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Intelligent Reflecting Surface Aided MIMO
Broadcasting for Simultaneous Wireless

Information and Power Transfer
Cunhua Pan, Hong Ren, Kezhi Wang, Maged Elkashlan, Arumugam Nallanathan, Fellow, IEEE,

Jiangzhou Wang, Fellow, IEEE and Lajos Hanzo, Fellow, IEEE

Abstract—An intelligent reflecting surface (IRS) is invoked
for enhancing the energy harvesting performance of a simul-
taneous wireless information and power transfer (SWIPT)
aided system. Specifically, an IRS-assisted SWIPT system
is considered, where a multi-antenna aided base station
(BS) communicates with several multi-antenna assisted in-
formation receivers (IRs), while guaranteeing the energy
harvesting requirement of the energy receivers (ERs). To
maximize the weighted sum rate (WSR) of IRs, the transmit
precoding (TPC) matrices of the BS and passive phase shift
matrix of the IRS should be jointly optimized. To tackle this
challenging optimization problem, we first adopt the classic
block coordinate descent (BCD) algorithm for decoupling the
original optimization problem into several subproblems and
alternatively optimize the TPC matrices and the phase shift
matrix. For each subproblem, we provide a low-complexity
iterative algorithm, which is guaranteed to converge to
the Karush-Kuhn-Tucker (KKT) point of each subproblem.
The BCD algorithm is rigorously proved to converge to
the KKT point of the original problem. We also conceive
a feasibility checking method to study its feasibility. Our
extensive simulation results confirm that employing IRSs in
SWIPT beneficially enhances the system performance and
the proposed BCD algorithm converges rapidly, which is
appealing for practical applications.

Index Terms—Intelligent Reflecting Surface (IRS), Large
Intelligent Surface (LIS), SWIPT, Energy Harvesting, MI-
MO.
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I. INTRODUCTION

Recently, intelligent reflecting surface (IRS)-assisted
wireless communication has received considerable re-
search attention, since it is capable of supporting cost-
effective and energy-efficient high data rate communica-
tion for next-generation communication systems [1]–[3].
In simple tangible terms, an IRS is composed of a vast
number of low-cost and passive reflective components,
each of which is capable of imposing a phase change
on the signals incident upon them. Thanks to the recent
advances in meta-materials [4], it has become feasible
to reconfigure the phase shifts in real time. As a re-
sult, the phase shifts of all reflective components can
be collaboratively adjusted for ensuring that the signals
reflected from the IRS can be added constructively or
destructively at the receiver in order to beneficially steer
the signal component arriving from the base station (BS)
for enhancing the desired signal power or alternatively for
suppressing the undesired signals, such as interference.
In contrast to conventional physical layer techniques that
are designed for accommodating the hostile time-varying
wireless channels [5], [6], IRSs constitute a new paradig-
m capable of ‘reprogramming’ the wireless propagation
environment into a more favorable transmission medium.
Since the reflective components are passive, they impose a
much lower power consumption than conventional relay-
aided communication systems relying on active transmis-
sion devices. Additionally, no thermal noise is imposed
by the IRS, since it directly reflects the incident signals
without decoding or amplifying them, which is in contrast
to conventional relays. Furthermore, the reflective phase
arrays can be fabricated in small size and low weight,
which enables them to be easily coated in the buildings’
facade, ceilings, walls, etc. Furthermore, as IRS is a com-
plementary device, it can be readily integrated into current
wireless networks without modifying the physical layer
standardization, making it transparent to the users. To fully
exploit the benefits of IRS, the active beamforming at
the BS and the passive beamforming at the IRS should
be jointly designed. However, the optimization variables
are coupled and the joint design leads to a complex
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optimization problem that is difficult to solve.

Some innovative efforts have been devoted to the
transceiver design when integrating IRS into various
wireless communication systems, including the single-
user scenarios of [7]–[11], the downlink multiple-user
scenarios of [12]–[15], the physical layer security de-
sign of [16]–[21], the mobile edge computing (MEC)
networks of [22], multigroup multicast networks of [23]
and the multicell multiuser multiple-input multiple-output
(MIMO) case in [24]. Concretely, Wu et al. proposed
joint active and passive beamforming for a single-user
scenario in [7], where semidefinite relaxation (SDR) was
proposed for optimizing the phase shift matrix. However,
its complexity is high since the number of optimization
variables increases quadratically with the number of phase
shifts. Additionally, the Gaussian random approximation
employed leads to certain performance loss. To resolve
this issue, Yu et al. [8] proposed a pair of efficient
algorithms termed as fixed point iteration and manifold
optimization techniques, which can guarantee locally op-
timal solutions. As a further advance, the authors of
[9] considered realistic frequency-selective channels. The
phase shift design was studied in [10] when only statistical
channel state information (CSI) is available. A sophisti-
cated phase shift model was derived in [11], by taking
into account a realistic amplitude-phase relationship. For
the multiuser case, the authors in [12] considered the
total transmit power minimization problem, while guar-
anteeing the users’ signal-to-interference-plus-noise ratio
(SINR) constraints. The associated energy efficiency max-
imization problem was studied in [13] and zero-forcing
beamforming was adopted by the BS for simplifying the
optimization problem. By contrast, a weighted sum rate
(WSR) maximization problem was considered in [14] and
the fairness issues were studied in [15]. The authors of
[16]–[18] studied the security issues of a single-user case,
while the authors of [19]–[21] considered multiple-user
scenarios. In [22], the IRS was shown to be beneficial
in reducing the latency of MEC networks. In addition,
the IRS can help enhance the WSR performance for the
multigroup multicast network in [23]. Most recently, we
considered an IRS-assisted multicell MIMO communica-
tions scenario [24], where we demonstrated that deploying
an IRS at the cell edge is also capable of mitigating the
adjacent-cell interference. Channel state information (CSI)
is challenging to obtain in IRS-assisted communication
system due to its passive feature. There are some initial
efforts to handle this issue such as channel estimation
and/or robust transmission design [25]–[28]. Specifically,
Huang et al. [25] proposed a deep learning method for
efficient online configuration of the phase shifts, where the
phase values can be immediately obtained by inputting the
user location into the trained deep neural network. A two-
stage channel estimation method based on a sparse matrix
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Fig. 1. An IRS-assisted SWIPT system.

factorization and a matrix completion was proposed in
[26]. A pair of algorithms based on compressed sensing
and deep learning were conceived by Taha et al. [27] for
tackling the challenging channel estimation issues of IRS-
assisted systems. Most recently, we first studied the robust
beamforming design for IRS-assisted communication sys-
tems in [28], where the imperfect channel from an IRS
to users was considered and the channel estimation error
was assumed to be within a bounded elliptical region.

On the other hand, information transmission enabled
simultaneous wireless information and power transfer
(SWIPT) is an appealing technique for future energy-
hungry Internet-of-Things (IoTs) networks. Specifically,
a base station (BS) with constant power supply will
transmit wireless signals to a set of devices. Some devices
intend to decode the information from the received signal,
which are termed as information receivers (IRs), while
the others will harvest the signal energy, which are called
energy receiver (ER). In [29], Zhang et al. studied the
trade-off between the information rate attained and the
amount of harvested energy for a single-user MIMO
system. In practice, a typical ER such as a humidity
sensor requires much higher energy for its operation than
that required by IRs. Due to severe channel attenuation,
the power received by the ERs is weak, which limits the
maximum link-distance of ERs. To mitigate this issue,
we propose to deploy an IRS in the vicinity of ERs
to provide additional transmission links to support the
ERs for enhancing their harvested power as shown in
Fig. 1, since there is a paucity of IRS-assisted SWIPT
contributions in the literature [30]. Explicitly in [30], the
weighted sum power maximization problem was studied
by Wu and Zhang, who proved that no dedicated energy-
carrying signals were required for an IRS-aided SWIPT
system. The SDR method was adopted for solving the op-
timization problem, which exhibits a high computational
complexity as well as imposing a performance degradation
due to the associated rank-one extraction. However, this
method is not applicable when each user is equipped with
multiple antennas. Hence, in this paper we formulate a
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weighted sum rate (WSR) maximization problem for the
IRS-assisted SWIPT MIMO system of Fig. 1, in which an
IRS is installed in the vicinity of ERs for compensating
the associated power loss, while maximizing the WSR of
distant IRs with the aid of passive beamforming.

Against this background, the main contributions of this
paper are summarized as follows:

1) We formulate the WSR maximization problem by
jointly optimizing the transmit precoding (TPC)
matrices of the BS and those of the passive beam-
forming at the IRS for our IRS-assisted SWIP-
T MIMO system subject to a non-convex unit-
modulus constraint imposed on the phase shifts,
while simultaneously satisfying the energy harvest-
ing requirement of the ERs. To the best of our
knowledge, this is the first treatise considering the
WSR maximization problem of IRS-assisted SWIPT
MIMO systems, which is much more challenging
than the weighted sum power minimization problem
of [30] since the latter can be readily transformed
into a convex optimization problem. In contrast to
the multicell system of [24], an additional energy
harvesting constraint is also imposed in our cur-
rent study, which further complicates the analysis.
Specifically, this constraint is non-convex and the
optimization problem may become infeasible. The
WSR maximization problem is challenging to solve,
since the optimization variables are highly coupled
and the data rate expressions of the IRs are complex.
To deal with this issue, we first reformulate the
original problem into an equivalent form by exploit-
ing the equivalence between the data rate and the
weighted minimum mean-square error (WMMSE).
Then, an alternating optimization algorithm based
on the popular block coordinate descent (BCD)
algorithm is proposed for alternatively updating the
active TPC matrices of the BS and the phase shift
matrix of the IRS, which is rigorously proved to
converge to the Karush-Kuhn-Tucker (KKT) point
of the original optimization problem.

2) For a given phase shift matrix, we then proceed
by developing an iterative algorithm based on the
successive convex approximation (SCA) method
and on the Lagrangian dual decomposition method
to derive a nearly closed-form solution for the TPC
matrices. A low-complexity bisection search method
is proposed for finding the optimal dual variables.
The solutions generated by our iterative algorithm
are guaranteed to converge to the KKT point of the
TPC optimization problem.

3) For the given TPC matrices, we formulate the phase
shift optimization problem as a non-convex quadrat-
ically constrained quadratic program (QCQP) sub-
ject to an additional energy harvesting constraint by

invoking some further matrix manipulations. Then, a
novel iterative algorithm based on the majorization-
minimization (MM) algorithm [31] and on the price-
based method [32] is developed for solving the
QCQP. We strictly prove that the final solution
generated by the iterative algorithm is guaranteed
to converge to the KKT point of the phase shift
optimization problem.

4) The associated feasibility issue is also studied by
formulating an alternative optimization problem and
an iterative algorithm is proposed for solving this
problem.

5) Extensive simulation results are provided for verify-
ing the performance advantages of employing IRS
in SWIPT in order to enhance the energy harvesting
performance. It is shown that the operating range of
the ERs can be dramatically expanded by placing
IRSs in the ERs’ vicinity. Furthermore, the BCD
algorithm converges rapidly, and it is eminently
suitable for practical applications. Our simulation
results also show that as expected, the path loss
exponent substantially affects the system’s perfor-
mance and thus the location of the IRS should be
carefully chosen.

The remainder of this paper is organized as follows.
In Section II, we introduce the IRS-assisted SWIPT
system model and our problem formulation. The detailed
algorithms used for solving the optimization problem are
presented in Section III. The feasibility issues of the
original problem are discussed in Section IV, followed
by our extensive simulations and discussions in Section
V. Finally, our conclusions are provided in Section VI.

Notations: For matrix A, A∗ and A⋆ represent the
conjugate operator and converged solution, respectively.
Re{a} represents the real part of a complex value a. CM

denotes the set of M × 1 complex vectors. E{·} denotes
the expectation operation. For two matrices A and B,
A⊙B represents Hadamard product of A and B. ∥A∥F ,
tr (A) and |A| denote the Frobenius norm, trace operation
and determinant of A, respectively. ∇fx (x) denotes the
gradient of the function f with respect to (w.r.t.) the
vector x. CN (0, I) represents a random vector following
the distribution of zero mean and unit variance matrix.
arg{·} means the extraction of phase information. diag(·)
denotes the diagonalization operation. (·)∗, (·)T and (·)H
denote the conjugate, transpose and Hermitian operators,
respectively. arg(·) means the phase extraction operation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider the IRS-aided multiuser MIMO downlink of
a SWIPT system operating over the same frequency band
both for data and energy transmission, as shown in Fig. 1.
Let us assume that there are KI IRs and KE ERs,
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respectively. It is also assumed that the BS is equipped
with NB ≥ 1 antennas, while each IR and ER is equipped
with NI ≥ 1 and NE ≥ 1 antennas, respectively. Let us
denote the sets of IRs and ERs as KI and KE , respectively.
In general, low-power sensors require a certain amount
of power (e.g., 0.1 mW) for their real-time operation.
Due to the associated severe channel attenuation, the
sensors should be deployed sufficiently close to the BS,
which limits their practical implementation. To resolve
this issue, we propose to employ an IRS, which has M
reflective elements in the ERs’ vicinity for extending the
operational range of sensors, as shown in Fig. 1. Firstly,
the IRS increases the energy harvested by the ERs, and
additionally it also assists in enhancing the signal strength
for distant IRs through careful phase shift optimization.

The number of data streams destined for each IR is
assumed to be d, satisfying 1 ≤ d ≤ min{NB , NI}. The
signal transmitted from the BS is given by

x =

KI∑
k=1

Fksk, (1)

where sk ∈ Cd×1 is the (d × 1)-element data symbol
vector designated for the kth IR satisfying E

[
sks

H
k

]
= Id

and E
[
sis

H
j

]
= 0, for i ̸= j, while Fk ∈ CNB×d is

the linear TPC matrix used by the BS for the kth IR.
Assuming non-dispersive narrow-band transmission, the
baseband equivalent channels spanning from the BS to
the IRS, from the BS to the kth IR, from the BS to the
lth ER, from the IRS to the kth IR, and finally from
the IRS to the lth ER are modelled by the matrices
Z ∈ CM×NB , Hb,k ∈ CNI×NB , Gb,l ∈ CNE×NB ,
Hr,k ∈ CNI×M , and Gr,l ∈ CNE×M , respectively. Let
us denote the diagonal reflection-coefficient matrix at the
IRS by Φ = diag

{
ejθ1 , · · · , ejθm , · · · , ejθM

}
1, where

θm ∈ [0, 2π] is the phase shift of the m-th reflective
element. Due to absorption and diffraction, the signal
power that has been reflected multiple times is ignored.
As a result, the signal received at the kth IR is given by

yI,k = (Hb,k +Hr,kΦZ)x+ nI,k, (2)

where nI,k is the kth IR’s noise vector satisfying
CN

(
0, σ2

IINI

)
. Similarly, the signal received at the lth

ER is given by

yE,l = (Gb,l +Gr,lΦZ)x+ nE,l, (3)

where nE,l is the lth ER’s noise vector obeying the
distribution of CN

(
0, σ2

EINE

)
.

We assume that all the CSIs are perfectly known at the
BS, and the BS is responsible for calculating the phase
shifts of the IRS, which are then fed back by them to
the IRS controller through dedicated feedback channels.
Given this idealized and simplified assumption, the results

1j is the imaginary unit.

obtained represent a performance upper bound of how
much performance gain can be achieved by an IRS. Let
us define the equivalent channel spanning from the BS to
the kth IR by H̄k

∆
= Hb,k +Hr,kΦZ. Upon substituting

x into (2), yI,k can be rewritten as

yI,k = H̄kFksk +

KI∑
i=1,i̸=k

H̄kFisi + nI,k. (4)

Then, the achievable data rate (nat/s/Hz) of the kth IR is
given by [33]

Rk (F,Φ) = log
∣∣I+ H̄kFkF

H
k H̄

H
k J

−1
k

∣∣ , (5)

where F denotes the collection of TPC matrices, while
Jk is the interference-plus-noise covariance matrix given
by Jk =

∑KI

m=1,m̸=k H̄kFmFH
mH̄H

k + σ2
II.

On the other hand, due to the broadcast nature of
wireless channels, the ERs can extract energy from the
electromagnetic wave. In general, the harvested power is
nonlinear over the received radio frequency (RF) power
due to the nonlinear RF-to-DC conversion, which depends
on the input RF power level. This nonlinear EH model has
been characterized in [34], which is a complex function
of the RF power. Based on this nonlinear EH model,
various transmission designs have been proposed in [35]
and [36]. However, there is still lack of a general model
that can accurately characterize this nonlinear relationship
by capturing all practical factors. Hence, for simplicity,
we adopt the simple linear EH model as widely used
in the existing literature [29], [37], [38]. By ignoring
the noise power at the ERs, the total harvested power is
proportional to the total received power. Let us define the
equivalent channel spanning from the BS to the lth ER by
Ḡl

∆
= Gb,l +Gr,lΦZ. Then, the total power harvested by

the lth ER is

Qi = ηtr

(
KI∑
k=1

ḠlFkF
H
k Ḡ

H
l

)
, (6)

where 0 < η ≤ 1 is the energy harvesting efficiency. In
this paper, we consider the constraint that the weighted
sum of the power harvested by all ERs should be higher
than a predefined value, which is

Q =

KE∑
l=1

αlQl = tr

(
KI∑
k=1

FH
k GFk

)
≥ Q̄, (7)

where G =
∑KE

l=1 αlηḠ
H
l Ḡl, αl is the energy weighting

factor of the lth ER, with a higher value of αl representing
a higher priority for the lth ER than for others. Finally,
Q̄ is the minimum harvested power threshold.

B. Problem Formulation

Upon introducing the notations of ϕm = ejθm ,∀m, we
have Φ = diag {ϕ1, · · · , ϕM}. Again, we aim for jointly
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optimizing the TPC matrices F and phase shift matrix Φ
with the goal of maximizing the WSR of all IRs subject to
the total power budget, to the unit modulus of the phase
shifters and to the harvested power requirement. Then,
this problem can be formulated as follows:

max
F,Φ

KI∑
k=1

ωkRk (F,Φ) (8a)

s.t.
KI∑
k=1

∥Fk∥2F ≤ PT , (8b)

tr

(
KI∑
k=1

FH
k GFk

)
≥ Q̄, (8c)

|ϕm| = 1,m = 1, · · · ,M, (8d)

where ωk is the weighting factor controlling the schedul-
ing priority for each IR and PT is the power limit at the
BS, while (8d) is the unit-norm constraint imposed on the
phase shifters.

As the IRS is passive and both the ERs and IRs
are energy constrained, we assume that this optimization
problem is solved at the BS which posses the knowledge
of the CSI of all related links and other related parameters
such as Q̄. After computing the phase shift values for the
IRS, they are sent to the IRS controller through dedicated
control channels. Problem (8) is difficult to solve, since
the TPC matrices and the phase shifts are coupled. If we
remove the energy harvesting (EH) constraint, the prob-
lem reduces to the WSR maximization problem recently
studied in [24]. However, the additional EH constraint
makes the optimization more challenging to solve and the
algorithms developed in [24] cannot be directly applied
for two reasons. Firstly, the EH constraint is non-convex.
Secondly, this problem may be infeasible due to the
conflicting constraints (8b) and (8c). In the following, we
first conceive a low-complexity algorithm to solve this
problem by assuming that it is feasible. Then, we study
the feasibility of this problem.

III. LOW-COMPLEXITY ALGORITHM DEVELOPMENT

In this section, we first transform Problem (8) into
a more tractable one, which allows the decoupling of
the TPC matrices and of the phase shifts. Then, the
classic block coordinate descent (BCD) algorithm [33] is
proposed for solving the transformed problem.

A. Reformulation of the Original Problem

To deal with the complex objective function, we re-
formulate Problem (8) by employing the well-known
WMMSE method [39]. The appealing feature of this
method is that it can transform the original complex
problem into an equivalent form, which facilitates the
application of the BCD method.

Specifically, the linear decoding matrix U is applied to
estimate the signal vector ŝk for each IR

ŝk = UH
k yI,k, ∀k, (9)

where Uk ∈ CNI×d is the decoding matrix of the kth IR.
Then, the MSE matrix of the kth IR is given by

Ek=Es,n

[
(̂sk − sk) (̂sk − sk)

H
]

=
(
UH

k H̄kFk − I
)(
UH

k H̄kFk−I
)H

+
KI∑

m=1,m ̸=k

UH
k H̄kFmFH

mH̄H
k Uk+σ2UH

k Uk,∀k ∈ KI ,

(10)

where s and n denote the collections of data symbols and
noise vectors of all IRs, respectively.

By introducing a set of auxiliary matrices W =
{Wk ≽ 0, ∀k ∈ KI} and defining U = {Uk, ∀k ∈ KI},
Problem (8) can be reformulated as follows [33], [39]:

max
W,U,F,Φ

KI∑
k=1

ωkhk (W,U,F,Φ) (11a)

s.t. (8b), (8c), (8d), (11b)

where hk (W,U,F,Φ) is given by

hk (W,U,F,Φ) = log |Wk| − Tr (WkEk) + d. (12)

Although Problem (11) has more optimization variables
than Problem (8), the objective function (OF) in Problem
(11) is much easier to handle, which allows the BCD algo-
rithm to solve this problem by iteratively obtaining one set
of variables while keeping the others fixed. Note that the
decoding matrices U and the auxiliary matrices W only
appear in the function hk (W,U,F,Φ). Hence, the opti-
mal solution of U and W can be obtained while keeping
the other matrices fixed. Specifically, given Φ, W, and F,
setting the first-order derivative of hk (W,U,F,Φ) with
respect to Uk and Wk to zero, we can obtain the optimal
solution of Uk and Wk respectively as follows

U⋆
k=
(
Jk + H̄kFkF

H
k H̄

H
k

)−1
H̄kFk,W

⋆
k = E⋆−1

k , (13)

where E⋆
k is obtained by inserting U⋆

k into the kth IR’s
MSE matrix in (10), yielding

E⋆
k = Id−FH

k H̄
H
k

(
KI∑
m=1

H̄kFmFH
mH̄H

k + σ2
II

)−1

H̄kFk.

(14)
In the following, we focus our attention on the opti-

mization of TPC matrices F and phase shifts Φ, when U
and W are given.
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B. Optimizing the Precoding Matrices F

In this subsection, we aim to optimize the TPC matrices
F with fixed W,U and Φ. By inserting Ek in (10) into
the OF of (11) and discarding the constant terms, the TPC
matrices of our optimization problem can be transformed
as follows

min
F

KI∑
k=1

tr
(
FH

k AFk

)
−

KI∑
k=1

ωkTr
(
WkU

H
k H̄kFk

)
−

KI∑
k=1

ωktr
(
WkF

H
k H̄

H
k Uk

)
(15a)

s.t. (8b), (8c), (15b)

where A =
∑KI

m=1 ωmH̄H
mUmWmUH

mH̄m.
However, due to the non-convexity of the EH constraint,

Problem (15) is still non-convex. To resolve this issue, we
observe that it can be viewed as a difference of convex
(d.c.) program, which can be efficiently solved by the
successive convex approximation (SCA) method [40]. In
particular, we can approximate it by its first-order Taylor
expansion. By applying [41, Appendix B] and Jensen’
inequality, we have

tr

(
KI∑
k=1

FH
k GFk

)
≥−tr

(
KI∑
k=1

F
(n)H
k GF

(n)
k

)

+ 2Re

[
tr

(
KI∑
k=1

F
(n)H
k GFk

)]
, (16)

where
{
F

(n)
k , ∀k

}
is the solution obtained from the pre-

vious iteration. Then, upon replacing the constraint (8c)
by the following constraint:

2Re

[
tr

(
KI∑
k=1

F
(n)H
k GFk

)]
≥ Q̃, (17)

where Q̃ = Q̄ + tr
(∑KI

k=1 F
(n)H
k GF

(n)
k

)
, we may con-

sider the following optimization problem:

min
F

KI∑
k=1

tr
(
FH

k AFk

)
−

KI∑
k=1

ωktr
(
WkU

H
k H̄kFk

)
−

KI∑
k=1

ωktr
(
WkF

H
k H̄

H
k Uk

)
(18a)

s.t. (8b), (17). (18b)

Since the OF is convex w.r.t. F, and the constraints (8b)
and (17) are convex, Problem (18) constitutes a convex
optimization problem, which can be solved by standard
convex solver packages, such as CVX [42]. However,
the resultant computational complexity is high. In the
following, we provide a low-complexity algorithm for ob-
taining a nearly optimal closed-form solution by resorting
to the Lagrangian dual decomposition method [43]. Since

Problem (18) is a convex problem and satisfies the slater’s
condition2, the dual gap is zero and the optimal solution
can be obtained by solving its dual problem instead of its
original one. We first introduce the Lagrange multiplier λ
associated with the power constraint, and derive the partial
Lagrangian function of Problem (18) as follows

L (F, λ) =
KI∑
k=1

tr
(
FH

k AFk

)
−

KI∑
k=1

ωktr
(
WkU

H
k H̄kFk

)
−

KI∑
k=1

ωktr
(
WkF

H
k H̄

H
k Uk

)
+ λ

KI∑
k=1

tr
(
FH

k Fk

)
− λPT .

(19)

The dual function can be obtained by solving the follow-
ing problem

g (λ)
∆
= min

F
L(F, λ) s.t. (17). (20)

Then, the dual problem is given by

max
λ

g (λ) (21a)

s.t. λ ≥ 0. (21b)

Before solving the dual problem (21), we have to
derive the expression of the dual function g (λ) by solving
Problem (20) for a given λ. By introducing the dual
variable µ ≥ 0 associated with the constraint (17), the
Lagrangian function for Problem (20) is given by

L (F, µ) =
KI∑
k=1

tr
(
FH

k (A+ λI)Fk

)
−

KI∑
k=1

ωktr
(
WkU

H
k H̄kFk

)
−

KI∑
k=1

ωktr
(
WkF

H
k H̄

H
k Uk

)
+ µQ̃− 2µRe

[
tr

(
KI∑
k=1

F
(n)H
k GFk

)]
− λPT .

(22)

By setting the first-order derivative of L (F, µ) w.r.t. F∗
k

to the zero matrix, we obtain the optimal solution of Fk

as follows:

F⋆
k(µ) = (A+ λI)

†
(
ωkH̄

H
k UkWk + µGF

(n)
k

)
, (23)

where (·)† denotes the matrix pseudoinverse. The value of
µ should be chosen for ensuring that the complementary
slackness condition for constraint (17) is satisfied:

µ

(
2Re

[
tr

(
KI∑
k=1

F
(n)H
k GF⋆

k(µ)

)]
− Q̃

)
= 0. (24)

2According to line 1 in Algorithm 2, the initial precoding matrix is
initialized by the solution obtained from Section IV. Assume the original
problem is feasible. Due to the randomness of channel matrices of G and
H, the precoding matrix obtained in Section IV must be strictly larger
than the minimum EH requirement, i.e., tr

(∑KI
k=1 F

(0)H
k GF

(0)
k

)
>

Q̄. Then, based on [29], there must exist a strictly feasible solution, and
thus the slater’s condition holds.
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Hence, if the following condition holds

2Re

[
tr

(
KI∑
k=1

F
(n)H
k GF⋆

k(0)

)]
≥ Q̃, (25)

the optimal solution of Problem (20) is given by
F⋆

k(0),∀k ∈ KI . Otherwise, the optimal µ is

µ=

Q̃−2Re
[
tr

(
KI∑
k=1

ωkF
(n)H
k G(A+λI)

−1
H̄H

k UkWk

)]
2tr

(
KI∑
k=1

F
(n)H
k G(A+λI)

−1
GF

(n)
k

) .

(26)
With the aid of the dual function, we may now com-

mence the solution of the dual problem (21) to find the
optimal λ. Given λ, we denote the optimal solution of
Problem (20) by Fk(λ). The value of λ should be chosen
for ensuring that the complementary slackness condition
for the power constraint is satisfied:

λ

(
tr

(
KI∑
k=1

FH
k (λ)Fk (λ)

)
− PT

)
= 0. (27)

If the following condition holds:

tr

(
KI∑
k=1

FH
k (0)Fk (0)

)
≤ PT , (28)

then the optimal solution is given by Fk(0). Otherwise,
we have to find λ for ensuring that the following equation
holds:

P (λ)
∆
= tr

(
KI∑
k=1

FH
k (λ)Fk (λ)

)
= PT . (29)

Unfortunately, due to the complex expression of µ in (26),
we are unable to prove its monotonic nature by using the
explicit expression of P (λ) as in [24]. In the following
lemma, we prove that P (λ) is a monotonically decreasing
function of λ, which enables the bisection search method
to find λ.

Lemma 1: The total power P (λ) is a monotonically
decreasing function of λ.

Proof: Please refer to Appendix A. �
Based on Lemma 1, the bisection search method can be

used for finding the solution of equation (29). In Algo-
rithm 1, we provide the detailed steps of solving Problem
(18) for the case of λ > 0. In each iteration of Algorithm
1, we have to calculate F⋆

k(µ) in (23), which involves
the calculation of (A+ λI)

−1 at a complexity order of
O(N3

B). If the total number of iterations is T , then the
total complexity of calculating (A+ λI)

−1 is O(TN3
B),

which may be excessive. Here, we provide a method for
reducing the computational complexity. Specifically, as A
is a non-negative definite matrix, it can be decomposed as
A = QΛQH by using the singular value decomposition
(SVD), where QQH = QHQ = INT and Λ is a diagonal

matrix with non-negative diagonal elements. Then, we
have (A+ λI)

−1
= Q (λI+Λ)

−1
QH. Hence, in each

iteration, we only have to calculate the product of two ma-
trices, which has much lower complexity than calculating
the inverse of the matrix having the same dimension.

Algorithm 1 Bisection Search Method to Solve Problem
(18)

1: Initialize the accuracy ε, the bounds λl and λu;
2: Calculate λ = (λl + λu)/2;
3: If condition (25) is satisfied, µ is equal to zero.

Otherwise, update µ in (26);
4: Calculate {Fk(λ), ∀k} according to (23);
5: If P (λ) ≥ PT , set λl = λ. Otherwise, set λu = λ;
6: If |λl − λu| ≤ ε, terminate. Otherwise, go to step 2.

Based on the above discussions, in Algorithm 2 we
provide the detailed steps of the SCA algorithm conceived
for solving Problem (15).

Algorithm 2 SCA Algorithm to Solve Problem (15)

1: Initialize the accuracy ε, the precoding matrices F(0)

from Section 2, the iteration index n = 0, the
maximum number of iterations nmax, calculate the
OF value of Problem (15) as z(F(0));

2: Calculate Q̃(n) = Q̄+ tr
(∑KI

k=1 F
(n)H
k GF

(n)
k

)
;

3: With Q̃(n), calculate {F(n+1)
k ,∀k} by solving Prob-

lem (18) using Algorithm 1;
4: If n ≥ nmax or∣∣z(F(n+1))− z(F(n))

∣∣/∣∣z(F(n+1))
∣∣ < ε, terminate.

Otherwise, set n← n+ 1 and go to step 2.

In the following, we show that Algorithm 2 converges
to the KKT point of Problem (15).

Theorem 1: The sequences of {F(n), n = 1, 2, · · · }
generated by Algorithm 2 converge to the KKT optimum
point of Problem (15).

Proof: The proof is similar to that of [44] and hence it
is omitted for simplicity. �

Next, we briefly analyze the complexity of Algorithm
2. We assume that NB ≥ NI ≥ d. In each iteration
of Algorithm 2, the main complexity contribution is the
calculation of {F(n+1)

k , ∀k} by using the bisection search
method in Algorithm 1. In each iteration of Algorithm
1, the main complexity lies in calculating F in (23),
which is on the order of O(KIN

3
B). The number of

iterations required for Algorithm 1 to converge is given by
log2

(
λu−λl

ε

)
. Hence, the total complexity of Algorithm

1 is O(log2
(
λu−λl

ε

)
KIN

3
B). Then, the total complexity

of Algorithm 2 is given by O(nmaxlog2
(
λu−λl

ε

)
KIN

3
B).

C. Optimizing the Phase Shift Matrix Φ

In this subsection, we focus our attention on opti-
mizing the phase shift matrix Φ, while fixing the other
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parameters. Upon substituting Ek in (10) into (12) and
removing the terms that are independent of Φ, the phase
shift optimization problem is formulated as:

min
Φ

KI∑
k=1

tr
(
ωkWkU

H
k H̄kF̃H̄

H
k Uk

)
−

KI∑
k=1

tr
(
ωkWkU

H
k H̄kFk

)
−

KI∑
k=1

tr
(
ωkWkF

H
k H̄

H
k Uk

)
(30a)

s.t. (8c), (8d), (30b)

where F̃ =
∑KI

m=1 FmFH
m.

By substituting H̄k = Hb,k +Hr,kΦZ into (30a), we
have

ωkWkU
H
k H̄kF̃H̄

H
k Uk

=ωkWkU
H
k Hr,kΦZF̃ZHΦHHH

r,kUk+

ωkWkU
H
k Hb,kF̃Z

HΦHHH
r,kUk+

ωkWkU
H
k Hr,kΦZF̃HH

b,kUk+ωkWkU
H
k Hb,kF̃H

H
b,kUk,
(31)

and

ωkWkU
H
k H̄kFk

=ωkWkU
H
k Hr,kΦZFk + ωkWkU

H
k Hb,kFk. (32)

Let us define Bk
∆
= ωkH

H
r,kUkWkU

H
k Hr,k, C

∆
=

ZF̃ZH and Dk
∆
= ωkZF̃

HHH
b,kUkWkU

H
k Hr,k. By using

(31), we arrive at:

tr
(
ωkWkU

H
k H̄kF̃H̄

H
k Uk

)
=tr

(
ΦHBkΦC

)
+ tr

(
ΦHDH

k

)
+ tr (ΦDk) + const1,

(33)

where const1 is a constant term that is independent of Φ.
Similarly, by defining Tk

∆
= ωkZFkWkU

H
k Hr,k, from

(32) we have

tr
(
ωkWkU

H
k H̄kFk

)
= tr (ΦTk) + const2, (34)

where const2 is a constant term that is independent of Φ.
By defining Gb

∆
=

∑KE

l=1 αlηG
H
b,lGb,l, Gr

∆
=∑KE

l=1 αlηG
H
r,lGr,l, and Gbr

∆
= ZF̃

∑KE

l=1 αlηG
H
b,lGr,l,

the EH constraint in (8c) can be recast as follows:

tr
(
ΦHGrΦC

)
+ tr

(
ΦHGH

b,r

)
+ tr (ΦGbr)

+ tr
(
GbF̃

)
≥ Q̄. (35)

By inserting (33) and (34) into the OF of Problem (30)
and removing the constant terms, we have

min
Φ

tr
(
ΦHBΦC

)
+ tr

(
ΦHVH

)
+ tr (ΦV) (36a)

s.t. (8d), (35), (36b)

where B and V are given by B =
∑KI

k=1 Bk and V =∑KI

k=1 Dk −
∑KI

k=1 Tk, respectively.
Upon denoting the collection of diagonal elements of Φ

by ϕ = [ϕ1, · · · , ϕM ]
T and adopting the matrix identity

of [45, Eq. (1.10.6)], it follows that

tr
(
ΦHBΦC

)
= ϕH

(
B⊙CT

)
ϕ,

tr
(
ΦHGrΦC

)
= ϕH

(
Gr ⊙CT

)
ϕ. (37)

Upon denoting the collections of diagonal elements of

V and Gbr by v =
[
[V]1,1, · · · , [V]M,M

]T
and g =[

[Gbr]1,1, · · · , [Gbr]M,M

]T
, we arrive at

tr (ΦV) = vTϕ, tr
(
ΦHVH

)
= ϕHv∗,

tr (ΦGbr) = gTϕ, tr
(
ΦHGH

br

)
= ϕHg∗. (38)

Moreover, the constraint (35) can be rewritten as

ϕHΥϕ+ 2Re
{
ϕHg∗} ≥ ⌢

Q, (39)

where we have
⌢

Q = Q̄ − Tr
(
GbF̃

)
and Υ =

Gr ⊙CT. It can be verified that Gr and CT are non-
negative semidefinite matrices. Then, according to [45],
the Hadamard product Gr ⊙CT (or equivalently Υ) is
also a semidefinite matrix.

Thus, Problem (36) can be transformed as

min
ϕ

ϕHΞϕ+ 2Re
{
ϕHv∗} (40a)

s.t. (8d), (39), (40b)

where we have Ξ = B⊙CT. Again, B can be verified
to be a non-negative semidefinite matrix, and thus Ξ is a
non-negative semidefinite matrix.

Due to the non-convex constraint (39), Problem (40) is
difficult to solve. To deal with this constraint, we again
employ the SCA method [40]. Specifically, since ϕHΥϕ
is convex w.r.t. ϕ, its lower bound can be obtained as
follows:

ϕHΥϕ ≥ −ϕ(n)HΥϕ(n) + 2Re
[
ϕHΥϕ(n)

]
, (41)

where ϕ(n) is obtained in the previous iteration. Then,
constraint (39) is replaced by the following constraint

2Re
[
ϕH
(
g∗+Υϕ(n)

)]
≥

⌢

Q+ ϕ(n)HΥϕ(n) ∆
= Q̂, (42)

which is a linear constraint. Then, Problem (40) then
becomes

min
ϕ

ϕHΞϕ+ 2Re
{
ϕHv∗} (43a)

s.t. (8d), (42). (43b)

In the following, we conceive the Majorization-
Minimization (MM) algorithm [31] for solving Problem
(43). The key idea is to solve a challenging problem by
introducing a series of more tractable subproblems. Upon
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denoting the objective function of Problem (43) by f(ϕ),
in the (n+1)th iteration we have to find the upper bound
of the OF, denoted as g(ϕ|ϕ(n)), which should satisfy the
following three conditions:

1)g(ϕ(n)|ϕ(n))=f(ϕ(n));

2)∇ϕ∗g(ϕ|ϕ(n))
∣∣∣
ϕ=ϕ(n)

= ∇ϕ∗f(ϕ)|ϕ=ϕ(n) ;

3)g(ϕ|ϕ(n))≥f(ϕ). (44)

Then, we solve the approximate subproblem defined by a
more tractable new OF g(ϕ|ϕ(n)). To find g(ϕ|ϕ(n)), we
introduce the following lemma [46].

Lemma 2: For any given ϕ(n), the following inequality
holds for any feasible ϕ:

ϕHΞϕ ≤ϕHXϕ−2Re
{
ϕH (XΞ)ϕ(n)

}
+
(
ϕ(n)

)H
(X−Ξ)ϕ(n) ∆

= y(ϕ|ϕ(n)), (45)

where X = λmaxIM and λmax is the maximum eigenval-
ue of Ξ. �

Then, the function g(ϕ|ϕ(n)) can be constructed as
follows:

g(ϕ|ϕ(n)) = y(ϕ|ϕ(n)) + 2Re
{
ϕHv∗} , (46)

where y(ϕ|ϕ(n)) is defined in (45). The new OF
g(ϕ|ϕ(n)) is more tractable than the original OF f(ϕ).
The subproblem to be solved is given by

min
ϕ

g(ϕ|ϕ(n)) (47a)

s.t. (8d), (42). (47b)

Since ϕHϕ = M , we have ϕHXϕ = Mλmax, which is a
constant. By removing the other constants, Problem (47)
can be rewritten as follows:

max
ϕ

2Re
{
ϕHq(n)

}
(48a)

s.t. (8d), (42), (48b)

where q(n) = (λmaxIM −Ξ)ϕ(n) − v∗. Due to the
additional constraint (42), the optimal solution of Problem
(48) cannot be obtained as in [24]. Furthermore, due to the
non-convex unit-modulus constraint (8d), Problem (48)
is a non-convex optimization problem. As a result, the
Lagrangian dual decomposition method developed for the
convex problem (18) is not applicable here, since the dual
gap is not zero.

In the following, we propose a price mechanism for
solving Problem (48) that can obtain the globally optimal
solution. Specifically, we consider the following problem
by introducing a non-negative price p on the left hand side
of constraint (42):

max
ϕ

2Re
{
ϕHq(n)

}
+ 2pRe

[
ϕH
(
g∗+Υϕ(n)

)]
(49a)

s.t. (8d). (49b)

For a given p, the globally optimal solution is given by

ϕ(p) = ej arg(q
(n)+p(g∗+Υϕ(n))). (50)

Our objective is to find a p value for ensuring that the
complementary slackness condition for constraint (42) is
satisfied:

p
(
J(p)− Q̂

)
= 0, (51)

where J(p) = 2Re
[
ϕ(p)

H (
g∗ +Υϕ(n)

)]
. To solve this

equation, we consider two cases: 1) p = 0; 2) p > 0.
Case I: In this case, ϕ(0) = ej arg(q

(n)) has to satisfy
constraint (42). Otherwise, p > 0.

Case II: Since p > 0, equation (51) holds only when
J(p) = Q̂. To solve this equation, we first provide the
following lemma.

Lemma 3: Function J(p) is a monotonically increasing
function of p.

Proof: The proof is similar to Lemma 1 and thus
omitted. �

Based on Lemma 3, the bisection search method can be
adopted for finding the solution of J(p) = Q̂. Based on
the above discussions, we provide the algorithm to solve
Problem (48) in Algorithm 3. Although Problem (48) is a
non-convex problem, in the following theorem we prove
that Algorithm 3 is capable of finding the globally optimal
solution.

Theorem 2: Algorithm 3 is capable of finding the
globally optimal solution of Problem (48) and thus also
of Problem (47).

Proof: Please refer to Appendix B. �

Algorithm 3 Bisection Search Method to Solve Problem
(48)

1: Calculate J(0). If J(0) ≤ Q̂, terminate. Otherwise,
go to step 2.

2: Initialize the accuracy ε, bounds pl and pu;
3: Calculate p = (pl + pu)/2;
4: Update ϕ(p) in (50) and calculate J(p);
5: If J(p) ≥ Q̂, set pu = p; Otherwise, set pl = p;
6: If |pl − pu| ≤ ε, terminate; Otherwise, go to step 3.

Based on the above, we now provide the details of
solving Problem (30) in Algorithm 4.

In the following theorem, we prove that the sequence of
{ϕ(n), n = 1, 2, · · · } generated by Algorithm 4 converges
to the KKT-optimal point of Problem (30).

Theorem 3: The sequences of the OF value produced
by Algorithm 4 are guaranteed to converge, and the final
solution satisfies the KKT point of Problem (30).

Proof: Please refer to Appendix C. �
Let us now analyze the complexity of Algorithm 4.

The complexity is dominated by calculating ϕ(n+1) in
step 4 using Algorithm 3. The complexity mainly de-
pends on calculating the maximum eigenvalue of Ξ. Its
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Algorithm 4 MM Combined with SCA Algorithm to
Solve Problem (30)

1: Initialize the accuracy ε, the phase shifts ϕ(0), the
iteration index to n = 0, the maximum number of
iterations to nmax, calculate the OF value of Problem
(43) as f(ϕ(0));

2: Calculate Q̂(n) =
⌢

Q+ ϕ(n)HΥϕ(n);
3: Calculate q(n) = (λmaxIM −Ξ)ϕ(n) − v∗;
4: Update ϕ(n+1) by solving Problem (48) using Algo-

rithm 3;
5: If n ≥ nmax or

∣∣f(ϕ(n+1))− f(ϕ(n))
∣∣/f(ϕ(n+1)) ≤

ε holds, terminate; Otherwise, set n← n+ 1 and go
to step 2.

complexity is on the order of O(M3). The number of
iterations required for Algorithm 3 is log2

(
pu−pl

ε

)
. Then,

the total complexity of step 3 is O(log2
(
pu−pl

ε

)
M3).

Hence, the total complexity of Algorithm 4 is given by
O(nmaxlog2

(
pu−pl

ε

)
M3).

D. Overall Algorithm to Solve Problem (8)

Based on the above analysis, we provide the detailed
steps of the BCD algorithm to solve Problem (8) in
Algorithm 5, where R(F(n),ϕ(n)) denotes the OF value
of Problem (8) in the nth iteration.

Algorithm 5 Block Coordinate Descent Algorithm
1: Initialize iterative number n = 1, maximum number

of iterations nmax, feasible F(1), ϕ(1), error tolerance
ε, calculate R(F(1),ϕ(1)), calculate the optimal de-
coding matrices U(1) and auxiliary matrices W(1)

based on (13);
2: Given U(n), W(n) and ϕ(n), calculate the optimal

precoding matrices F(n+1) by solving Problem (15)
using Algorithm 2;

3: Given U(n), W(n) and F(n+1), calculate the optimal
ϕ(n+1) by solving Problem (30) using Algorithm 4;

4: Given F(n+1) and ϕ(n+1), calculate the optimal de-
coding matrices U(n+1) in (13);

5: Given F(n+1), U(n+1) and ϕ(n+1), calculate the
optimal auxiliary matrices W(n+1) in (13);

6: If n ≥ nmax or∣∣R(F(n+1),ϕ(n+1))−R(F(n),ϕ(n))
∣∣/R(F(n+1),ϕ(n+1))

< ε, terminate. Otherwise, set n ← n + 1 and go to
step 2.

The following theorem shows the convergence and
solution properties of Algorithm 5.

Theorem 4: The OF value sequence
{R(F(n),ϕ(n)), n = 1, 2, · · · } generated by Algorithm 5
is guaranteed to converge, and the final solution satisfies
the KKT conditions of Problem (8).

Proof: Please refer to Appendix D. �
The complexity of Algorithm 5 mainly depends

on that of Step 2 and Step 3, the complexity of
which has been analyzed in the above subsections. In
specific, the total complexity of step 2 and step 3 are
respectively given by O(nmax

1 log2
(
λu−λl

ε

)
KIN

3
B)

and O(nmax
2 log2

(
pu−pl

ε

)
M3), where nmax

1 and
nmax
2 denote the number of iterations for Algorithm

2 and Algorithm 4 to converge. Denote the total
number of iterations of Algorithm 5 as Nmax. Then,
the overall complexity of Algorithm 5 is given by
O
(
Nmax

(
nmax
1 log2

(
λu−λl

ε

)
KIN

3
B+nmax

2 log2
(
pu−pl

ε

)
M3
))

.
Additionally, the simulation results show that Algorithm 5
converges rapidly, which demonstrates the low complexity
of this algorithm.

IV. FEASIBILITY CHECK FOR PROBLEM (8)

Due to the conflicting EH and limited transmit power
constraints, Problem (8) may be infeasible. Hence, we
have to first check whether Problem (8) is feasible or
not. To this end, we construct the following optimization
problem:

max
F,Φ

tr

(
KI∑
k=1

FH
k GFk

)
(52a)

s.t. (8b), (8d). (52b)

If the optimal OF value is larger than Q̄, Problem (8) is
feasible. Otherwise, it is infeasible. As the TPC matrices
and phase shift matrix are coupled, the globally optimal
solution is difficult to obtain. In the following, we can
obtain a suboptimal solution by alternatively optimizing
the TPC matrices and phase shifts.

For a given phase shift matrix, the TPC matrix opti-
mization problem is given by

max
F

tr

(
KI∑
k=1

FH
k GFk

)
(53a)

s.t. (8b). (53b)

Upon denoting the maximum eigenvalue and the cor-
responding eigenvector of G by χ and b respective-
ly, the optimal solution can be readily obtained as
Fk =

[√
pkb,0NB×(d−1)

]
, ∀k = 1, · · · ,KI , where∑KI

k=1 pk = PT and pk ≥ 0,∀k = 1, · · · ,KI . Without
loss of generality, we can set pi = PT /KI , ∀i ∈ KI . The
OF value is given by χPT . In this case, the optimal TPC
matrix represents the optimal energy beamforming, which
is the same as that for the single-antenna IR case of [38].

For a given TPC matrix F, the phase shift optimization
problem is formulated as:

max
ϕ

ϕHΥϕ+ 2Re
{
ϕHg∗} (54a)

s.t. (8d), (54b)
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where Υ and g are defined in the above section. The OF
is convex w.r.t. ϕ, and maximizing a convex function is
a d.c program. Hence, it can be solved by using the SCA
method by approximating ϕHΥϕ as its first-order Taylor
expansion, details of which are omitted.

Finally, alternatively solve Problem (53) and (54) until
the OF is larger than Q̄.

V. SIMULATION RESULTS

In this section, we provide simulation results for
demonstrating the benefits of applying IRS to SWIPT
systems, as seen in Fig. 2, where there are four ERs and
two IRs. The ERs and IRs are uniformly and randomly
scattered in a circle centered at (xER, 0) and (xIR, 0) with
radius 1 m and 4 m, respectively. The IRS is located at
(xIRS, 2). In the simulations, we assume that the IRS is
just above the ERs and thus we set xER = xIRS. The
large-scale path loss is modeled in dB as

PL = PL0

(
D

D0

)−α

, (55)

where PL0 is the path loss at the reference distance D0,
D is the link length in meters, and α is the path loss
exponent. Here, we set D0 = 1 and PL0 = −30dB. The
path loss exponents of the BS-IRS, IRS-ER, IRS-IR, BS-
IR and BS-ER links are respectively set as αBSIRS = 2.2,
αIRSER = 2.2, αIRSIR = 2.4, αBSIR = 3.6 and αBSER =
3.6. Unless otherwise stated, the other parameters are set
as follows: Channel bandwidth of 1 MHz, noise power
density of −160 dBm/Hz, NB = 4, NI = NE = 2,
d = 2, Q̄ = 2 × 10−4 W, η = 0.5, M = 50, PT =
10 W , weight factors ωk = 1, ∀k ∈ KI , αl = 1, ∀l ∈ KE ,
xER = 5 m, and xIR = 400 m. The following results
are obtained by averaging over 100 random locations and
channel generations. Due to the severe blockage and long
distance, the channels from the BS and the IRS to the
IRs are assumed to be Rayleigh fading. However, as the
BS, the ERs and the IRS are close to each other, the
small-scale channels are assumed to be Rician fading. In
particular, the small-scale channels from the IRS to the
ERs are denoted as:

G̃r,l =

√
βirser

βirser + 1
G̃LoS

r,l +

√
1

βirser + 1
G̃NLoS

r,l ,

l = 1, · · · ,KE , (56)

where βirser is the Rician factor, G̃LoS
r,l is the deter-

ministic line of sight (LoS), and G̃NLoS
r,l is the non-

LoS (NLoS) component that is Rayleigh fading. The
LoS component G̃LoS

r,l can be modeled as G̃LoS
r,l =

aNE

(
ϑAoA
irser,l

)
aHM

(
ϑAoD
irser,l

)
, where aNE

(
ϑAoA
irser,l

)
is de-

BS

(0,0)
(m)x

(m)y

ERx IRx

2 m
IRS( , 2)xIRS

ER area

IR area

Fig. 2. The simulated IRS-aided SWIPT MIMO communication
scenario.
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Fig. 3. Maximum harvested power achieved by various schemes.

fined as

aNE

(
ϑAoA
irser,l

)
=
[
1, ej

2πd
λ sinϑAoA

irser,l , · · · , ej 2πd
λ (NE−1) sinϑAoA

irser,l

]T
(57)

and

aM
(
ϑAoD
irser,l

)
=
[
1, ej

2πd
λ sinϑAoD

irser,l , · · · , ej 2πd
λ (M−1) sinϑAoD

irser,l

]T
. (58)

In (57) and (58), d is the antenna separation distance, λ
is the wavelength, ϑAoD

irser,l is the angle of departure and
ϑAoA
irser,l is the angle of arrival. It is assumed that ϑAoD

irser,l

and ϑAoA
irser,l are randomly distributed within [0, 2π]. For

simplicity, we set d/λ = 1/2. The small-scale channels
from the BS to the ERs and the IRS are similarly defined.
For simplicity, the Rician factors for all Rician fading
channels are assumed to be the same as β = 3.

We first compare the maximum power harvested by
various schemes in Fig. 3. Specifically, we solve the EH
maximization problem (52) by using the feasibility check
method in Section IV. Additionally, we also present the
results without using IRS. Fig. 3 shows the maximum
EH power versus the ER circle center location xEH. As
expected, the EH power gleaned by all schemes decreases,
when the ERs are far away from the BS. As expected,
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more power can be harvested with the aid of IRS than
that without IRS, especially when the number of phase
shifters M is large. This is mainly due to the fact that
an additional strong link is reflected by the IRS, which
can be harvested by the ERs. This figure also shows that
the IRS is effective in expanding the operational range
of ERs. For example, when the harvested power limit is
Q̄ = 2 × 10−4 W, the maximum operational range of
the system without IRS is only 5.5 m, while the system
having M = 40 phase shifters can operate for distances
up to 9 m.

In Fig. 4, we study the convergence behaviour of the
BCD algorithm for different numbers of phase shifters M .
It is observed from Fig. 4 that the WSR achieved for var-
ious M values increases monotonically with the number
of iterations, which verifies Theorem 4. Additionally, the
BCD algorithm converges rapidly and in general a few
iterations are sufficient for the BCD algorithm to achieve
a large portion of the converged WSR. This reflects the
low complexity of the BCD algorithm, which is appealing
for practical applications.

In the following, we compare our proposed BCD algo-
rithms to a pair of benchmark schemes: 1)‘No-IRS’: In
this scheme, there is no IRS to assist the transmission as
in conventional systems; 2) ‘Fixed Phase’: In this method,
the phase shifts are fixed at the solutions obtained by solv-
ing the harvested power maximization problem (52), while
they are not optimized, when using the BCD algorithm by
removing Step 3 of the BCD algorithm. When any of the
methods fails to obtain a feasible solution, its achievable
WSR is set to zero.

In Fig. 5, we first study the impact of the number of
phase shifters M on the performance of various algorithm-
s. As expected, the WSR achieved by all the algorithms
- except for the No-IRS method - increases with M ,
since a higher degree of freedom can be exploited for
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Fig. 5. WSR versus the number of phase shifters.
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optimizing the system performance. By carefully opti-
mizing the phase shifts for maximizing the WSR, the
BCD algorithm significantly outperforms the fixed-phase
scheme. Additionally, the performance gain increases with
M , which emphasizes the importance of optimizing the
phase shifts. By employing the IRS in our SWIPT sys-
tem, the WSR obtained by the BCD algorithm becomes
drastically higher than that of No-IRS. For example, when
M = 60, the WSR performance gain is up to 10 bit/s/Hz.
These results demonstrate that introducing the IRS into
our SWIPT system is a promising technique of enhancing
the system performance.

In Fig. 6, the impact of harvested power requirement
Q̄ is investigated. It is seen from this figure that the WSR
achieved by all the algorithms decreases upon increasing
Q̄, because the probability of infeasibility increases, which
in turn reduces the average WSR value. We also find that
the WSR obtained by the No-IRS scheme decreases more
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rapidly than that of the other two IRS-aided transmission
schemes. The WSR of the No-IRS is approaching zero
when Q̄ = 4 × 10−4 W, while those relying on IRSs
achieve a WSR gain in excess of 20 bit/s/Hz. It is observed
again that the BCD algorithm performs better than the
fixed-phase scheme, but the gap narrows with the increase
of Q̄. This can be explained as follows. With the increase
of Q̄, both the TPC matrices and the phase shifts should
be designed for maximizing the power harvested at the
ERs, and thus the final solutions of the fixed-phase and
BCD method will become the same.

The above results are obtained for αBSIRS = 2.2,
αIRSER = 2.2, αIRSIR = 2.4 based on the assumption that
the IRS relies on an obstacle-free scenario. In practice,
this ideal scenario is seldom encountered. Hence, it is
imperative to investigate the impact of αIRS

∆
= αBSIRS =

αIRSER = αIRSIR on the system performance, which is
shown in Fig. 7. Observe from this figure that the WSR
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Fig. 9. WSR versus the location of IR circle center xIR.

achieved by the algorithms using IRS decreases drastically
with αIRS. When αIRS = 3, the WSR-performance gain
of our algorithm over the No-IRS scenario is only 7
bit/s/Hz, because upon increasing αIRS, the signal power
reflected from the IRS becomes weaker. Hence, the bene-
fits of the IRS can be eroded. This provides an important
engineering design insight: the location of IRS should be
carefully considered for finding an obstacle-free scenario
associated with a low αIRS.

In Fig. 8, we study the impact of ER locations on
the system performance. As expected, the WSR achieved
by all the schemes decreases with xIRS, since the ERs
become more distant from the BS and the signals gleaned
from both the BS and IRS become weaker. The WSR
achieved by the No-IRS approaches zero when xIRS = 8
m, hence this method cannot reach the energy trans-
mission target of the ERs. The proposed algorithm is
again observed to significantly outperform the other two
algorithms, especially when the ERs are close to the BS.

Finally, the impact of IR locations is investigated in
Fig. 9. It is observed that the WSR achieved by all
the algorithms decreases with xIR since the IRs become
farther away from the BS when increasing xIR. The
proposed algorithm is shown to achieve nearly the WSR
gain of 10 bit/s/Hz over the No-IRS when xIR = 100 m,
and the WSR gain slightly increases with xIR. This means
that the IRS is more advantageous when the IRs are far
away from the BS, and the IRS can provide one additional
favorable link.

VI. CONCLUSIONS

In this paper, we have invoked an IRS in a SWIPT
MIMO system for enhancing the performance of both the
ERs and IRs. By carefully adjusting the phase shifts at
the IRS, the signal reflected by the IRS can be added
constructively at both the ERs and IRs. We considered
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the WSR maximization problem of IRs, while guarantee-
ing the energy harvesting requirements of the ERs and
the associated non-convex unit-modulus constraints. We
conceived a BCD algorithm for alternatively optimizing
the TPC matrices at the BS and the phase shift matrix at
the IRSs. For each subproblem, a low-complexity iterative
algorithm was proposed, which guarantees to be at worst
locally optimal. Our simulation results demonstrated that
the IRS enhances the performance of the SWIPT system
and that the proposed algorithm converges rapidly, hence
it is eminently suitable for practical implementations.

This paper assumes perfect CSI at the BS, which
is challenging to obtain. For the future work, we will
consider the robust transmission design for the IRS-
aided SWIPT system, where the CSI is assumed to be
imperfectly known. In addition, how to design the discrete
phase shifts will be left for future work.

APPENDIX A
PROOF OF LEMMA 1

We consider a pair of variables λ and λ′, where λ > λ′.
Let F(λ) and F(λ′) be the optimal solutions of Problem
(20) with λ and λ′, respectively. Since F(λ) is the optimal
solution of Problem (20) with λ, we have

L[F(λ), λ] ≤ L[F(λ′), λ]. (A.1)

Similarly, we have

L[F(λ′), λ′] ≤ L[F(λ), λ′]. (A.2)

By adding these two inequalities and simplifying them,
we have (λ− λ′)P (λ) ≤ (λ− λ′)P (λ′). Since λ > λ′,
we have P (λ) ≤ P (λ′), which completes the proof.

APPENDIX B
PROOF OF THEOREM 2

Denote the globally optimal solution of Problem (48)
by ϕ⋆. According to [43], for a non-convex optimization
problem, all its locally optimal solutions (including the
globally optimal solution) should satisfy the Karush-
Kuhn-Tucker (KKT) optimality conditions, one of which
is the complementary slackness condition for constraint
(42):

λ⋆
(
2Re

[
ϕ⋆H

(
g∗ +Υϕ(n)

)]
− Q̂

)
= 0, (B.1)

where λ⋆ is the corresponding optimal dual variable. We
consider two cases: 1) λ⋆ = 0; 2) λ⋆ > 0.

The first case means that constraint (42) is not tight in
the optimum. Then, the optimal solution can be obtained
as ϕ⋆ = ej arg(q

(n)), which is equal to ϕ(0). Hence,
Algorithm 3 achieves the optimal solution of Problem
(48).

For the second case, the following equality should hold:

2Re
[
ϕ⋆H

(
g∗ +Υϕ(n)

)]
= Q̂. (B.2)

We prove the second case by using the method of contra-
diction. Denote the optimal p obtained by Algorithm 3 as
p⋆, and the corresponding ϕ as ϕ(p⋆). Then, we have

2Re
[
ϕ(p⋆)H

(
g∗ +Υϕ(n)

)]
= Q̂. (B.3)

Let us assume that ϕ(p⋆) is not the globally optimal
solution of Problem (48). Then, we have

2Re
{
ϕ(p⋆)Hq(n)

}
< 2Re

{
ϕ⋆Hq(n)

}
. (B.4)

Since ϕ(p⋆) is the globally optimal solution of Problem
(49) when p = p⋆, we have

2Re
{
ϕ(p⋆)Hq(n)

}
+2p⋆Re

[
ϕ(p⋆)H

(
g∗+Υϕ(n)

)]
≥2Re

{
ϕ⋆Hq(n)

}
+2p⋆Re

[
ϕ⋆H

(
g∗+Υϕ(n)

)]
. (B.5)

By substituting (B.2) and (B.3) into (B.5), we have

2Re
{
ϕ(p⋆)Hq(n)

}
≥ 2Re

{
ϕ⋆Hq(n)

}
, (B.6)

which contradicts (B.4). Hence, the solution obtained by
Algorithm 3 is the globally optimal solution of Problem
(48). Since Problem (47) is equivalent to Problem (48),
the proof is complete.

APPENDIX C
PROOF OF THEOREM 3

Let us define the following functions:

T (ϕ)
∆
= ϕHΥϕ+ 2Re

{
ϕHg∗}+ tr

(
GbF̃

)
, (C.1)

T̄ (ϕ|ϕ(n))
∆
= −ϕ(n)HΥϕ(n) + 2Re

[
ϕH
(
g∗ +Υϕ(n)

)]
+ tr

(
GbF̃

)
. (C.2)

It can be verified that T (ϕ(n)) = T̄ (ϕ(n)|ϕ(n)).
We first show that the solution sequence {ϕ(n), n =

1, 2, · · · } is feasible for Problem (30). The unit-modulus
constraint is guaranteed in (50). We only have to check
the EH constraint in (8c). Note that ϕ(n+1) is a feasible
solution of Problem (48), and thus satisfies constraint
(41). Hence, we have T̄ (ϕ(n+1)|ϕ(n)) ≥ Q̄. By using
inequality (41), we have T (ϕ(n+1)) ≥ T̄ (ϕ(n+1)|ϕ(n)).
Then, T (ϕ(n+1)) ≥ Q̄ holds, which means that the
sequence of ϕ(n+1) satisfies the EH constraint in (8c).

Now, we show that the OF value sequence
{f(ϕ(n)), n = 1, 2, · · · } is monotonically decreasing.
Based on Theorem 2, the globally optimal solution
Φ to Problem (47) can be obtained. Then, we have
g(ϕ(n+1)|ϕ(n)) ≤ g(ϕ(n)|ϕ(n)). According to the first
condition in (44), we have g(ϕ(n)|ϕ(n)) = f(ϕ(n)).
Hence, we have g(ϕ(n+1)|ϕ(n)) ≤ f(ϕ(n)).
By using the third condition of (44), we have
g(ϕ(n+1)|ϕ(n)) ≥ f(ϕ(n+1)). As a result, we have
f(ϕ(n)) ≥ f(ϕ(n+1)). Additionally, the OF must have a
lower bound due to the unit-modulus constraint. Hence,
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the OF value sequence {f(ϕ(n)), n = 1, 2, · · · } is
guaranteed to converge.

Now, we prove that the converged solution satisfies
the KKT conditions of Problem (30). Let us denote the
converged solution by {ϕ⋆}. Since ϕ⋆ is the globally
optimal solution of Problem (47), it must satisfy the KKT
conditions of Problem (47). Specifically, the Lagrange
function of Problem (47) is given by

L(ϕ, ν, τ ) =g(ϕ|ϕ⋆) + ν
(
Q̂− 2Re

[
ϕH (g∗ +Υϕ⋆)

])
+

M∑
m=1

τm (|ϕm| − 1), (C.3)

where ν and τ = {τ1, · · · , τM} are the corresponding
dual variables. Then, there must exist a ν⋆ and τ ⋆ =
{τ⋆1 , · · · , τ⋆M} for ensuring that the following conditions
are satisfied:

∇ϕ∗L(ϕ, ν, τ )|ϕ=ϕ⋆=∇ϕ∗g(ϕ|ϕ⋆)|ϕ=ϕ⋆−ν⋆ (g∗+Υϕ⋆)

+

M∑
m=1

τ⋆m(∇ϕ∗ |ϕm|) |ϕ=ϕ⋆ = 0, (C.4)

ν⋆
(
Q̂−2Re

[
ϕ⋆H (g∗+Υϕ⋆)

])
= 0, (C.5)

τ⋆m (|ϕ⋆
m| − 1) = 0, ∀m. (C.6)

According to the second condition of (44), we have

∇ϕ∗g(ϕ|ϕ⋆)|ϕ=ϕ⋆ = ∇ϕ∗f(ϕ)|ϕ=ϕ⋆ . (C.7)

Upon denoting the OF of Problem (30) as φ(ϕ), which is
the same as f(ϕ) except that φ(ϕ) has more constants, we
have ∇ϕ∗f(ϕ)|ϕ=ϕ⋆ = ∇ϕ∗φ(ϕ)|ϕ=ϕ⋆ . Combining with
(C.7), we have ∇ϕ∗g(ϕ|ϕ⋆)|ϕ=ϕ⋆ = ∇ϕ∗φ(ϕ)|ϕ=ϕ⋆ . By
substituting it into (C.4), we arrive at

∇ϕ∗φ(ϕ)|ϕ=ϕ⋆ − ν⋆ (g∗ +Υϕ⋆)

+
M∑

m=1

τ⋆m (∇ϕ∗ |ϕm|) |ϕ=ϕ⋆ = 0. (C.8)

It can be checked that the set of equations (C.5), (C.6) and
(C.8) constitutes exactly the KKT conditions of Problem
(30). Hence, the proof is complete.

APPENDIX D
PROOF OF THEOREM 4

Let us define the OF of Problem (11) as

h (W,U,F,Φ)
∆
=

KI∑
k=1

ωkhk (W,U,F,Φ). (D.1)

It can be readily verified that the sequence of solutions
{F(n),ϕ(n)} generated by Algorithm 5 is always feasible
for Problem (8). The monotonic property of Algorithm 5
can be similarly proved by using the method of [33].

In the following, we prove that the converged solution
satisfies the KKT conditions of Problem (8). Let us denote
the converged solution as {W⋆,U⋆,F⋆,Φ⋆}.

According to Theorem 1, F⋆ is the KKT-optimum point
of Problem (15). Upon denoting the OF of Problem (15)
as z(F,Φ⋆), the Lagrange function of Problem (15) is
given by

L(F, λ, µ) =z(F,Φ⋆) + λ

(
KI∑
k=1

∥Fk∥2F − PT

)

+ µ

(
Q̄− tr

(
KI∑
k=1

FH
k GFk

))
, (D.2)

where λ and µ are the corresponding dual variables.
Then, there must exist a λ⋆ and µ⋆ for ensuring that the
following conditions are satisfied 3:

∇F∗
k
L(F, λ, µ)

∣∣
Fk=F⋆

k

=∇F∗
k
z(F,Φ⋆)

∣∣
Fk=F⋆

k

+ λ⋆F⋆
k − µ⋆GF⋆

k = 0, ∀k ∈ KI , (D.3)

λ⋆

(
KI∑
k=1

∥F⋆
k∥

2
F − PT

)
= 0, (D.4)

µ⋆

(
Q̄− tr

(
KI∑
k=1

F⋆H
k GF⋆

k

))
= 0. (D.5)

Furthermore, it can be readily checked that

∇F∗
k
h (W⋆,U⋆,F,Φ⋆)

∣∣
Fk=F⋆

k

,

=∇F∗
k
z(F,Φ⋆)

∣∣
Fk=F⋆

k

∀k ∈ KI . (D.6)

To expound a little further, we have the following chain
of inequalities:

∇F∗
k
hk (W

⋆,U⋆,F,Φ⋆)
∣∣
Fk=F⋆

k

(D.7)

=−tr
(
W⋆

k

(
∇F∗

k
Ek (U

⋆,F,Φ⋆)
∣∣
Fk=F⋆

k

))
(D.8)

=−tr
(
(Ek (U

⋆,F⋆,Φ⋆))
−1
(
∇F∗

k
Ek (U

⋆,F,Φ⋆)
∣∣
Fk=F⋆

k

))
(D.9)

=
(
∇F∗

k
log
∣∣∣(Ek (U

⋆,F,Φ⋆))
−1
∣∣∣)∣∣∣

Fk=F⋆
k

(D.10)

=∇F∗
k
Rk(F,Φ

⋆)
∣∣
Fk=F⋆

k

, (D.11)

where (D.8) follows from the chain rule, and the final
equality follows from applying the Woodbury matrix
identity to (14). Combining (D.11) with (D.6), we have

∇F∗
k
z(F,Φ⋆)

∣∣
Fk=F⋆

k

= ∇F∗
k
Rk(F,Φ

⋆)
∣∣
Fk=F⋆

k

. (D.12)

By substituting (D.12) into (D.3), we arrive at

∇F∗
k
Rk(F,Φ

⋆)
∣∣
Fk=F⋆

k

+ λ⋆F⋆
k − µ⋆GF⋆

k = 0, ∀k ∈ KI .

(D.13)

3For simplicity, the prime constraints are omitted.
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According to Theorem 3, ϕ⋆ satisfies the KKT condi-
tions of Problem (30), and thus the set of equations (C.5),
(C.6) and (C.8) hold.

Furthermore, it can be readily verified that

∇ϕ∗h (W⋆,U⋆,F⋆,Φ) |ϕ=ϕ⋆ = ∇ϕ∗φ(ϕ)|ϕ=ϕ⋆ .
(D.14)

By using similar derivations as in (D.7)-(D.11), we can
prove that

∇ϕ∗h (W⋆,U⋆,F⋆,Φ) |ϕ=ϕ⋆ = ∇ϕ∗Rk(ϕ,F
⋆)|ϕ=ϕ⋆ .

(D.15)
Hence, we have

∇ϕ∗φ(ϕ)|ϕ=ϕ⋆ = ∇ϕ∗Rk(ϕ,F
⋆)|ϕ=ϕ⋆ . (D.16)

By substituting (D.16) into (C.8), we arrive at:

∇ϕ∗Rk(ϕ,F
⋆)|ϕ=ϕ⋆ − ν⋆ (g∗ +Υϕ⋆)

+
M∑

m=1

τ⋆m(∇ϕ∗ |ϕm|) |ϕ=ϕ⋆ = 0. (D.17)

Then, the set of equations (D.13), (D.4), (D.5), (D.17),
(C.5), and (C.6) constitute exactly the KKT conditions of
Problem (8).
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