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Abstract. Single electron attachment to a molecule may invoke quantum coherence in different 

angular momentum transfer channels. This has been observed in the 14 eV dissociative electron 

attachment resonance in molecular hydrogen where a coherent superposition of two negative ion 

resonant states of opposite parity is created, with the s and p partial waves of the electron 

contributing to the attachment process. Interference between the two partial wave contributions 

leads to a forward – backward asymmetry in the angular distribution of the product negative 

ions. Since these two resonant states dissociate to the same n = 2 state of H and H this 

asymmetry is further modified due to interference between the two paths of the dissociating 

molecular negative ion along different potential energy curves. This interference manifests as a 

function of the electron energy as well as isotopic composition. This case is akin to the quantum 

interference observed in photodissociation by one-photon vs two-photon absorption.   

1.  Introduction 

Dissociative electron attachment (DEA) is a dominant process in any medium in which low energy 

electrons are present. It is an efficient way of converting kinetic energy into chemical energy in a 

medium and has been exploited by modern laser technology and play a role in many planetary and 

astrophysical phenomena. A major characteristic of the DEA process is its ability to induce site selective 

bond breaks in molecules [1-4]. It has been shown that electron attachment to molecules depends on the 

functional groups present in them, leading to localization of both energy and charge at a given site in 

the molecule [1]. The subsequent dissociation of the molecular negative ion resonance (NIR) state takes 

place selectively at a given bond or site. Furthermore, since electron attachment occurs at distinct 

energies and leads to distinct molecular fragmentation pathways, DEA provides a way of controlling the 

chemistry by controlling the creation of reactive species in a medium. This is complementary to the 

coherent control of chemical reaction using lasers. However, electrons being ubiquitous, the possibility 

of chemical control using electrons may have wider applicability than coherent control of chemical 

reactions using lasers and is a more practical technology. Indeed, it is now being adopted in plasma 

technology and nanotechnologies [5].  

Coherent control using lasers has been used to demonstrate control in photodissociation. In this, the 

quantum coherence manifests itself in terms of quantum interference of two or more channels that start 

from an initial state of a target molecule and lead to the same dissociation products. Selection of one of 

these channels has been demonstrated by controlling the coherent light fields. Breaking of inversion 
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symmetry in the photodissociation using one photon vs two photon absorption is the most robust 

example of demonstration of such coherence and its control [6].     

In many aspects, the DEA process is very similar to photodissociation. The kinetic energy of the 

attaching electron is transferred to the target molecule which causes its excitation and this excited state 

may then undergo dissociation. However, the most distinctive feature of DEA is the transfer of charge 

which results in the formation of a NIR. Depending on the electron affinity of the fragments, the DEA 

process invokes additional energy release which makes bond rupture in molecules possible for electron 

energies even below their dissociation limits. Also, unlike photoabsorption where in the visible 

frequency regime the dipole transition plays a dominant role, in electron attachment more than one value 

of angular momentum may be transferred with comparable strength. However, the most intriguing 

aspect of the DEA process is the rich electron-electron correlations that result due to interaction of the 

attached electron with those from the molecular target. This makes theoretical calculations of the 

electron attachment and DEA process more challenging. Experimentally, the DEA process has been 

studied through measurements of the absolute cross sections of various dissociation channels as well as 

measurements of the kinetic energy and angular distributions of the fragment anions [7-11]. Fragment 

kinetic energy distribution yields information about the energy partitioning in the dissociation process 

whereas angular distribution reflects the NIR state symmetries involved, provided the dissociation takes 

place on a fast enough time scale. Together such measurements allow modeling of the DEA dynamics.  

We have recently observed in molecular hydrogen coherence in electron attachment leading to the 

formation of two negative ion resonances in coherent superposition and subsequent decay of the system 

through dissociation [12]. That this process is observed in the simplest molecular system makes it all 

the more interesting. It may be pointed out that no theoretical prediction or any observation has been 

made for such a process in any other system before. What we present here is a more detailed analysis of 

the data and discuss the implications of the results for understanding the NIRs in molecular hydrogen 

around 14 eV. 

2.  Negative ion resonances in molecular hydrogen 

Before we discuss present results, it is appropriate to give a brief review of the status of negative ion 

resonances in molecular hydrogen. Being the simplest molecule, electron scattering from H2 (and its 

isotopomers) has been the subject of considerable theoretical and experimental work. The NIRs in 

molecular hydrogen have been observed in DEA studies, electron transmission experiments, elastic and 

inelastic scattering experiments and various theoretical calculations. All these are summarised in several 

reviews [11, 13-17]. Recent measurements [18] on absolute cross sections for DEA on H2 and D2 have 

removed the disparity that existed in previous data [19, 20]. The DEA process in the molecule has been 

shown to have strong isotope effect [18, 19, 21, 22], due to the considerable mass difference in the 

nuclei. All the isotopomers are also found to have strong initial vibrational state dependence in the DEA 

cross sections [23, 24]. This has been explained by the combined effect of the Franck– Condon factors 

and the survival factor appropriate to the calculated potential energy curves [25, 26].  
DEA to molecular hydrogen and its isotopomers is characterised by two relatively narrow resonances 

at 4 eV and 14 eV respectively and a broad one between 7 eV and 13 eV. Based on the measurements 

and the theoretical calculations [27-29] the symmetries of the three resonances seen in the DEA channel 

have been assigned as 2u
+ (4 eV), 2g

+ (10 eV) and 2u
+ (14 eV). The H angular distribution 

measurements in DEA at 4 eV and the 10 eV peaks were found to be consistent with these assignments 

[30]. Preliminary measurements [31] on the H angular distribution at 14 eV resonance were found to 

be isotropic and it was assumed that the symmetry of the resonance was the same as that determined by 

inelastic electron scattering measurements [32]. However, an interesting feature of measurements of ion 

yield curves is the observation of oscillation in the energy differential cross sections between 11 eV and 

13 eV [31] and between 14 eV and 16 eV [30] for H2 and the absence of such structures in D2. No clear 

explanation has been made for both these structures, though it was proposed that the observed structure 

between 11 eV and 13 eV may involve an attractive 2g
+ NIR either through predissociation or a two-

step process [33] in which the resonant elastic scattering from the attractive 2g
+ is followed by DEA 
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through the repulsive 2g
+ state [31]. The structure in the 14 eV resonance was proposed as due to 

predissociation from a 2g state where the coupling takes place through rotations [30]. Since there is a 

requirement of unit angular momentum change between the two states in the predissociation process, 

Tronc et al. [30] proposed a breakdown of Born-Oppenheimer approximation with the g state having a 

dissociation limit of Hs2) + H(3d) which is bound in the relevant electron energy range.  

3.  Experimental set-up 

We have used the velocity slice imaging (VSI) technique [18, 34] to measure the angular distribution of 

the fragment anions produced in the DEA to H2. In brief, an effusive molecular beam crosses a 

magnetically collimated pulsed electron beam at right angle. The molecular beam is coincident with the 

axis of the VSI spectrometer. The spectrometer consists of the interaction region followed by a single 

element electrostatic lens and 100mm long flight tube. The ions are detected using micro channel plates 

and phosphor screen-based position sensitive detector (PSD). The ions formed in the interaction region 

are extracted using a delayed pulsed electric field applied to the extraction electrodes. The electrostatic 

lens assembly provides the velocity focusing condition where the entire Newton sphere of the extracted 

fragment anions is projected onto the 2-dimensional PSD. The detector is subjected to an 80nsec wide 

voltage pulse, which is timed appropriately coinciding with the arrival of the central slice of the Newton 

sphere. The impacts of the ions on the detector are recorded using CCD camera and analyzed after 

adding several such slices in an off-line analysis. The energy resolution of the electron beam in the 

experiment is about 0.6 eV. The angular resolution depends on the electron energy and the collimating 

magnetic field strength as discussed in detail previously [34]. We estimate that it is close to 8o at 4 eV 

and 4o at 14 eV for a magnetic field of 50 Gauss used in the present measurements.    

4.  Results 

Of the three resonances in H2, the present discussion is focused upon the 14 eV resonance. We have 

obtained VSI images of H− produced from H2 and D from D2 at a number of electron energies across 

this resonance. For comparison we have also measured the momentum images around the 4 eV 

resonance in H2.  

4.1.  4 eV resonance 

The 4eV peak in DEA to H2 is known to be due to ground NIR state of H2
−. The momentum image 

obtained at 4.5 eV along with the angular distribution obtained from the image is shown in figure 1.  

 

Figure 1. (a) Momentum image obtained for 

H− from H2 at 4.5 eV electron energy. (b) 

Angular distribution (normalized at θ = 1800) 

obtained from the image. Measured data 

(circles) and the fitted distribution (solid line). 

(Part (a) is reproduced from figure 3(a) of 

reference 12). 

The ion signal peaks symmetrically in forward and backward directions with respect to the incoming 

electron beam. As the kinetic energy release is low for this resonance, the angular distribution was 

obtained from the outer edge of the momentum image. The angular distribution follows the cos2 form 

with constant background. The exact fit function is of the form, 

                                                            I(𝜃) = 𝐴2 + 𝐵2cos2(𝜃)                                                            (1) 

with A = 0.2457 and B = 1.01. This is consistent with the transition to a NIR state of u symmetry from 

the target state of g symmetry. The dominant angular momentum transfer channel is l = 1 which is the 

lowest allowed partial wave for this transition in a homonuclear diatomic molecule. Ideally, the value 
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of A should be zero. In the present case, it appears as due to a small background signal and imperfections 

in the momentum imaging. This background, which can be ignored in this case, becomes a limitation in 

the analysis of the 14 eV resonance, as will be seen later. We could not measure the D− angular 

distribution at this energy due to its two orders of magnitude lower cross section [20]. 

4.2.  14 eV resonance 

The VSI image obtained at 14.5 eV for both H2 and D2 along with the angular distributions are shown 

in figure 2. As can be seen from the figure, the H− momentum image shows a clear forward-backward 

asymmetry with respect to the electron beam with more intensity in the backward direction. The VSI 

image of D− from D2 shows substantially different distribution with a different degree of asymmetry.  

 

  Figure 2. (a) Momentum image and (b) angular distribution (circles - measured data and solid line 

fit) for H− from H2 at 14.5eV electron energy and that ((c) and (d) respectively) for D− from D2. The 

angular distribution is normalized with respect to the count at θ = 1800. For the details of the fit, please 

see the text below. (Parts (a) and (c) are reproduced from figure 3(b) and (f) of reference 12). 

5.  Discussion 

5.1.  Manifestation of quantum coherence in DEA 

For homonuclear diatomic molecules, due to the inversion symmetry present in the system, the 

dissociation process resulting from a given NIR state must also show inversion symmetry. As the initial 

neutral target state and the anion state formed after electron attachment has the inversion symmetry, the 

electron attachment must proceed with transfer of only odd or only even partial waves to the target [35]. 

The angular distribution thus obtained is given as  

                                                I(𝑘, 𝜃, 𝜙) =  |∑ 𝑎lμ
∞
l=|μ| (𝑘)Ylμ(𝜃, 𝜙)|

2
                                                  (2) 

where l has either only odd or only even values. As the target neutral state of H2 is with even parity, the 

transfer of even partial wave will result in the formation of NIR with even parity and that of odd partial 

wave will generate an odd parity NIR state. Consequently, a single NIR state cannot explain the observed 

forward-backward asymmetry of the angular distribution where the inversion symmetry of the system 

is broken. However, if we have more than one resonance taking part in the electron attachment, the 

angular distribution of the product ion is given by  

                                                 I(𝑘, 𝜃, 𝜙) =  ∑ |∑ 𝑎lμ
∞
l=|μ| (𝑘)Ylμ(𝜃, 𝜙)|

2
.|μ|                                          (3) 

Please note that here the individual cross sections for each resonant state are simply added and will not 

break the inversion symmetry. A single electron on attachment creates one resonant state with a certain 

probability and in an ensemble it is possible to get different states by different electrons. The resultant 

observable angular distribution will be an incoherent addition of these signals. However, if a single 

electron upon attachment gives rise to a coherent superposition of different resonant states, the resultant 

angular distribution stems from the coherent addition of transition amplitudes for dissociation via each 

constituent state. In this case, the angular distribution will be given by 
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                                                 I(𝑘, 𝜃, 𝜙) =  |∑  |μ| ∑ 𝑎lμ
∞
l=|μ| (𝑘)Ylμ(𝜃, 𝜙)|

2
.                                        (4) 

For example, in the case of H2, considering only the lowest order allowed partial waves (angular 

momentum transfer) in the formation of coherent superposition of 2g
+ and 2u

+ states from the neutral 

ground state (1g
+), we can write this equation as  

                                            I(𝑘, 𝜃, 𝜙) =  |𝑎00(𝑘)Y00(𝜃, 𝜙) + 𝑎10(𝑘)Y10(𝜃, 𝜙)|2.                               (5) 

Based on this, the functional form of the electron attachment probability with respect to angle will be 

                               I(𝑘, 𝜃) = (𝑎g(𝑘))2 + (𝑎u(𝑘))2
 
cos2𝜃 + 2𝑎g(𝑘)𝑎u(𝑘)cos𝜃𝑐𝑜𝑠𝛿                         (6) 

where 𝑎𝑔 and 𝑎𝑢 are proportional to the magnitude of the two transition amplitudes to the 2g
+ and 2u

+ 

NIR states respectively with δ as the relative phase between the transferred s and p waves. From this, 

one can immediately see that due to the cosθ term there will be a forward-backward asymmetry.  

In the present experiment what we observe is the decay of this state through dissociation and under 

the axial recoil approximation the angular distribution in the attachment probability will manifest itself 

in the angular distribution of the H fragment. However, this by itself does not explain the observed 

results and we need to consider the evolution of the coherent states leading to dissociation. As the 

resonances progress towards the dissociation limit along two different potential energy curves, the phase 

between the two changes and, at the dissociation limit, there will be a phase difference between the two. 

This phase difference modifies the angular distribution as, 

                                            I(𝑘, 𝜃) = 𝐴𝑔
2

 
+ 𝐴𝑢

2
 
cos2𝜃 + 2𝐴𝑔𝐴𝑢cos𝜃 cos𝜑                                   (7) 

where Ag and Au are the amplitudes of each resonant state at the dissociation limit after taking into 

account the respective autodetachment rate, which is a function of the inter-nuclear separation. We will 

discuss this point later. The phase φ is the sum of δ (equation (6)) and the phase difference arising from 

the propagation of the wavepacket along the two dissociation paths. As can be seen from equation (7), 

the extent of asymmetry observed in the differential cross section will explicitly depend on the relative 

phase between the two paths that contribute to the DEA channel as well as on the relative amplitudes in 

the two paths.  

The observed difference in asymmetry in D2 can then be understood as a manifestation of both the 

change in phase difference as well as change in relative contribution of the two paths. D2 being a heavier 

molecule, the dissociation time would be √2 times longer than that in H2. This will change the phase 

difference between two paths by a factor √2 resulting in a change in the interference intensity. On the 

other hand, each NIR state during dissociation competes with the autodetachment and the lifetime of 

this process varies as a function of inter-nuclear distance resulting in its survival probability as   

                                                        pi = ∫
𝛤a(𝑅)

ℏv(𝑅)

𝑅ε

𝑅c
d𝑅 = ∫

d𝑡𝑅

τ(𝑡𝑅)

tRε

tRc
                                                   (8) 

where Γ𝑎(𝑅) is the width of the anion potential energy curve, 𝜐(𝑅) is the speed of separation of the 

dissociating atoms, 𝑅𝑐 is the inter-nuclear separation at which electron capture takes place and 𝑅𝜀 is the 

effective inter-nuclear separation beyond which the molecular anion is considered to be dissociated. 

τ(t𝑅) is the corresponding lifetime of the NIR. Assuming that the capture probability for each of the state 

is identical, one can estimate the forward backward asymmetry in the angular distribution using the 

potential energy curves of the two NIR states and their widths. As mentioned earlier, the relative 

amplitudes of each path will also depend on the lifetime of the individual NIR. 

5.2.  Angular distribution fits 

Based on the model of coherent excitation of two resonances, we have analyzed the momentum images 

for the angular distributions, in an effort to quantify the relative contributions of the two resonances in 

the DEA signal and the relative phase, φ arising from the two dissociation paths. The angular distribution 
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clearly shows the contributions due to both g
+ and u

+ states. The functional form for the angular 

distribution under the above model is given by equation (7). The result of the fits is given in table 1. We 

find that the best fit values for the Ag and Au do not provide a consistent picture as far as the relative 

intensities of the two channels are concerned. We believe that this is due to unsatisfactory resolution in 

the momentum imaging, the main contribution to which is the electron energy spread (about 0.6eV 

FWHM) and background noise, as seen above in the case of 4 eV resonance. Although, the best 

momentum resolution obtainable from the spectrometer used is about 10% (Δp/p), the relatively large 

width of the slice used (80nsec) in comparison with the overall time spread of the Newton sphere of ions  

(about 200 nsec) makes it worse. We have tried overcoming this effect by obtaining the angular 

distribution for the outermost edge of the image as explained earlier. Moreover, due to low cross section, 

a longer data acquisition time results in the substantial contribution from the background noise spoiling 

the contrast of the image. This highlights the need for better measurements using improved electron 

energy resolution.    

Table 1. Relative amplitudes and phase from the angular distributions H− from H2 and D− from D2. 

For H2 For D2 

Electron 

energy 

(eV) 

Ag Au φ(rad) 

Electron 

energy 

(eV) 

Ag Au φ(rad) 

14.5 0.36±0.06 0.78±0.04 4.3±0.08 14.0 0.48±0.03 0.87±0.02 4.70±0.03 

15.0 0.26±0.08 0.81±0.04 4.0±0.24 14.5 0.40±0.15 1.06±0.09 4.53±0.13 

15.5 0.21±0.08 0.73±0.04 3.14±0.05 15.0 0.68±0.02 0.67±0.04 4.58±0.03 

Since reliable quantitative estimates of the relative amplitudes could not be obtained from the fits of the 

data, we use the integrated intensities in the forward and backward hemispheres of the images to obtain 

the forward-backward asymmetry factor, η defined as,  

                                                            η =  
(Iforward  – Ibackward)

(Iforward+ Ibackward)
 .                                                            (9) 

The values of η are given in table 2 and are compared with the results of simulations described below. 

Table 2.  Forward-backward asymmetry factor obtained for H− and D− signal. (Reproduced from table 

1 from reference 12).  

H2 D21 

Electron energy (eV) Asymmetry factor η Electron energy (eV) Asymmetry factor η 

14.5 -0.19 ± 0.02 14.0 0.02 ± 0.02 

15.0 -0.17 ± 0.02 14.5 -0.03 ± 0.02 

15.5 -0.12 ± 0.02 15.0 -0.08 ± 0.02 

5.3.  Simulation of η using potential energy curves 

Around 14eV, the electron scattering experiments have identified a NIR state with 2g
+ and estimated 

its width to be 90meV [31]. Taking the potential energy curve for this state from the literature [26] and 

assuming a potential energy curve that runs close to some of those available in this energy range we 

estimate the asymmetry factor η as  

                                                         η =  
√3exp [−(

𝑡𝑔

2τg
+

𝑡𝑢
2τu

)]

exp[−(
𝑡𝑔

τg
)]+exp[−(

𝑡𝑢
τu

)]
cos𝜑                                                   (10) 

where 𝜏𝑔 and 𝜏𝑢 are the average lifetimes of the g and u NIR states involved in DEA, tg and tu are the 

dissociation times for the parent anion along the respective potential energy curves for electron 
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attachment with a specified energy. The denominator of equation (10) is derived from using the cross 

section expression for DEA by each resonant state given by 

                                                                     𝜎𝐷𝐸𝐴 = 𝜎𝑐 × 𝑝𝑖                                                                 (11) 

where the survival probability (pi) for each resonant state is calculated using equation (8) and σc is the 

capture cross section. Although the width of the resonant states is strongly dependent on the inter-nuclear 

separation of the molecule, we have ignored this variation and replaced the lifetime with its average 

value over the dissociation path. We have also assumed that the two resonances show equal capture 

cross section at a given electron energy. This to some extent can be justified as the two potential energy 

curves considered for the simulations run very close to each other in the Frank-Condon region making 

their Franck-Condon factors almost equal for the transition from the vibrational and electronic ground 

state of the target. The numerator of equation (10) arises from the cross term of equation (7) integrated 

over the upper and lower half of space. The phase difference, φ, between the two paths is given by  

                         𝜑 =
1

ℏ
∫ [(2m(E − Vu(𝑅)))

1/2
− (2m (E − Vg(𝑅)))

1/2

]
∞

𝑅c
d𝑅 +

𝜋

2
                          (12) 

where m is the reduced mass of the dissociating molecule, E is the electron energy and V(R) is the 

potential energy of the NIR states involved. The first term accounts for the phase difference arising from 

the two quantum paths of the dissociating wave packets. The additional phase of π/2 was obtained from 

the relative phase between the s and p partial waves of the plane wave description used for the incoming 

electron along the z-axis of the lab system. Ideally, in the presence of the target, the complex amplitudes 

of the partial waves will get distorted leading to an additional phase difference between the s and p 

waves, which will depend on the incident electron energy. However, as we use the zeroth order 

approximation, we have ignored this. We have taken the average lifetime for the 2g
+ state as 8fs based 

on its reported width and that for the 2g
+ as a parameter. The results obtained are shown in figure 3. 

The asymmetry factors are close to the observed values given in table 2. 

As mentioned in the introduction, the symmetry of the NIR state active at 14eV was found to be a 
2g

+ from electron scattering experiments [31]. On the other hand, the present angular distribution 

measurements of DEA indicate a strong contribution from the 2u
+ state. In fact, in the case of D2 the 

slower dissociation results in greater loss of 2g
+ state amplitude to autodetachment, which makes the 

angular distribution more symmetric, dominated by the 2u
+ amplitude. 

 

Figure 3. Estimated asymmetry factor 

as a function of electron energy and 

lifetime (𝜏𝑢) of the 2u
+ state in fsec 

for (a) H2 and (b) D2 where the lifetime 

of the 2g
+ state is taken as 8 fsec. 

(Reproduced from figure 4(b) and (d) 

of reference 12). 

5.4.  Signatures of quantum coherence in the scattered electron channel 

We have seen above that the electron attachment process leads to a break in inversion symmetry at the 

14 eV resonance due to coherent excitation of the two resonances of opposite parity. One would expect 

that the angular distribution of the autodetaching electrons from these resonances may also show 

corresponding asymmetry. It was the angular distribution of the ejected electrons at the incident energy 

of 14 eV that provided the identification of the symmetry of the resonance at this energy as 2g
+ [32]. 

However, a closer look at the data [32] shows a clear asymmetry in the angular distribution, which the 

authors acknowledged, but was left unexplained since a homonuclear diatomic molecule was expected 
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to provide a symmetric distribution. The limited angular range they used in the backward direction also 

did not help them.  

5.5.  Interferences in the ion yield curves  

As discussed in Section 1, equally spaced structures in the ion yield curve from H2 in the 14 eV resonance 

were observed earlier, while no such structures were observed in D2 [30]. The measurements were 

performed at 900 with respect to the incoming electron beam. The observed oscillation in the ion signal 

was found to be at the interval of 0.2eV. It was argued that the spacing might correspond to the 

vibrational spacing of a 2Δg state, which was predissociating due to mixing with the 2g
+ NIR 

contributing to the DEA [30]. Since the difference in angular momenta of the two states is more than 1 

unit, the mixing could happen only under breakdown of Born-Oppenheimer approximation. One may 

wonder if there is a connection with their observation and the present results.  

We may conjecture whether the interference observed in the present experiment in terms of angular 

distribution gives rise to that observed in the ion yield curve at 90o. At θ = 90o, the interference term 

vanishes in the expression for I(k, θ) given above. So strictly, the interference that we observe could not 

have given rise to the oscillation in the ion yield curve. With the electron energy resolution of about 0.6 

eV and reasonable imaging resolution (Δp/p  ̴10%), we expect to observe the structures separated by 0.2 

eV as reported by Tronc et al. [30] in the 90o direction. We are unable to see these structures, probably 

due to a large width of the time slice (80 nsec) in comparison with the overall time spread of the Newton 

sphere of ions (200nsec). Thus neither do we find a connection with those structures nor do we have an 

interpretation for it.  

5.6.  Lifetimes of resonances in coherent superposition  

As can be seen from the logic of decay of a resonance, overlapping resonances with coherent excitation 

will not decay exponentially, although each of them shows exponential decay independently. Frishman 

and Shapiro have shown that such a superposition can be used to completely supress the decay of the 

resonance by suitably tweaking the relative phase between the two superposed states [36]. In light of 

this, it is interesting to see which way the coherent superposition of resonances affects the dynamics of 

the process. Our model, which gives reasonable match with the observed forward-backward asymmetry 

assumes that both the resonances retain their independent lifetime. That means they are understood to 

be decaying exponentially independent of one another. However, this is a crude approximation and it 

will be interesting to see a better model to describe the process.  

6.  Summary and conclusion  

DEA to molecular hydrogen at the 14 eV resonance is found to be the result of coherent creation of two 

resonances of opposite parity leading to forward-backward asymmetry in the angular distribution of the 

fragment negative ion. As the wave packet propagates through two different paths based on the potential 

energy curves of the two resonances and leads to the same dissociation limit, we observe interference in 

the forward-backward asymmetry factor as a function of the electron energy. This interference is also 

dependent on the isotopic composition as seen in the case of D2. Simulation using model potential energy 

curves shows fair agreement with the observed asymmetry. Fitting the angular distribution data as a 

function of electron energy using 2g
+ and 2u

+ symmetries qualitatively shows the contributions from 

both resonances. However, due to limited momentum resolution, quantitative estimates of the 

amplitudes of the two resonances could not be obtained with any reliability. We do not observe any 

signatures of the structures seen in an earlier report in the ion yield curves around 14 eV. It is clear that 

further experimental and theoretical work on NIR states are needed even for the simplest molecule.   
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