1)

holds for the s̃k process.

However note that any Uk, Vk sequence for which the s̃k process occupies state

s∗ for time at least Q in [T, T + ∆T ] also ensures that the same holds for the

original state transition process. It follows immediately that (D.1) holds for the

the original process.

We make use of this result in the context of a regular embedding of an irre-

ducible stochastic game as follows.

Corollary D.2. Consider a regular embedding of an irreducible stochastic game

Γ. For any ε > 0 and k > 0, there exists a time ∆T > Q, depending on Q, ε

and k, such that for any time T ≥ 1, any initial state in S, and any measurable

strategy process x(t),

P

(
∀s ∈ S,

∫ T+∆T

T

1s(t) dt ≥ Q

)
≥ 1− ε

k
. (D.3)

Proof. The definition of a regular embedding of an irreducible game, given in

Section 4, ensures that the rates qs,s′(x(t)) meet the conditions of Lemma D.1.

Hence there exists ∆T > 0 such that

∀T ≥ 1, ∀s ∈ S, P
(∫ T+∆T

T

1s(t) dt ≥ Q

)
≥ 1− ε

|S|k
.

Therefore,

P

(
∃s ∈ S s.t.

∫ τ+∆T

τ

1s(t)dt < Q

)
≤
∑
s∈S

P

(∫ τ+∆T

τ

1s(t)dt < Q

)
≤ ε

k
.

Hence, in any time interval of length ∆T , the probability that each xs(t) is

updated for at least Q time units is high. Now fix ε > 0 for the remainder of the

proof, define

Q :=
64(b2 − b1)

(1− δ)ε
where b1 and b2 are the bounds on rewards defined in (2.9), and let ∆T be appro-

priate for this choice of ε, Q and an as yet unspecified k. Define A(T ) to be the

event

A(T ) =

{
∀s ∈ S,

∫ T+∆T

T

1s(t) dt ≥ Q

}
.

Each of the subsequent lemmas will be conditioned on some A(T ), and hence (by

Corollary D.2) will be true with a controlled probability.
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Lemma D.3. There exists an integer k0 > 1 depending only on b1, b2, δ and ε

such that, for any time T̄ ≥ (k0 − 1)∆T , if A(T̄ ) holds, then

∀s ∈ S, ws,~u(T̄+∆T )(xs(T̄ + ∆T )) ≤ (1− δ)ε
32

. (D.4)

Proof. Firstly, Lemma B.1 implies that ws,~u(t)(xs(t)) is differentiable for almost

all time t. In any state s and at any time t, from (B.1) it follows that

dws,~u(t)(xs(t))

dt
≤ ~̇u ·D~uws,~u(t)(xs(t))− ws,~u(t)(xs(t))1s(t) (D.5)

Recall from (2.9) and (4.1) that we can assume |u̇s(t)| ≤ (b2 − b1)/t for all s and

all t. Hence, as in the proof of Lemma B.2, we can choose k0 sufficiently large

(depending only on b1, b2, δ and ε) such that |~̇u·D~uws,~u(t)(xs(t))| ≤ (1−δ)ε/(64∆T )

for all t ≥ (k0 − 1)∆T . Thus, for any t ≥ (k0 − 1)∆T ,

dws,~u(t)(xs(t))

dt
≤ (1− δ)ε

64∆T
− ws,~u(t)(xs(t))1s(t) ≤

(1− δ)ε
64∆T

. (D.6)

Now let T̄ ≥ k0∆T . If, for our state s, there exists some time T ′ ∈ [T̄ , T̄ +∆T ]

such that

ws,~u(T ′)(xs(T
′)) ≤ (1− δ)ε

64
,

then it follows from (D.6) that

ws,~u(T̄+∆T )(xs(T̄ + ∆T )) ≤ (1− δ)ε
64

+

∫ T̄+∆T

T ′

(1− δ)ε
64∆T

dt ≤ (1− δ)ε
32

. (D.7)

Now suppose that, contrary to the conclusion of the lemma,

∃s̃ ∈ S s.t. ws̃,~u(T̄+∆T )(xs̃(T̄ + ∆T )) >
(1− δ)ε

32
. (D.8)

By the previous calculation, it follows that ws̃,~u(t)(xs̃(t)) >
(1−δ)ε

64
for all t ∈ [T̄ , T̄ +

∆T ]. Since w·,·(·) ≤ b2 − b1 by (2.9), it follows from (D.6) and the definition of Q

that

ws̃,~u(T̄+∆T )(xs̃(T̄ + ∆T )) ≤ b2 − b1 +

∫ T̄+∆T

T̄

(1− δ)ε
64∆T

dt−
∫ T̄+∆T

T̄

1s̃(t)
(1− δ)ε

64
dt

≤ b2 − b1 +
(1− δ)ε

64
− Q(1− δ)ε

64

=
(1− δ)ε

64
,

contradicting (D.8).
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Comment: As in the proof of the best response dynamic in Appendix B, (D.5)

is the only line in the proof of Theorem 4.1 where we use a property of the best-

response dynamic (4.2). For the rest of the proof, we only need the formulation

of payoff adjustment (4.1) and the stochastic game structure.

Lemma D.4. Fix an integer K > k0 and suppose that event A(k∆T ) holds for

each integer k ∈ {k0 − 1, k0, . . . , K − 1}. Then

ws,~u(t)(xs(t)) <
(1− δ)ε

16
(D.9)

for all s ∈ S and all t ∈ [k0∆T ,K∆T ].

Proof. Fix s ∈ S and k ∈ {k0, k0 + 1, . . . , K − 1}. By Lemma D.3,

ws,~u(k∆T )(xs(k∆T )) ≤ (1− δ)ε
32

.

For k∆T < t ≤ (k + 1)∆T we therefore have, by (D.6),

ws,~u(t)(x(t)) ≤ ws,~u(k∆T )(xs(k∆T )) +

∫ t

k∆T

(1− δ)ε
64∆T

dt

≤ (1− δ)ε
32

+
(1− δ)ε

64

<
(1− δ)ε

16
.

This result is the analogue of Lemma B.2, and allows us to bound the difference

between fs,~u(t)(xs(t)) and vs,~u(t). We will now proceed along similar lines as for

Lemma B.4.

Lemma D.5. Fix K > k0, and suppose that A(k∆T ) holds for each integer k ∈
{k0 − 1, k0, . . . , K − 1}. There exits a k1 > k0, depending only on b1, b2, δ and ε,

such that, if K > k1, for all t ∈ [k1∆T ,K∆T ],

max
s∈S
|us(t)− vs,~u(t)| ≤

(
1 +

3(1− δ)
16

)
ε (D.10)

and

max
s∈S
|us(t)− fs,~u(t)(xs(t))| ≤

(
1 +

1− δ
2

)
ε. (D.11)

Proof. Lemma D.4 shows that

∀s ∈ S, ∀t ∈ [k0∆T ,K∆T ], ws,~u(t)(xs(t)) ≤
(1− δ)ε

16
.
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Recall the definition of sf (·) in (B.7) and sv(·) in (B.9):

sf (t) ∈ argmax
s∈S

|us(t)− fs,~u(t)(xs(t))|

sv(t) ∈ argmax
s∈S

|us(t)− vs,~u(t)|.

As in Lemma B.4, we start by showing that there exists a τ ∈ [k0∆T ,K∆T ] such

that

|usv(τ)(τ)− vsv(τ),~u(τ)| <
(

1 +
3(1− δ)

16

)
ε, and (D.12)

|usf (τ)(τ)− fsf (τ),~u(τ)

(
xsf (τ)(τ)

)
| < ε. (D.13)

Our basic facts about w (see (2.4)) give that, ∀s ∈ S, ∀t ∈ [k0∆T ,K∆T ],

|fs,~u(t) (xs(t))− vs,~u(t)| ≤ ws,~u(t)(xs(t)) ≤
(1− δ)ε

16
.

This is precisely condition (B.6). As in the proof of Lemma B.4, (B.21) follows,

so that (D.12) is an immediate consequence of (D.13).

Suppose now, for a contradiction, that (D.13) does not hold for any t ∈
[k0∆T , k1∆T ]. As in the proofs of Lemmas B.3 and B.4, we may infer that (B.22)

also holds:
d|usv(t)(t)− vsv(t),~u(t)|

dt
≤ −3(1− δ)ε

4t
.

By (B.22), and noting that b1 ≤ uk0∆T (k0∆T ), vsv(k0∆T ),~u(k0∆T ) ≤ b2, we observe

|usv(k1∆T )(k1∆T )− vsv(k1∆T ),~u(k1∆T )|

≤b2 − b1 −
∫ k1∆T

k0∆T

3(1− δ)ε
4t

dt

=b2 − b1 −
3(1− δ)ε

4
(log (k1∆T )− log(k0∆T ))

≤b2 − b1 −
3(1− δ)ε

4
log (k1/k0) .

Hence for sufficiently large k1, depending only on b1, b2, δ and ε, we have that

|usv(k1∆T )(k1∆T )− vsv(k1∆T ),~u(k1∆T )| < (1− 3(1− δ)/16) ε. By (B.21) and (B.6),

|usf (k1∆T )(k1∆T )− fsf (k1∆T ),~u(k1∆T )

(
xsf (k1∆T )(k1∆T )

)
| < ε,

contradicting our assumption that (D.13) never holds. Thus there exists a τ ∈
[k0∆T , k1∆T ] such that (D.12) and (D.13) hold.

Finally, note that (D.10) and (D.11) are identical to (B.19) and (B.20) in

Lemma B.4. We have already seen that the conditions of this lemma imply that

(B.6) holds for all t ∈ [k0∆T ,K∆T ]. The argument to extend from (D.12) and

(D.13) to the conclusion of the lemma is identical to that in the proof of Lemma

B.4.
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Proof of Theorem 4.1

Fix ε > 0, and hence k0 and k1. Let K = dk1/εe, recall that Q = 64(b2−b1)
(1−δ)ε , and let

∆T be chosen such that

∀τ ≥ 1, P

(
∀s ∈ S,

∫ τ+∆T

τ

1s(t)dt ≥ Q

)
≥ 1− ε

K
,

which is possible by Corollary D.2. It follows that

P

(
∀s ∈ S, ∀k ∈ {k0, . . . , K − 1},

∫ (k+1)∆T

k∆T

1s(t)dt ≥ Q

)
≥ 1− ε.

From Lemma D.5, noting that k1 ≤ εK, it follows that

P (∀t ∈ [εK∆T ,K∆T ], Es(t) occurs) ≥ 1− ε

where the event

Es(t) :=

|usv(t)(t)− vsv(t),~u(t)| ≤
(

1 + 3(1−δ)
16

)
ε

|usf (t)(t)− fsf (t),~u(t)

(
xsf (t)(t)

)
| ≤

(
1 + 1−δ

2

)
ε.

Given any t̂ ≥ K∆T , we can replace the ∆T by t̂
K
, and the above result still

holds, i.e.,

P
(
∀t ∈ [εt̂, t̂], Es(t) occurs

)
≥ 1− ε.

The proof concludes in an identical manner to the proof of Theorem 3.1.(i).

�

Appendix E Proof of Theorem 5.1

To emphasize that δ(t) is a variable, we denote the auxiliary game by Gs,~u(t),δ(t),

its value by vs,~u(t),δ(t), and its energy by ws,~u(t),δ(t), for each state s ∈ S at each

time t ≥ 0.

Begin by noting that it is immediate from (5.2) that

∀t ≥ 2, δ(t) = 1− ec

log t
(E.1)

where

1− ec

log 2
= δ(2). (E.2)

Lemma E.1. In any δ-converging best-response dynamic, for all ε > 0, there

exists a time t1 ≥ 2 such that for all t ≥ t1,

∀s ∈ S, |fs,~u(t),δ(t) (xs(t))− vs,~u(t),δ(t)| ≤
(1− δ(t))ε

16
. (E.3)
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Proof. We put

ζ := max{ max
s∈S,a∈As

|rs(a)|, max
s∈S,a∈As

rs(a)− min
s∈S,a′∈As

rs(a
′)}. (E.4)

Note that

fs,~u(t),δ(t)(xs(t))− us(t) ≤ ζ (E.5)

always holds, as in the initial condition

∀s ∈ S, min
s′∈S,a′∈As

rs′(a
′) ≤ us(0) ≤ max

s′∈S,a′∈As
rs′(a

′).

By a similar proof to that of Lemma B.1, we can show that ws,~u(t),δ(t)(xs(t)) is dif-

ferentiable for almost all time t. Observe the following results of partial derivative

of ws,~u(t),δ(t)(xs(t)):

(i) by (2.5),

ẋs ·Dxsws,~u,δ = −ws,~u,δ;

(ii) by (2.11) and (2.12),

~̇u ·D~uws,~u,δ ≤ 2δmax
s′∈S
|u̇s′ |;

(iii) by (2.11) and (2.12),
∂ws,~u,δ
∂δ

dδ

dt
≤ 2ζ

dδ

dt
.

Thus, by (5.2), (5.3), and (E.5),

dws,~u(t),δ(t)(xs(t))

dt
≤ −ws,~u(t),δ(t)(xs(t)) + 2δ(t) max

s′∈S
|u̇s′ |+ 2ζ

dδ

dt

= −ws,~u(t),δ(t)(xs(t)) +
2δ(t)ζ

t
+

2ζ(1− δ(t))
t ln t

. (E.6)

Claim:

∃t1 s.t. ∀t ≥ t1, ∀s ∈ S, ws,~u(t),δ(t)(xs(t)) ≤
(1− δ(t))ε

16
.

To see this, we first infer from (E.1) that

(1− δ(t))ε
16

=
εec

16 ln t
,

where c is defined in (E.2). Thus, there exists a time T1 such that for all t ≥ T1,

max

{
2δ(t)ζ

t
,
2ζ(1− δ(t))

t ln t

}
<

(1− δ(t))ε
64

.

At any t ≥ T1, if ws,~u(t),δ(t)(xs(t)) >
(1−δ(t))ε

16
, then it follows from (E.6) that

dws,~u(t),δ(t)(xs(t))

dt
< −

ws,~u(t),δ(t)(xs(t))

2
.

We have completed the proof of the claim, and (E.3) follows from the definition

of ws,~u(t),δ(t)(xs(t)).
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Comment: Similarly to the other dynamical systems we consider, the partial

derivative (i) is the only line in the proof of Theorem 5.1 where we use a property

of the best-response dynamic (5.4), i.e., an implication of the revision protocol.

For the rest of the proof, we only need the formulations (5.2) and (5.3) as well as

the auxiliary game structure (2.11).

Lemma E.2. In any δ-converging best-response dynamic, for all ε > 0, there

exists t̄ such that for all t > t̄,

|usf (t)(t)− fsf (t),~u(t),δ(t)

(
xsf (t)(t)

)
| < 2ε

and

|usv(t)(t)− vsv(t),~u(t),δ(t)| < 2ε.

The notations of sf (t) and sv(t) are defined in (B.7) and (B.9), respectively.

Proof. Recall ζ defined in (E.4). We can then take a time t2 ≥ t1 such that

∀t ≥ t2,
ζ

ln t
≤ ε

8
. (E.7)

Suppose that at a time t ≥ t2

|usf (t)(t)− fsf (t),~u(t),δ(t)

(
xsf (t)(t)

)
| ≥ ε. (E.8)

Then, from (5.3), it follows that at this t,∣∣∣∣dusf (t)(t)

dt

∣∣∣∣ ≥ ε

t
. (E.9)

For game Gsv(t),~u(t),δ(t), it follows from (5.1), Lemma A.2, and (E.7) that at this t∣∣∣∂vsv(t),~u(t),δ(t)∂δ
· dδ
dt

∣∣∣∣∣∣dusf (t)(t)dt

∣∣∣ ≤
ζ(1−δ(t))
t ln t
ε
t

=
ζ(1− δ(t))

ε ln t
≤ 1− δ(t)

8
. (E.10)

On the other hand, after applying (E.3) to (B.21), we find that∣∣|usf (t)(t)− vsf (t),~u(t),δ(t)| − |usv(t)(t)− vsv(t),~u(t),δ(t)|
∣∣ ≤ (1− δ(t))ε

8
,

and thus condition (B.11) holds for state sv(t). We have the following property

by the argument for (B.18):

• if vsv(t),~u(t),δ(t) > usv(t)(t), then

~̇u(t)Dū(t)vsv(t),~u(t),δ(t) ≤
dusv(t)(t)

dt
− 3(1− δ(t))

4

∣∣∣∣dusf (t)(t)

dt

∣∣∣∣ ;
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• if vsv(t),~u(t),δ(t) < usv(t)(t), then

~̇u(t)Dū(t)vsv(t),~u(t),δ(t) ≥
dusv(t)(t)

dt
+

3(1− δ(t))
4

∣∣∣∣dusf (t)(t)

dt

∣∣∣∣ .
Together with (E.10) and (E.9), we have

d|vsv(t),~u(t),δ(t) − usv(t)(t)|
dt

≤ −1− δ(t)
2

∣∣∣∣dusf (t)(t)

dt

∣∣∣∣ ≤ −ε(1− δ(t))2t
. (E.11)

We may further deduce from (E.1) that

d|vsv(t),~u(t),δ(t) − usv(t)(t)|
dt

≤ − εec

2t ln t
, (E.12)

where c is defined in (E.2).

Thus, by the similar argument to the one after (B.22) in the proof of Lemma

B.4, we can deduce that there exists time t̄ ≥ t2 such that

|fsf (t),~u(t),δ(t)

(
xsf (t)(t)

)
− usf (t)(t)| < 2ε

and

|usv(t)(t)− vsv(t),~u(t),δ(t)| < 2ε.

for all t > t̄.

Proof of Theorem 5.1: Recall the convergence of Vals(δ) as δ increases to

1, shown in Bewley and Kohlberg (1976). The desired conclusion follows from

Lemmata E.1 and E.2. �
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