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Abstract 

Campylobacter jejuni is the leading cause of bacterial foodborne diseases worldwide. C. jejuni 

and Campylobacter coli are the most predominant species of the genus that are responsible for 

gastrointestinal diseases in humans (Epps et al., 2013). C. jejuni 11168H strain can form 

biofilms, whose cells are more resistant to antimicrobials and disinfectants, perhaps due to the 

fact that the bacterial cells are secured in an extra cellular polymeric matrix consisting of eDNA 

(extracellular DNA), proteins, and polysaccharides (Brown et al., 2015b). 

Bacterial dispersion takes place following the biofilm maturation step. The dispersed cells 

demonstrate greater colonizing properties than their sessile counterparts (Guilhen et al., 2017). 

Therefore, studying the factors governing the dispersal process is vital as it would give a better 

understanding of the pathogen and may lead to the development of novel antimicrobial 

treatments, which in turn may help prevent future cases of campylobacteriosis. 

In this study, dispersal of C. jejuni 11168H biofilms was observed. The role of the cj0979 gene 

in biofilm formation was investigated and it was concluded that this gene alone was not 

responsible for the regulation of C. jejuni 11168H biofilm dispersal. Purified Cj0979 exhibited 

DNase activity and could degrade lambda DNA. In addition, purified Cj0979 reduced C. jejuni 

11168H biofilm development, when added to the initial stages of biofilm formation. 

Importantly, these findings provide insights into the dispersal process of C. jejuni biofilms, 

which has not been reported elsewhere. A development and validation of an arabinose-

inducible gene expression system was undertaken in this research to aid in the study of essential 

genes and nuclease encoding genes involved in biofilm dispersal. As a primary step, arabinose 

transporter genes araE and lacYA177C were introduced into C. jejuni since the transporters 

required for arabinose uptake are not present within these bacteria. Arabinose is essential for 

promoter function. The integration constructs carrying the arabinose transporter genes, were 
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verified by genome sequencing, confirming that they were free of deletions and point mutations. 

The gene cassettes carrying the araE and modified lacY genes were successfully integrated into 

the C. jejuni 11168H chromosome. Despite successful introduction of araE and modified lacY 

genes into C. jejuni 11168H induction of gene expression from PBAD promoter could not be 

achieved. Possible reasons for this finding are discussed. 
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Chapter 1: Introduction 

1.1 The genus of Campylobacter 

In 1886, Theodore Escherich released the first report on the world’s leading foodborne 

pathogen, Campylobacter, after initially observing Campylobacter-resembling 

microorganisms in the colon of children with cholera infantum (Snelling et al., 2005). Mc 

Fadyean and Stockman first isolated the pathogen in 1913 from bovine foetuses (Mc Fadyean 

and Stockman, 1913). Smith and Orcutt (1927) isolated a group of similar organisms from 

faeces of cattle with diarrhoea, naming it Vibrio fetus. In 1944, another group of microorganisms 

was isolated by Doyle (1944) and named Vibrio coli, as their shape was different from the 

previously isolated microorganisms by Smith and Orcutt (1927). Following this discovery, it 

was not until 1963 that the Campylobacter genus was first proposed by Sebald and Veron 

(1963), who identified fundamental differences between the discovered organisms and true 

Vibrio species (On, 2001; Véron and Chatelain, 1973). 

In 1977, Skirrow developed a selective supplement for Campylobacter consisting of polymyxin 

B, vancomycin, and trimethoprim; this supplement eventually improved the isolation 

procedure for these bacteria (Skirrow, 1977). The genus belongs to the family of 

Campylobacteraceae under the order Campylobacterales of the class Epsilonproteobacteria 

and phylum Proteobacteria (Kaakoush et al., 2015; Vandamme and Deley, 1991). Currently, 

the genus consists of 26 species and 9 sub-species, with C. jejuni being the most accountable 

species for gastrointestinal diseases followed by C. coli (Kaakoush et al., 2015). 

Campylobacter species are small, spiral, or rod-shaped microorganisms with AT-rich genomes 

(Bronowski et al., 2014). They typically measure 0.2–0.8 µm in width and 0.5–5 µm in length, 

and contain a polar flagellum that aids in its corkscrew motility for attachment and 

colonization of host cells (Bolton, 2015; Frirdich et al., 2017). The exceptions are C. showae, 
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which contains multiple flagella, and C. gracilis, a non-motile strain (Silva et al., 2011). 

1.2 Epidemiology of Campylobacter infections 

C. jejuni is the leading contributor to gastrointestinal diseases worldwide, accounting for more 

than 80–90% of reported cases (Poelzler et al., 2018). According to the Centers for Disease 

Control and Prevention in the US, approximately 1.3 million cases of campylobacteriosis are 

reported yearly (Centers for Disease Control and Prevention, 2017). The European Centre for 

Disease Prevention and Control confirmed in their annual epidemiological report that there 

were 250,161 cases of campylobacteriosis in 2017 within the EU/EEA region. They identified 

the UK, the Czech Republic and Germany as the major contributors to campylobacteriosis 

(European Centre for Disease Prevention and Control, 2017). In the past 10 years, the numbers 

of reported cases of campylobacteriosis have increased in Europe, the US and Australia. The 

total number of cases reported in other parts of the world, such as Africa, Asia and the Middle 

East, remains ambiguous, but the prevalence of C. jejuni infections has been confirmed in these 

regions (Kaakoush, 2015). In developing countries, the lack of national surveillance 

programmes leads to underestimation of the total number of reported cases (Giangaspero, 

2018; Park, 2002). However, in both developed and developing countries, these infections are 

usually caused by environmental and food contamination. Campylobacter is prevalent in food-

producing animals, wild animals and companion animals, but poultry has served as the largest 

reservoir for Campylobacter infections, contributing to more than 70% of all cases (Wagenaar 

et al., 2013; Epps et al., 2013). Poultry includes chickens, turkeys and ducks; contaminated 

chickens continue to represent the largest reserve of human campylobacteriosis. A report by 

the Food Standards Agency in the UK revealed that up to 72.9% of retail chickens surveyed 

between 2014 and 2015 tested positive for Campylobacter (Kaakoush et al., 2015). Other key 

contributing risk factors include consumption of contaminated water, unpasteurized milk and 

international travel (Kaakoush et al., 2015; Poelzler et al., 2018). The risk associated with 
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international travel varies depending on the travel destination. A meta-analysis conducted in 

2009 revealed that the chances of acquiring campylobacteriosis rose with holidaymakers 

travelling to South East Asia, South Asia, Africa and Latin America (Kaakoush et al., 2015).  

The rate of infection increases in infants, the elderly and people with underlying diseases 

(Campylobacter, 2018). Figure 1 shows a representation of all the major sources and risk 

factors involved in the transmission of C. jejuni from animals to humans. Quantifying the 

contribution of each animal reservoir to human campylobacteriosis is complicated because 

transmission can occur through more than one pathway. All the risk factors mentioned below 

are interconnected and collectively contribute to the overall burden of C. jejuni infections 

(Wagenaar et al., 2013). 
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Figure 1. The reservoirs and pathways involved in C. jejuni transmission 

(Wagenaar et al., 2013). 

1.3 Prevalence of Campylobacter in the poultry and environment 

The poultry industry is the predominant contributor to C. jejuni infections (Silva et al., 2011). 

The infection can spread at any of the following stages: rearing; slaughtering; transporting; 

processing; handling; and consumption of the products (Skarp et al., 2016). Poultry processing 

can lead to environmental contamination, such as contamination of surface water via cecal or 

fecal routes, which may then potentially cross-contaminate humans either by direct or indirect 

contact. Thermophilic Campylobacter causes most of the reported campylobacteriosis cases 
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(Gölz et al., 2018). The ceca (intestinal tract) in chicks serve as the primary colonization site 

and usually contain around 106 to 108 CFU/g bacteria (Hermans et al., 2011), with just about 

35 CFU/g bacteria required for chick colonization (Stern et al., 1988). Furthermore, flies, 

rodents, and wild birds often contaminate poultry flocks, as illustrated in Figure 2.  

Colonization in chicks usually occurs within the first day of exposure, whereupon they become 

asymptomatic carriers of C. jejuni (Gölz et al., 2018).  Several studies have reported an increase 

in campylobacteriosis incidence in poultry flocks during the summer and autumn months due 

to the increased activity of flies during this period. In European countries such as Norway, 

Sweden, Iceland, and Finland, the prevalence is much lower due to shorter summers (Wagenaar 

et al., 2013). Vertical transmission of infection occurs very rarely in the poultry industry; 

therefore, each broiler cycle in the farms starts Campylobacter-free (Wagenaar et al., 2013). 

The degree of colonization generally depends on the following factors: flock size; population 

thinning; lack of  biosecurity; and the production type (Gölz et al., 2018; Wagenaar et al., 

2013).  
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Figure 2. The most imperative routes of transmission of Campylobacter from 

animals to humans (Dasti et al., 2010). 

1.4 Virulence properties 

The degree of infection in humans largely depends on the virulence of a strain and the immune 

response of each individual. Motility, adhesion, invasion, and toxin production have been 

identified as the major virulence factors required to cause gastrointestinal tract infections (Silva 

et al., 2011). 

1.4.1 Motility and Chemotaxis 

Motility is important in Campylobacter’s survival in the challenging environment of the 

gastrointestinal tract. C. jejuni possess one or two polar flagella consisting of O-linked 

glycosylation flagellin and has a helical shape, which assists in movement through the niches 

present inside the body (Hermans et al., 2011). The flagellum consists of a hook-basal body 

and a flagella filament. The flagella filament is composed of multimers of proteins such as 

FlaA (major flagellin protein) and FlaB (minor flagellin protein) and is attached to a hook, 

which is connected to a base situated in the cytoplasm and the inner membrane (Silva et al., 
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2011). The hook-basal body comprises several different proteins, as shown in Figure 3 below. 

The regulation of flaA is under the control of the σ28 promoter. The σ54 promoter regulates the 

transcription of flaB and other genes in the hook-basal body (Silva et al., 2011). Expression of 

σ54 genes is regulated by a two-component regulatory system containing the response regulator 

FlgR and the sensor kinase FlgS. The flaA and flaB are independently expressed where the σ28 

and σ54 promoter activity depends on the chemotactic and environmental stimuli (Hermans et 

al., 2011).  

Previous mutation studies have suggested that the presence of flaA is more essential for the 

colonization of chickens than flaB (Bolton, 2015; Wassenaar et al., 1993). The importance of 

motility in virulence has been confirmed, as non-flagellated mutants displayed colonization 

impairment in vitro (Dasti et al., 2010; Guerry et al., 1992; Yao et al., 1994). Other studies 

have shown that a mutation in the maf5 gene (motility accessory factor 5) in C. jejuni hindered 

colonization (Karlyshev et al., 2002; Jones et al., 2004; Hermans et al., 2011). In addition, 

flagellin O-linked glycosylation was demonstrated to be vital for flagella assembly, motility, 

and chick colonization through mutational studies of the genes cj1321-1325/6 (Bolton, 2015; 

Champion et al., 2005). This finding was further confirmed in a study conducted by Howard 

et al. (2009), in which one gene in particular, cj1324, was found to be vital for chick 

colonization.  
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Figure 3. The major proteins associated with the hook-basal body of C. jejuni 

flagella (Bolton, 2015).  

Chemotaxis is a process in which bacteria sense favourable chemical environments and move 

accordingly in an attempt to survive an unfavourable environment and induce colonization of 

intestinal mucosa (Hermans et al., 2011; Hamer et al., 2010). Glycoproteins and mucins 

(components of the mucus) have been identified as primary chemoattractants. Other 

chemoattracts include metabolic substrates and some organic acids (Marchant et al., 2002 

Bolton, 2015). From an analysis of the C. jejuni genome, Hendrixson and DiRita (2004) 

identified the following chemotaxis proteins: CheA; CheB; CheR; CheW; CheY; CheV; and 

methyl-accepting chemotaxis proteins (MCP). The MCP, which linked to CheA via CheW or 

CheV, senses any fluctuations in the concentration of the chemoattractant.  CheW and CheV 

are both adapter proteins, which are required for chemotaxis. Upon activation of the monomer 

CheA, a phosphoryl group is transferred to either CheY or CheB, which then binds to FliM in 

the flagellar motor, promoting directional changes of the bacteria by changing the motor 
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rotation movement from anti-clockwise to clockwise (Hamer et al., 2010). This change causes 

the bacteria to shift from a smooth to a tumbling motion (Hamer et al., 2010). From an analysis 

of the C. jejuni genome sequence, Marchant et al. (2002) identified 10 MCPs (labelled as 

transducer-like proteins). Vegge et al. (2009) demonstrated that mutation in the tlp1, tlp4, and 

tlp10 genes exhibited reduced levels of chick colonization in C. jejuni, further establishing the 

significance of chemotaxis in virulence. In another work by Hermans et al. (2011), a mutation 

in the luxS gene, which produces autoinducer-2 (AI-2) molecules, exhibited reduced levels of 

chemotaxis and thereby reduced levels of chick colonization.  

1.4.2 Adhesion 

The severity of infection depends on the adhesion of C. jejuni to the intestinal epithelial cells. 

Several adhesins present on the surface of Campylobacter, such as the fibronectin-binding 

outer-membrane protein CadF, the autotransporter CapA, the periplasmic-binding protein 

PEB1, and the surface-exposed lipoprotein JlpA, usually facilitate this adhesion (Dasti et al., 

2010). Konkel et al. (1997) found the CadF protein binds to fibronectin, a glycoprotein located 

in the extracellular matrix of the gastrointestinal tract that plays a chief role in internalization 

of the bacteria. Ziprin et al. (1999) deduced that a cadF knockout mutant failed to colonize the 

cecum of chicks due to its lack of adhesive ability, indicating the significance of cadF adhesion 

for successful chick colonization. Through mutational studies, Jin et al. (2001) suggested the 

jlpA that encodes a 42 kDa lipoprotein plays a role in mediating the adhesion of C. jejuni with 

their host cells. Furthermore, Ashgar et al. (2007) identified CapA as an auto-transporter 

protein, which is involved in the adhesion of C. jejuni to human epithelial cells in vitro and 

colonization of chick intestines in vivo. An insertional mutation in the capA gene displayed a 

reduction in colonization of the chicks and a reduced adhesion to Caco-2 cells (Ashgar et al., 

2007). Similarly, Pei and Blaser (1993) identified PEB1 as well-conserved in most C. jejuni 

and C. coli, finding it plays a vital role in the adhesion of Campylobacter to HeLa cells and 
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thereby heavily influences the virulence of the strain and the colonization of the host. 

1.4.3 Invasion 

The invasion ability of Campylobacter varies from strain to strain, which makes the elucidation 

of factors responsible for this mechanism difficult. Until now, researchers have reported 

microtubule-dependent and actin-filament-dependent invasion mechanisms in Campylobacter 

(Hermans et al., 2011; Dasti et al., 2010). The flagella also serve a secondary function as an 

export apparatus, aiding in the secretion of non-flagella proteins during C. jejuni invasion. 

Konkel et al. (2004) established that the flagella assist the transport of Campylobacter invasion 

antigens into the cell and thus play an important biological role in colonization. The full 

function of these Campylobacter invasion antigens remains unclear; however, a mutation in 

the ciaB gene resulted in a reduced invasion ability of epithelial cells, suggesting that this gene 

plays an important role in colonization. Other bacterial factors that are important in invasion 

are capsular polysaccharide (CPS), lipooligosachharide (LOS) and O- and N-linked glycan 

structures present in Campylobacter (Hermans et al., 2011). CPS surrounds the surface of C. 

jejuni, facilitating in the survival and colonization of the host (Hermans et al., 2011). A 

mutation in kpsM (CPS transporter gene) in C. jejuni 11168H led to a significant reduction in 

colonising ability of the strain (Jones et al., 2004). A study by Louwen et al. (2008), 

demonstrated that the sialyation of the outer core of LOS resulted in increased epithelial 

invasion by several C. jejuni strains. The pgl multi-gene locus encodes the N-linked 

glycosylation system that controls the posttranslational modification of several proteins 

including the flagellin. On the contrary, the O-linked glycosylation pathway is only responsible 

for the modification of flagellar subunits (Karlyshev et al., 2005b). Karlyshev et al. (2004) 

demonstrated that a mutation in the pglH gene has resulted in a reduction in the ability of two 

C. jejuni strains to invade the human epithelial cells.  
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1.4.4 Toxicity 

Cytolethal-distending toxin (CDT) is produced by Campylobacter and is a well-characterised 

toxin. This toxin was widely studied in many Gram-negative bacteria (Bolton, 2015). CDT 

leads to cell-cycle arrest and cytoplasmic distension and, in turn, chromatin fragmentation and 

eventually cell death (Lara-Tejero and Galan, 2000). Three genes encode the CDT: cdtA; cdtB; 

and cdtC. For CDT to be fully functional all three-gene products are required; Lara-Tejero and 

Galan (2001) demonstrated that there was no toxicity when each gene product was individually 

tested. The CDT tripartite holotoxin is composed of CdtA and CdtC, which are the 

heterodimeric subunits, and CdtB, which is the enzymatically active subunit (Lara-Tejero and 

Galan, 2001). This CDT is functionally and biologically similar to the mammalian DNase I 

enzyme (Elwell and Dreyfus, 2000). It has been deduced that in cdtB mutants with single amino 

acid substitution in residues responsible for catalysis and magnesium activity, the mutations 

did not cause cell-cycle arrest or distension in Campylobacter (Lara-Tejero and Galan, 2000). 

The CDT causes cell-cycle arrest during the G2/M phase by blocking the CDC2 kinase, 

necessary for mitosis (Pickett and Whitehouse, 1999). Following this, cell division ceases, but 

the cytoplasm grows to five times its original size, which eventually results in cell death (Lara-

Tejero and Galan, 2000). Purdy et al. (2000) investigated C. jejuni NCTC 11168 cdtB and 

81176 cdtB mutants, observing no cytotoxicity in 11168 and very low levels of toxicity 

unrelated to CDT action in 81176. These findings suggest that CDT is still the principle toxin 

produced by Campylobacter strains, although some strains may produce more than one toxin. 

Other putative toxins, such as enterotoxins and hepatotoxins, have been experimentally 

identified in Campylobacter, but only CDT has been studied in detail and confirmed from 

genome sequences (Purdy et al., 2000; Janssen et al., 2008).  

1.5 Pathogenesis and clinical manifestations of Campylobacter 

To establish an infection, Campylobacter must counteract the immune response of the host 



12  

cells. In humans, upon oral exposure to Campylobacter, the virulence characteristics enable 

the bacteria to pass through the mucus layer, which is the first line of defence, and reach the 

underlying epithelial cells, where an infection is generally established (Young et al., 2007). 

Upon bacterial invasion of the human epithelial cells and release of toxins, the innate immune 

response of the individual is activated followed by the adaptive immune response. Invading 

bacteria are usually detected by Toll-like receptors; this stimulation induces the production of 

an early cytokine (IL-8). This response further activates the employment of macrophages, 

neutrophils, and dendritic cells to fight off the invading Campylobacter. These interactions 

collectively trigger a massive pro-inflammatory response followed by the production of 

cytokines, thus resulting in inflammation of the epithelial cells and infections in humans 

(Young et al., 2007; Schnee and Petri, 2017). Symptoms associated with campylobacteriosis 

can generally be classified as mild but can lead to severe complications in occasional cases. The 

general clinical symptoms include watery or bloody diarrhoea, abdominal cramps, headache, 

and nausea (Janssen et al., 2008). These symptoms usually persist for no more than a week. 

The infections are typically self-limiting and produce mainly gastro-enteric symptoms, but in 

rare cases can lead to post-infectious complications such as Guillain-Barré syndrome (GBS) 

and Miller-Fisher syndrome (MFS) (Allos, 2001). MFS is a subvariant and a milder form of 

GBS, but both are neuromuscular disorders, which can cause weaknesses and respiratory 

insufficiencies leading to paralysis (Rees et al., 1995). In addition, an estimated 25–40% of 

patients diagnosed with GBS worldwide report suffering from campylobacteriosis a few weeks 

prior to the diagnosis (Nyati and Nyati, 2013). However, post-infection complications are 

uncommon; only 0.1% of the C. jejuni infections lead to extraintestinal complications (Mori et 

al., 2014). 

Researchers have demonstrated two different dosages of C. jejuni cells (500 CFU and 800 

CFU) have caused infections in studies of humans (Robinson, 1981; Black et al., 1993). In 
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chickens they are present in very large numbers up to 108 as commensal bacteria, until it was 

shown to cause symptoms in chickens in a recent study by Humphrey et al. (2014). The 

difference in body temperature in the two hosts (chickens 41–45°C, humans 37°C) may 

account for most of the variation in infection mechanism between humans and chickens 

(Young et al., 2007). A study by Bras et al. (1999) illustrated a change in the differential 

transcriptional profile as well as the membrane structure upon the increase of temperature from 

37°C to 42°C due to the upregulation of genes involved in transport, binding proteins, and cell 

wall components. C. jejuni is known to induce an innate immune response by the production 

of cytokines in both humans and chickens, and thus possesses the capability to induce a pro-

inflammatory response in both hosts (Smith et al., 2008). In addition, while studies have 

demonstrated the production of pro-inflammatory cytokines such as IL-1β, IL-6 and the 

inflammatory chemokines CXCLi1 and CXLi2 in chicken cells, they have failed to establish 

subsequent infections (Smith et al., 2008; Kaiser et al., 2005). However, in a recent study by 

Humphrey et al. (2014), the authors observed an innate response leading to intestinal 

inflammation and diarrhoea in chickens. C. jejuni were detected by Toll-like receptors in the 

chicken’s gut. These receptors activated an innate response that employed heterophils to fight 

off the invading C. jejuni, resulting in a pro-inflammatory response then leading to infection 

(Humphrey et al., 2014).  

1.6 Factors affecting coccoid form formation 

Campylobacter species undergo a change in morphology and transform into coccoid form (CF) 

when exposed to stressful environmental conditions (Koike, 1982). The helical shape is 

generally observed during the exponential growth phase, while the CF is noted during the 

stationary growth phase of these bacteria. Temperature stress, oxidative stress, pH stress, and 

nutrient limitations all contribute to this morphological transition (Harvey and Leach, 1998). 

In addition, a few studies have suggested that the coccoid form formation (CFF) involves 
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partial degradation of the peptidoglycan (PG) of the cells (Moran and Upton, 1986; Amano and 

Shibata, 1992). 

Campylobacter species grow optimally at temperatures between 37°C and 42°C under 

microaerobic conditions (5% O2, 10% CO2, and 85% N2). Experiments have revealed 

significant retardation in the growth of cells at temperatures below 30°C (Doyle and Roman, 

1981; Hazeleger et al., 1998; Tangwatcharin et al., 2006). Hudock et al. (2005) compared CFF 

rates of two C. jejuni strains at 37°C, 25°C, and 4°C, respectively. The authors demonstrated 

that the most of the cells transformed into CF within 96 h at temperatures of 25°C and 37°C, 

while only 7.1% of cells became coccoidal after 14 days’ incubation at 4°C. 

Campylobacter species are typically microaerophilic microorganisms and exposure to oxygen 

levels and reactive oxygen species (ROS) such as superoxides and hydrogen peroxides 

increases the rate of CFF. A study by Lee et al. (2005) demonstrated the morphological 

transition of two C. jejuni strains into CFF when exposed to aerobic conditions for 48 h. Harvey 

and Leech (1998) deduced similar results in their research. In general, bacteria should be able 

to neutralize these ROS species with the help of enzymes, which aid in inactivation of these 

toxic compounds (Bronowski et al., 2014; Harvey and Leach, 1998). On another note, C. jejuni 

have the capability to grow under aerobic conditions due to the inclusion of an oxygen 

scavenger such as blood to the growth media. These compounds counteract the effects of 

oxygen toxic products (Hazeleger et al., 1998; Humphrey, 1990). 

C. jejuni cultures grow optimally between pH 6.5 and 7.5, although growth is observed even 

at pH 5.5 and pH 8.0 (Doyle and Roman, 1981). Campylobacter species are exposed to 

different pH ranging from pH 2 to pH 6 during colonization of a human host, when exposed to 

inorganic acids in the stomach to organic acids in the small intestine (Rao et al., 2004; Birk et 

al., 2012). Campylobacter species are more sensitive to acidic stress when compared to other 
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Gram-negative bacteria, perhaps due to the absence of acid resistance systems and global stress 

regulators otherwise found in other bacteria (Birk et al., 2012). 

Campylobacter cells enter a stationary or starvation state when the availability of nutrients 

becomes limited. As the cells transition from the exponential growth stage to the stationary 

stage, morphological transition into CF where the cells exist as viable but non-culturable 

(VBNC) forms, occurs (Ng et al., 1985). The cells in the VBNC forms have slower rates of 

growth with low metabolic activity and possess the ability to produce degradative enzymes 

(Klancnik et al., 2006; Klancnik et al., 2009). 

The bacterial cell wall, which maintains the integrity and shape of the cell, serves as the cell’s 

most important structural part. It compromises a macromolecular structure generally known as 

PG or murein (Schleifer and Kandler, 1972). PG is a heteropolymer consisting of glycan 

strands and short peptide molecules cross-linked within the structure (Ikeda and Karlyshev, 

2012). Ng et al. (1985) studied the spiral form and CF of C. jejuni under an electron microscope 

and discovered that cells within the same colony possessed different shapes. They observed a 

new ring-like or doughnut shape, presumed to be the intermediate stage before CF. In addition, 

cells in the centre appeared to transition into CF when compared to the cells on the periphery. 

The authors concluded that the lower level of nutrients available in the centre could be 

responsible for this observed difference. Overall, the cell wall gradually degenerates during the 

transition process, thus implying PG degradation. In the study by Amano and Shibata (1992), 

the authors reported isolation of more PG from active spiral forms than in CF. In summary, 

evidence from previous studies suggests that the cell wall gradually degrades during the 

transition process, thus potentially indicating the role of PG in CF. 

In the closely related bacterium Helicobacter pylori, amiA was identified as the first genetic 

determinant responsible for the morphological transition. amiA encodes a putative PG 



16  

hydrolase (Chaput et al., 2006). Costa et al. (1999) revealed that a considerable change in the 

muropeptide composition occurred during the morphological transition process in H. pylori. 

Chaput et al. (2006) demonstrated an accumulation of N-acetyl-D- glucosaminyl (1,4)-N-

acetylmuramoyl-L-Ala–D-Glu, also known as GM-dipeptide, during the transition, which led 

to the formation of a looser macromolecule due to the lack of PG transpeptidation. Chaput et 

al. (2006) proposed that amiA mutant weakened GM-dipeptide motif accumulation; thereby 

hindering the formation of CF. The authors concluded that morphological transition from 

bacillary to CF resulted from a partial degradation of PG, which is regulated by amiA. Due to 

the genetic and biochemical similarities between H. pylori and Campylobacter, an attempt to 

inactivate this gene in Campylobacter was carried out in a previous study (Ikeda, 2014). The 

attempt was rendered unsuccessful due to the presence of just one copy of an amiA-like gene 

in C. jejuni in contrast to H. pylori, indicating its role as an essential gene. For this purpose, a 

gene expression system in Campylobacter is necessary, which would permit the construction 

of conditionally lethal mutants. The PBAD promoter of the arabinose operon, which has also 

been recognized as an efficient system in the study of essential genes, provides tight regulation 

of a cloned gene (Guzman et al., 1999). In this study, the utilization of the PBAD promoter will 

be studied in Campylobacter for the first time. The results of the study will benefit researchers 

who are interested in developing novel molecular biology tools and antimicrobial agents to 

fight resistant bacteria.  

1.7 Viable but non-culturable state of Campylobacter 

The VBNC state of C. jejuni cells was first discovered by Rollins and Cowell (1986). VBNC 

cells retain metabolic activity but cannot be cultured on laboratory media (Rollins and Colwell, 

1986). The cells undergo major metabolic changes such as reduction in ATP synthesis, 

nutrients transport, and macromolecular synthesis (Oliver, 2005). Studies examining the 

resuscitation of the VBNC cells into culturable and thus infectious forms sometimes contradict 
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each other. A few studies have demonstrated colonization in mice and chicks by C. jejuni 

VBNC cells (Jones et al., 1991; Cappelier et al., 1999; Stern et al., 1994; Pearson et al., 1993), 

whereas the authors of other studies have failed to report similar findings (Beumer et al., 1992; 

Medema et al., 1992). 

The variation in results could occur due to difference in the strains, varying environmental 

conditions used to induce VBNC cells, and methods used to analyse non-culturability. In 

addition, researchers have demonstrated that the C. jejuni VBNC cells can be resuscitated into 

culturable forms with acid treatment (Cappelier et al., 2000; Chaveerach et al., 2003). Wolf 

and Oliver (1992) demonstrated that V. vulnificus could be resuscitated into culturable forms 

in vitro, in vivo, and in situ, by simply by increasing the temperature. Similarly, another study 

indicated that VBNC V. vulnificus cells administered to mice led to their death (Oliver, 2005). 

In addition, Enterococcus faecalis VBNC cells displayed the ability to adhere to the cultured 

heart and epithelial cells of the urinary tract (Pruzzo et al., 2002).  

1.8 Inducible gene expression systems 

In molecular biology, a regulated system is required for the investigation of essential genes, as 

it permits the study of conditionally lethal mutants. In addition, such systems also provide 

flexibility in the rapid turn off and on of the cloned gene (Huang et al., 2011). Uncontrollable 

expression of genes can sometimes become toxic, leading to undesirable effects such as cell 

death and growth inhibition (Sukchawalit et al., 1999). Regulated expression can also address 

issues such as inclusion body formation and outgrowth of segregants that may otherwise occur 

with uncontrollable expression (Baig et al., 2014; Baneyx and Mujacic, 2004; Beisel and 

Afroz, 2016; Hartley and Kane, 1991; Marschall et al., 2016). An efficient regulatable 

expression system should comprise a non-toxic, cheap, and exogenous inducer and offer a wide 

range of gene regulation with little to no basal expression (Zhang et al., 2015; Zhang et al., 
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2012). 

Several studies exist examining different regulatable expression systems consisting of the 

following promoters: PLAC (Yanisch-Perron et al., 1985); PTAC (Deboer et al., 1983); PL and PR 

(Elvin et al., 1990); and PTRC (Brosius et al., 1985). The most widely known and extensively 

used inducible gene expression systems are the lactose-inducible lac system, studied by Novick 

and Weiner (1957), and the arabinose-inducible ara system developed by Guzman et al. (1995). 

Both systems display the ‘all or nothing’ or ‘autocatalytic’ induction phenomenon at 

subsaturating levels of inducer concentrations (Fritz et al., 2014).  

The arabinose-inducible system is widely used in Escherichia coli and many other bacteria 

(Newman and Fuqua, 1999; Zhang et al., 2012). The ara system is favoured over the lac system, 

because repression is often incomplete in the latter due to leaky promoters and the absence of 

secondary operators to maintain a full range of regulation. Conversely, the ara system 

efficiently provides a switch-like mechanism where a cloned gene can be efficiently turned on 

or off simply by changing the sugars in the medium (Siegele and Hu, 1997). The ara system 

provides tight regulation of the cloned gene under study, with a very low level of background 

expression in the absence of an inducer and high levels of expression in the presence of an 

inducer (Guzman et al., 1995). 

The ara system comprises the AraC protein, araBAD catabolic genes (Englesberg et al., 1969), 

araJ, initiator and operator sites. The function of araJ remains unknown (Reeder and Schleif, 

1991). The araBAD genes encode proteins that convert arabinose into D-xylose-5-phosphate, 

which is the final product that enters the pentose phosphate pathway (Schleif, 2010). The AraC 

protein acts as a positive and negative regulator, which represses its own synthesis and 

positively regulates the expression of the downstream genes in the presence of arabinose 

(Khlebnikov et al., 2000). The ara operon undergoes carbon catabolic repression (CCR), and 
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this process largely depends on the type of sugar present in the medium. In the presence of 

glucose, reduced levels of expression are obtained as glucose lowers the cyclic AMP in the 

medium, which is required for RNA polymerase binding (Guzman et al., 1995; Ogden et al., 

1980). 

In the ara operon, arabinose is the true inducer, which does not require the activation of other 

enzymes in the catabolic pathway for induction to take place, unlike the lac operon (Englesberg 

et al., 1969; Schleif, 2010). When the concentration of arabinose reaches above a certain 

threshold, arabinose-AraC complex binds to the initiator half sites (araI1 and araI2), followed 

by the binding of the CRP-cAMP complex to its binding site adjacent to the initiator site. This 

binding allows RNA polymerase to bind to the promoter site and initiate transcription of the 

transporter and the catabolism genes (Figure 4b) (Megerle et al., 2008). Under normal 

conditions, arabinose is transported into the cells by arabinose permeases, which are encoded 

by the high-affinity transporter araFGH and the low-affinity transporter araE (Khlebnikov et 

al., 2001; Megerle et al., 2008). AraE is located on the inner membrane and transports 

arabinose into the cells by diffusion, and araFGH codes for a high-affinity ABC transporter 

(Lee et al., 1981; Schleif, 2010). Daruwalla et al. (1981) suggested that AraE is the more 

prevalent transporter, as the growth rates and arabinose carbon cell yields obtained were lower 

in AraE- than AraF- strains. On the other hand, in the absence of arabinose, the AraC protein 

tends to bind to the initiator half site (araI1) and also the operator site (araO2) upstream of 

the PBAD promoter region, leading to the formation of a DNA loop, preventing the binding of 

RNA polymerase and resulting in the repression of the ara genes (Figure 4a) (Newman and 

Fuqua, 1999; Schleif, 2010).  
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Figure 4. Positive and negative regulation of the ara operon in E. coli (Schleif, 

2010). 

(a) Negative regulation. In the absence of arabinose, it is not energetically 

favourable for AraC to bind to the initiator half sites araI1 and araI2. Therefore, 

each arm of the dimeric AraC binds to the non-adjacent half-sites araI1 and araO2, 

resulting in the formation of a DNA loop. The DNA loop provides steric hindrance 

for the binding of RNA polymerase, thereby suppressing transcription from the 

PBAD promoter. 

(b) Positive regulation. In the presence of arabinose, AraC undergoes 

conformational change and arabinose binds to the dimerization domain of the 

protein. AraC-arabinose complex binds to the initiator half-sites (araI1 and araI2), 

as it is the energetically favourable state; subsequently, the CRP-cAMP complex 

binds to its site, resulting in linear DNA in which RNA polymerase binds to the 

promoter site, thereby driving transcription from the PBAD promoter site (Schleif, 

2010). 

1.9 Autocatalytic gene expression system 

Autocatalytic gene expression occurs when the gene encoding the inducer transporter is 

controlled by the concentration of the inducer molecules present inside the cell itself. This 

phenomenon in the ara operon was established and confirmed by Siegele and Hu (1997), who 

studied population distributions at subsaturating levels of the inducer. Autocatalytic gene 

(a) 

(b) 
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expression was also observed in a few other noted works, where the authors deduced that at 

subsaturating concentrations of the inducer, the cells displayed heterogeneous expression 

where some cells were fully induced, while the remainder were uninduced or had little 

induction. During this time, the rate of induction was also reported to be directly proportional 

to the amount of inducer molecules present inside the cells (Khlebnikov et al., 2000; Megerle 

et al., 2008). Additionally, further induction occurs when the cells with sufficient inducer 

molecules are induced at the time of induction, which in turn activates the production of more 

inducer molecules, allowing for increased arabinose transportation (Morgan-Kiss et al., 2002). 

Studies have revealed that the all-or-nothing response could also occur due to the depletion of 

arabinose, as a result of the metabolism of the already induced cells (Megerle et al., 2008). 

Several studies that describe the utilization of the arabinose-inducible system in other bacteria 

have been conducted, but an investigation of the system in Campylobacter does not exist, 

mainly due to the lack of arabinose transportation in these bacteria. The genes that encode 

arabinose transporters are not present within the C. jejuni genome. Unlike E. coli, the preferable 

source of energy is not glucose and other carbohydrates; instead, C. jejuni utilizes amino acids 

and other small organic acids as a source of carbon and energy (Line et al., 2010; Parkhill et al., 

2000; Weingarten et al., 2009). As mentioned above, arabinose in E. coli is transported via 

arabinose permeases via an autocatalytic induction process. Khlebnikov et al. (2000) were the 

first to provide a breakthrough study that could overcome the issues associated with the 

autocatalytic process in the ara operon. In their study, the araE gene was placed under the 

control of a different promoter independent of the arabinose concentration in the medium. The 

system was coupled and validated using a reporter gene (gfp) placed under the control of a PBAD 

promoter (arabinose-dependent), while the expression of the transporter gene was independent 

of the expression of the reporter gene in E. coli (Khlebnikov et al., 2000; Khlebnikov et al., 

2001). In another study, Morgan-Kiss et al. (2002) demonstrated the utilization of another 
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transporter for arabinose uptake in E. coli. They concluded that arabinose was transported into 

E. coli with the help of a modified lacY gene and the authors reported homogenous expression 

of the reporter gfp gene (Morgan-Kiss et al., 2002). 

1.10 Bacterial biofilms 

Bacteria exist in the natural environment as multicellular communities known as biofilms; over 

99% of bacteria can form biofilms (Houry et al., 2010; Liaqat et al., 2018). Bacterial biofilm 

formation takes place either as a defense mechanism or when the bacteria sense a favourable 

habitat (Jefferson, 2004). Biofilms are classified as mono-species or multi-species consortia of 

bacterial cells that attach to one another in a self-produced polymeric matrix and adhere to inert 

or living surfaces (Li et al., 2017). Multi-species biofilms often tend to possess larger amounts 

of extracellular polymeric substances than mono-species biofilms (Feng et al., 2016). Biofilm 

formation depends on several factors, such as nutrient availability, pH, temperature, oxygen 

availability, osmotic pressure, surface topography, the presence of organic and inorganic 

compounds, and the presence of antimicrobials (Rossi et al., 2017). Biofilms can usually form 

on different types of surfaces, such as glass (Brown et al., 2015a; Brown et al., 2015b; Dykes 

et al., 2003), stainless steel (Gunther et al., 2009; Hanning et al., 2008; Sanders et al., 2007), 

plastics (Lim and Kim, 2017; Reeser et al., 2007), and nitrocellulose membranes (Kalmokoff 

et al., 2006). Biofilms that form on food contact surfaces in food-processing environments are 

regarded as a significant risk factor (Li et al., 2017). Biofilms can result in economic loss in the 

food industries due to food spoilage, bio-corrosion on equipment used in food production, and 

loss of operating time (Rossi et al., 2017). In addition, biofilm formation on the surfaces of 

heat exchangers leads to biofouling, which can cost many industries, such as paper, oil and gas, 

and polymer production, financially (Liaqaut et al., 2018). Infections due to biofilms that form 

on medical equipment such as catheters, cardiac pacemakers, contact lenses, dentures, and 

prosthetic heart valves are responsible for over 50% of nosocomial infections (Roy et al., 
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2018).  

The chief component of biofilms is the extracellular polymeric matrix (EPM), which ensures 

cohesion between the cells, maintains the shape of the overall biofilm structure, and protects 

the cells from external factors (Brown et al., 2014; Steichen et al., 2011). The EPM mainly 

comprises polysaccharides, nucleic acids, lipids, and proteins (Brown et al., 2014; Brown et 

al., 2015b; Feng et al., 2016). Bacteria existing in biofilms exhibit improved survival ability; 

protection against phagocytosis (host defence system); and resistance to antimicrobial 

treatment, metal toxicity, acids, fluid shear (blood flow and action of saliva), and cleaning 

procedures (Costerton et al., 1999; Kim et al., 2015; Teh et al., 2014). In addition, gene transfer 

between different species in a biofilm can occur, increasing the risk of more virulent strains 

(Satpathy et al., 2016; Lewis, 2001). Cells in a biofilm matrix are more than 1000 times more 

resistant to antimicrobials and disinfectants (Fux et al., 2005; Reuter et al., 2010). 

1.11 Formation of bacterial biofilms 

Biofilm formation involves four steps: initiation; proliferation; maturation; and dispersion 

(Figure 5) (Li et al., 2017; Sulaeman et al., 2010). 
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Figure 5. Schematic illustration of biofilm development (Guilhen et al., 2017).  

The figure depicts the stages involved in biofilm formation; initial attachment of 

planktonic cells to the surface, formation of sessile cells, followed by the formation 

of a mature biofilm structure, and then finally dispersion of the cells from the 

biofilm matrix. 

1.11.1 Initiation step 

1.11.1.1 Surface sensing and the role of flagella 

Bacteria move via passive transport (assisted by flow of media), diffusive transport (assisted 

by Brownian motion), or active transport (assisted by flagella) (Lejeune, 2003). Surface 

sensing is an important mechanism responsible for motility. Motility allows the bacteria to 

reach their target surface or organ with the aid of surface appendages such as flagella. Surface 

sensing by bacteria is mediated by chemotaxis (Cheng et al., 2019); organic substrates such as 

blood, urine, and saliva, which usually constitute the conditioning film layering the substratum 

surface, act as chemoattractants (Bos et al., 1999; Garrett et al., 2008). Flagella-mediated 

motility via the chemotaxis pathway is dependent on the varying gradients of 

chemoattractants/chemorepellants, and determines the direction of the flagella rotation 

(Suchanek, 2017). The cells swim in a clockwise (forward) or anti-clockwise motion (tumbles) 

towards a surface in response to these stimuli. The movement of motile cells in response to 

chemotaxis can result in the establishment of a new biofilm on a surface or provide planktonic 
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cells to an already established biofilm (Suchanek, 2017). Flagella are several times the length 

of the cell and can enter the gaps and crevices in difficult surfaces (Haiko and Westerlund-

Wikström, 2013; Houry et al., 2010). In addition to motility, flagella aid in overcoming the 

repulsive forces between the surface and the bacteria in preparation for adhesion (Garrett et al., 

2008; Liaquat et al., 2018).  

1.11.1.2 Initial attachment 

The initiation step is the first stage of biofilm formation and is expected to occur within the 

first few hours (Sulaeman et al., 2010). The initial attachment of the bacterial cells to the 

surface is a reversible step, which is generally facilitated by the pili or flagella of the bacteria 

(Armbruster et al., 2018; Pratt and Kolter, 1998). In motile strains, the flagellum consists of 

thousands of subunits (flagellins) arranged in a filament with a flagella cap protein at the end 

(Freitag et al., 2016). This cap adheres to the surface and helps in overcoming the electrostatic 

barrier (Tuson and Weibel, 2013). Furthermore, during the initial attachment stage, the 

attraction between the surface and the adhering bacteria increases further when the surface-

attached flagella collapses, thereby ensuring a larger contact area is available for adhesion 

(Carniello et al., 2018; McClaine and Ford, 2002). This initial attachment is mainly governed 

by weak Van der Waals forces, hydrophobic interactions, and electrostatic forces, so the cells 

can be easily removed by cleaning procedures during this stage (Kumar et al., 2017; Rossi et 

al., 2017). Conversely, non-motile bacteria also possess the ability to form biofilms at low- and 

medium-fluid velocities. At high-fluid velocities, the cells do not attach as they are transported 

with the flow (Tuson and Weibel, 2013). In non-motile strains, other surface structures, such 

as CPS and type IV pili, aid in the initial attachment process of biofilm formation (Brooks and 

Mias, 2018). During the subsequent irreversible stage, the attachment is strengthened due to 

the production of exopolymers, adhesins, and extracellular DNA by the adhered cells. During 

this stage, stronger bonds exist, such as hydrogen, covalent, and dipole-dipole interactions 
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(Rossi et al., 2017).  

1.11.2 Proliferation step 

The proliferation stage involves the formation of microcolonies following stable attachment of 

the cells to the surface. During this stage, quorum sensing (QS) is activated and communication 

between cells in the bacterial community occurs through chemical signalling, which in turn 

promotes the formation of sessile cells (Rossi et al., 2017). 

1.11.3 Maturation step 

During the maturation stage, the microbial cells are encased in a more structured matrix with 

greater cell density, and the cells communicate through cell-to-cell signalling (Jamal et al., 

2018; Srey et al., 2013). QS between the colonies of the bacterial biofilm induces the 

expression of genes that favour the production of extracellular polymeric substances. In a study 

describing DNA microarray analysis of mature Pseudomonas biofilms, nearly 70 genes with 

varying functions showed differential expression during this stage (Whiteley et al., 2001). The 

communication between the microbial cells is crucial, as it triggers the exchange of substrates, 

transportation of metabolic products, and excretion of metabolic end products (Srey et al., 

2013; Rossi et al., 2017). The EPM consists of open water channels, which aid in the circulation 

of nutrients to the sessile cells and the removal of waste products. 

1.11.4 Dispersal step 

The dispersal step is an important phase of the biofilm process, as it involves the release of 

cells from the original site of infection into the environment or host (Guilhen et al., 2017). 

Dispersion can occur as a result of cell death, increased shear forces, enzymatic production, 

nutrient availability, predator grazing, or other stress-inducing factors (Kaplan and Fine, 2002; 

Kostakioti et al., 2013; Sauer et al., 2004). In comparison to their sessile counterparts, the 

dispersed cells that exit the biofilm matrix either die or possess increased metabolism (Pettigrew 
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et al., 2014). These cells also possess greater colonising traits, such as increased ability to 

invade epithelial cells (Marks et al., 2013) and to escape phagocytosis (Chua et al., 2014; 

Guilhen et al., 2017). Previous studies have deduced that dispersed cells have a different 

transcriptome and virulence profiles than sessile or planktonic cells. Guilhen et al. (2016) 

demonstrated that dispersed cells of Klebsiella pneumonia overexpressed genes (such as truB, 

yebE, pspB, pspA, cusA, envR, and ytbD) involved in translation, implying that these cells were 

more metabolically active than the cells within the biofilm. Similarly, subsequent studies have 

observed an overexpression of genes involved in virulence. Marks et al. (2013) demonstrated 

that dispersed cells of Streptococcus pneumonia possessed a greater capacity to invade 

epithelial cells as a result of overexpression of virulence genes than did either planktonic or 

sessile cells. In another study, the authors established that dispersed Pneumococcal cells caused 

bacteremia in murine models, whereas sessile and planktonic cells failed, demonstrating the 

virulence and pathogenicity of the dispersed cells (Pettigrew et al., 2014). 

1.12 C. jejuni biofilms 

Biofilm-related infections contribute to more than 75% of microbial diseases in humans 

(Guilhen et al., 2017). C. jejuni biofilms are generally found in food-processing plants and 

equipment (mainly poultry processing), water supply, and plumbing systems at animal 

husbandry facilities (Teh et al., 2014; Feng et al., 2016; Hermans et al., 2011; Siringan et al., 

2011; Trachoo et al., 2002). A recent study by Balogu et al. (2014) discovered that the frequent 

human–carcass interactions during packaging and relatively poor sanitary conditions in the 

chicken-processing industries often promote biofilm formation and the subsequent persistence 

of these bacteria. This study also found C. jejuni appeared most frequently in the packaging 

line and dressing table in poultry facilities. The continual presence of organic substances such 

as proteins, which increase the chances of C. jejuni survival and attachment to food contact 

surfaces due to increased nutrient availability, poses a major problem in the chicken-processing 
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industries (Rossi et al., 2017; Melo et al., 2017). In addition, researchers have confirmed the 

persistence of C. jejuni in environmental water, such as ground, river, and drinking water (Ica 

et al., 2012; Culotti and Packman, 2015). Contamination of environmental water could occur 

for several reasons: wastewater from poultry industries; defecation of farm animals; and the 

subsequent spread of these bacteria by flies and rodents (Bronowski et al., 2014). 

Campylobacter species are microaerophiles capable of surviving the harsh stress conditions 

often present in the environment (Bronnec et al., 2016; Sulaeman et al., 2010). Although how 

C. jejuni survives in these challenging environments is unknown, the formation of biofilms 

might serve as an adaption method to prolong survival (Bronnec et al., 2016; Sulaeman et al., 

2010; Teh et al., 2014). In addition, the ability of C. jejuni to form mono-species biofilms and 

co-exist with other bacterial biofilms may explain the prevalence of these bacteria in the 

environment as well as their ability to cause infections in humans (Teh et al., 2019; Bronnec 

et al., 2016).  

Ica et al. (2012) investigated the survival capability of C. jejuni in mono- and mixed-species 

biofilms and deduced that these bacteria possessed greater survival and biofilm-forming 

capabilities in multi-species biofilms in the presence of Pseudomonas aeruginosa than mono-

species biofilms. P. aeruginosa creates favourable conditions for the survival of C. jejuni, 

resulting in a comparatively robust biofilm. Through LIVE/DEAD staining, researchers have 

demonstrated that C. jejuni cells in multi-species biofilm maintain culturability for longer 

periods of time than the cells in the mono-species biofilm that transition into VBNC forms 

more quickly (Bronowski et al., 2014; Ica et al., 2012). Culotti and Packman (2015) reported 

similar conclusions, finding a reduction of dissolved oxygen from 9 mg/L to 0.6 mg/L by P. 

aeruginosa, which generated a more suitable environment for C. jejuni’s survival. P. 

aeruginosa are present everywhere in the environment and are regarded as excellent biofilm 
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formers. They have the ability to readily form mono-species biofilms on any carbon surface 

and are followed by the production of a strong EPM, which acts as a recruiter of other bacteria, 

eventually leading to a multi-species biofilm structure (Bronowski et al., 2014; Ica et al., 2012; 

Trachoo et al., 2002; Sanders et al., 2007). In addition, multi-species biofilms provide C. jejuni 

with greater availability of nutrients and secondary metabolites for longer survival. Other 

factors such as higher temperatures and longer contact times increase the degree of initial 

attachment and decrease the probability of detachment in Campylobacter biofilms (Nguyen et 

al., 2012; Nguyen et al., 2010).  

In Campylobacter, the initial adhesion process is mediated by flagella in conjunction with other 

adhesins (Svensson et al., 2014). Previous studies investigating the role of flagella in E. coli, 

Clostridium and P. aeruginosa have all demonstrated that flagella play a vital role in biofilm 

initiation by providing movement as well as acting as an attachment factor (Ren et al., 2018; 

Freitag et al., 2016). Similarly, some studies examining Campylobacter have revealed a similar 

function of the flagella with respect to surface interactions (Bridier et al., 2015). Over 50 

flagella-related genes with diverse functions are present in Campylobacter (Ren et al., 2018). 

Ren et al. (2018) investigated the effects of inactivating the flhF gene (encoding the flagellar 

biosynthesis regulator) on the colonizing properties of C. jejuni. The mutation revealed 

decreased colonizing ability due to reduced adhesive and invasive capabilities. A study by 

Freitag et al. (2016) investigated the flagella cap protein FliD for its adhesive capabilities. This 

study indicated that the protein acts as an adhesin and binds to host-cell glycosaminoglycans, 

confirming its importance in the initial attachment of the C. jejuni cells. Furthermore, Joshua 

et al. (2006) have demonstrated that maf5 (flagella) mutant exhibited reduced levels of 

attachment during the early stages of C. jejuni biofilm formation. Kim et al. (2015) 

demonstrated flgA is involved in the flagellar biosynthesis as well as biofilm formation in C. 

jejuni. In another study, Lim and Kim (2017) posited that the absence of the eptC gene (flagellar 
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biosynthesis) altered the initial adherence pattern of C. jejuni biofilms, suggesting that the gene 

plays a role in the biofilm initiation process. In addition, Reuter et al. (2010) demonstrated that 

the motile variant of C. jejuni NCTC 11168 formed 50% more effective biofilms than the non-

motile or the flaAB mutant strains under microaerobic conditions.  

C. jejuni can form three types of biofilm in a liquid culture: (1) flocs-cell aggregates suspended 

in the liquid; (2) cells attached to an inert surface; and (3) pellicles-cell aggregates formed at the 

air-liquid interface (Bronnec et al., 2016; Joshua et al., 2006). C. jejuni biofilms are extremely 

resistant to antimicrobial treatment and cleaning procedures. The C. jejuni cells in a biofilm 

are able to withstand oxygen and lower-temperature stress twice as well as their planktonic 

cells and also exist as VBNC forms (Magajna and Schraft, 2015).  

1.12.1 Importance of Quorum sensing  

QS is a mechanism adapted by many bacteria for cell communication through small, diffusible 

signalling molecules known as autoinducers (Vendeville et al., 2005). These molecules enable 

cell-density-dependent gene regulation (Gölz et al., 2012). Autoinducer molecules are utilized 

and recognized by both Gram-negative and Gram-positive bacteria for gene regulation 

involved in survival and pathogenesis. Autoinducer-1 (AI-1) molecules mediate intraspecies-

specific communication in Gram-negative bacteria, while small oligopeptides are responsible 

for these communications in Gram-positive bacteria. AI-2 molecules mediate intra- and 

interspecies communication in both Gram-negative and Gram-positive bacteria (Gölz et al., 

2012). The most typical AI-1 molecule in Gram-negative bacteria is acyl homoserine lactones 

(HSL) (Moorhead and Griffiths, 2011). These molecules are produced by the LuxI enzyme and 

can freely diffuse into the cytoplasm. As the cell density increases, the concentration of AI-1 

increases. After a certain threshold of intracellular concentration is achieved, the molecules 

bind to LuxR, thereby activating the LuxR/AI-1 cellular transcriptional-activator system for 
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the expression of other genes (Plummer, 2012; Gölz et al., 2012). Similar orthologues of 

luxI/luxR genes are identified in about 70 Gram-negative species, such as P. aeruoginosa, 

Salmonella, and Agrobacterium tumefaciens, although not H. pylori (Gölz et al., 2012). 

Genome sequence analysis of C. jejuni does not reveal any obvious homologues of genes 

encoding an AI-1 synthase (Parkhill et al., 2000). However, Moorhead and Griffiths (2011) 

have identified an N-(3-hydroxy-butanoyl)-L-HSL in cell-free extracts of C. jejuni 81-176 and 

cj11, labelling this HSL mimic as CjA. They reported that this HSL mimic increased IL-8 

production, inhibited biofilm formation, and regulated virulence gene expression.  

The production of AI-2 was first discovered in Vibrio harveyi using bioluminescence assays. 

In brief, the LuxS enzyme produces AI-2 molecules that in turn bind to the LuxP protein after 

reaching a certain threshold, activating the LuxQ inner-membrane protein. This event triggers 

the dephosphorylation of the response regulator LuxO, which in turn alters gene expression 

(Plummer, 2012; Gölz et al., 2012). In other bacteria, such as Salmonella and E. coli, AI-2 

molecules bind to LsrB, which belongs to the ABC transporter; the molecules are transported 

through the same system into the cell wall, where they undergo phosphorylation and regulate 

gene expression of other target genes through the LsrR transcriptional-repressor (Plummer, 

2012; Gölz et al., 2012). A simple illustration of gene expression via QS is shown in Figure 6. 
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Figure 6. Schematic representation of QS (Goulden et al., 2013).  

The concentration of autoinducer molecules is lesser at low cell densities for the 

activation of the receptor protein and induction of QS regulated gene expression. 

As the cell density increases (as shown from left to right), the number of 

autoinducer molecules increases, which then binds to receptors triggering an up-

regulation of genes involved in virulence, biofilm formation, and toxin production.  

Elvers and Park (2002) analysed the sequence of C. jejuni NCTC 11168, becoming the first to 

identify the protein Cj1198, which shares over 70% sequence identity with LuxS from V. 

harveyi, E. coli, and Haemophilus influenza. They demonstrated that C. jejuni produces AI-2, 

using bioluminescence assays conducted on cell-free extracts with V. harveyi as a positive 

control. In addition, the authors showed that the cj1198 mutant had lower motility than the 

wild-type strain, suggesting that QS is essential for motility. Furthermore, Quinones et al. 

(2009) demonstrated that AI-2 molecules were produced in Campylobacter during the late 

exponential phase, observing slow degradation during the early stationary phase. The uptake 

or sensing mechanism of AI-2 by Campylobacter is not fully understood yet, since comparative 

genomic studies have revealed the absence of Lsr homologs (Plummer, 2012).  

Furthermore, researchers have investigated the role of the luxS gene in adhesion and invasion. 

Quinones et al. (2009) demonstrated that the C. jejuni 81176/luxS mutant possessed less 
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adhesive and invasive ability than the wild-type strain. In the same study, the authors showed 

that the mutant displayed lower chemotactic response to organic acids and increased response 

in the presence of amino acids. In addition, the role of luxS and QS in cytotoxin production has 

also been investigated. Jeon et al. (2005) revealed that fewer cells were affected during the 

G2/M phase, and a 39% decrease in cdt gene expression with the mutant was observed. 

Similarly, QS also plays a major role in C. jejuni biofilms and is known to govern biofilm 

processes such as sessile cells formation, expression of virulent genes, and animal colonization 

(Plummer, 2012; Rossi et al., 2017; Lamas et al., 2018). The QS mechanism enables cell-to-

cell communication between species and regulates biofilm formation through the alteration of 

specific gene expression. These communications enable bacterial cells to produce thicker and 

stronger biofilms in the exponential stage (Plummer, 2012). A study by Reeser et al. (2007) 

revealed a reduction in biofilm formation of C. jejuni M129 as compared with the wild-type 

strain, due to a mutation in the luxS gene. The studies mentioned above provide sufficient 

evidence to suggest that QS via luxS in Campylobacter plays a vital role in C. jejuni virulence 

and survival mechanisms.  

1.12.2 Importance of extracellular DNA and the role of extracellular nucleases in 

biofilm 

eDNA serves as a nutrient source and aids in horizontal gene transfer between bacterial cells 

in a biofilm (Ibáñez de Aldecoa et al., 2017). It is secreted by live cells or enters the medium 

by lysed cells (Hamilton et al., 2005; Tetz et al., 2009; Wu and Xi, 2009). A mutation in gelE, 

gene encoding a secreted protease (responsible for autolysis) led to reduced accumulation of 

biofilms in E. faecalis due to the lack of eDNA release, which is a key component of the EPM 

(Thomas et al., 2008). In a similar study by Qin et al. (2007), a mutation in AtlE (an autolysin) 

inhibited biofilm formation in Staphylococcus epidermis due to the lack of eDNA accumulation 

required for biofilm formation. In Campylobacter biofilms, eDNA release occurs in a process 
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called autolysis (Svensson et al., 2014; Ibáñez de Aldecoa et al., 2017). In most bacterial 

biofilms, QS regulates eDNA synthesis and release (Ibáñez de Aldecoa et al., 2017). 

Furthermore, eDNA is considered as an integral component in C. jejuni biofilms, as it provides 

structural strength to the biofilm matrix (Brown et al., 2015b). It also plays a similar structural 

role in other bacteria, such as P. aeruginosa, E. coli, and Staphylococcus aureus (Chiang et al., 

2013; Mann et al., 2009; Zhao et al., 2013). The link between eDNA and the structure of the 

bacterial biofilms was first studied in P. aeruginosa by Whitchurch et al. (2002). The authors 

demonstrated complete disintegration of the biofilm consisting of eDNA in the presence of the 

DNase I enzyme, confirming the necessity of eDNA in maintaining the biofilm structure. 

Svensson et al. (2014) revealed that eDNA is vital for biofilm formation and maintenance in 

C. jejuni 81-176. Brown et al. (2015a) demonstrated that eDNA plays an important role during 

all stages of biofilm maturation in C. jejuni strains NCTC 11168 and 81116. In the same study, 

the authors also established that pre-treating surfaces with this enzyme prevented biofilm 

formation. DNases play a vital role in biofilm dispersion as they are responsible for breaking 

down eDNA. Dispersal of biofilms can be achieved by either exogenous addition of 

extracellular DNase (eDNases) to biofilms or the upregulation of the production of eDNases. 

Many bacteria produce eDNases, which in turn regulates the dispersal of biofilms (Jakubovics 

et al., 2013). A schematic illustration of the main components of the EPM matrix and the 

factors that regulate dispersion is shown in Figure 7. Extracellular nucleases are also 

responsible for the degradation of DNA from Neutrophil extracellular traps (NETs) 

(Binnenkade et al., 2018). Evidence of DNA degradation in NETs by extracellular nucleases 

has been observed with other bacteria such as Vibrio cholerae, Streptococcus, and S. aureus 

(Buchanan et al., 2006; Seper et al., 2013; Berends et al., 2010). 
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Figure 7. Schematic representation of biofilm dispersal (Guilhen et al., 2017).   

Biofilm process is mediated via QS with the aid of autoinducer molecules. Proteins, 

eDNA, and polysachharides shown above are constitutents of EPM. Dispersion is 

facilitated by nucleases which degrade eDNA and cause pertubation of the EPM. 

The cells that leave a biofilm matrix can either colonise new host/environment or 

dead (Reuter et al., 2010).  

Recent studies by Kierdowski et al. (2014) identified two thermonucleases (nuc1 and nuc2) 

present in S. aureus. These nucleases serve as biofilm regulators, and both were suggested to 

be identical and exhibiting similar ability to degrade eDNA, thereby causing a reduction in 

biofilm formation (Kiedrowski et al., 2011; Kiedrowski et al., 2014; Tang et al., 2008). In 

another study, Beenken et al. (2012) demonstrated that inactivation of one or both 

thermonucleases (nuc1 and nuc 2) in S. aureus caused an increase in biofilm formation in vitro.  

In another study, a secreted nuclease NucB was discovered in the supernatant of marine isolates 

of Bacillus licheniformis and was confirmed to disperse established mono- and multi-species 

biofilms (Nijland et al., 2010). Similarly, Steichen et al. (2011) demonstrated a similar Nuc 

nuclease in Neisseria gonorrhoeae, and also revealed an increase in biofilm formation in the 

absence of the nuc gene. A study conducted by Seper et al. (2011) revealed that two other 

nucleases in V. cholerae demonstrated similar enzymatic properties and effect on biofilms.  
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However, the addition of DNase to existing or new biofilms does not always cause eDNA 

degradation resulting in reduction of biofilm. A few studies have noted exceptions, such as in 

Burkholderia cenocepacia and H. pylori. Thicker biofilm formation was observed in 

B. cenocepacia biofilms upon treatment with DNase (Pulmoenzyme) (Novotny et al., 2013). 

In the closely related bacterium H. pylori, no significant difference in biofilm formation was 

noted when DNase I was added to new and existing biofilms (Grande et al., 2011).  

Similar studies of Campylobacter, however, are limited. The understanding of the molecular 

mechanism and the genes involved in the process of biofilm formation to dispersion is still in 

its infancy (Lim and Kim, 2017). Brown et al.’s study (2015b) remains the only work in this 

field emphasizing the identification of the genetic determinant of an extracellular nuclease and 

its role in biofilm formation in Campylobacter. The authors demonstrated that the mutation of 

the cje1441 gene encoding a DNase resulted in increased biofilm formation, thus confirming 

the role of this particular gene in the biofilm properties of C. jejuni RM1221. They also 

demonstrated that co-incubation of C. jejuni RM1221 with other biofilm-forming strains such 

as 11168 and 81116 resulted in dispersion of pre-formed biofilms. In another study, a dns 

(cje0256) gene was shown to inhibit natural competence in a subset of C. jejuni strains 

including RM1221 due to nuclease activity (Gaasbeek et al., 2009). In a subsequent study by 

Gaasbeek et al. (2010), the authors identified two more nucleases (Cje0566 and Cje1441) that 

inhibited natural transformation in another subset of C. jejuni strains that lacked the cje0256 

gene. 
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1.13 Aims and Objectives 

C. jejuni biofilms offer greater resistance to antimicrobial treatment and disinfection 

procedures. In addition to this, cells in a biofilm existing in VBNC forms have been 

demonstrated to maintain viability for up to several months, which poses a serious challenge 

to the healthcare. These VBNC cells are generally accompanied by a morphological transition 

into CF in C. jejuni. Therefore, deducing the genetic factor responsible for the morphological 

transition and understanding the molecular mechanism involved in biofilm dispersal of these 

bacteria, may aid in the development of new intervention strategies to reduce the rate of 

infections caused by Campylobacter. The recent increase in multidrug-resistant forms of these 

bacteria has led to decreased efficacy of antimicrobials against biofilms, thus illustrating the 

need for such a study.  

This study aims to develop an inducible gene expression system in Campylobacter that 

employs the widely used PBAD promoter. The development of this system will assist in the 

study of the role of amiA in CFF in C. jejuni with the aid of conditional lethal mutants. Another 

proposed utilization of this system is to study the regulated expression of nuclease gene in C. 

jejuni and its effects on the biofilm dispersal phenotype. 

The objectives of this study are as follows (i) Integration of gene cassettes carrying arabinose 

transporter genes (araE and lacYA177C) into C. jejuni 11168H chromosome (ii) Expression 

of the transporter genes in Campylobacter in the presence of arabinose (iii) Upon successful 

induction of the reporter gene in C. jejuni, use the regulated system to study the effects of amiA 

mutant on CFF (iv) Identification of the dispersal stage of C. jejuni 11168H biofilms (v) 

Investigation of the role of cj0979 in C. jejuni biofilm formation (vi) Investigation of the 

enzymatic properties of Cj0979 (vii) Investigation of the effects over expression of cj0979 on 

C. jejuni 11168H biofilm formation/dispersal (viii) Investigation of the role of cje0256 in C. 
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jejuni RM1221 biofilms (ix) Study the effects of overproduction of Cje0256 on C. jejuni 

RM1221 biofilms. 



39  

Chapter 2: Materials and Methods 

2.1 Bacterial strains and plasmids 

The C. jejuni strains used in this study were 11168H, 81-176, and RM1221. C. jejuni 11168H 

is a hyper-motile derivative of strain NCTC 11168 (Karlyshev et al., 2002). C. jejuni 81-176 

was isolated from raw milk during an outbreak of diarrhoea (Gaynor et al., 2004). C. jejuni 

RM1221 was isolated from retail chickens (Hao et al., 2016). 

Competent cells of E. coli used for cloning and transformation experiments were purchased 

from New England Biolabs (NEB) and Stratagene. The XL1 cells were purchased from 

Stratagene for blue-white screening. The cells C2523L, C2566L, and C3037L were purchased 

from NEB and used for other transformations depending on the antibiotic selection required 

for the specific experiment. 

Plasmids pRRC and pSpoT were employed as controls for C. jejuni electroporation 

experiments (Karlyshev and Wren, 2005a; Ikeda and Karlyshev, 2012). Plasmid pRRT was 

used as a source of tetracycline resistance gene cassette (tetr) (Karlyshev, unpublished). 

Plasmid pJMK30 served as a source of kanamycin resistance gene cassette (kanr) (Trieu-Cuot 

et al., 1985). Plasmids pBAD33 (Guzman et al., 1995), pGEM-T Easy vector (Promega), and 

pUC19 (NEB) were also used for cloning experiments. 

The other plasmid derivatives employed in this study were pRRBCD-egfp-lacYA177C and 

pRRBCD-egfp-araE. Both plasmids were constructed during previous PhD studies conducted 

in the supervisor’s lab (Ikeda, 2014; Rubinchik, 2014). 

2.2 Growth conditions and storage 

All media used in this study were sterilized by autoclaving at 121°C for 15 min prior to use. 

All laboratory strains were stored at -80°C as suspensions in suitable media (LB for E. coli or 
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MH for C. jejuni) supplemented with 15% glycerol. MH broth, LB broth, PBS, and 100% 

glycerol were purchased from Fisher Scientific. C. jejuni strains were grown on Columbia 

blood agar (CBA) (Fisher Scientific) plates supplemented with 2% Campylobacter selective 

Skirrow supplement (Fisher Scientific) and 5% defibrinated horse blood (Fisher Scientific) for 

48 h under microaerobic conditions (5% O2, 10% CO2 and 85% N2) in a controlled atmosphere 

incubator (Don Whitley Scientific) at 37°C. Alternatively, the cultures were grown in gas jars 

containing CampyGen gas generating sachets (Oxoid) at 37°C. For liquid cultures, cells from 

CBA plates were harvested and re-suspended in BHI broth (Fisher Scientific) and grown in a 

shaking incubator at 250 rpm at 37°C. E. coli strains were grown on LB agar plates (Fisher 

Scientific) under aerobic conditions at 37°C. LB broth was used as growth media for liquid 

cultures, which were grown in a shaking incubator at 120 rpm. 

The agar plates and broth cultures were supplemented with selective antibiotics whenever 

required. The following final concentrations were used: kanamycin (50 µg/mL); tetracycline 

(1 µg/mL); chloramphenicol (10 µg/mL); and ampicillin (100 µg/mL). All stock solutions of 

these antibiotics were purchased from Sigma Aldrich. 

2.3 Gram staining 

A tiny amount of bacteria was collected with a sterile 1 µL loop and smeared on a microscope 

glass slide containing 10 µL of PBS. The slide was washed with crystal violet (CV) for 30 s, 

which then was followed by the addition of iodine for 30 s. Ethanol was added to the slide to 

remove excess stain. As a final step, the slide was flooded with carbol fuchsin for 30 s, washed 

again with distilled water, and dried. Gram staining reagents were purchased from Prolabs 

Diagnostics. 

The slide was then observed using a light microscope (Fisher brand™ AX-500 Series 

Compound Research Microscope). As a common practice, the 4× zoom lens was used to 
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visualize the stained area. Once zoomed, oil was added to the slide to provide a better focus 

with a 100× immersion lens. Motic Image software was used to capture live images. 

2.4 Colony-forming units counting 

Colony-forming units (CFU) counting was calculated with bacterial growth from a one-day 

CBA plate. An inoculum of Campylobacter suspended in BHI broth with an initial optical 

density (OD600) of 0.5 was prepared. 100 µL of this suspension was added to 900 µL of PBS to 

prepare 1:10 serial dilutions. 50 µL of 10-6 and 10-5 serial dilutions were then plated on a CBA 

plate. The plates were incubated under microaerobic conditions for two to three days. Single 

colonies were counted using a colony counter from which CFU/mL was calculated. 

2.5 Water 

For all molecular biology experiments, highest-grade water (18.2 mΩ) was obtained from a 

Millipore Direct-Q UV purification system. For all other experiments, pure double-distilled 

water (10-15 mΩ) obtained from ELGA DV35 purification system was used. 

2.6 Construction of pRRBCD-egfp-araE and pRRBCD-egfp-lacYA177C plasmids 

Plasmids pRRBCD-egfp-araE and pRRBCD-egfp-lacYA177C contained a reporter gene gfp 

under the control of the inducible arabinose promoter PBAD and araE/modified lacY gene under 

the control of a chloramphenicol promoter. 

The ClaI/SalI fragment of pBAD33 containing a regulatory region and an inducible promoter 

was cloned into the pRR XbaI site (after blunt-ending with T4 DNA polymerase) to produce 

pRRB. The orientation of the cloned fragment was verified by restriction digestion with 

EcoRV. The camr gene cassette, isolated from pAV35 (van Vliet et al., 1998) by digestion with 

KpnI, was blunt-ended and inserted into the blunt-ended XbaI site of pRRB to produce pRRBC. 

The orientation of the insert was determined by double digestion with SphI and ClaI. The 
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pRRBC construct was verified by primer walking sequencing to ensure that there were no 

mutations. An XbaI fragment of pEGFP (BD Biosciences Clonetech, Palo Alto, CA) containing 

a gfp gene was blunt-ended and cloned into the blunt-ended KpnI site of the pRRBC to produce 

pRRBC-egfp. The correct orientation of this construct was determined by digestion with StyI 

(Ikeda, 2014). 

A DNA fragment with E. coli K12 araE gene (1.5 kb) was amplified using Phusion High Fidelity 

DNA Polymerase (NEB) and primers araE_for and araE_rev containing SalI restriction site. 

After cloning into pGEM-T vector and verification by sequencing, the SalI fragment with araE 

was cloned into the SalI site of pRRBCD-egfp. A derivative with the correct orientation of the 

fragment was designated, and pRRBCD-egfp-araE was constructed (Rubinchik, 2014). 

A 1.3 kb DNA fragment with the E. coli K12 lacY gene was amplified with primers lacY_for 

and lacY_rev and cloned into the pGEM-T Easy vector to produce pGEM-T- lacY. The latter 

was then used as a template for another polymerase chain reaction (PCR) with primers 

lacYA177C_for and lacYA177C_rev primers to change codon GCA for TGT, leading to a 

replacement of alanine at position 177 for cysteine. This was carried out by using Q5® High-

Fidelity DNA Polymerase to prevent other unintended mutations. The resulting construct was 

verified by sequencing and was designated pGEM-T-lacYA177C. SalI fragment with gene 

lacYA177C was cloned into the SalI site of pRRBCD-egfp in the correct orientation (verified 

by restriction analysis) and the designated pRRBCD-egfp-lacYA177C was constructed (Ikeda, 

2014). 

2.7 Biofilm growth assays and optimization 

C. jejuni biofilm assays were conducted in borosilicate glass test tubes (Fisher Scientific) 

(Brown et al., 2015b) and non-treated 96-well polystyrene microtiter plates (Corning) (Reeser 

et al., 2007). Cells from a two-day-old plate were used to prepare the inoculum. Cells were 
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harvested and resuspended in BHI broth to an initial OD600 of 0.5. Generally, a maximum of 2 

mL of the bacterial suspension was added to test tubes and 200 µL was added to microtiter 

plates. Where culture supernatant was not required for further DNase testing, only 1 mL of 

culture was added to the test tubes. The test tubes/plates were incubated under static conditions 

in a microaerobic incubator at 37°C for a maximum period of 10 days. For the staining 

procedure, the supernatant was removed from tubes/plates, and the surface was rinsed carefully 

twice with distilled water. The tubes/plates were left to dry at 45°C for 30 min. 1% CV was 

used to stain the biofilm. For test tubes, 2 mL/1mL of the CV solution was added, and for 

microtiter plates, 200 µL was used. The tubes/plates were incubated in a shaking platform (30 

oscillations/min) for 30 min at room temperature. The CV solution was then removed, and the 

tubes/plates were washed twice with distilled water to remove any excess non-bound CV. For 

biofilm quantification, a 20% acetone and 80% ethanol solution was used to dissolve the CV 

stained biofilm from the tubes/plates (Brown et al., 2015b; Reeser et al., 2007). Both solvents 

were purchased from Fisher Scientific. In the case of test tubes containing 2mL bacterial 

suspension, excess background CV staining was removed with a two-step dissolving technique. 

For the first step, 1 mL of the acetone-ethanol solution was added for about 15 min, and the 

solution was removed and discarded. For the second step, 2 mL of acetone-ethanol solution 

was added to the already treated test tubes. For test tubes containing 1 mL of bacterial 

suspension, the two-step dissolving procedure was not implemented due to the lower culture 

volume. 1mL of the acetone-ethanol solution was added to the test tubes to dissolve the biofilm 

for quantification. For the plates, 200 µL of the acetone-ethanol solution was used to dissolve 

the biofilm. The tubes/plates were left on a shaking platform (30 oscillations/min) for 30 min. 

200 µL of the dissolved biofilm was transferred onto a clean microtiter plate, and absorbance 

was read at a wavelength of 595 nm using a plate reader (Tecan M220). 
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2.8 eDNA-B and eDNA-S purification  

Monarch PCR and DNA clean-up kit (NEB) was employed for the purification of eDNA-B 

from biofilms and eDNA-S from culture supernatant. For eDNA-B purification, the cell 

suspension was removed from the test tubes. 150 µL of 1× Tris EDTA (TE) buffer (10 mM 

Tris-HCl, 1 mM disodium EDTA, pH 8.0) from Sigma Aldrich was added to each test tube and 

the attached biofilm was removed with the help of a sterile swab (Fisher Scientific). The 

bacterial suspension in TE was pipetted up and down vigorously to break the biofilm, and the 

entire suspension was used for eDNA-B purification. 300 µL of binding buffer was added to 

the suspension and loaded onto a spin column and subsequently centrifuged. The spin column 

was then washed twice with 200 µL of wash buffer. No cell lysis step was incorporated, and 

the buffers used did not contain any detergents that would cause cell lysis for the release of 

intracellular DNA. The eDNA-B was eluted from the column to a final volume of 10 µL. For 

the purification of eDNA-S, 10 µL of culture supernatant was mixed with 20 µL of binding 

buffer and loaded onto a spin column and centrifuged. The spin column was rinsed twice 

with 200µL of wash buffer. 10 µL of elution buffer was added to the column to elute eDNA-

S. The purified DNA was checked for concentration and purity using a NanoVue 

spectrophotometer (Thermo Fisher Scientific). 

2.9 DNase activity assays 

For the DNase activity assays, the substrate DNA was either lambda DNA (NEB) or eDNA-B. 

A final concentration of 1× NEB DNase reaction buffer (10 mM Tris-HCl, 2.5 mM MgCl2, 0.5 

mM CaCl2) was added to each sample. The NEB DNase I enzyme served as a positive control 

in this experiment. Samples were incubated at 37°C for 1 to 4 h. The samples were analyzed 

using gel electrophoresis. 
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2.10 Proteinase K treatment 

The supernatant from the test tube was collected and spun down at 13,000g (Labnet Prism R 

Refrigerated Microcentrifuge) for 5 min. The cell pellet was discarded. For the sterilisation of 

culture supernatant, the sample was filter-sterilized using a 0.22 µm Millipore filter and stored 

at −20°C. The filter sterilized supernatant sample was treated with proteinase K to check for 

the presence of proteins bound to the DNA complex. 10 µL of culture supernatant was 

incubated with 1 µL of proteinase K (20 mg/mL), obtained from an Invitrogen Genomic DNA 

kit, at 55°C for 1 h.  

2.11 Removing media from supernatant 

For removing low molecular weight compounds, 500 µL of filter-sterilized culture supernatant 

was added to Corning Spin-X UF spin concentrator (cut-off value of 5 kDa) and spun down at 

14,500 g for 15 min. After the initial spin cycle, the flowthrough was discarded and the buffer 

in the column was exchanged with a 1× TE buffer (final concentration). 200 µL of TE buffer 

was added to the fraction in the column and then centrifuged for a further 15 min. The buffer 

exchange step was repeated thrice. After the final centrifugation step, the retentate (supernatant 

after media exchange) was collected for further testing and the flowthrough was discarded. 

2.12 Trypsin treatment 

Trypsin (Thermo Fisher Scientific) was added to the supernatant sample after media exchange 

at 1:50 w/w ratio following manufacturer’s recommendation. In this experiment, 2.4 µg of 

trypsin (2.4 µL of 1 µg/µL) was added to 120 µg of the supernatant sample and incubated at 

37°C for 4 h. After incubation, the sample was loaded onto Corning Spin-X UF spin 

concentrators (cut-off value of 10 kDa) and spun down at 13,000 g for 2 min. The flowthrough 

fraction (F1) was collected and saved for further analysis. 1xTE buffer was added to the 

retentate sample to make up to a volume of 100 µL and centrifugation for another 2 min was 

repeated. After centrifugation, flowthrough fraction (F2) and F1 from the first centrifugation 
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step were sent for mass spectrometry analysis. All three fractions were analysed using 

bicinchoninic acid (BCA) assay to determine the concentrations of the proteins present. The 

fractions were also analysed by NanoVue to obtain the corresponding purity compositions. 

2.13 Dextranase treatment 

Dextranase was added to cleave any dextrans, which may be bound to DNA complex in the 

supernatant sample after media exchange. 2.6 µL of dextranase (1 unit/mL) (Sigma Aldrich) 

was added to 50 µL supernatant sample after media exchange by following the manufacturer’s 

protocol and incubated at 37°C for 4 h. After incubation, the sample was loaded onto Corning 

Spin-X UF spin concentrators (cut-off value of 10 kDa) and spun at 13,000 g for 2 min. The 

flowthrough fraction (F1) was collected and saved for further analysis. 1xTE buffer was added 

to the retentate sample to make up to a volume of 100 µL, and centrifugation was repeated for 

another 2 min. After centrifugation, the retentate, flow-through fraction (F2), and F1 were 

analysed using NanoVue spectrophotometer. 

2.14 Plasmid DNA purification 

E. coli strains carrying the plasmids of interest were grown on LB plates supplemented with an 

antibiotic. About half a loop of cells was collected from a plate following an overnight 

incubation and used for plasmid DNA purification. QIAprep Spin Miniprep Kit (Qiagen) was 

used for the purification following the manufacturer’s guidelines. 

2.15 Genomic DNA purification 

A Gentra Puregene Yeast/Bact. kit from Qiagen was used for the extraction of chromosomal 

DNA. Bacterial growth from a one-day culture plate was used for Campylobacter genomic 

DNA purifications. 
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2.16 Determining the quality of DNA 

A NanoVue Plus Spectrophotometer was used to analyse the purity (denoted by A260/A280 

and A260/A230 ratios) and concentration of DNA samples under study. The testing was carried 

out following the manufacturer’s guidelines. DNA elution buffer was used as a reference for 

DNA samples. 1xTE buffer was used as a reference for supernatant, trypsin-treated, and 

dextranase-treated samples. 

2.17 Agarose gel electrophoresis 

A 1% agarose gel was used for gel electrophoresis. The gel was prepared by mixing  agarose 

powder in Tris borate buffer (TBE) purchased from Fisher Scientific. The mixture was heated 

in a microwave for 2 min and let to cool. Once cooled, 0.5 µg/mL of ethidium bromide (Fisher 

Scientific) was added to the mixture and subsequently allowed to set in a gel cassette. Samples 

were loaded onto the gel with bromophenol blue-based loading buffer (NEB). The NEB Quick-

Load® Purple 2-Log DNA Ladder (0.1–10.0 kb) was used as a standard control to compare and 

estimate the size of the test DNA fragments. A run time of 1 h at 150 V was used unless longer 

or shorter times were required for specific experiments. The gel was visualized using G Box 

(Syngene) employing GeneSnap software, while the estimation of the obtained band sizes and 

their corresponding DNA amounts were analysed using GelAnalyzer and DNA ladder as a 

control. 

2.18 Restriction analysis 

All enzymes and reaction buffers were purchased from NEB. The restriction digestion 

reactions were conducted following the manufacturer’s guidelines. The incubation times varied 

according to the enzyme selection ranging from 15 min to a maximum of 1 h. Where necessary, 

the restriction enzymes were deactivated by incubating them at 65°C for 20 min. The expected 

fragment sizes were determined using the NEB cutter V2 program. The circular and linear 

genetic maps of the plasmids used in this study were generated using SnapGene Viewer. 
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2.19 DNA purification from agarose gel 

The sample to be gel extracted was run on 1% agarose gel at 150 V for 1 h. After the run was 

completed, the gel was viewed under  a ‘long wavelength’ setting in a transilluminator, and the 

band of interest was carefully cut out using a clean scalpel. The DNA from the band was 

extracted using a Monarch Gel purification kit (NEB) following the manufacturer’s 

instructions. 

2.20 Dephosphorylation 

Dephosphorylation of the vector was carried out prior to cloning experiments. Antarctic 

phosphatase enzyme from NEB was used for this purpose, and the experiment was carried out 

following the manufacturer’s guidelines. 

2.21 Polymerase chain reaction 

Primers for PCR were designed, and the sequences were sent to Sigma Aldrich for synthesis. 

The lyophilized primers were then mixed with Milli-Q water to obtain a stock concentration of 

100 µM and stored at −20°C as instructed in the technical sheet provided by the manufacturer. 

GoTaq® Green Master Mix (Promega) and Q5® High-Fidelity DNA Polymerase (NEB) were 

used in this study. For GoTaq® Green Master Mix, the following components were added in the 

following order: reaction buffer; forward primer (2 µM); reverse primer (2 µM); DNA (0.5 

µg); and Milli-Q water. For Q5® High-Fidelity DNA Polymerase, the following components 

were added in the following order: reaction buffer; forward primer (2 µM); reverse primer (2 

µM); dNTP (10 mM) (Fisher Scientific); polymerase (0.25-0.5 µL); DNA (0.5 µg); and Milli-

Q water. The PCR conditions (Table 1 and 2) were established following the manufacturer’s 

protocol. Table 3 below includes the list of primers used in this study 
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Table 1. PCR conditions used with Promega GoTaq® Green Master Mix 

PCR step Temperature Duration of step Number of cycles 

Initial denaturation 95 ºC 2 min 1 

Denaturation 95 ºC 30 s  

25 

Annealing 55 ºC 30 s 

Extension 72 ºC 1 min per kb 

Final extension 72 ºC 5 min 1 

Table 2. PCR conditions used with NEB Q5® High-Fidelity DNA Polymerase 

PCR step Temperature Duration of step Number of cycles 

Initial denaturation 98 ºC 30 s 1 

Denaturation 98 ºC 10 s  

25 

Annealing 45 ºC 30 s 

Extension 72 ºC 30 s per kb 

Final extension 72 ºC 2 min 1 

Table 3. List of primers used in this study 

Primer Sequence 5’→3’ 

ak233 GCAAGAGTTTTGCTTATGTTAGCAC 

ak234 GAAATGGGCAGAGTGTATTCTCCG 

ak235 GTGCGGATAATGTTGTTTCTG 

ak237 TCCTGAACTCTTCATGTCGATTG 

spoT_for TTGAAACCAATCGATGAAGAATTATTGC 

spoT_rev TTAACTTTCTTTATAAGCATCATTTAAAGATG 

cj1051_for AGTGTGTTAATTTCAAAACTCATAGCTAATAATC 

cj1051_rev GTAATTTTCTCTCCTAAGAATTCTTTCATAGC 

pBAD_for GATTAGCGGATCCTACCTGAC 

pBAD_up GCCGTCAAGTTGTCATAATTGGTAACG 

pRR1 GTAATCGTAGATCAGCCATGCTACG 

lacY_for GTCGACAAGGAAATCCATTATGTACTATTTAAAAAAC 

lacY_rev GTCGACTTAAGCGACTTCATTCACCTGACGACGCAG 

araE_for GTCGAC AGGAGGAAAAA ATGGTTACTATC 

araE_rev GTCGACTCAGACGCCGATATTTCTCAAC 

cj0979_for CTCCGCCTTCAAAGAAATGATTTCTCCTTC 

cj0979_rev GAAGAATATGCACAACTTGAAGAATACGCATC 

cj0979_LP_for AAAATCTAGAAAGAAGGAGATATACCATGCAAAATTC 
TAGTTTTGAAG GAAAAGTAGTTAGA 

cj0979_LP_rev TTCCGCATGCTTAGTGATGATGATGATGATGGAATTTA 
TTGTGTTTTC TCCATTTATAAG 

cj0979_N_expr_ 

for 

AAAATCTAGAAGGAGGTATACCATGCACCATCACCATC 

ACCATAGAAT AAATTATAAAAAAATATTTAATCTG 
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cj0979_N_expr_ 
rev 

TTCCGCATGCTTAGAATTTATTGTGTTTTCTCCATTTAT 
AAG 

cje0256f_mod TCAGAAATCTAGAGTGCTAGAAATGAATATAGTGCCGT 
AATAGC 

cje0256r_mod AAACACGAATTCTTTAAAAAAGCACTTAATTAAAATCA 
TTCATAC 

cje0256_LP_for 
_mod 

ATAATCTAGAAAGAAGGAGATATACCATGAAAAGTTT 
TGAAGAAAGCA A 

cje0256_LP_rev 
_mod 

AGAAGCATGCTTAGTGATGATGATGATGATGGAGTAAT 
GCTCTAATTC TTTTTTC 

cje0256_for ATAATCTAGAAAGAAGGAGATATACCATGAAAAAAAT 
AATAAGCGTTT TAATACT 

cje0256_rev 
 

AGAAGCATGCTTAGTGATGATGATGATGATGGAGTAAT 

GCTCTAATTC TTTTTTCTTTC 

2.22 Ligation 

T4 ligase (Promega) and Quick ligase (NEB) were used in this study for ligation experiments. 

A 3:1 (insert: vector) molar ratio was used with both kits. The ligation reactions were set up 

following the manufacturer’s guidelines, and 5 µL of the ligated product was used for each 

transformation experiment. 

2.23 Preparation of electrocompetent cells of C. jejuni 

Bacterial cultures from a fresh one-day culture plate, grown under microaerobic conditions, 

were harvested and re-suspended in 1 mL of MH broth (Fisher Scientific). The suspension was 

centrifuged at 10,000 rpm at 4°C for 5 min. The bacterial pellet was then resuspended in 1 mL 

of pre-made ice-cold wash buffer (272 mM sucrose (Sigma Aldrich) and 15% glycerol) and 

subsequently centrifuged under the same conditions. This step was repeated thrice. The cells 

were finally resuspended in 500 µL of wash buffer, and 50 µL aliquots were prepared for 

immediate use for electroporation experiments or for storage at -80°C. 

2.24 Transformation experiments 

2.24.1 Electroporation of Campylobacter  

For C. jejuni experiments, 50 µL aliquots of the electrocompetent cells were used for each 

electroporation. Electroporation cuvettes 0.22 mm (Molecular Bioproducts) were left on ice 
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for 10 min prior to electroporation. 1 µg of DNA was added to the cells and slowly suspended 

by pipetting up and down. The electroporation mixture was transferred into ice-cold cuvettes, 

and the cuvette was transferred to an electroporation pod. Electroporation was carried out in a 

Gene Pulser X-cell electroporator (Biorad) at 2.5 kV, 200 Ω, and 25 μF with a time constant 

of approximately 5 ms. 100 µL of Super Optimal broth with Catabolite repression medium 

(SOC) (Invitrogen) was added to the cuvettes, and the electroporated mixture was plated onto 

a non-selective plate and left for incubation under microaerobic conditions at 37°C. The growth 

from the non-selective plate was re-streaked onto a selective antibiotic plate the following day, 

and the plate was incubated under optimal conditions for a further two to three days. 

2.24.2 Transformation of E. coli 

For E. coli transformation experiments, 50 µL of commercial chemically competent cells were 

used for each experiment. The cells were thawed on ice until the last crystal disappeared. DNA 

was added to the cells and further incubated on ice for 30 min. The tubes containing the cells 

were then transferred to a water bath at 42°C. The duration of heat shock varied depending on 

the batch of cells. The following heat shock times were carried out with the respective cell 

types: 10 s for C2566L; 20 s for C2523L; and 45 s for XL1. Following heat shock, the cells 

were incubated on ice for further 2–5 min depending on the cell type used. 950 μL of SOC 

medium was added to the competent cells, and 100 μL of cell suspension was spread onto an 

LB agar plate (containing the relevant antibiotic) using an L-shaped spreader and incubated for 

a day. 

2.25 Supercoiled DNA and restriction analysis  

CloneChecker kit from Invitrogen was used for supercoiled DNA and initial restriction 

analysis. Bacteria was suspended in 6 µL of LB broth. For restriction analysis, 3 µL of the 

suspension was added to 8 µL of the green solution and heated at 100°C for 30 s. After the 

mixture cooled down, 1 µL of 10× restriction enzyme buffer and 1 µL of restriction enzyme 
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were added and further incubated for 30 min. Then, 2 µL of loading dye was added, and the 

entire mixture was analysed using gel electrophoresis. For supercoiled DNA analysis, 3 µL of 

the bacterial suspension was added to 5 µL of the red solution and pipetted up and down for 

approximately three times. 5 µL of the yellow solution was added to the mixture and vortexed 

for 15 s. Then, 4 µL of loading dye was added, and the entire mixture was analysed using gel 

electrophoresis. 

2.26 Construction of Campylobacter mutants  

2.26.1 11168H/cj1051 mutant 

A cj1051 gene of C. jejuni 11168H was PCR amplified using cj1051_for and cj1051_rev 

primers using GoTaq® Green Master Mix (Promega) with an extension time of 3 min. The 

amplified PCR product was ligated into cloning vector pGEM-T Easy vector (Promega) and 

transformed into E. coli C2523L competent cells. The transformants were screened using 

CloneChecker and restriction analysis. The pGEM-T-1051 clones containing the insert were 

chosen for further cloning experiments. Plasmid pRRT was used as a source of tetracycline 

cassette (tetr). The pRRT plasmid was digested with NheI and XbaI to produce compatible 

ends for cloning, and the resulting 2.8 kb band was gel-purified. The excised fragment was then 

inserted into the XbaI site of the pGEM-T-1051 to create p1051-tetR. The cloned product was 

then transformed into E. coli C2523L cells, and the transformants were screened using 

CloneChecker and restriction analysis for the isolation of clones carrying the insert and the gene 

cassette. Clones with the insert and the tetr gene in the correct orientation were selected for 

insertional mutagenesis in C. jejuni 11168H to create 11168H/cj1051 strain. 

2.26.2 11168H/cj0979 mutant 

A cj0979 gene of C. jejuni 11168H was amplified using cj0979_for and cj0979_rev primers 

using GoTaq® Green Master Mix (Promega) with an extension time of 3 min. The amplified 

PCR product was ligated into cloning vector pGEM-T Easy vector (Promega) and transformed 
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into E. coli C2523L competent cells. The transformants were screened using CloneChecker 

and restriction analysis. The pGEM-T-0979 clones with the insert were chosen for further 

cloning experiments. Plasmid pJMK30 served as a source of kanamycin resistance cassette 

(kanr). The pJMK30 plasmid was digested with SmaI to produce a blunt-ended fragment. The 

gel-purified fragment was then inserted into the blunt-ended ClaI site of the pGEM-T-0979 to 

create p0979-kanR. The cloned product was then transformed into E. coli C2523L cells, and 

the transformants were screened using CloneChecker and restriction analysis. Clones with the 

insert and the kanr in the correct orientation were selected for insertional mutagenesis in C. 

jejuni 11168H to create 11168H/cj0979 strain. 

2.26.3 RM1221/cje0256 mutant 

A cje0256 gene of C. jejuni RM1221 was PCR amplified using primers cje0256f_mod and 

cje0256r_mod using Q5® High-Fidelity DNA Polymerase with an extension time of 3 min. The 

amplified 2.2 kb PCR product was digested with EcoRI and XbaI to produce sticky ends. The 

pUC19 plasmid was digested with the same enzymes and run on the gel; the larger fragment 

was gel-purified and used for ligation with the EcoRI/XbaI digested cje0256 PCR fragment. 5 

µL of the ligated mixture was transformed into E. coli XL1 Blue competent cells for blue-

white screening. The white colonies were screened using CloneChecker and restriction 

analysis. The pUC19-cje0256 clones with the insert were chosen for further cloning 

experiments. Plasmid pJMK30 was employed as a source of the kanamycin resistance cassette 

(kanr). The pJMK30 plasmid was digested with SmaI to produce a blunt-ended fragment. The 

gel-purified fragment was then inserted into the Eco53KI site of the pUC19-cje0256 to create 

pUC19-cje0256-kanR. The cloned product was then introduced into E. coli XL1 blue 

competent cells, and the transformants were again screened using CloneChecker and restriction 

analysis. Clones with the insert and the kanr gene in the correct orientation were selected for 

insertional mutagenesis in C. jejuni RM1221 to create RM1221/cje0256. 
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2.27 Next Generation sequencing 

Verification of C. jejuni integration constructs and transformants was carried out by genome 

sequencing. The genome sequencing libraries were constructed using NEB Next® Fast DNA 

Fragmentation and Library Prep kit for Ion Torrent (NEB). Adapters were attached to both 

ends of the fragmented DNA by following manufacturer’s instructions. Size selection on a 2% 

E-gel in accordance with the DNA size required for the Ion Torrent sequencing kit was carried 

out. Subsequently, Bioanalyzer 2100 was employed to precisely determine the size and the 

concentration of the DNA fragments. Emulsion PCR was carried out using Ion One Touch 2 

system. During this process, the adapter-ligated DNA underwent denaturation and was fixed 

to the ion spherical particles (ISP), after which the DNA attached to the ISP was amplified. One 

end of the fragment contains an adapter sequence, where the polymerase attaches, and the other 

end attaches to the beads. Enrichment process was implemented to remove particles that did 

not contain DNA. The enriched sample was then transferred onto a 316v2 chip (Life 

technologies), resulting in an overall good loading. The genome sequencing was conducted 

using Ion Torrent PGM (Life Technologies). 

2.28 Comparison of growth rates of the C. jejuni derivatives 

To compare growth rates, the wild-type and derivative C. jejuni strains were suspended in BHI 

broth with a starting OD600 of 0.1 and incubated on a shaker at 250 rpm at 37°C under 

microaerobic conditions. For induction experiments, 0.2% final concentration arabinose was 

added to the liquid culture after 6 h and incubated for a further 21 h. Optical density 

measurements were taken at the required time intervals. 

2.29 Green Fluorescent Protein (GFP) expression studies 

Expression of gfp in the E. coli and C. jejuni derivatives carrying the araE and lacYA177C 

genes was tested using a fluorescence microscope (Nikon 80i Eclipse) with bacterial cultures 

grown on solid media with and without arabinose. 
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For fluorimetry, 150 µL of E. coli/pRRBCD-egfp-lacYA177C in LB broth with an initial OD600 

of 0.5 was incubated in wells of a 96-well, non-treated polystyrene microtiter plate (Corning). 

The culture was incubated for 2 h in an aerobic incubator at 37°C with shaking at 120 rpm. For 

induction, 0.1% final concentration arabinose was added and further incubated for 2 h. 

Similarly, C. jejuni strains were suspended in BHI broth with an initial OD600 of 0.5 and 

incubated on a shaking platform at 250 rpm under microaerobic conditions at 37°C for 2 h. 

After the initial incubation, 0.2% final concentration arabinose was added and additional 

incubation for 2 h was carried out. After completing the induction cycle, the cells were 

centrifuged at 4,000 g for 30 min, resuspended in PBS, and fluorescence readings of the whole 

cells were recorded. Similarly, the fluorescence of the lysed cells of E. coli and C. jejuni were 

measured after resuspending the cells in a lysis mixture (Buffering Salts, 550 mM KOAc, and 

2.5% Triton X-100) in the presence of EDTA (5 mM) and protease inhibitor cocktail (Sigma 

Aldrich, p8849). Fluorescence intensity was measured using BMG Labtech FLUOstar at 

excitation wavelength 485 nm and emission wavelength 520 nm. 

2.30 Protein expression 

The E. coli strain harbouring the pBAD33 plasmid carrying the gene of interest was grown on 

LB agar plates containing chloramphenicol. A tiny amount of bacteria was collected from a 

one-day plate and inoculated into 5 mL of LB broth containing chloramphenicol and incubated 

overnight on a shaking platform at 120 rpm at 37°C. The 5 mL overnight culture was transferred 

into fresh 25 mL LB broth, and the initial OD600 was recorded. The culture was incubated in 

the same shaking incubator at 120 rpm until it reached an OD600 of 0.6. At this point, the 

bacterial suspension was divided into two bottles, and 0.1% final concentration arabinose was 

added to one of them. The other bottle served as a control for the protein purification 

experiment. The bottles were further incubated for 2 h. Optical density was again measured at 

the end of the induction cycle. 
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2.31 Protein purification 

Following the 2 h induction period, a 1 mL sample of induced and uninduced culture was 

collected, spun down at 10,000 g for 2 min, and used for protein purification employing the 

MagneHisTM Protein purification system (Promega). After centrifugation, the LB broth was 

replaced by 100 µL of 1× lysis buffer and 1 µL of DNase I enzyme and incubated for 20 min 

on a rocker at room temperature. The Nickel particles (Ni) particles were thoroughly vortexed 

before use. 30 µL of Ni particles were added to the lysate and properly mixed by inverting the 

tubes approximately 10 times. 500 mM of NaCl (Sigma Aldrich) was added to the mixture 

before the addition of Ni particles to improve protein binding. The tubes were then left to stand 

in a magnetic holder for about 30 s. The clear lysate buffer was removed, and the Ni particles 

were then washed with wash buffer and NaCl thrice. The protein was eluted with 100 µL of 

elution buffer. The purified protein was stored at 4°C. 

2.32 Protein analysis and detection techniques 

2.32.1 Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

For the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gels, 

NuPAGE Novex 4–12% Bis-Tris gel (Invitrogen), NuPage 3-(N-morpholino) propanesulfonic 

acid (MOPS), or 2-(N-morpholino) ethanesulfonic acid (MES) running buffer was employed. 

The stock solutions of the running buffers were 20×, and they were used at a working 

concentration of 1× by diluting with distilled water. MOPS running buffer was used with 

higher-sized proteins and MES running buffer was used with smaller-sized proteins. The 

protein samples were mixed with 2× NuPage LDS sample buffer and heated at 70°C for 10 

min prior to gel loading. The SDS-PAGE gel was run at 150 V for 90 min. PageRuler Plus 

Prestained Protein ladder (Thermo Fisher Scientific) was used as a standard for comparison. 
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2.32.2 Coomassie staining 

The SDS-PAGE gel was carefully removed from the gel rig and washed with distilled water 

for 5 min. This step was repeated thrice. The gel was then stained with Invitrogen Safe Blue 

stain for 1 h, followed by a de-staining step (1 h to overnight) on a gentle rocker (10 

oscillations/min). Following this step, the gel was washed again with distilled water for 1 h. The 

gel was read using the ‘lower white’ setting of the GeneSnap software. Gel Analyzer was used 

to analyse the protein sizes on the gel. 

2.32.3 Western blotting 

The gel from SDS-PAGE run was separated from the cassette and submerged in 50 mL of 

transfer buffer (48 mM Tris, 39 mM glycine, 1.3 mM SDS, 20% methanol) for approximately 

15 min. In parallel, the PVDF membrane (Immobilon-P 0.45 µM polyvinylidene difluoride) 

was activated in the presence of 100% methanol for 15 s and washed twice with Milli-Q water 

for 2 min per wash. The membrane was then soaked in transfer buffer for 5 min before it was 

transferred to the trans blotter. Simultaneously, eight filter papers were soaked in transfer buffer 

for 15 min. The membrane and the gel were assembled on the cathode in the following order: 

four filter papers; gel; membrane; and finally four filter papers. A semi-dry transfer run was 

conducted at 15 V for 90 min. After the transfer was complete, the membrane was washed 

twice with 1× Tris- buffered saline (TBS) buffer for 10 min per wash. The membrane was 

treated with blocking buffer (3% w/v BSA in 1× TBS) for 1 h at room temperature. After 

blocking was completed, the membrane was washed twice with TBST buffer containing 0.1% 

Tween 20 (Sigma Aldrich) for 10 min followed by a single wash of 10 min with TBS buffer. 

A 1:1,000 working dilution of the 6xHis Epitope tag monoclonal antibody (Invitrogen) solution 

in blocking buffer was freshly prepared and added to the membrane. The membrane was 

incubated with the primary antibody for 1 h at room temperature. After incubation was 

complete, the membrane was washed twice with TBST buffer for 10 min per wash followed by 
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a single wash of 10 min with TBS buffer. Following the wash, the membrane was incubated 

with anti-mouse IgG, HRP-linked secondary antibody (Cell signalling technologies) diluted to 

1:1,000 in 10 mL 1×TBS and 10% non-fat dried milk powder (Marvel Original). After 1 h, the 

membrane was washed four times with 1× TBST buffer for 10 min per wash. For 

chemiluminescent detection, SuperSignal West Pico Chemiluminescent substrate (Thermo 

Fisher Scientific) was added to the gel following the manufacturer’s guidelines just before 

imaging the membrane. GeneSys software was used to capture the membrane image. 

2.32.4 Bicinchoninic acid assay 

Protein concentration was determined using a Pierce BCA protein assay kit (Thermo Fisher 

Scientific). The bovine serum albumin (BSA) standard provided with the kit was diluted to 

known concentrations with varying amounts of elution buffer or 1× TE buffer. These diluted 

samples were employed as standards for comparison. Elution buffer was used as the diluent for 

purified protein samples. TE buffer was used as the diluent for trypsin treated samples. The 

experiment was exceuted according to the manufacturer’s guidelines. The absorbance was read 

at 562 nm using a Tecan plate reader. 

2.32.5 Mass spectrometry 

The mass spectrometer analysis was performed by Cambridge Centre for Proteomics, 

University of Cambridge, Cambridgeshire using LC MS/MS ESI-ORBITRAP-HCD. The list 

of proteins and their abundance ratios were analysed using Scaffold and MHT files. The 10 

most abundant proteins were selected and further studied using NCBI BLASTp and 

UniProtKB. 
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Chapter 3: Results 

3.1 Construction and verification of regulated gene expression systems in C. 

jejuni 

This section will describe an attempt to develop an inducible gene expression system in 

Campylobacter employing the arabinose inducible PBAD promoter in conjunction with the pRR 

plasmid system. Many other researchers have examined the use of this arabinose-inducible 

regulatable promoter system in gene regulation studies with other bacteria, as previously 

described in the introduction; however, the system has not been utilized with Campylobacter, 

perhaps because these bacteria do not contain any arabinose transporter genes. The pRR 

plasmid system is based on the principle of homologous recombination, and the selected gene 

is expressed through the introduction of a gene cassette into a non-coding spacer region of an 

rRNA gene cluster of the C. jejuni chromosome. Campylobacter research employs the practice 

of delivering exogenous genes using the pRR plasmid system in these bacteria (Karlyshev and 

Wren, 2005a).  

Therefore, this section will discuss the testing of the regulatable gene expression systems 

pRRBCD-egfp-araE and pRRBCD-egfp-lacYA177C, utilizing both the PBAD promoter and the 

pRR plasmid system, in Campylobacter. The arabinose transporter genes (araE and 

lacYA177C) placed under the control of a constitutive promoter were introduced into C. jejuni. 

Upon successful transportation of arabinose, this system would be used to study the role of the 

amiA gene in CFF in Campylobacter. Previous studies have identified this gene as an important 

genetic determinant governing the morphological transition in a similar bacteria H. pylori, 

where amiA mutant displayed a reduction in CF transition (Chaput et al., 2006). In contrast to 

H. pylori, amiA is only present as a single copy in Campylobacter and was suggested to be an 

essential gene (Ikeda, 2014). Thus, for the investigation of the function of this gene, a system 

that allows the construction of conditionally lethal mutants would be required.  
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3.1.1 Validation of pRRBCD-egfp-araE and pRRBCD-egfp-lacYA177C constructs 

The expression plasmids pRRBCD-egfp-araE and pRRBCD-egfp-lacYA177C were verified 

by restriction analysis and genome sequencing to ensure there were no mutations. In addition, 

the functionality of the PBAD promoter was verified in E. coli with the aid of a reporter gene 

(gfp). Fluorescence microscopy was used to demonstrate the induction of GFP protein.  

3.1.1.1 Verification of recombinant plasmids 

The plasmids carrying the arabinose transporter genes araE and lacYA177C were purified from 

E. coli strains. The strains were recovered after one-day growth on LB agar supplemented with 

10 µg/mL chloramphenicol. Plasmid DNA purification yielded high concentration DNA. The 

concentrations of purified pRRBCD-egfp-araE and pRRBCD-egfp-lacYA177C plasmids were 

790 ng/μL and 453 ng/μL, respectively. The plasmids were verified by restriction analysis. The 

restriction enzyme SalI was chosen for pRRBCD-egfp-lacYA177C, while the enzymes NdeI and 

BsaBI were designated for the analysis of pRRBCD-egfp-araE. The restriction digestions 

produced 6.2 kb and 1.2 kb fragments for pRRBCD-egfp-lacYA177C and 4.9 kb, 1.8 kb, and 

1.4 kb fragments for pRRBCD-egfp-araE, as expected, thus confirming the plasmids (Figures 

8 and 9). 
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Figure 8. Verification of pRRBCD-egfp-lacYA177C by restriction analysis.  

(a) Restriction map of the plasmid indicating the SalI restriction sites.  

(b) Gel image showing uncut and digested pRRBCD-egfp-lacYA177C with SalI. 

Expected fragment sizes: 6.2 kb and 1.2 kb.  

Samples: 1, 2-Log DNA ladder; 2, pRRBCD-egfp-lacYA177C;  

3, pRRBCD-egfp-lacYA177C SalI 
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Figure 9. Verification of pRRBCD-egfp-araE by restriction analysis.  

(a) Restriction map of the plasmid indicating NdeI and BsaBI restriction sites.  

(b) Gel image showing uncut and digested pRRBCD-egfp-araE with NdeI and 

BsaBI. 

Expected fragment sizes: 4.6 kb; 1.7 kb; and 1.3 kb.  

Samples: 1, 2-Log DNA ladder; 2, pRRBCD-egfp-araE; 3, pRRBCD-egfp-araE 
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3.1.1.2 Plasmid sequencing 

The plasmids carrying the araE and lacYA177C genes were analysed using next generation 

sequencing in order to verify these constructs and check for possible spontaneous mutations 

(including indels). The plasmids were first checked using NanoVue spectrophotometer to 

determine the concentration and purity (Table 4), which may affect sequencing data quality. 

Table 4. DNA concentration and purity of plasmids pRRBCD-egfp-araE and 

pRRBCD-egfp-lacYA177C using NanoVue Plus Spectrophotometer. Elution 

buffer was used as a reference for NanoVue readings. 

pRRBCD-egfp-araE pRRBCD-egfp-lacYA177C 

Conc. ng/µL 453 Conc. ng/µL 790 

A260/A280 1.808 A260/A280 1.849 

A260/A230 2.266 A260/A230 2.107 

The ratios obtained were confirmed to be within the accepted range (A260/A280~1.8-2; 

A260/A230~2-2.2), confirming high purity of the DNA samples. The reads obtained from the 

Torrent Server were analysed and assembled using de novo assemblers. CLC Genomics 

software was used for read mapping and to check for any mutations/abnormalities in the output 

sequence. The analysis of the verified consensuses of both plasmids revealed lack of mutations 

or deletions throughout the entire sequence. However, a fragment of size 1.3 kb at the start of 

the insert appeared to be inverted (shown in Figure 10) in both constructs. The inversion arose 

due to a cloning artefact and it was away from the pBAD regulatory region or the insert, 

therefore had no impact on gene expression or transformation. Figure 10 represents the plasmid 

maps for each plasmid generated by SnapGene Viewer using the verified consensuses. 
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Figure 10. Plasmid maps showing the locations of the arabinose transporter genes, 

PBAD promoter and AraC regulatory region, reporter gene gfp, and the 

chloramphenicol resistance gene cassette. Images were generated using SnapGene 

using sequences obtained from Ion Torrent PGM. The region highlighted in grey 

represents the inverted region upstream of the PBAD regulatory region.  
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3.1.1.3 Investigation of gfp induction using solid agar plates 

The verified plasmids were first validated in E. coli for the induction of GFP, which was placed 

under the control of an inducible PBAD promoter so as to test its functionality. For this purpose, 

fluorescence testing was conducted on single colonies of the E. coli strains carrying the 

plasmids. E. coli/pRRBCD-egfp-lacYA177C and E. coli/pRRBCD-egfp-araE strains were 

grown on LB agar plates supplemented with 10 µg/mL chloramphenicol and final 

concentration of 0.1% arabinose. A fixed concentration of arabinose was used, as this 

experiment focused solely on checking for the presence of GFP induction. Control plates were 

tested in parallel without arabinose present in the medium. The bacterial cultures were re-

streaked to single colonies; these were tested using bright field and fluorescence microscopy 

after one day of growth. Both confluent and single colonies displayed high-intensity 

fluorescence. Figure 11 illustrates a single colony of each strain and its relevant fluorescence 

intensity with and without arabinose present in the medium. The results suggested that the PBAD 

promoter in the plasmids were functional in E. coli, allowing transcription of the downstream 

gfp gene in the presence of arabinose. 
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Figure 11. Fluorescence images of E. coli strains carrying the arabinose transporter 

genes, in the presence of 0.1% final concentration arabinose (Ramesh et al., 2019). 

The same imaging settings were used for the test cultures and the negative control. 

The red scale bar denotes 100 μM.  

 (a) E. coli/pRRBCD-egfp-araE (b) E. coli/pRRBCD-egfp-lacYA177C. a,b- under 

ambient light, c,d- fluorescence, a,c-without arabinose, b,d- with arabinose 

3.1.2 Integration of the gene cassettes carrying the araE and lacYA177C genes into the 

chromosome of C. jejuni 11168H 

The validated expression plasmids were subsequently tested in Campylobacter. The gene 

cassettes carrying the araE and mutant lacY were introduced into C. jejuni via electroporation. 

The integration of the gene cassettes was confirmed by PCR, using the  forward primers (ak233, 

ak234, and ak235), as they correspond to the three rRNA loci present in the C. jejuni 

chromosome.  

3.1.2.1 Checking electroporation efficiencies of C. jejuni 11168H with control plasmids 

The pRRC and pSpoT plasmids were used as controls for electroporation experiments. 

Previous studies with various C. jejuni strains confirmed the efficiency of both plasmids (Ikeda 

and Karlyshev, 2012; Karlyshev and Wren, 2005a). The pRRC and pSpoT plasmids were 



67  

purified from their respective E. coli/pRRC and E. coli/pSpoT strains and confirmed by 

restriction analysis. Figures 12 and 13 illustrate the expected fragments obtained with 

restriction analysis.  

   

Figure 12. Restriction maps of control plasmids.  
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Figure 13. Restriction analysis of control plasmids.  

Gel image showing digested pSpoT and pRRC. Plasmid pSpoT was digested with 

StyI. Plasmid pRRC was digested with XbaI. Expected fragment sizes: pSpoT with 

StyI- 5.1 kb and 1.6 kb; pRRC with XbaI- 5.8 kb. 

Samples: 1, 2-Log DNA ladder; 2, pSpoT StyI; 3, pRRC XbaI.  

1 µg of each control DNA was used for electroporation, and a time constant between 5.0–5.3 

ms was obtained. The electroporation efficiencies for 11168H/pRRC ranged between 452 

CFU/µg DNA to 572 CFU/µg DNA, while the efficiencies for 11168H/pSpoT ranged between 

80 CFU/µg DNA to 152 CFU/µg DNA. The resulting transformants were then re-streaked for 

verification by PCR. For 11168H/pSpoT transformants, spoT_for and spoT_rev primers 

specific to the spoT gene were chosen. For 11168H/pRRC, the forward primers (ak233-ak235) 

corresponding to the three different 16S rRNA loci and reverse primer ak237 corresponding to 

the camr
 resistance cassette were used. The locations of these primers in their respective 

plasmids is illustrated in Figures 14 and 15. The transformants were also confirmed to be 

Campylobacter by Gram staining, as illustrated in Figure 16. Figure 17 indicates the PCR 

verification results. The expected size of 2.4 kb was obtained with 11168H/pRRC 

transformant. The result also confirms that the chloramphenicol gene cassette was inserted at 

the chromosomal site where primer ak233 is located. The expected size of 3.7 kb with 
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11168H/pSpoT transformants was obtained, and the presence of the kanr resistance cassette 

was confirmed.  

 

Figure 14. Linear genetic map of plasmid pRRC and the three possible products of 

recombination of the plasmid with the different rRNA loci of the C. jejuni genome 

(Karlyshev and Wren, 2005a). Regions corresponding to primers ak233-ak235 are 

as shown.  

 

Figure 15. Linear genetic map of plasmid pSpoT showing the location of spoT_for 

and spoT_rev primers on the plasmid.  

 

Figure 16. Verification of morphology of C. jejuni transformants by Gram staining. 

C. jejuni cultures were grown under microaerobic conditions at 37°C for 24 h, 

Gram stained, and visualized using a light microscope.  
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.  

Figure 17. Confirmation of integration of camr cassette into the chromosome of C. 

jejuni and inactivation of spoT gene in C. jejuni 11168H. Genomic DNA was used 

as template DNA. GoTaq® Green Master Mix was used. Expected sizes: 

11168H/pRRC-2.4 kb; 11168H/pSpoT-3.7 kb.  

Samples: 1, 11168H/pRRC with primers ak233/ak237; 2, 11168H/pRRC with 

primers ak234/ak237; 3, 11168H/pRRC with primers ak235/237; 4, 11168H/pSpoT 

clone 1 with primers spoT_for and spoT_rev; 5, 11168H/pSpoT clone 2 with 

primers spoT_for and spoT_rev; 6, 2-Log DNA ladder.  

3.1.2.2 Electroporation of pRRBCD-egfp-araE and pRRBCD-egfp-lacYA177C plasmids 

into C. jejuni chromosome 

C. jejuni 11168H competent cells were confirmed to be efficient when tested with the control 

plasmids. The same batches of cells were used for the electroporation of the plasmids carrying 

the arabinose transporter genes. 1 µg of pRRBCD-egfp-araE and pRRBCD-egfp-lacYA177C 

plasmids were electroporated into C. jejuni 11168H electrocompetent cells with a time constant 

ranging between 5.0 ms and 5.1 ms. Control plasmid pRRC was electroporated in parallel. A 

few colonies were obtained with the 11168H/pRRBCD-egfp-lacYA177C with an 

electroporation efficiency of 52 CFU/µg DNA, whereas no colonies were obtained with the 

11168H/pRRBCD-egfp-araE after four days of incubation. Electroporation efficiency of 582 

CFU/µg DNA was obtained with the control electroporation experiment. 

The re-streaked transformants (11168H/pRRBCD-egfp-lacYA177C) were tested by Gram 

3.7 kb  4 kb 
3 kb 

2 kb 

2.4 kb  

  1       2        3       4       5      6  



71  

staining and confirmed to be Campylobacter (Figure 18). The integration of the gene cassette 

carrying the lacYA177C was verified using PCR. GoTaq® Green Master Mix was used for the 

amplification experiment. PCR amplification confirmed that the integration of the gene 

cassette carrying the lacYA177C was inserted into the integration site where primer ak235 

sequence is located (Figure 19). Two sets of primer pairs were employed for the verification. 

One set consisted of the same forward primers (ak233-ak235) as used with pRRC 

transformants, and the reverse primer pBAD_up sequence was located near the PBAD promoter 

itself, which amplified the 2.4 kb region between the chromosomal site and the PBAD promoter 

(Figure 20). The second set of primers (pBAD_for and ak237) were positioned within the 

plasmid, which produced a fragment size of 1.1 kb, amplifying the internal region between 

PBAD promoter and chloramphenicol promoter region (Figure 20). However, several repeats of 

electroporation of pRRBCD-egfp-araE into C. jejuni 11168H cells were carried out and all the 

attempts resulted in no colonies. 

Figure 18. Verification of morphology of C. jejuni 11168H/pRRBC-egfp-

lacYA177C by Gram staining. C. jejuni culture was grown under microaerobic 

conditions at 37°C for 24 h, Gram stained, and visualized using a light microscope.  
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Figure 19.  Confirmation of integration of the gene cassette carrying lacYA177C 

gene into C. jejuni 11168H chromosome by PCR. Genomic DNA was used as 

template DNA. GoTaq® Green Master Mix was used. Expected sizes: 

11168H/pRRC with primers ak233-ak235/ak237- 2.4 kb; 11168H/pRRBCD-egfp-

lacYA177C and ak233-ak235/pBAD_up-2.4 kb; 11168H/pRRBCD-egfp-

lacYA177C and pBAD_for/ak237- 1.1 kb. 

Samples: 1, 2-Log DNA ladder; 2, 11168H/pRRC with primers ak233/ak237; 3, 

11168H/pRRC with primers ak234/ak237; 4, 11168H/pRRC with primers 

ak235/237; 5, 11168H/pRRBCD-egfp-lacYA177C with primers 

ak233/pBAD_up; 6,11168H/pRRBCD-egfp-lacYA177C with primers 

ak234/pBAD_up; 7,11168H/pRRBCD-egfp-lacYA177C with primers 

ak235/pBAD_up; 8,11168H/pRRBCD-egfp-lacYA177C with primers 

pBAD_for/ak237. 

 

Figure 20. Linear genetic map of C. jejuni 11168H/pRRBCD-egfp-lacYA177C 

showing the location of the PCR verification primers. Location of primer 235 

corresponds to the RNA locus present in the C. jejuni genome. Location of 

pBAD_up and pBAD_for primers corresponds to the pBAD regulatory region. 

Location of primer ak237 corresponds to the camr cassette. 
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3.1.3 Troubleshooting electroporation issues with pRRBCD-egfp-araE plasmid 

To troubleshoot electroporation experiments of the araE construct in C. jejuni, the 

11168H/cj1051 mutant was constructed. This gene encodes a restriction endonuclease. Holt et 

al. (2012) suggested that the absence of this gene resulted in an increase in electroporation 

efficiency of wild-type C. jejuni NCTC 11168. In this part of the study, the 11168H/cj1051 

mutant was contructed via insertional mutagenesis using kanr cassette. This strain was then 

utilized for the electroporation with pRRBCD-egfp-araE plasmid. 

3.1.3.1 Construction of 11168H/cj1051 mutant  

Primers cj1051_for and cj1051_rev were designed and utilized to PCR amplify the cj1051 gene 

(≈1.96 kb) with flanking regions from the C. jejuni 11168H genome, as illustrated in Figure 

21. The steps involved in the construction of this plasmid are shown in Figure S1 in the 

Appendix. The gene fragment was cloned into the pGEM-T Easy vector, and the intermediate 

recombinant plasmid pGEM-T-1051 was verified by restriction analysis using enzymes SwaI 

and SalI. The digestion produced the expected fragments of sizes 3.4 kb and 1.6 kb, as 

illustrated in Figure 22. Plasmid pRRT was digested with XbaI and NheI, and the fragment 

containing the tetr resistance cassette was gel-purified and used for cloning. The tetr resistance 

cassette was inserted into the XbaI site of the intermediate construct (Figure 22a). The resulting 

recombinant p1051-tetR clone was then verified by restriction analysis using SwaI. The 

digestion produced expected fragments of sizes 5 kb and 2.8 kb, confirming that the gene and 

the tetr were in the same orientation, as illustrated in Figure 23.  
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Figure 21. Amplification of cj1051 gene with flanking regions from C. jejuni 

11168H chromosomal DNA using primers cj1051_for and cj1051_rev by PCR. 

GoTaq® Green Master Mix was used. Expected size is approximately 1.96 kb.  

Samples: 1, 2-Log DNA ladder; 2, cj1051. 
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Figure 22. Verification of an intermediate construct pGEM-T-1051 by restriction 

analysis.  

(a) Restriction map of the plasmid indicating the SwaI and SalI sites used in 

restriction analysis, and XbaI insertional site used in cloning experiment.  

(b) Gel image showing uncut (lane 2) and digested pGEM-T-1051 with SwaI and 

SalI (lane 3). Expected fragment sizes: 3.4 kb and 1.6 kb.  
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Figure 23. Verification of p1051-tetR by restriction analysis.  

(a) Restriction map of the plasmid indicating the SwaI sites used in restriction 

analysis, and XbaI and XbaI/NheI integration sites after the insertion of the tetr 

cassette.  

(b) Gel image showing uncut and digested p1051-tetR with SwaI.  

Expected fragment sizes: 5.0 kb and 2.8 kb.  

Samples: 1, 2-Log DNA ladder; 2, p1051-tetR; 3, p1051-tetR SwaI 
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The verified p1051-tetR clone was then electroporated into C. jejuni 11168H cells to create the 

mutant C. jejuni 11168H/cj1051. 1 µg of p1051-tetR DNA was electroporated, with a time 

constant of 5 ms. The entire electroporated volume was placed on a non-selective plate and 

incubated for 10 h under standard conditions. Several studies in the past have varied initial 

incubation times ranging from 4 h to overnight (Miller et al., 1988; Davis et al., 2008; Hansen et 

al., 2007; Holt et al., 2012). This study employed an incubation period of 10 h after initial attempts 

with overnight as well as 5 h incubation resulted in poor or no transformants. The growth was then 

re-streaked onto a tetracycline selective plate and incubated for a further three days until 

tetracycline-resistant colonies appeared producing an electroporation efficiency of 30 CFU/µg 

DNA. 

The transformants were confirmed by Gram staining as Campylobacter. The mutation was 

further confirmed by PCR employing cj1051 gene-specific primers. An expected PCR product 

of size 4.9 kb was obtained, and the result confirmed that the tetr cassette has disrupted the 

cj1051, thereby creating the knockout mutant 11168H/cj1051 (Figure 24). 



78  

 

Figure 24. Verification of the inactivation of cj1051 gene in C. jejuni 11168H by 

PCR. Primers cj1051_for and cj1051_rev were used. Genomic DNA was used as 

template DNA. GoTaq® Green Master Mix was used. Expected PCR product size: 

4.9 kb.  

Samples: 1, 2-Log DNA ladder; 2, 11168H/cj1051  

3.1.3.2 Comparison of electroporation efficiencies 

Electroporation efficiencies of the C. jejuni wild-type 11168H and the 11168H/cj1051 mutant 

strains were compared. Competent cells of both strains were prepared in parallel, and 1 µg of 

pRRC and pSpoT plasmids were electroporated into both. The non-selective plates were 

incubated for the same length of time, approximately 10 h. After the initial incubation period, 

pRRC transformants were re-streaked onto chloramphenicol (10 µg/mL) selective plates and 

pSpoT transformants were re-streaked onto kanamycin (50 µg/mL) selective plates, 

respectively. The selective plates were incubated for a further two to three days. The 

experiment was repeated thrice in a conventional incubator, and the results are summarized in 

Table 5. 
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Table 5. Comparison of electroporation efficiencies (CFU/µg DNA) of C. jejuni 

11168H and 11168H/cj1051 electroporation experiments. Values are an average 

from three biological replicates.  

 pRRC pSpoT 

 11168H 11168H/cj1051 11168H 11168H/cj1051 

Electroporation efficiency CFU/µg 545 818 29 230 

p-value 0.009 0.015 

Standard deviation 58.95 80.01 4.35 85.29 

A few clones from each electroporation plate were selected and analysed by Gram staining and 

verified by PCR by using pRRC integration and spoT gene specific primers. PCR produced 

expected band sizes with both pRRC and pSpoT transformants, as illustrated in Figure 25. 

After three repeats of electroporation of both strains with pRRC and pSpoT, the efficiency was 

observed to be higher for the mutant with both control plasmids as anticipated; as reflected by 

the p-values shown in Table 5. 
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Figure 25. PCR verification of C. jejuni 11168H and 11168H/cj1051 transformants 

from comparative electroporation experiment using control plasmids. Genomic 

DNA was used as template DNA. GoTaq® Green Master Mix was used. Expected 

sizes: pRRC transformants-2.4 kb; pSpoT transformants-3.8 kb.  

Samples: 1, 11168H/pRRC with primer ak233/ak237; 2, 11168H/pRRC with 

primer ak234/ak237; 3, 11168H/pRRC with primer ak235/ak237; 4, 

11168H/cj1051/pRRC with primer ak233/ak237; 5, 11168H/cj1051/pRRC with 

primer ak234/ak237; 6, 11168H/cj1051/pRRC with primer ak235/ak237; 7, 

11168H/pSpoT with primers spoT_for and spoT_rev; 8, 11168H/cj1051/pSpoT 

with primers spoT_for and spoT_rev; 9, 2-Log DNA ladder. 

3.1.3.3 Electroporation of pRRBCD-egfp-araE into 11168H/cj1051 mutant  

The 11168H/cj1051 mutant was used as a recipient strain for the electroporation of pRRBCD-

egfp-araE construct. 1 µg of DNA was electroporated into freshly prepared mutant 

electrocompetent cells. The time constant was 5.1 ms with electroporation efficiency of 

approximately 80 CFU/µg DNA. The transformant was re-streaked for further analysis by 

Gram staining and PCR verification. Gram staining revealed the culture to be pure C. jejuni, as 

illustrated in Figure 26. For PCR verification, the same set of primers (ak233-ak235/pbad_up) 

used for the confirmation of 11168H/pRRBCD-egfp-lacYA177C was employed. GoTaq® 

Green Master Mix was used for the PCR amplification experiment. The internal primer pair 

(pRR1/ak237), as illustrated in Figure 27, amplified the region from the 16S rRNA gene to the 
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chloramphenicol promoter site (Figure 28). Conversely, no amplification was observed with 

the external primers corresponding to the chromosomal sites (ak233- ak235). The lack of 

amplification could therefore be due to a technical error in analysis. 

 

Figure 26. Verification of morphology of C. jejuni 11168H/pRRBCD-egfp-araE 

by Gram staining. C. jejuni culture was grown under microaerobic conditions at 

37°C for 24 h, Gram stained, and visualized using a light microscope.  

 

Figure 27. Linear genetic map of C. jejuni 11168H/pRRBCD-egfp-araE showing 

the location of the PCR verification primers. Location of primers ak233-235 

corresponds to the three different RNA loci present in the C. jejuni genome. 

Location of primer ak237 corresponds to the camr cassette. Location of primer 

pBAD_for corresponds to the pBAD regulatory region. Location of primer pRR1 

corresponds to the region downstream of the 16S rRNA gene.  
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Figure 28. PCR amplification of region between 16S gene and chloramphenicol 

promoter site in 11168H/pRRBCD-egfp-araE transformant by PCR. Genomic 

DNA was used as template DNA. GoTaq® Green Master Mix was used. Primers 

pRR1/ak237 were used for verification. Expected PCR product size: 2.4 kb. 

Samples: 1, 2-Log DNA ladder; 2, 11168H/cj1051/pRRBCD-egfp-araE  

3.1.4 Confirmation of integration of gene cassette carrying araE gene 

In this section, sequencing of C. jejuni 11168H/cj1051/pRRBCD-egfp-araE and 

11168H/pRRBCD-egfp-lacYA177C were carried out. The sequencing was conducted to ensure 

no point mutations in and near the respective genes existed and no deletions or possible 

insertions had occurred. 

3.1.4.1 Genome sequencing of derivative C. jejuni strains carrying araE and 

lacYA177C genes 

The genome sequencing was carried out as described in Materials and Methods. CLC 

Genomics Workbench software mapped the reads onto the reference genome sequence of C. 

jejuni strain NCTC 11168 (1,641,481 nt, accession number GCA_000009085.1) and then the 

consensus sequences were extracted. The contigs generated by Torrent server SPAdes de novo 

assembly plug-in (version 5.0.0.0.0) were used to close the gaps between the consensus 

sequences. Following this, the generation of contiguous sequences was further verified by read 

mapping. The sizes of the genomes of the C. jejuni derivatives were as follows: 1,647,847 nt 

(102× coverage) (11168H/cj1051/pRRCBD-egfp-araE) and 1,645,651 nt (152× coverage) 

  1       2         

2.4 kb 
3 kb 

2 kb 



83  

(11168H/pRRCBD-egfp-lacYA177C). 

Figures 29 and 30 illustrate the results from the assembled sequences, confirming that the gene 

cassettes carrying the araE and modified lacY had been integrated between the rRNA gene 

clusters as anticipated. The sequencing results revealed no point mutations or indels had 

occurred and confirmed the derivatives were free of errors. In addition, full functionality of 

PBAD, gfp, araE/lacYA177C and regulatory regions required for expression was confirmed. The 

genome sequences are available in the NCBI GenBank database under the accession numbers 

CP022439.1 (11168H/pRRBCD-egfp-lacYA177C) and CP022559.1 

(11168H/cj1051/pRRBCD-egfp-araE). The insertional inactivation of the cj1051 gene in C. 

jejuni 11168H/cj1051/pRRBCD-egfp-araE was also confirmed.  

 

Figure 29. Chromosomal region between the 16S and 28S rRNA genes containing 

the PBAD promoter, camr, gfp, and lacYA177C genes (CLC Genomics Workbench 

software) (Ramesh et al., 2019). 

 

Figure 30. Chromosomal region between the 16S and 28S rRNA genes containing 

PBAD promoter, camr, gfp, and araE genes (CLC Genomics Workbench software) 

(Ramesh et al., 2019). 

3.1.4.2 Confirmation of gene cassette integration in the 11168H/cj1051/pRRBCD- 

egfp-araE strain by polymerase chain reaction 

The genome sequencing convincingly indicated, that the derivative strain 

11168H/cj1051/pRRBCD-egfp-araE did not possess any deletions and the gene cassette was 
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indeed integrated correctly into the rRNA gene cluster. To troubleshoot any potential issues 

with PCR, another type of polymerase (NEB Q5® High-Fidelity DNA Polymerase) with higher 

proofreading properties was purchased and checked with the same clone with external primers. 

The expected fragment of 4.6 kb was obtained with this polymerase, as illustrated in Figure 31, 

further confirming that the gene cassette carrying the araE gene was successfully integrated 

into the integration site (corresponding to primer ak235) of the C. jejuni chromosome. 

 

Figure 31. Confirmation of the integration of gene cassette carrying the araE gene 

into the chromosome of C. jejuni 11168H/cj1051 by PCR (Ramesh et al., 2019). 

Genomic DNA was used as template DNA. NEB Q5® High-Fidelity DNA 

Polymerase was used for PCR. Expected PCR product size: 4.6 kb.  

Samples: 1, 2-Log DNA ladder; 2, 11168H/cj1051/pRRBCD-egfp-araE with 

primers ak233/ak237; 3, 11168H/cj1051/pRRBCD-egfp-araE with primers 

ak234/ak237; 4, 11168H/cj1051/pRRBCD-egfp-araE with primers ak235/ak237.  

3.1.5  Investigation of expression of gfp in C. jejuni derivative strains 

The expression study of the reporter gene gfp in both the C. jejuni derivative strains will be 

carried out in this section. GFP induction in the presence of varying concentrations of arabinose 

will be monitored in solid culture by fluorescence microscopy and in liquid culture using 
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fluorimetry. Induction studies of GFP were conducted to investigate the function of the inserted 

arabinose transporter genes and to confirm the functionality of PBAD promoter in C. jejuni. 

3.1.5.1 Growth rates of derivative strains 

To determine the growth rates of the C. jejuni derivative strains in comparison to the wild-type 

11168H, OD600 was measured using shaking cultures. The effect of arabinose addition was also 

investigated in these assays, using a final arabinose concentration of 0.2%. The OD600 of the 

initial inoculum was adjusted to 0.1, and readings were taken every 1.5 h up to 6 h. Arabinose 

was added after 6 h, and the cultures were incubated on a shaker at 250 rpm overnight. During 

the initial 6 h, the growth rates were comparable between the two derivative strains, as well as 

among the induced and uninduced cultures of all three strains. Final OD600 measurements were 

taken after 21 h (which included overnight incubation). Figure 32 illustrates that the wild-type 

uninduced culture grew faster than the uninduced derivative cultures. In addition, a significant 

difference in OD600 readings was obtained between induced and un-induced cultures of 

11168H, lacYA177C and araE derivative strains, indicating the addition of arabinose caused 

retardation of growth in all three strains. 
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Figure 32. Comparison of growth rates of the C. jejuni derivative strains to the wild-

type strain (Ramesh et al., 2019). Wild-type, 11168H uninduced; Wild-type Ara, 

11168H induced; lacY, 11168H/pRRBCD-egfp-lacYA177C uninduced; lacY Ara, 

11168H/pRRBCD- egfp-lacYA177C induced; araE, 11168H/cj1051/pRRBCD-

egfp-araE uninduced; araE Ara, 11168H/cj1051/pRRBCD-egfp-araE induced. 

The graph is a representation of three biological experiments with three technical 

replicates. ***p ≤ 0.001. P values to show the effect of arabinose on the growth 

rate of each strain when compared to uninduced cells (11168H, p < 0.0001; 

11168H/pRRBCD-egfp-lacYA177C, p < 0.0001; 11168H/cj1051/pRRBCD-egfp-

araE, p < 0.0001). P values to show the difference in growth rate between wild-

type and derivative strains at the end of 21 h (11168H and pRRBCD-egfp-

lacYA177C, p, 0.8; 11168H and 11168H/cj1051/pRRBCD-egfp-araE, p, 0.9). 

3.1.5.2 GFP expression studies using solid agar plates 

The gfp induction in the derivative strains was studied using solid agar plates as was done when 

testing E. coli. The CBA plates for C. jejuni growth contained 0.02% and 0.2% final 

concentrations of arabinose, as well as 10 µg/mL of chloramphenicol. The strains were 

incubated for two to three days until single colonies appeared. The single colonies were then 

visualized using brightfield and fluorescence microscopy, but no fluorescence was detected. 

The positive control plate E. coli/pRRBCD-egfp-lacYA177C indicated good-intensity 
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fluorescence of single colonies under the same microscope settings. 

3.1.5.3 GFP expression studies using liquid cultures by fluorimeter 

The C. jejuni derivative strains were further tested in liquid cultures for the induction of the 

reporter gene gfp. E. coli/pRRBCD-egfp-lacYA177C was tested alongside as a control for the 

fluorimeter experiment. Testing in liquid cultures was carried out, as the sensitivity for GFP 

fluorescence signal is greater when compared to fluorescence microscopy. After incubation of 

test cultures with arabinose for 2 h, fluorescence signals from the whole cell suspensions and 

lysates were measured. Figures 33 and 34 revealed highly significant differences in induction 

signals between the induced and uninduced cultures of the E. coli control strain. Conversely, a 

somewhat noticeable difference was obtained between induced and uninduced cultures of the 

11168H/cj1051/pRRBCD-egfp-araE in whole cell suspensions only (Figure 33). In addition, 

whole suspensions of 11168H/pRRBCD-egfp-lacYA177C demonstrated no difference in 

signals, as reflected by the very high p-value. Similarly, the variation between the induced and 

uninduced cultures of the lysates of both derivative strains was not statistically significant, as 

shown in Figure 34.  
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Figure 33. Fluorescence testing of bacterial samples in whole cell suspensions 

before and after induction (Ramesh et al., 2019). The graph is a representation of 

three independent experiments consisting of three technical replicates. Standard 

error mean values were used to represent error bars. *0.01 < p ≤ 0.05, ***p ≤ 0.001. 

(A) E. coli/pRRBCD-egfp-lacYA177C, (B) 11168H/cj1051/pRRBCD-egfp-araE, 

(C) 11168H/pRRBCD-egfp-lacYA177C. 
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Figure 34. Fluorescence testing of bacterial samples in lysates before and after 

induction (Ramesh et al., 2019). The graph is a representation of three independent 

experiments consisting of three technical replicates. Standard error mean values 

were used to represent error bars. ***p ≤ 0.001. 

(A) E. coli/pRRBCD-egfp-lacYA177C. (B) 11168H//cj1051/pRRBCD-egfp-

araE. (C) 11168H/pRRBCD-egfp-lacYA177C.  
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3.2 Investigation of the molecular mechanism of biofilm formation and 

dispersal in C. jejuni 11168H 

This section describes the investigation of a possible role of a nuclease gene in the dispersal 

mechanism of C. jejuni 11168H biofilms. Gene cj0979 annotated as a putative nuclease in C. 

jejuni strain NCTC 11168 was further studied in this section. This gene is conserved in other 

Campylobacter genomes; however, its function has not yet been studied. An 11168H/cj0979 

knockout mutant was constructed and the effects of the mutation on the biofilm formation were 

studied. In addition, the enzymatic properties of purified Cj0979 were investigated. The protein 

was purified utilising an inducible promoter of the pBAD33 plasmid, following a previous 

study by Guzman et al. (1995). The function of extracellular nucleases in association with 

biofilm formation is widely studied in other bacteria such as S. aureus and V. cholerae 

(Kierdowski et al., 2011; Seper et al., 2013). Brown et al. (2015b) investigated the role of 

nucleases in C. jejuni RM1221 biofilms. This study is the only published work associated with 

Campylobacter. Thus, in this section, investigation of a possible role of a putative nuclease 

Cj0979 in Campylobacter 11168H biofilm dispersion was studied, as it has not been reported 

elsewhere.  

3.2.1 Identification of the dispersal stage of C. jejuni 11168H and investigation of 

composition of DNA complex in the culture supernatant 

The biofilm-forming pattern of the wild-type C. jejuni 11168H was investigated in this work. 

Biofilm formation was quantified using CV assay. In addition, the detection of nuclease 

activity in the culture supernatant was also attempted. DNase assays of the supernatant samples 

were conducted to detect any potential activity of a secreted nuclease possibly present in the 

medium. Furthermore, mass spectrometry analysis was employed in an attempt to determine 

the composition of DNA complex present in the culture supernatant.  
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3.2.1.1 Identification of the dispersal stage of C. jejuni 11168H strain 

This section primarily focuses on the investigation of the biofilm formation pattern of the widely 

studied C. jejuni 11168H strain. Initially, biofilm formation was optimized after comparing its 

growth on different surfaces, such as widely used test tubes and microtiter plates. Both types 

of surfaces were employed in previous studies with Campylobacter (Brown et al., 2015b; 

Reeser et al., 2007; Joshua et al., 2006). Preliminary results obtained with test tubes and 

microtiter plates suggested that the ring-like structure formed at the air-liquid interface was 

thicker in test tubes. Therefore, test tubes were chosen as the growth surface for further biofilm 

testing of C. jejuni 11168H strain. 

For biofilm assays, C. jejuni strain 11168H was grown in BHI broth with an initial OD600 of 0.5. 

The cultures were grown in test tubes under static, microaerobic conditions at 37°C. Cultures 

were tested for biofilm formation every 24 h for a period of 10 days. A good amount of biofilm 

was observed after Day 4 with the highest formation on Day 8, after which reduction in the 

absorbance signals of the stained biofilm occurred, thus confirming dispersal.  The test tube 

assays included a two-step washing process to remove excess background staining that had 

occurred at the base of the tubes. The results in Figure 35 represent three assays. The difference 

in absorbance values between Day 8 and Day 9 was statistically significant, therefore 

confirming the dispersal phenomenon shown in the Figure 35. The error bars were quite high, 

possibly because each test tube in the technical replicates was separately manually handled, 

introducing potential variations in the experiment. 

  



92  

 

Figure 35. Biofilm formation curve of C. jejuni 11168H in borosilicate test tubes 

over a 10 days period. Absorbance of CV staining was measured at 595 nm. The 

graph is a representation of three independent experiments comprising of three 

technical replicates. * 0.01 < p ≤ 0.05. p value – comparison of absorbance values 

between day 8 and 9. Standard error of mean values was used to represent error 

bars. 

3.2.1.2 DNase test assays of 11168H supernatant 

Since biofilm dispersion was observed after Day 8, the bacterial culture was then spun down 

and the supernatant was tested for DNase activity. The bacterial pellet was discarded. The 

culture supernatant was sterilized by passing through a millipore filter and employed for DNase 

testing with eDNA-B as substrate. The eDNA-B was purified from biofilm on day 8. The 

eDNA-B was incubated with sterile culture supernatant to check for any possible nuclease 

activity. After incubation for 1 h at 37°C, the samples were run on an agarose gel. Figure 36 

illustrates the results of this analysis and the bands appeared very faint on the gel as the 

concentration of eDNA-B was very low, approximately 8 ng/µL. This gel did not conclusively 

indicate whether there was any DNase activity; on one hand, the band for eDNA-B was not 

visible in lanes 3-5, but on the other hand, the bands in these lanes have appeared higher than 

the control lane 2. 
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Figure 36. Gel image showing the attempt to detect DNase activity in culture 

supernatant. Equal amounts of DNA are present in lanes 2-5. Sample in lane 2 was 

run alongside as a positive control.  

Samples: 1, 2-Log DNA ladder; 2, eDNA-B; 3- 5, eDNA-B, 1x DNase buffer, 

and 10 µL supernatant.  

To determine whether any residual eDNA in the supernatant remained, 10 µL of the sample 

was purified and labelled eDNA-S. The product was run alongside eDNA-B and the culture 

supernatant for comparison, revealing that the purified product contained eDNA, as seen in 

Figure 37. Table 6 represents the concentrations and purity obtained with the eDNA samples in 

comparison with a diluted pSpoT plasmid with TE buffer (control). The very low values of 

A260/A230 of the eDNA samples may suggest carryover of sugars from the biofilm matrix 

itself. This experiment confirmed the presence of eDNA in the supernatant sample but the 

mystery regarding slow mobility remained. Since sample in lane 4 without the addition of 

eDNA-B has moved slower on the gel, a suspicion was that the observed retardation could 

be due to the interactions of the salts present in the culture media. 
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Figure 37. Gel electrophoresis of eDNA samples and culture supernatant. Equal 

amounts of eDNA was applied in lanes 2 and 3.  

Samples: 1, 2-Log DNA ladder; 2, eDNA-B; 3, eDNA-S; 4, 10 µL culture 

supernatant. 

Table 6. NanoVue readings of purified eDNA samples. Diluted pSpoT was used a 

positive control for the NanoVue readings due to low concentration test samples. 

Elution buffer was used as a reference. Table shows average values of three 

readings. 

Samples Concentration(ng/µL) A260/A280 A260/A230 

pSpoT 8.67 1.64 1.88 

eDNA-B 12.33 1.47 0.68 

eDNA-S 6.67 1.51 0.86 

To exclude the effects of medium and DNase buffer on the difference in mobility, eDNA-B 

was incubated with just pure BHI broth and the DNase buffer at 37°C. The results confirmed 

that the medium and DNase buffer do not affect the mobility, as all samples ran at the same 

level on the gel (Figure 38). 
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Figure 38. Investigation of possible effects of medium and DNase buffer on 

migration pattern of eDNA samples on a 1% agarose gel. Equal amounts of DNA 

were added (lanes 2-4). 10 µL of BHI broth was used. 2 µL of 10× NEB DNase 

buffer was used.  

Samples: 1, 2-Log DNA ladder; 2, eDNA-B; 3, eDNA-B and BHI broth; 4, 

eDNA-B and 1× NEB DNase buffer. 

The DNase assays with eDNA-B were repeated for reproducibility. The effect of proteinase K 

on the culture supernatant was also tested. Table 7 provides the NanoVue readings of the eDNA 

samples from the new purification which was used in the following test. The samples were 

treated with proteinase K to obtain DNA from bound proteins in the supernatant sample. All 

the samples were incubated under the same conditions. The results seen in Figure 39 

correspond to the results seen on previous gels (Figures 36, 37, and 38).  

There was no effect of the medium or the buffer on the mobility. In all the cases with 

supernatant and eDNA samples, the band migrated slower. Proteinase K-treated samples ran 

faster than culture supernatant samples, suggesting that proteinase K had an effect in breaking 

down contaminants present in the DNA complex in culture supernatant sample. Therefore, this 

led to the deduction that there may be DNA binding proteins present in the supernatant sample. 

1             2             3             4 

10 kb 
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Table 7. NanoVue readings of second purification of eDNA-B. Diluted pSpoT 

plasmid was used as control for low concentration test samples. Elution buffer was 

used as a reference for NanoVue readings. Table shows average values of three 

readings 

Samples Concentration (ng/µL) A260/A280 A260/A230 

pSpoT (Control) 8.67 1.640 1.879 

eDNA-B 15.67 1.382 0.962 

 

Figure 39. DNase activity of Proteinase K treated culture supernatant. Equal 

amounts of 55 ng of eDNA-B was used. 10 µL of culture supernatant was used. 2 

µL of 10× DNase buffer was used. 10 µL of BHI broth was used.  

Samples: 1, 2-Log DNA ladder; 2, eDNA-B; 3, eDNA-S; 4, eDNA-B and BHI 

broth; 5, eDNA-B and supernatant; 6, eDNA-B, supernatant, and DNase buffer; 

7, eDNA-B and DNase buffer; 8, culture supernatant; 9, Proteinase K treated 

supernatant; 10, Proteinase K treated supernatant and eDNA-B. 
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3.2.1.3 Treatment of 11168H supernatant with trypsin 

This section focused on the elimination of all low molecular weight proteins and sugars and 

smaller DNA/RNA fragments from the culture supernatant sample. The supernatant sample 

was buffer exchanged with 1x TE buffer producing a fold change of 2500, using spin 

concentrators (5 kDa cut-off value). The supernatant sample after media exchange was tested 

for A260/A280 and A260/A230 ratios using NanoVue spectrophotometer (Table 8). The values 

were compared with the culture supernatant sample, which served as a control. 

Table 8. DNA concentration and purity of supernatant sample before and after 

media exchange. TE buffer was used as a reference for NanoVue readings. Table 

shows average values from three repeats. Comparison of the purities between two 

samples is denoted by p values 

Samples Nucleic 
acids (µg) 

A260/A280 p-value A260/A230 p-value 

Supernatant sample after media 

exchange 

5.2 1.291  
< 0.002 

0.206 < 0.002 

Culture supernatant 6.8 1.380 0.388  

Results in Table 8 showed a slight decrease in A260/A280 ratio of the supernatant sample after 

buffer exchange, which indicated a change in the composition of the protein-DNA complex, 

potentially due to the removal of oligonucleotides smaller than 5 kDa. In addition, a reduction 

observed in the A260/A230 ratio suggests the presence of a larger fraction of carbohydrates 

after the buffer exchange process. The change in both ratios was statistically significant (p < 

0.002) when compared to the culture supernatant. 

Trypsin was chosen as the enzyme to cleave proteins into smaller peptides in the supernatant 

sample after media exchange. After the trypsin treatment, the sample was further passed 

through a spin concentrator (cut-off value of 10 kDa) to remove cleaved off peptides. BCA 

assay was used to determine protein concentrations of the retentate and flowthrough fractions; 

the amounts present in each fraction are as represented in Table 9. The amount of protein 
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content was greater in the flowthrough fraction 1 when compared to the retentate fraction, as 

expected. In addition, the amount of nucleic acids in the retentate sample compared to 

flowthrough fractions also confirmed that the majority of the nucleic acids was retained (as 

retentate) in the column itself, as anticipated. All three trypsin-treated fractions were run on a 

gel, and a visible band was obtained with only the retentate fraction (Figure 40). This 

suggests that the flowthrough fractions contained DNA fragments smaller than 10 kDa. These 

fragments cannot be detected on a 1% agarose gel. 

Table 9. Estimation of protein and DNA content in samples. NanoVue 

spectrophotometer was used to determine the amount of nucleic acids in each 

fraction. BCA assay was used to determine the amount of protein in each fraction. 

Table represents average values from three readings. 

Samples Nucleic acids (µg) Protein (µg) 

Supernatant sample 

after media exchange 

9.2 124 

Retentate 4.7 18.8 

Flowthrough 1 1.9 23.4 

Flowthrough 2 1.8 18.2 
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Figure 40. Gel electrophoresis of trypsin treated samples. The three fractions 

(retentate and flowthrough fractions) were run on a 1% agarose gel. 0.3 µg of DNA 

was applied to lanes 1-3.  

Samples: 1, Retentate; 2, flowthrough 1; 3, flowthrough 2; 4, 2-Log DNA ladder.  

3.2.1.4 Identification of products of proteolytic digestion 

Mass spectrometry analysis was carried out to explore the composition of proteins in the DNA 

complex. Flowthrough fraction 1, containing cleaved off peptides, was sent for mass 

spectrometry analysis to the Cambridge Centre for Proteomics. The data was received in an 

MHT file format where the proteins were listed according to their abundance index (emPAI) 

values. The resulting file had more than 300 hits; therefore, to simplify data analysis, the first 

10 most abundant proteins were shortlisted and further investigated (Table 10). 
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Table 10. List of the first 10 most abundant proteins detected by Mass spectrometry  

GenBank 
accession code 

Name Function Sample 

emPAI Percn 

tage(%) 

sp|Q9PI64|AC 

P_CAMJE 

Acyl carrier 

protein 

Involved in fatty acid biosynthesis and 

lipid biosynthesis 

13.92 6.3 

sp|Q9PHM9|I 

PYR_CAMJE 

Inorganic 

pyrophosph 

atase 

Functions as a hydrolase and involved 

in hydrolysis of pyrophosphate 

10.37 4.7 

tr|Q0PC22|Q0 

PC22_CAMJE 

Peptidyl- 

prolyl cis- 

trans 

isomerase 

Functions as an isomerase and 

rotamase 

8.99 4.5 

sp|Q9PPE0|TP 

X_CAMJE 

Thiol 

peroxidase 

Converts organic hydroperoxides and 

hydrogen peroxide to water and 

alcohols. Involved in oxidative stress 

protection of the cells. 

8.62 3.9 

tr|Q0PB64|Q0 

PB64_CAMJE 

* 

Uncharacter 

ized protein 

 7.93 3.6 

sp|O69303|EF 

TU_CAMJE 

Elongation 

factor Tu 

Involved in GTP-dependent binding 

during protein biosynthesis 

7.9 3.5 

tr|Q0PAY5|Q0 

PAY5_CAMJ E 

Isocitrate 

dehydrogen 

ase 

Involved in metal ion binding. 5.39 2.4 

sp|Q9PHY1|S 

UCC_CAMJE 

Succinate- 

CoA ligase 

Plays a functional role in the citric acid 

cycle (TCA). Involved in the synthesis 

of either ATP or GTP. 

5.19 2.4 

sp|O69289|CH 

60_CAMJE 

60 kDa 

chaperonin 

Involved in protein refolding and 

prevents misfolding 

4.65 2.1 

sp|O69298|DN 

AK_CAMJE* 

Chaperone 

protein 

DnaK 

Involved in ATP binding, protein 

folding and unfolded protein binding 

4.47 2 

The function and origin of each protein was studied and summarized in the Table above, and it 

was concluded that the majority of the proteins listed serve general housekeeping functions 

excluding one uncharacterized protein with an unknown function. The sequence of this protein 

was obtained from UniProtKB and used for BLASTp analysis against the Swiss-Prot database 

to identify similar proteins. The search resulted in one hit with a 43% match to a protein called 

from YdcH from E. coli (Figure 41). Unfortunately, no studies for this protein exist yet. 
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BLASTp result for uncharacterized protein  
 

Amino acid sequence for uncharacterized protein (Cj0449c) 

 

> Cj0449c (Query sequence) 

 
MLHEYRELMSELKGKDAHFDKLFDRHNELDDMIKDAEEGRTSLSSMEISTLKKEKLHVKDELSQYLANYKK 

 

>RecName: Full, Uncharacterized protein YdcH (Subject sequence) 

Figure 41. BLASTp search result showing sequence alignment between 

uncharacterized protein and YdcH (E. coli).  

3.2.1.5 Treatment of 11168H supernatant with dextranase 

The A260/A230 ratio of the supernatant sample after media exchange was low suggesting the 

presence of sugar or sugar-containing compounds (Table 8). To determine whether the presence 

of dextran-like polysaccharides caused the low ratios, the sample was treated with dextranase, 

an enzyme that digests dextrans, as in a previous study (Jowiya et al., 2015). The treatment 

with dextranase was conducted following the protocol provided by the manufacturer. The 

samples were passed through a spin concentrator (cut-off value of 10 kDa) following treatment. 

The retentate and flowthrough fractions were checked using gel electrophoresis (Figure 42) 

and a visible band was obtained only with the retentate sample. However, the flowthrough 

fractions contained nucleic acids as shown in Table 11. The reason for the lack of detection on 

the gel could be that the DNA fragments present in these fractions were below 10 kDa and 

cannot be viewed on a 1% agarose gel. NanoVue readings (Table 11) revealed an increase in the 

A260/A230 ratio in the retentate fraction; the difference was highly significant when compared 

to the supernatant sample after media exchange, as denoted by the p-value. Despite the 

difference, there was no substantial increase in the values as was expected following dextranase 
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treatment. Conversely, the low A260/A230 ratios of the flowthrough fractions confirmed the 

lack of oligosaccharides in these samples. Table 11 also revealed that pure oligonucleotides 

with size below 10 kDa were present in the flowthrough fractions, especially flowthrough 2. 

This was also confirmed by the highly significant difference in the A260/A280 ratios of the 

flowthrough fractions when compared to the supernatant sample after media exchange. 

However, the A260/A280 ratio of the retentate fraction also shows a significant increase after 

the treatment, which was a slight contradiction. In summary, the results suggest that the 

supernatant sample does not contain any dextran-like polysaccharides neither in the bound nor 

free forms. The low A260/A230 ratio could suggest the presence of other types of 

polysaccharides in the supernatant sample that are not cleavable by dextranase. 

Table 11. Analysis of supernatant samples after treatment with dextranase. TE 

buffer was used as a reference for NanoVue readings. Table shows average values 

with three repeats. 

 

 
Samples 

 
Nucleic 

acids (µg) 

 

 
A260/A280 

p values in 
comparison 

to 
supernatant 
after media 
exchange 

 

 
A260/A230 

p values in 
comparison 

to 
supernatant 
after media 
exchange 

Supernatant after media 
exchange 

9.2 1.291  0.206  

Retentate 3.0 1.34 0.001 0.25 <0.0001 

Flowthrough 1 1.9 1.82 <0.0001 0.21 0.04 

Flowthrough 2 3.9 1.68 <0.0001 0.23 0.05 
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Figure 42. Gel electrophoresis of dextranase treated samples. The final three 

fractions (retentate and flowthrough fractions) were run on a 1% agarose gel. 0.3 

µg of DNA was applied to lanes 2-5. Sample in lane 2 was applied as a control. 

Samples in lanes 3-5 are treated with dextranase. 

Samples: 1, 2-Log DNA ladder; 2, supernatant after media exchange; 3, retentate; 

4, flowthrough 1; 5, flowthrough 2.  

3.2.2 Investigation of the role of cj0979 gene in biofilm formation of C. jejuni 11168H 

This section reports the investigation of a role of cj0979 gene in C. jejuni 11168H biofilms. 

The cj0979 was annotated as a probable nuclease-encoding gene in C. jejuni NCTC 11168 

genome, according to GenBank (taxid: 19222). A possible role of this particular gene was 

studied with the aid of site-directed mutagenesis. A kanr resistance gene cassette was used to 

disrupt the cj0979 gene in 11168H strain to create C. jejuni 11168H/cj0979 mutant. Biofilm 

formation study was conducted to determine the phenotype of the mutant. 

3.2.2.1 Construction of 11168H/cj0979 mutant 

Primers cj0979_for and cj0979_rev were designed to PCR amplify cj0979 (≈ 1.99 kb) with 

flanking regions from the 11168H chromosomal DNA. GoTaq® Green Master Mix was used 

for the PCR amplification. The expected fragment size was obtained, as indicated in Figure 43. 

           1          2        3        4        5  

10 kb 
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The schematic representation of the plasmid construction is illustrated in Figure S2 in the 

Appendix. The gene was cloned into a pGEM-T Easy vector, and ampicillin-resistant clones 

were screened using CloneChecker analysis (Figure 44). Clones with higher molecular weight 

band were selected for restriction analysis with ClaI and PstI. The digestion yielded two 

fragments of expected sizes (4.1 kb and 0.7 kb), confirming the intermediate recombinant 

plasmid pGEM-T-0979 (Figure 45). For the site-directed mutagenesis, a kanamycin resistance 

cassette was isolated from plasmid pJMK30. The pJMK30 plasmid was digested with SmaI 

and the blunt-ended fragment kanr was ligated into the blunt ended ClaI site of the pGEM-T-

0979 (blunt-ended using T4 DNA polymerase) construct to create p0979-kanR (Figure 45a). 

CloneChecker was used for screening of the final recombinant plasmid p0979-kanR. Clone 

with higher molecular weight band was chosen and confirmed using restriction analysis with 

SalI, which yielded the expected fragments with sizes 5.6 kb and 0.9 kb, confirming the gene 

and the inserted kanr were in the same orientation (Figure 46). 
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Figure 43. Amplification of cj0979 gene with flanking regions from 11168H 

chromosomal DNA using primers cj0979_for and cj0979_rev by PCR. GoTaq® 

Green Master Mix was used. Expected size is approximately 1.99 kb.  

Samples: 1, 2-Log DNA ladder; 2, cj0979 

 

Figure 44. Clone checker analysis of pGEM-T-0979 clones. Cell lysates were used 

for the analysis.  

Samples: 1, 2-Log DNA Ladder; 2, pGEM-T-0979 clone 1; 3, pGEM-T-0979 

clone 2; 4, pGEM-T-0979 clone 3; 5, pGEM-T-0979 clone 4; 6, pGEM-T-0979 

clone 5; 7, pGEM-T-0979 clone 6; 8, pGEM-T empty vector. 
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Figure 45. Verification of an intermediate construct pGEM-T-0979 by restriction 

analysis.  

(a) Restriction map of the plasmid indicating the ClaI and PstI sites used in 

restriction analysis, and ClaI insertional site used in cloning experiment.  

(b) Gel image showing digested pGEM-T-0979 with ClaI and PstI. Expected 

fragment sizes: 4.1 kb; 0.7 kb; 0.1 kb; and 0.06 kb.  

Samples: 1, 2-Log DNA ladder; 2, pGEM-T-0979 ClaI/PstI 
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Figure 46. Verification of p0979-kanR by restriction analysis.  

(a) Restriction map of the plasmid indicating the SalI sites used in restriction 

analysis, and ClaI/SmaI insertional sites after the insertion of the kanr cassette.  

(b) Gel image showing uncut and digested p0979-kanR with SalI. Expected 

fragment sizes: 5.6 kb and 0.9 kb.  

Samples: 1, 2-Log DNA ladder; 2, p0979-kanR; 3, p0979-kanR SalI. 
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The verified construct was then used for electroporation into C. jejuni 11168H competent cells. 

Plasmid pRRC was employed as a control for the electroporation experiment. 1 µg of DNA 

was utilized for electroporation, and a time constant of 5.1 ms was achieved with both 

electroporation experiments. The electroporated 11168H/pRRC and 11168H/p0979-kanR cells 

were then plated on non-selective plates and incubated for 10 h, after which the former was re-

plated on a selective chloramphenicol plate and the latter was plated on kanamycin plate. The 

selective plates were then incubated for two more days. Three kanamycin-resistant clones from 

11168H/cj0979 plate and one clone from the control plate were re-streaked for further analysis 

by Gram staining and PCR verification. For PCR verification of 11168H/cj0979, gene specific 

primers (cj0979_for and cj0979_rev) were used (Figure 46a). An expected PCR product of 3.5 

kb was obtained, which encompassed an increase of 1.5 kb corresponding to the size of the 

kanr cassette, confirming the insertional inactivation of cj0979 (Figure 47).  
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Figure 47. Verification of the inactivation of cj0979 gene in C. jejuni 11168H by 

PCR using primers cj0979_for and cj0979_rev. Genomic DNA was used as 

template DNA for the transformants. GoTaq® Green Master Mix was used. 

Expected PCR product sizes: 11168H/pRRC-2.4 kb; 11168H/cj0979-3.5 kb. 

Samples: 1, 2-Log ladder; 2, 11168H/pRRC with ak233/ak237; 3, 11168H/pRRC 

with ak234/ak237; 4, 11168H/pRRC with ak235/ak237; 5, 11168H/cj0979 clone 

1; 6, 11168H/cj0979 clone 2; 7, 11168H/cj0979 clone 3; 8, p0979-kanR plasmid. 

3.2.2.2 Comparison of the biofilm formation and dispersal patterns between wild-type 

and mutant strains 

The biofilm-forming ability of the mutant was tested in this section. The 11168H/cj0979 strain 

was expected to form denser biofilms than the wild-type strain due to the absence of the 

extracellular DNase gene. In other bacteria, similar nuclease genes were responsible for the 

breakdown of eDNA present in the biofilm matrix (Kiedrowski et al., 2011; Steichen et al., 

2011). Many studies have revealed that the addition of DNase I caused a degradation of the 

eDNA of the EPM. This causes a looser macromolecular structure, leading to dispersal of cells 

into the culture medium (Brown et al., 2015a). 

The starting OD600 for both cultures (11168H and 11168H/cj0979) was set to 0.5 in BHI broth. 

The assays were conducted in test tubes and 2 mL of inoculum was incubated under 

microaerobic conditions for ten days. The tubes were washed with CV on Days 4, 5, 6 and 10. 
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Background staining was removed in a two-step wash procedure, as performed in the wild-type 

biofilm assay. The graph (Figure 48) of absorbance of CV stain versus number of days, 

represents biofilm formation of the mutant in comparison to the wild-type. The p-values 

between the two strains for all time points (days 4, 5, 6 and 10) were above 0.1, thus indicating 

that the difference observed was not statistically significant.  

Figure 48. Biofilm assay of C. jejuni 11168H/cj0979 in comparison to wild-type 

11168H strain. Absorbance of CV staining was measured at 595 nm. The graph is 

a representation of three biological and technical replicates. Standard error of mean 

values were used to represent error bars. 

3.2.3 Functional analysis of a putative nuclease Cj0979 

This section describes the analysis of the enzymatic properties of purified Cj0979. The 

pBAD33 plasmid was employed for the construction of the expression vector carrying the 

cj0979 gene. The expression plasmid carrying the nuclease gene was introduced into E. coli. 

The E. coli culture was induced in the presence of arabinose and the protein was purified from 

cell lysates. In order to purify Cj0979, three different approaches were undertaken: 6xHis tag 

attached to C-terminal of Cj0979; 6xHis tag attached to N-terminal of Cj0979; and removal of 

leader peptide from Cj0979. 
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3.2.3.1 Construction of the pBAD33-cj0979 plasmid 

Primers cj0979_expr_for and cj0979_expr_rev were designed for the PCR amplification of 

gene cj0979 from C. jejuni 11168H chromosomal DNA using Q5® High-Fidelity DNA 

Polymerase (Figure 49). A 6×His tag was attached to the C-terminal of Cj0979. The expected 

PCR product is as shown in Figure S3 in the Appendix. 

 

Figure 49. Amplification of cj0979 gene from C. jejuni 11168H chromosomal DNA 

with primers cj0979_expr_for and cj0979_expr_rev. Q5® High-Fidelity DNA 

Polymerase was used. Expected PCR product size: 0.58 kb.  

Samples: 1, 2-Log DNA Ladder; 2, cj0979  

Plasmid pBAD33 was confirmed by restriction analysis with EcoRI. The PCR fragment was 

ligated into the pBAD33 vector using XbaI and SphI enzymes. The ligation mixture was then 

transformed into E. coli C2566l competent cells, and chloramphenicol-resistant clones were 

isolated for further analysis. ClaI enzyme was used for restriction analysis and the digestion 

produced 4.2 kb and 1.7 kb fragments, as expected (Figure 50), confirming the recombinant 

plasmid. The resulting plasmid pBAD33-cj0979 was sent for Sanger sequencing with vector-

derived primers (pBAD_for and pBAD_rev) corresponding to the flanking regions on either 

0.58 kb 
0.5 kb 

        1               2              
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side of the insert. The data was analysed using Chromas and BLASTn programs, and the output 

result revealed a 100% identity. 

Figure 50. Verification of pBAD33-cj0979 by restriction analysis.  

(a) Restriction map of the plasmid indicating ClaI restriction sites used in 

restriction analysis, and XbaI/SphI cloning sites.   

(b) Gel image showing uncut and digested pBAD33-cj0979 with ClaI. Expected 

sizes: 4.2 kb and 1.7 kb.  

Samples: 1, pBAD33-cj0979; 2, 2-Log DNA ladder; 3, pBAD33-cj0979 ClaI 
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3.2.3.2 Expression, purification, and detection of Cj0979 

The Cj0979 protein was expressed in E. coli in the presence of arabinose in the attempt to 

purify the protein for DNase studies. Large-scale and small-scale purification of the protein 

was carried out. A 0.1% final concentration of arabinose was used for induction and the 

purification was initially conducted using Qiagen Ni-NTA kit. The culture was induced at an 

OD600 of 0.6 and incubated for 3 h, after which the cells were collected from the induced culture 

for protein purification. Whole cell suspensions, lysates, wash fractions, and eluted protein 

fractions were run on an 12% SDS-PAGE gel and analysed using Coomassie staining. The 

stained gel failed to reveal the presence of the protein.  

Therefore, the purification was repeated with induction time of 2 h to exclude a possibility of 

protein degradation, which could otherwise occur with longer incubation times. As a negative 

control, protein purification from the uninduced culture was conducted. For the repeat, small-

scale protein purification using MagneHis kit was carried out. Similar to the first purification, 

all four fractions were analysed on an SDS-PAGE gel, with the application of equivalent 

amounts of samples in all lanes (Figure 51). The bands that appeared in the lanes containing all 

induced and uninduced fractions looked similar in appearance, except for the uninduced wash 

fraction lane, which appeared to be quite faint due to some product loss during gel loading. 

Neither of the lanes carrying the uninduced and induced eluates revealed the expected protein 

band near 21.3 kDa. 
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Figure 51. Analysis of fractions from E. coli/pBAD33-cj0979 expression and 

purification experiment.  

Lanes 1-4, uninduced fractions; lanes 5-8, induced fractions. Expected size of 

Cj0979: 21.3 kDa.  

Samples: 1, Whole cell suspensions; 2, Lysate; 3, Wash fractions 1, 2 and 3; 4, 

Eluate; 5, Whole cell suspensions; 6, Lysate; 7, Wash fractions 1, 2 and 3; 8, 

Eluate; 9, Pre-stained ladder.  

3.2.3.3 Western blotting 

The purified samples from the first and second purifications were tested by Western blotting, 

since Coomassie staining did not reveal the expected Cj0979. Western blotting was carried out 

due to its greater sensitivity for protein detection when compared to Coomassie staining. 

The Western blotting results were more promising, as a band corresponding to the 21.3 kDa 

Cj0979 protein was detected. No bands were seen in the uninduced fractions (lanes 1–4), as 

expected (Figure 52). The band corresponding to the Cj0979 protein was detected in the 

induced whole cell suspension, induced lysate, and the induced purified protein lane. The band 

was not seen in the induced wash fraction lane. 
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Furthermore, a band corresponding to the Cj0979 protein was also observed in the lane 

corresponding to whole cell suspension from the induced sample from the first purification 

(lane 11), confirming the protein was indeed expressed but with low yield for detection using 

Coomassie staining. The sizes were estimated using Gel Analyzer. However, lane 12 showed 

no product, suggesting that the protein underwent degradation due to storage at 4°C for 

approximately two weeks. The whole cell suspension and the purified protein were stored at 

different temperatures; the whole cell suspensions were stored at -20°C to inhibit any bacterial 

growth, while the purified protein was stored at 4°C for two weeks. 

Overall, the detection of Cj0979 protein was successful, as illustrated in Figure 52. However, 

the protein could be detected only with a higher-sensitivity assay, such as Western blotting, 

suggesting the protein had very low yield, and thus confirming its unsuitability for downstream 

DNase testing experiments. 
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Figure 52. Western blotting of fractions from E. coli/pBAD33-cj0979 expression 

and purification experiments.  

Lanes 1-4, uninduced fractions; lanes 5-8, induced fractions; lanes 1-8, samples 

from second purification experiment; lanes 10-12, samples from first purification 

experiment. Expected size of Cj0979: 21.3 kDa.  

Samples: 1, Whole cell suspensions; 2, Lysate; 3, Wash fractions 1,2, 3; 4, 

Protein; 5, Whole cell suspensions; 6, Wash fractions 1,2, 3; 7, Lysate; 8, Protein; 

9, Pre-stained ladder; 10, Uninduced whole cell suspension; 11, Induced whole 

cell suspension; 12, Protein from induced sample. 

3.2.3.4 Construction of the pBAD33-cj0979N plasmid 

As an alternative approach, a slight modification in the construction of the pBAD33 expression 

construct carrying the cj0979 gene was undertaken, as in a previous study, in order to purify 

protein with a better yield (Atas et al., 2016). The 6×His tag was attached to the N-terminal of 

Cj0979 (Figure 53a). The N-terminal 6×His tag will prevent the signal peptide from being 

cleaved off during expression, thereby preventing the protein from being secreted. The 

expression vector was constructed following the same protocol as for pBAD33-cj0979. Primers 

cj0979_N_expr_for and cj0979_N_expr_rev were designed to amplify the gene. The expected 

PCR product is as shown in Figure S4 in the Appendix. The PCR fragment was digested with 
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XbaI and SphI and ligated with XbaI and SphI digested pBAD33. The ligation mixture was 

transformed into E. coli C2523L competent cells. The chloramphenicol-resistant clone was 

selected for ClaI restriction verification, and the digestion produced fragments of 4.2 kb and 

1.7 kb (Figure 53). The same recombinant plasmid pBAD33-cj0979N was sent for Sanger 

sequencing with vector-derived primers (pBAD_for and pBAD_rev) corresponding to the 

flanking regions on either side of the insert. The sequencing results were analysed using 

BLASTn and Chromas programs, and the results revealed no errors. 
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Figure 53. Verification of pBAD33-cj0979N by restriction analysis.  

(a) Restriction map of the plasmid indicating ClaI restriction sites used in 

restriction analysis, and XbaI/SphI cloning sites.   

(b) Gel image showing uncut and digested pBAD33-cj0979N with ClaI. Expected 

sizes: 4.2 kb and 1.7 kb.  

Samples: 1, 2-Log DNA ladder; 2, pBAD33-cj0979N; 3, pBAD33-cj0979N ClaI.  
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3.2.3.5 Expression, purification, and detection of Cj0979N 

The verified construct was then used for protein expression and purification using MagneHis 

kit. To increase the stability of the protein during the purification process, protease inhibitor 

was added prior to the lysis step. The effect was compared with culture without the addition of 

protease inhibitor. The cultures were induced with a 0.1% final concentration of arabinose at 

an OD600 0.6 and incubated for 2 h, at which point the cells were collected for protein 

purification. 

The samples were run with equivalent amounts on a 12% SDS-PAGE gel. Since protein from 

E. coli/pBAD33-cj0979 revealed signs of degradation, these purified samples were tested on the 

day of purification and after two days of storage at 4°C. The results indicated no significant 

difference between the induced and uninduced purified samples under both conditions (with 

and without protease inhibitor). The target protein was not detected in any of the lanes (Figure 

54). Although it may have been possible to detect the protein with western blotting due to its 

higher sensitivity for low yield proteins (as with Cj0979), this detection would not aid in its 

downstream experiments. Therefore, these samples were not analysed using Western blotting. 

Additionally, supernatant samples from the expression of E. coli/pBAD33-cj0979 were tested 

alongside. These were analysed in parallel to confirm that no protein secretion into the culture 

supernatant during expression had occured. The culture supernatant was collected at the end of 

incubation period (i.e., 2 h with arabinose) and spun down and subsequently filter-sterilized, 

and a 5 µL aliquot was tested using gel electrophoresis followed by Coomassie staining. The gel 

picture revealed that protein could not be detected in the supernatant (Figure 54). 
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Figure 54. Analysis of fractions from E. coli/pBAD33-cj0979N purification and 

supernatant samples from E. coli/pBAD33-cj0979 expression experiments. 

Samples in lanes 11 and 12 are supernatant samples from an independent 

experiment (E. coli/pBAD33-cj0979). Expected size of Cj0979N: 21.3 kDa.  

Samples: 1, Uninduced whole cell suspension; 2, Induced whole cell suspension; 

3, Uninduced wash fractions 1,2 and 3; 4, Induced wash fractions 1,2 and 3 with 

protease inhibitor; 5, Eluate from uninduced sample at the time of purification; 6, 

Eluate from induced sample at the time of purification; 7, Eluate from induced 

sample with protease inhibitor at the time of purification; 8, Eluate from induced 

sample after two days storage at 4°C; 9, Eluate from induced sample with 

protease inhibitor after two days storage at 4°C; 10, Pre-stained ladder; 11, 

Supernatant sample from uninduced E. coli/pBAD33-cj0979 expression; 12, 

Supernatant sample from induced E. coli/pBAD33-cj0979 expression.  

3.2.3.6 Construction of pBAD33-cj0979LP 

The elimination of the leader peptide was carried out to troubleshoot issues with low-yield 

protein purification and to confirm if Cj0979 was a secretory protein. SignalP 3.0 program was 

used for the prediction of the signal peptide sequence in Cj0979. The software predicted the 

signal sequence to be between 1 and 39 amino acids. In addition, the predicted leader sequence 

in Cj0979 was compared to similar thermonucleases in Staphylococcus (Kiedrowski et al., 

2011; Kiedrowski et al., 2014), using Clustal Omega analysis (Figure S5 in the Appendix). The 
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amino acids sequences were aligned showing sequence similarity indicating cleavage site near 

39 position amino acid. Therefore, the first 117 bases were removed from the cj0979 gene 

sequence and the remaining sequence was labelled cj0979LP as shown in Figure S6 in the 

Appendix. 

Primers cj0979_LP_for and cj0979_LP_rev were designed for the amplification of the 

cj0979LP gene. The expected PCR product is as shown in Figure S7 in the Appendix. The 

cloning principle employed was the same as for the pBAD33-cj0979 expression construct. The 

primers were used to PCR amplify the 0.45 kb gene fragment from the 11168H chromosomal 

DNA (Figure 55). The fragment was then digested with XbaI and SphI and used for ligation 

with the pBAD33, digested with the same enzyme pair. The ligation mixture was transformed 

into E. coli C2566L competent cells. Chloramphenicol-resistant clones were selected for 

further analysis. ClaI enzyme was used for restriction digestion confirmation. The enzyme cut 

the plasmid in two places, yielding the expected fragment sizes of 4.2 kb and 1.6 kb (Figure 56). 

The verified pBAD33-cj0979LP plasmid was sent for Sanger sequencing with vector-derived 

primers (pBAD_for and pBAD_rev) to ensure no mutations occurred in the insert or the 

flanking regions. The output sequence derived from Chromas produced a 100% identity when 

checked with BLASTn. 
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Figure 55. Amplification of cj0979LP gene from C. jejuni 11168H chromosomal 

DNA with primers cj0979_LP_for and cj0979_LP_rev. Q5® High-Fidelity DNA 

Polymerase was used. Expected PCR product size: 0.45 kb.  

Samples: 1, 2-Log DNA ladder; 2, cj0979LP.  
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Figure 56. Verification of pBAD33-cj0979LP by restriction analysis.  

(a) Restriction map of the plasmid indicating ClaI restriction sites used in 

restriction analysis and XbaI/SphI cloning sites.   

(b) Gel image showing uncut and digested pBAD33-cj0979LP with ClaI.  

Expected sizes: 4.2 kb and 1.6 kb.  

Samples: 1, 2-Log DNA ladder; 2, pBAD33-cj0979LP; 3, pBAD33-cj0979LP 
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3.2.3.7 Expression, purification, and detection of Cj0979LP 

An E. coli strain carrying the pBAD33-cj0979LP was set up for protein expression. Arabinose 

0.1% final concentration was added at an OD600 of 0.6, as before, and induction time of 2 h 

was employed. Samples were collected at the end of the 2 h, and purification was conducted 

from induced and uninduced cultures using a MagneHis purification kit. Whole cell 

suspensions, lysates, wash fractions, and purified samples were all run on an SDS-PAGE gel 

with equivalent amounts of cells in each lane. The first gel run was conducted with the usual 

MOPS buffer, as with previous gels, but since the expected protein size was small (i.e., 16.8 

kDa), the band separation of the protein marker was not satisfactory for comparison. Therefore, 

a more suitable buffer like the MES buffer, which provides better separation for low molecular 

weight proteins was selected for further protein analysis. 

The protein gels with MOPS and MES buffers revealed bands for the expected Cj0979LP 

protein in the induced lanes only of all three different fractions (whole cell suspension, lysate, 

and purified protein) as expected. In the first gel with MOPS buffer, two time points were 

tested (the same day of purification and after three days of storage at 4°C). The bands in the 

induced protein lanes 9 and 11 in Figure 57 revealed that storage at 4°C did not cause 

degradation as similar intensity bands were obtained. Figure 58 revealed that a clear separation 

of bands of the pre-stained ladder occurred after the use of the MES buffer. The band 

corresponding to the target protein Cj0979LP was evidenced at 16.8 kDa in the lanes 

containing the induced fractions. The sizes were estimated using Gel Analyzer. 



125  

 

Figure 57. Analysis of fractions from E. coli/pBAD33-cj0979LP expression and 

purification experiment. SDS-PAGE gel was run using MOPS buffer. Expected 

size of Cj0979LP: 16.8 kDa.  

Samples: 1, Uninduced whole cell suspension; 2, Induced whole cell suspension; 

3, Uninduced lysate; 4, Induced lysate; 5, Uninduced wash fractions 1,2,3; 6, 

Induced wash fractions 1,2,3; 7, Pre-stained ladder; 8, Purified protein from 

uninduced sample same day as purification; 9, Purified protein from induced 

sample same day as purification; 10, Purified protein from uninduced sample 

after storage at 4°C for three days; 11, Purified protein from induced sample after 

storage at 4°C for three days.  
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Figure 58. Analysis of fractions from E. coli/pBAD33-cj0979LP expression and 

purification experiment. SDS-PAGE gel was run using MES buffer. Expected size 

of Cj0979LP: 16.8 kDa.  

Samples: 1, Uninduced whole cell suspension; 2, Induced whole cell suspension; 

3, Uninduced lysate; 4, Induced lysate; 5, Uninduced wash fraction 1; 6, Induced 

wash fraction 1; 7, Uninduced wash fractions 2 and 3; 8, Induced wash fractions 

2 and 3; 9, Pre-stained ladder; 10, Purified protein from uninduced sample; 11, 

Purified protein from induced sample.  

3.2.3.8 Determining the concentration of Cj0979LP 

The concentration of the purified protein was determined using the BCA assay. Each well in 

the assay used 10 µL of the protein sample. The BSA standard was prepared using the elution 

buffer. The BCA assay was conducted following the manufacturer’s protocol, and a standard 

calibration curve of absorbance of each dilution of BSA standard versus concentration was 

plotted. Concentration was determined using the best-fit linear equation generated from the 

calibration curve. In this instance, the concentration of Cj0979 was approximately 125 µg/mL. 

3.2.3.9 DNase activity tests of Cj0979LP 

The purified protein was tested for DNase activity using lambda DNA as the substrate. Lambda 

DNA was incubated with purified protein for 1 h at 37°C, and the samples were then analysed 
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on the gel. DNase I enzyme was used as positive control. Lambda DNA with only the buffer 

was used as negative control.  

As seen on the gel in Figure 59, the band corresponding to the negative control remained as 

expected. The positive control succeeded (lane 4); the band corresponding to the lambda DNA 

has disappeared, suggesting that DNA degradation occurred. Interestingly, similar results were 

obtained with the test protein (lanes 5-7), where complete degradation was seen with the 

purified induced proteins.  

Figure 59. DNase activity of purified Cj0979LP protein. Lambda DNA was used 

as a substrate. Equal amounts of DNA were applied to each well.  

Samples: 1, 2-Log DNA ladder; 2, Lambda DNA; 3, Lambda DNA and DNase 

buffer; 4, Lambda DNA, buffer, and DNase I; 5- 7, Lambda DNA, buffer, and 

induced protein.  

3.2.3.10 Effect of purified Cj0979LP on C. jejuni 11168H biofilms 

The activity of purified Cj0979LP protein was tested through its addition to existing C. jejuni 

11168H biofilms to determine any potential influence on the growth or dispersal pattern. As 

seen from the previous result, good biofilm formation occurs beginning on Day 4. The 

inoculum was set at OD600 0.5 in BHI broth. 1 mL of inoculum was added to test tubes and 
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incubated under microaerobic conditions. No background washing step was carried out as the 

absorbance readings of the BHI only control tubes were simply subtracted since the culture 

volume used was lesser in this instance. 0.5 µg of Cj0979LP protein, along with a final 

concentration of 1× DNase buffer, were added to the existing C. jejuni biofilm test tubes on 

Day 4. DNase I was added along with a DNase buffer, which served as a positive control. 

Additionally, another set of tubes was treated with 200 µL of sterile 11168H supernatant with 

the buffer to determine whether there was DNase activity in the supernatant. After the addition, 

the tubes were further incubated for one day, after which the biofilm was CV-stained. Figure 60 

illustrates the results, indicating that the addition of Cj0979LP and 11168H supernatant indeed 

caused a reduction in biofilm growth. The absorbance readings obtained with the treated tubes 

were much lower than those from the 11168H tubes alone. In addition, the difference obtained 

was also statistically significant, as reflected by the p-values. 

Figure 60. Effects of purified Cj0979LP, DNase I and culture supernatant on 

biofilm formation. Assays were set up with initial OD600 0.5. Biofilm was stained 

on day 4 and day 5. ** 0.001 < p ≤ 0.01, ***p ≤ 0.001. The graph is a representation 

of three independent experiments consisting of three technical replicates. Standard 

error of mean values was used to represent error bars. 
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3.3 Investigation of the role of cje0256 in biofilm forming ability of C. jejuni 

RM1221 

In this section, the biofilm-forming ability of C. jejuni RM1221 was compared to that of the C. 

jejuni 11168H strain. This work was intended to examine the role of cje0256 (gene encoding 

an extracellular nuclease) in the biofilm formation of C. jejuni RM1221. The strain RM1221 

also contains two other DNase encoding genes, cje1441 and cje0566 (Gaasbeek et al., 2009; 

Gaasbeek et al., 2010). According to previous studies, C. jejuni RM1221 does not form strong 

biofilms and is considered to be a poor biofilm former (Brown et al., 2015b).  

The presence of homologues of Cje1441, Cje0256, and Cje0566 in C. jejuni NCTC 11168 was 

checked using BLASTp. The amino acid sequences of all three proteins were used as the input 

for this analysis. Homologues of Cje1441 and Cje0566 were present in C. jejuni 11168 (Figure 

S8 in the Appendix), but no match was obtained with Cje0256. The CDS (coding sequence) 

region in Figure S8 corresponded to the same protein, Cj0594c, which is annotated as putative 

DNA/RNA non-specific endonuclease and whose function has not been confirmed 

experimentally. In addition, the protein Cj0979 from 11168H was compared with the three 

DNases in RM1221 using BLASTp (Figure S9). The query coverage was poor in all three 

results. In conclusion, the results confirmed that C. jejuni 11168H does not contain homologues 

of cje0256 gene. As 11168H lacks only this DNase gene when compared to RM1221, yet forms 

stronger biofilms, the evidence suggests that cje0256 could be responsible for the low biofilm-

forming properties of RM1221. Therefore in this study, an attempt to investigate the possible 

effects of inactivation of cje0256 on C. jejuni RM1221’s biofilm forming ability was carried 

out. In addition, purification of Cje0256 was also attempted to assess its enzymatic properties 

in a similar fashion to the study conducted with Cj0979 discussed in section 3.2.3. 
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3.3.1 Investigation of biofilm formation ability of C. jejuni RM1221 

Biofilm assays of C. jejuni strains 11168H and RM1221 were conducted using 96-well 

microtiter plates, under static conditions, for a period of four days under microaerobic 

conditions. Initial inoculum was set to OD600 0.5 in BHI broth, and biofilm CV staining was 

carried out on Days 3 and 4. Assays consisted of three biological and technical replicates. 

Figure 61 represents the results of biofilm stained on day 3 and 4. As seen, 11168H formed a 

stronger biofilm than RM1221, as indicated by the absorbance values. The formation of a ring-

like structure at the air-liquid interface took place with RM1221, but it appeared fainter when 

stained, in comparison to 11168H tubes. The difference observed on the graph was also 

statistically significant, as denoted by the p-values. Therefore, it was confirmed that RM1221 

was indeed a poor biofilm former when compared to 11168H, but the difference was marginal. 

 

Figure 61. Biofilm assay of C. jejuni 11168H and RM1221. Absorbance of CV 

staining was measured at 595 nm on days 3 and 4. The graph is a representation of 

three independent experiments consisting of three technical replicates. Standard 

error of mean values was used to represent error bars. * 0.01 < p ≤ 0.05, ** 0.001 

< p ≤ 0.01. 
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3.3.2 Construction of C. jejuni RM1221/cje0256 mutant  

Construction of cje0256 knockout mutant in RM1221 using site-directed mutagenesis was 

attempted in this section, in order to study the biofilm forming properties of the resultant 

mutant. A kanr gene cassette was used to disrupt the cje0256 in C. jejuni RM1221 to create  

RM1221/cje0256. In order to achieve this, several strategies were employed to protect the 

DNA from the intracellular DNase activity present in strain RM1221.  

3.3.2.1 Construction and verification of pUC19-cje0256-kanR construct 

The schematic description of the construction of the pUC19-cje0256-kanR is illustrated in 

Figure S10 in the Appendix. Primers cje0256f_mod and cje0256r_mod were designed to 

amplify cje0256 (≈ 2.2 kb) with flanking regions from C. jejuni RM1221 chromosomal DNA 

using Q5® High-Fidelity DNA Polymerase. The PCR fragment (Figure 62) contains 

EcoRI/XbaI sites in preparation for ligation with the pUC19 vector. The pUC19 vector was 

digested with EcoRI and XbaI and ligated with cje0256 PCR fragment; the ligated product was 

then transformed into E. coli XL1 blue competent cells. The transformation mixture was plated 

on an ampicillin, IPTG, and X-gal plate for blue-white screening. The white transformants 

were selected and further screened with CloneChecker, and clones with a higher molecular 

weight band were chosen for further analysis with restriction analysis. Restriction enzymes 

EcoRI and Eco53KI were used to verify the intermediate pUC19-cje0256 construct, as 

illustrated in Figure 63. Expected fragments of 3.5 kb and 1.3 kb were obtained on the gel. A 

kanr resistance cassette was isolated from plasmid pJMK30. The Eco53KI site on the 

intermediate vector was utilized as the insertional site for the SmaI kanr fragment (Figure 63a). 

The ligated product was transformed into E. coli XLI blue competent cells to produce pUC19-

cje0256-kanR. The final recombinant construct was screened by CloneChecker once again, and 

clones with higher molecular weight band were selected for further restriction analysis with 

EcoRI. The digestion produced the expected fragments of sizes of 3.5 kb and 2.8 kb, confirming 
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that the inserted gene and the kanr were in the same orientation (Figure 64). 

 

Figure 62. Amplification of cje0256 gene with flanking regions from C. jejuni 

RM1221 chromosomal DNA using primers cje0256f_mod and cje0256r_mod. 

Q5® High-Fidelity DNA Polymerase was used. Expected PCR product size is 2.2 

kb.  

Samples: 1, 2-Log DNA ladder; 2, cje0256 PCR product.  
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Figure 63. Verification of an intermediate construct pUC19-cje0256 by restriction 

analysis.  

(a) Restriction map of the plasmid indicating EcoRI and Eco53KI restriction sites 

used in restriction analysis, XbaI/EcoRI cloning sites and Eco53KI insertional 

site of kanr cassette.   

(b) Gel image showing uncut and digested pUC19-cje0256 with EcoRI and 

Eco53KI.  Expected sizes: 3.5 kb and 1.3 kb.  

Samples: 1, 2-Log DNA ladder; 2, pUC19-cje0256; 3, pUC19-cje0256 
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Figure 64. Verification of pUC19-cje0256-kanR by restriction analysis.  

(a) Restriction map of the plasmid indicating EcoRI sites used in restriction 

analysis, and Eco53KI/SmaI cloning sites.   

(b) Gel image showing uncut and digested pUC19-cje0256-kanR with EcoRI. 

Expected sizes: 3.5 kb and 2.8 kb.  

Samples: 1, 2-Log DNA ladder; 2, pUC19-cje0256-kanR; 3, pUC19-cje0256-

kanR EcoRI 
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3.3.2.2 Electroporation of pUC19-cje0256-kanR into C. jejuni RM1221 strain 

C. jejuni RM1221 competent cells were prepared following the standard operating protocol 

with a minor modification. The new protocol included an initial incubation in ice for 1 h with 

chelating agent EDTA (10 µM). This step was included to facilitate EDTA to hinder any DNase 

genes, which may otherwise cause degradation of the transformed DNA. Approximately 1 µg 

of pUC19-cje0256-kanR and pRRC (control) were electroporated into the cells in parallel, with 

a time constant of 5.1 ms, using the standard electroporation conditions described in Section 

2.24. Despite adding EDTA and using sufficient DNA, the electroporation experiments did not 

yield any colonies. The results remained the same even after several attempts. Another attempt 

with a higher electroporation resistance of 600 Ω was carried out, following the method by 

Gaasbeek et al. (2009), but this attempt also resulted in no transformants. 

3.3.2.3 Methylation of DNA 

Methylation of pUC19-cje0256-kanR plasmid was executed with the purpose of providing 

extra protection to the DNA before electroporation into RM1221 cells. This step was 

undertaken to circumvent the action of a restriction endonuclease and was carried out following 

a similar study conducted with H. pylori (Donahue et al., 2000). NEB EcoGII 

methyltransferase was chosen to target all adenine residues. Methylation was carried out 

following the manufacturer’s protocol, and an incubation time of 1–4 h was tested. 

3.3.2.4 Restriction digestion of methylated DNA 

Restriction enzyme RsaI was used to validate the DNA methylation procedure. After the 

methylation process, the DNA was purified following enzyme inactivation by heat. A small 

aliquot of methylated DNA was used for digestion with RsaI. Untreated pUC19-cje0256-kanR 

was employed as a control for the restriction analysis. The digestion results, as illustrated in 

Figure 65, indicated that some degree of methylation has certainly occurred, as a difference in 



136  

band patterns between the digested treated (lane 5) and untreated DNA (lane 3) were observed. 

Approximately 0.9 µg of methylated DNA was used for electroporation into C. jejuni RM1221 

cells. As a control, methylated pRRC plasmid was used for electroporation. The electroporation 

experiments did not produce any colonies, even with methylated DNA. 
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Figure 65. Restriction analysis of methylated pUC19-cje0256-kanR with RsaI 

(a) Restriction map of the plasmid indicating RsaI sites used in restriction 

analysis.  

(b) Gel image showing untreated and methylated pUC19-cje0256-kanR with 

RsaI. Expected sizes with untreated DNA: 2.9 kb; 1.6 kb; 1.2 kb; and 0.68 kb.  

Samples: 1, 2-Log DNA ladder; 2, pUC19-cje0256-kanR; 3, pUC19-cje0256-

kanR RsaI; 4, methylated DNA; 5, methylated DNA RsaI.  
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The methylated DNA was then re-methylated in an attempt to increase the percentage of 

methylated DNA for downstream electroporation experiments. Re-methylation was carried 

out, but restriction analysis with RsaI confirmed the lack of any drastic changes in the bands, 

excluding the presence or absence of some minor bands (Figure 66). The four major fragments 

expected with the untreated DNA digestion with RsaI were seen with methylated (lane 2) and 

re-methylated (lane 3) DNA samples as well. Approximately 0.8 µg of remethylated DNA was 

electroporated into RM1221 cells with 200 Ω and 600 Ω resistances, and kanamycin-resistant 

clones were not obtained with both electroporation experiments. 

 

Figure 66. Restriction analysis of re-methylated pUC19-cje0256-kanR with RsaI. 

Expected sizes with untreated DNA: 2.9 kb; 1.6 kb; 1.2 kb; and 0.68 kb.  

Samples: 1, pUC19-cje0256-kanR RsaI; 2, methylated DNA RsaI; 3, 

remethylated DNA RsaI; 4, 2-Log DNA ladder.  
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3.3.3 Functional analysis of a putative nuclease Cje0256 

An attempt to test the enzymatic properties of the purified Cje0256 was carried out in this 

section. Cje0256 with and without leader peptide was purified in this study. The arabinose-

inducible pBAD33 expression vector was used for the expression of the His-tagged protein. 

The 6xHis tag was attached to the C-terminal of Cje0256/Cje0256LP, and purification was 

executed following manufacturer’s protocol.  

3.3.3.1 Construction of pBAD33-cje0256 and pBAD33-cje0256LP 

The identification of the sequence corresponding to the leader peptide in Cje0256 was 

determined using SignalP 3.0. The program predicted a most likely cleavage between LNA-

KS. The first 51 bases corresponding to the leader peptide were removed and the resulting gene 

sequence was assigned as cje0256LP as shown in Figure S11 in the Appendix. 

Expression constructs pBAD33-cje0256 and pBAD33-cje0256LP were constructed to 

facilitate the purification of proteins Cje0256 and Cje0256LP. Primers cje0256_for and 

cje0256_rev were designed for the amplification of cje0256 from C. jejuni RM1221 

chromosomal DNA (Figure 67a). The expected cje0256 PCR product is shown in Figure S12 in 

the Appendix. Primers cje0256_LP_for_mod and cje0256_LP_rev_mod were designed for the 

amplification of cje0256LP gene from RM1221 chromosomal DNA (Figure 68a). The 

expected cje0256LP PCR product is shown in Figure S13 in the Appendix. Q5® High-Fidelity 

DNA Polymerase was used for the PCR amplifications. The coding sequence used for the 

6xHis tag in these constructs remained the same sequence as the pBAD33-cj0979LP construct. 

The pBAD33 and cje0256/cje0256LP were digested with XbaI and SphI. The resulting linear 

fragments were ligated and transformed into E. coli C2566L cells. Clones from both 

transformations were screened by CloneChecker for the presence of the inserts and 

subsequently confirmed by restriction analysis. Enzyme EcoRI was used for the restriction 



140  

analysis of both constructs, and the expected fragments were produced as illustrated in Figures 

67 and 68. One clone from each construct was sent for Sanger sequencing to ensure that the 

insert and flanking regions contained no mutations. Sequencing from both directions of the 

insert was carried out using vector-related primers (pBAD_for and pBAD_rev). The 

sequencing results revealed a 100% identity for pBAD33-cje0256 and pBAD33-cje0256LP, 

confirming no errors. 
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Figure 67. Verification of pBAD33-cje0256 by restriction analysis.  

(a) Restriction map of the plasmid indicating EcoRI sites used in restriction 

analysis, and XbaI/SphI cloning sites.   

(b) Gel image showing uncut and digested pBAD33-cje0256 with EcoRI. 

Expected sizes: pBAD33-cje0256- 3.2 kb and 2.9 kb; pBAD33-2.9 kb and 2.5 kb.  

Samples: 1, pBAD33-cje0256; 2, pBAD33-cje0256 EcoRI; 3, pBAD33 EcoRI; 4, 

2-Log DNA ladder. 
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Figure 68. Verification of pBAD33-cje0256LP by restriction analysis.  

(a) Restriction map of the plasmid indicating EcoRI restriction sites used in 

restriction analysis, and XbaI/SphI cloning sites.  

(b) Gel image showing uncut and digested pBAD33-cje0256LP with EcoRI. 

Expected sizes: pBAD33-cje0256-3.1 kb and 2.9 kb; pBAD33-2.9 kb and 2.5 kb. 

Samples: 1, 2-Log DNA ladder; 2, pBAD33-cje0256LP EcoRI; 3, pBAD33 
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3.3.3.2 Purification of Cje0256 and Cje0256LP 

The E. coli strains carrying the pBAD33-cje0256 and pBAD33-cje0256LP plasmids were 

expressed in the presence of arabinose for the purification of their respective proteins. Strains 

were incubated in a shaker at 120 rpm and induced with 0.1% final concentration arabinose once 

the OD600 of the culture reached 0.6. The cultures were induced for a further 2 h, after which 

they were collected for protein purification. At the end of the induction period, the OD600 

measurements of the cultures were as follows: E. coli/pBAD33-cje0256 - OD600 of the induced 

sample, 0.78 and OD600 of the uninduced sample, 0.98; E. coli/pBAD33-cje0256LP - OD600 of 

the induced sample, 0.83 and OD600 of the uninduced sample, 0.85. The MagneHis protein 

purification kit was employed to conduct purification following the manufacturer’s protocol. 

After the purification process, whole cell suspensions, lysates, wash fractions, and eluates were 

run on an SDS-PAGE gel. Equivalent amount of each fraction was run on the gel. Figures 69 

and 70 represent the results, which revealed no expected protein products in any of the lanes. In 

Figure 69, several bands were obtained after Coomassie staining in lanes 1-6, but the expected 

protein band (27.23 kDa) was not seen in any of the fractions. 

In Figure 70, the band patterns between the induced and uninduced whole cell suspensions and 

lysates fractions appeared similar, with no band obtained near the 25.4 kDa corresponding to 

the target protein’s size. In this particular purification, the E. coli/pBAD33-cj0979LP strain 

was used as a control. The expected band for the Cj0979LP protein was obtained near 16.8 

kDa. In summary, the lanes containing the eluates indicated no expected protein products in 

either of the gels. The successful purification of Cj0979LP protein confirmed that the 

purification process used was adequate, and the failure to detect Cje0256/Cje0256LP most 

likely occurred due to the instability of the proteins. 
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Figure 69. Analysis of fractions from E. coli/pBAD33-cje0256 protein expression 

and purification experiment. Expected size of Cje0256-27.23 kDa.  

Samples: 1, Uninduced whole cell suspension; 2, Induced whole cell suspension; 

3, Uninduced lysate; 4, Induced lysate; 5, Uninduced wash fractions 1,2 and 3; 6, 

Induced wash fractions 1,2 and 3; 7, Pre-stained ladder; 8, Eluate from uninduced 

sample same day as purification; 9, Eluate from induced sample same day as 

purification; 10, Eluate from uninduced sample after two days storage at 4°C; 11, 

Eluate from induced sample after two days storage at 4°C.  
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Figure 70. Analysis of fractions from E. coli/pBAD33-cje0256LP and E. 

coli/pBAD33-cj0979LP protein expression and purification experiment. Expected 

sizes: Cje0256LP- 25.4 kDa; Cj0979LP- 16.8 kDa.  

Samples: 1, Uninduced whole cell suspension; 2, Induced whole cell suspension; 

3, Uninduced lysate; 4, Induced lysate; 5, Uninduced wash fractions 1,2 and 3; 6, 

Induced wash fractions 1,2 and 3; 7, Pre-stained ladder; 8, Eluate from uninduced 

sample same day as purification; 9, Eluate from induced sample same day as 

purification; 10, Eluate from induced sample same day as purification; 11, 

Purified Cj0979LP protein from uninduced sample; 12, Purified Cj0979LP protein 

from induced sample 

To troubleshoot, protease inhibitor was added to provide stability to the proteins in case they 

underwent degradation during lysis. The protein expression and purification processes were 

repeated with E. coli strains carrying the cje0256 and cje0256LP. Three samples of each 

construct were tested on the SDS-PAGE gel. As a positive control strain, E. coli/pBAD33-

cj0979LP was purified in parallel. At the end of 2 h, the OD600 measurements of the three 

cultures were as follows: E. coli/pBAD33-cje0256-OD600 of induced sample, 0.82 and OD600 

of uninduced sample, 0.95; E. coli/pBAD33-cje0256LP- OD600 of induced sample, 0.89 and 

OD600 of uninduced sample, 0.97; E. coli/pBAD33-cj0979LP- OD600 of induced sample, 0.87 
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and OD600 of uninduced sample, 0.95. All the purified samples were run on an SDS-PAGE gel 

with equivalent amounts and stained using Coomassie staining for protein detection. Figure 71 

illustrates the image of the stained gel containing the eluate samples. Only the positive control 

lane corresponding to Cj0979LP revealed a band with the expected protein size (16.8 kDa), 

while the other lanes corresponding to the induced eluate samples of Cje0256 and Cje0256LP 

showed no protein products.  

Figure 71. Analysis of fractions from E. coli/pBAD33-cje0256, E. coli/pBAD33- 

cje0256LP, and E. coli/pBAD33-cj0979LP expression and purification 

experiments. Purification of Cj0979LP was carried out as positive control. 

Expected sizes: Cje0256LP-25.4 kDa; Cje0256-27.23 kDa; Cj0979LP-16.8 kDa. 

Samples: 1, Purified Cj0979LP from uninduced sample; 2, Purified Cj0979LP 

from induced sample; 3, Pre-stained ladder; 4, Eluate from uninduced sample 

(Cje0256); 5, Eluate from induced sample with protease inhibitor (Cje0256); 6, 

Eluate from induced sample (Cje0256); 7, Eluate from uninduced sample 

(Cje0256LP); 8, Eluate from induced sample with protease inhibitor 

(Cje0256LP); 9, Eluate from induced sample (Cje0256LP).  
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3.3.3.3 Western blotting 

The samples were analysed on an SDS-PAGE gel and tested by Western blotting since protein 

detection was not successful with Coomassie staining. This rerun was undertaken as blotting 

assays have better sensitivity for protein detection, as evidenced with Cj0979 protein in Section 

3.2. The same primary and secondary antibodies against the 6xHis tag were used. Figure 72 

illustrates the Western blotting result, and once again, only the control lane produced the 

expected protein band of 16.8 kDa. The bands for Cje0256 at 27.23 kDa and Cje0256LP at 

25.4 kDa were not obtained even with better sensitivity testing. 

Figure 72. Western blotting of Cj0979LP and eluates from E. coli/pBAD33-cje0256 

and E. coli/pBAD33-cje0256LP purification experiments. Detection of Cj0979LP 

was carried out as positive control. Expected sizes: Cje0256LP-25.4 kDa; Cje0256-

27.23 kDa; Cj0979LP-16.8 kDa.  

Samples: 1, Purified Cj0979LP from uninduced sample; 2, Purified Cj0979LP 

from induced sample; 3, Pre-stained ladder; 4, Eluate from uninduced sample 

(Cje0256); 5, Eluate from induced sample with protease inhibitor (Cje0256); 6, 

Eluate from induced sample (Cje0256); 7, Eluate from uninduced sample 

(Cje0256LP); 8, Eluate from induced sample with protease inhibitor 

(Cje0256LP); 9, Eluate from induced sample (Cje0256LP).  
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Chapter 4: Discussion and future work 

4.1 Construction and verification of systems for regulated gene expression in C. jejuni 

In E. coli, the arabinose-inducible PBAD promoter system allows the generation of conditionally 

lethal mutants where investigation of essential gene is required (Guzman et al., 1995). The 

AraC regulator and PBAD promoter are widely employed in other Gram-positive and Gram-

negative bacteria that require tight control of gene regulation. Some studies have used the 

arabinose-inducible promoter system from E. coli for the expression of toxic genes in other 

bacterial species such as Pseudomonas (Qiu et al., 2008). One study illustrated the induction 

mechanism in Pseudomonas differed from that of the model organism E. coli; expression was 

independent of CCR (Meisner and Goldberg, 2016). The authors attributed this variance to the 

difference in the function of CCR between the two bacteria; unlike E. coli, Pseudomonas 

prefers amino acids and organic acids for metabolism. Similarly, Campylobacter prefers amino 

acids and organic acids as metabolites. Studies have found the presence of the catabolite 

activator protein sequence upstream of the fur gene in Campylobacter, but details of the 

regulatory mechanism in these bacteria is still unclear (Chan et al., 1995; van Vliet et al., 2000). 

CCR occurs when multiple carbon sources are available in the medium, so bacteria consume 

the most preferred carbon source first for energy production, continuing sequentially until they 

reach the least preferred carbon source, which is consumed last (van der Stel et al., 2018). 

Amino acids such as serine and aspartate, followed by glumate and proline, represent the most 

preferred sources for catabolism in Campylobacter. In addition, C. jejuni also utilizes organic 

acids such as lactate, pyruvate, acetate, and other intermediates of TCA cycle for catabolism 

(Hofreuter, 2014). Campylobacter cannot metabolise glucose and other common sugars like E. 

coli, since they lack transporters and key enzymes involved in the glycolytic pathway. C. jejuni 

was regarded as non-saccharolytic bacteria until evidence of fucose utilization was recently 

demonstrated in C. jejuni NCTC 11168, which is the only exception (Hofreuter, 2014; Stahl et 
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al., 2011).  

This study aimed to develop a gene regulation system under the control of the PBAD promoter 

in Campylobacter for the investigation of essential genes such as amiA, which may be 

responsible for CFF. Initial difficulties were encountered in producing highly efficient 

competent cells of Campylobacter, mainly because commonly used shuttle vectors cannot be 

sustained in C. jejuni (Karlyshev and Wren, 2005a). To optimize electroporation, an altered 

procedure was performed to produce highly efficient cells. A reduction in the duration of the 

initial incubation on the non-selective plate (instead of overnight incubation) helped increase 

the electroporation efficiency. Reduced incubation time averts excessive growth, which may 

otherwise leave the cells competing for nutrients on selective plates. Also, shorter incubation 

periods provide sufficient time for expression of the newly acquired antibiotic-resistance gene 

while avoiding the growth of non-transformed cells. In addition, reduced incubation time 

decreases the chances of cell division, which may lead to plasmid loss and thus false-positive 

results. The genes araE and lacYA177C encoding arabinose transporters, which are not present 

within C. jejuni, were introduced into these bacteria by electroporation. These genes were 

placed under the control of a chloramphenicol promoter PCAM for constitutive expression, along 

with the gfp gene under the control of the PBAD promoter. Such an approach was undertaken 

following the study conducted by Khlebnikov et al. (2000). Constitutive expression from the 

PCAM promoter has produced successful expression of many exogenous genes in C. jejuni 

(Karlyshev and Wren, 2005a).  

Modified lacY gene was successfully introduced into C. jejuni 11168H, but the introduction of 

araE was initially not successful. The reason for this failure is not known, as the expression 

plasmids were constructed following the same principle (i.e., coupling the pRRC plasmid and 

the PBAD regulatory region). In addition, the overall plasmid sizes were comparable. Both AraE 
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and LacY are sugar-proton symporters located in the inner membrane of the cells. Both genes 

were isolated from E. coli K12. In addition, both constructs possessed similar flanking regions 

for homologous recombination. The difference in the electroporation results cannot be 

explained at present.   

To troubleshoot electroporation, a mutant 11168H/cj1051 was constructed. The mutant 

possessed higher transformation efficiency than the wild-type and permitted integration of the 

gene cassette carrying the araE gene. Overall, knocking out the cj1051 did increase the 

transformation efficiency marginally, as suggested by Holt et al. (2012). The study revealed 

that inactivation of this gene in C. jejuni led to a thousand-fold increase in transformation 

efficiency when plasmids from a heterologous C. jejuni host were used but only allowed weak 

transformation of plasmids from an E. coli host. In addition, the findings from the study of Holt 

et al. (2012) were consistent with another study by Zeng et al. (2015). The authors deduced 

that cj1051 was a limiting factor contributing towards conjugation efficiency but was not the 

sole determinant. Genetic manipulation across C. jejuni strains has been challenging for many 

years, and it is possible that more than one restriction-modification system is present in C. 

jejuni 11168H, thus affecting the natural competence of these bacteria (Davis et al., 2008).  

Initial confirmation of the integration of gene cassettes carrying araE/lacYA177C was 

achieved using PCR verification using the GoTaq® Green Master Mix (Promega) with primers 

specific to the integration sites (ak233-235). A product obtained with these external primers 

would indicate the location of the integration site. The PCR testing of the 11168H/pRRBCD-

egfp-lacYA177C derivative yielded the expected band, which revealed that the gene cassette 

was inserted into the integration site where the ak235 primer sequence was located (Figure 19). 

However, difficulties were encountered during the PCR analysis of the 

11168H/cj1051/pRRBCD-egfp-araE transformants, as amplification was obtained only with 
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the internal primers pRR1 and ak237. The external primers (ak233-235) did not yield the same 

product as the 11168H/pRRBCD-egfp-lacYA177C transformants, despite using similar PCR 

conditions. However, genome sequencing of the derivative strains confirmed that the delivery 

gene cassettes were wholly integrated between the 16S rRNA and 28S rRNA gene clusters, as 

expected with both plasmids (Figure 29 and Figure 30). The flanking regions of the gene 

cassettes were designed to recombine with one of the three rRNA loci corresponding to the 

three ak233-235 primers. Attempts were therefore made to troubleshoot PCR issues with the 

11168H/cj1051/pRRBCD-egfp-araE transformants. The more robust NEB Q5® High-Fidelity 

DNA Polymerase was used, and a PCR product corresponding to the expected fragment size 

was obtained, confirming that the gene cassette was inserted at the integration site where the 

primer ak235 sequence was located (Figure 31). This finding demonstrates that the initial 

problem with PCR verification occured due to the type of polymerase employed. In conclusion, 

both of these gene cassettes carrying the transporter genes were successfully integrated into the 

C. jejuni 11168H genome, which was confirmed by PCR and genome sequencing.   

The C. jejuni derivative strains were tested for gfp induction in the presence of arabinose to 

determine whether the inducible promoter can be regulated in Campylobacter. Solid agar plates 

failed to reveal any fluorescence with the C. jejuni derivative strains, under the same 

microscope settings as used for the control E. coli/pRRBCD-egfp-lacYA177C strain. Liquid 

cultures were tested because the sensitivity of fluorescence signal detection would be greater 

with a fluorimeter than with a fluorescence microscope. The fluorescence signals of the C. 

jejuni derivative strains in liquid cultures appeared very weak compared to the E. coli control 

strain. In this study, gene expression was tested by measuring fluorescence of the GFP protein; 

however, an alternative method involving monitoring gene expression at the mRNA level using 

reverse transcription PCR could be used in the future (Sharkey et al., 2004). The fluorescence 

intensities obtained with C. jejuni cultures were insignificant compared to the E. 
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coli/pRRBCD-egfp-lacYA177C strain, even when twice the amount of arabinose was used 

(Figures 33 and 34). The lack of GFP induction in both strains implied that arabinose was not 

transported into the cells for the induction of the promoter, even when the gene responsible for 

transportation was under the control of a constitutive promoter. The PCAM promoter is a part of 

the chloramphenicol resistance gene cassette, which was derived from plasmid pAV35 

originating from C. coli (van Vliet et al., 1998).  

Conversely, the growth-rate assays revealed that addition of arabinose caused retardation in 

the rates, even with the wild-type 11168H strain that does not contain the transporters for 

arabinose (Figure 32). The molecular mechanism of growth inhibition caused by arabinose is 

unclear and requires further study. Alternatively, as future work, arabinose transport assays 

similar to the work by Khlebnikov et al. (2000) could be conducted in which 14C- labelled 

arabinose and scintillation counter were employed. In their study, the transporter genes were 

preinduced with IPTG, followed by incubation with 0.02% arabinose for 2 min and then the 

cells were analysed in a scintallttion counter. A similar experiment could be conducted to check 

for the presence of arabinose transportation in the C. jejuni derivatives. In conclusion, the GFP 

expression results suggest that regardless of the presence of the arabinose transporter genes 

within the chromosome, Campylobacter, unlike E. coli, lacks the ability to transport arabinose 

into their cells. This indicates that some notable differences in the biology of these bacteria 

exist that require further study. 

In the closely related bacteria H. pylori, a system harbouring the lacI-PTAC region of E. coli 

was developed for conditional mutant generation for the study of two essential genes (pbp1 

and ftsI) (Boneca et al., 2008). The system was validated in these bacteria in the presence of 

IPTG as the inducer. As an alternative to an arabinose-inducible gene expression system and 

other sugar-related systems, future studies could test another system harbouring the PTET 
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promoter, since it does not require special transporter proteins for the tetracycline inducer in 

Campylobacter. Induction by PTET has been widely studied in many bacteria, including H. 

pylori for gene regulation studies (McClain et al., 2013; Debowski et al., 2013). Furthermore, 

investigation of essential gene using the tetracycline promoter has been carried out in 

Mycobacteria with the generation of conditional lethal mutants (Carroll et al., 2005). 

Utilization of the PTET promoter coupled with the pRR plasmid system could therefore be a 

viable option in Campylobacter for the investigation of essential genes such as amiA.  

Another strategy could be to test an Lactococcus lactis ZnP inducible promoter by coupling 

with the pRR delivery plasmid in Campylobacter (Llull and Poquet, 2004). The expression 

construct can be validated in the L. lactis strain first using the reporter gene gfp. If evidence 

exists for GFP induction, then the expression construct can then be tested with C. jejuni in the 

hope of constructing a regulatable expression system. This EDTA-inducible ZnP promoter has 

been successfully used by Trémillon et al. (2010) to study the S. aureus nuclease in L. lactis. 

Future studies could attempt to maintain this promoter in C. jejuni. 

4.2 Investigation of molecular mechanism of biofilm formation and dispersal in C. 

jejuni 11168H 

This study primarly aimed to identify the genetic determinant involved in the biofilm formation 

and dispersion of C. jejuni 11168H. The biofilm-formation pattern of C. jejuni 11168H was 

investigated due to this strains’ identification as a high yielding biofilm-former as well as its 

use as a control strain for most biofilm studies involving Campylobacter (Brown et al., 2015b). 

Previous studies revealed that dispersed cells possess greater colonizing properties than their 

planktonic or sessile cells (Guilhen et al., 2017). C. jejuni species are able to form mono-

species biofilms in vitro where growth conditions are more specific to the microorganism and 

preferably under static conditions, where better fixation is achieved (Rossi et al., 2017; Teh et 
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al., 2019). In this present study, biofilm optimization experiments of C. jejuni 11168H under 

static conditions were conducted to determine the biofilm formation pattern. The results from 

this study revealed that strong biofilms formed after 4 days of incubation and continued 

growing until day 8, after which dispersal was observed (Figure 35). Dispersal was quantified 

by measuring the absorbance of CV stain. The formation trend obtained during the first 3 days 

compared favourably with results from previous studies by Reuter et al. (2010) and Brown et 

al. (2015b). However, the results after day 4 could not be compared with the literature, as longer 

incubation times of this particular strain have not been previously investigated. 

As described in introduction, Campylobacter biofilms predominantly consist of eDNA. Brown 

et al. (2015a) demonstrated that addition of DNase I caused disintegration of eDNA, which in 

turn caused dispersion of C. jejuni biofilms. In another study by Brown et al. (2015b), the 

authors identified an extracellular nuclease gene responsible for biofilm dispersal in another C. 

jejuni strain. Similarly, the present study investigated the gene involved in regulating this 

process in C. jejuni 11168H. A decrease in biofilm formation of wild-type 11168H after day 8 

implied that the dispersion might be a genetically regulated process in C. jejuni. In this study, 

the cj0979 gene, which was proposed as a putative nuclease according to the GenBank 

sequence database, was inactivated in strain 11168H. The biofilm growth of the mutant 

(11168H/cj0979) was compared to that of the 11168H strain. The results indicated that 

although there was a slight increase in absorbance readings for the mutant, the difference was 

not significant, as reflected by the high p-values (Figure 48). Given that this gene is a DNase-

encoding gene, an increase in biofilm mass was expected with the mutant, provided the eDNA 

remains undisturbed and does not undergo degradation. However, this expectation was not 

confirmed. Similar mutant studies involving bacteria such as N. gonorrhea and V. cholerae 

resulted in stronger biofilm mass compared to their wild-types (Seper et al., 2011; Steichen et 

al., 2011). Comparing the results obtained from this present study to the literature, it can be 
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concluded that cj0979 may not be the only nuclease gene in C. jejuni 11168H; there may be 

similar genes whose functions have not yet been detailed. This possibility is plausible, as there 

is evidence of another C. jejuni strain, RM1221, with such properties with more than one 

DNase-encoding gene (Brown et al., 2015b). In another study, two thermonucleases have been 

identified in S. aureus, both possessing similar DNA-degrading enzymatic properties 

(Kiedrowski et al., 2011; Kiedrowski et al., 2014). Since biofilm studies of the mutant did not 

result in the expected findings, future studies should examine different levels of expression of 

cj0979 and investigate their effects on C. jejuni biofilms, with the aid of a regulatable 

expression system. 

This study also investigated the enzymatic properties of purified Cj0979LP protein. The 

purified Cj0979 could only be quantifiable using a high sensitivity assay such as Western 

blotting, which indicated the low yield of the protein. However, the initial obstacles with 

protein expression were overcome by conducting purification after removing the leader peptide 

and employing the same histidine coding sequence used in Atas et al. (2016). The purified 

Cj0979LP could be detected with Coomassie staining (Figure 58). Degradation of substrate 

DNA was obtained with purified Cj0979LP, establishing its DNA-degrading properties. This 

finding was further illustrated in tests with biofilms. Treatment of C. jejuni 11168H biofilms 

with the purified protein resulted in a reduction in biofilm formation (Figure 60). The results 

were consistent with the functions of similar thermonucleases discovered in S. aureus and 

N. gonorrhoeae (Steichen et al., 2011; Kiedrowski et al., 2014). In summary, this study was 

the first to investigate the role of cj0979 in Campylobacter biofilms. This novel finding 

indicates that the cj0979 gene is indeed an extracellular nuclease possessing DNase activities 

that can degrade DNA and play a role in biofilm dispersion. In future work, to further establish 

the properties of the nuclease in biofilm formation, the protein could be added to the initial 

inoculum to monitor its effects on the ability of C. jejuni 11168H to form new biofilms. 
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Supernatant samples from C. jejuni 11168H biofilms were checked for the presence of nuclease 

activity by using eDNA as substrate. Brown et al. (2015b) carried out experiments focused on 

detecting the nuclease activity in C. jejuni NCTC 11168 cell suspensions against self-DNA. 

Their results showed a lack of nuclease activity. In another study by Jung et al. (2017), a similar 

procedure testing C. jejuni NCTC 11168 cell suspensions was conducted, and only one sample 

exhibited (very weak) nuclease activity. In the present study, therefore, a slightly different 

approach was adopted. Experiments were set up to detect nuclease activity in the cell-free 

culture supernatant sample. The gel electrophoresis results did not provide convincing evidence 

regarding enzymatic activity of the nuclease. The samples containing the supernatant ran slower 

on the agarose gel than in the control DNA lane. Treatment of the supernatant with Proteinase 

K suggested the presence of binding proteins. In summary, detection of the activity of nuclease 

in the culture supernatant, using gel electrophoresis posed complications due to the slower 

migration of the DNA complex in the supernatant (Figure 39). Conversely, when the culture 

supernatant was added to C. jejuni 11168H biofilms in the presence of DNase buffer, a 

reduction in biofilm formation was observed, suggesting that some level of activity of the 

nuclease in the culture supernatant exists and reduces biofilm formation. The results confirmed 

that the purified protein and the secreted enzyme in the culture supernatant contained DNase 

activity and can reduce biofilm formation. 

To further investigate the composition of the DNA-protein complex, the supernatant after media 

exchange was treated with trypsin and the flowthrough fraction containing smaller peptides 

was analysed using mass spectrometry. The total amount of proteins recovered from the 

trypsin-treated samples only represented 50% of the amount present in the initial protein 

sample. This estimation could be incorrect due to the limitations of the BCA assay. According 

to the manufacturer, the presence of substances such as sucrose (sugars) can interfere with the 

protein-concentration estimation. The very low A260/A230 ratio of the sample suggested the 
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presence of potential interfering substances such as mainly sugars and oligosaccharides, in the 

DNA complex sample.  

Jowiya et al. (2015) identified dextran as one of the components of the EPM in C. jejuni 

biofilms. The dextran-digestion experiment in this study revealed a lack of dextran-like sugars 

present in the DNA complex, indicating that the low A260/A230 ratio could be a representation 

of the presence of free polysaccharides (most likely CPS). According to the mass spectrometry 

data, no known DNA-binding protein was identified, as most of the hits represented general 

housekeeping genes. Due to the limitation of the experiment, the uncharacterized protein 

Cj0449c that was listed in the mass spectrometry data may not represent a DNA-binding protein 

(Figure 41). This is because the flowthrough fraction would have contained not only bound 

proteins, but also non-bound proteins smaller than 10 kDa, which would have passed through 

the centrifugation step. To alter this experiment, it is necessary to first remove all the non-

bound proteins and then proceed with trypsin treatment to cleave off bound proteins in order 

to identify the presence of DNA-binding proteins.  

4.3 Investigation of the role of cje0256 in the biofilm-forming ability of C. jejuni 

RM1221 

This study investigated the biofilm-forming ability of C. jejuni RM1221. The results indicated 

that RM1221 has 70% of 11168H’s capacity to form biofilms (Figure 61), which contradicts 

results from previous research, in which the strain exhibited only 30% of 11168H’s capacity 

(Brown et al., 2015b). In C. jejuni RM1221, three DNase-encoding genes (cje0256, cje1441, 

and cje0566) have been identified as extracellular nucleases and have been shown to play a 

role in the natural competence of this strain (Brown et al., 2015b; Gaasbeek et al., 2009; 

Gaasbeek et al., 2010). In a study by Brown et al. (2015b), the authors emphasized the role of 

cje1441 in biofilm formation and deduced that DNase activity inhibits biofilm formation in the 
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RM1221 strain. In addition, they demonstrated that, unlike the wild-type strain, the 

RM1221/cje1441 mutant lacked the ability to degrade genomic DNA, further highlighting the 

enzymatic activity of Cje1441. In addition, the nuclease activities of Cje1441 and Cje0566 

proteins were confirmed with DNA-hydrolysis assays (Gaasbeek et al., 2010). Furthermore, 

Gaasbeek et al. (2009) tested extracts of Campylobacter dns (cje0256) positive and negative 

strains for the presence of nuclease activity using phage lambda DNA as substrate; the authors 

observed complete DNA degradation with the dns positive strain. 

In this study, the attempt to investigate the role of the cje0256 gene in C. jejuni RM1221 biofilm 

formation was not successful, as the pUC19-cje0256-kanR derivative could not be introduced 

into the C. jejuni RM1221 strain. The electroporation experiments were implemented using 

several batches of newly prepared cells. Initially, the protocol was unchanged. The cells were 

prepared using a freshly prepared buffer, and electroporation was carried out with untreated 

pUC19-cje0256-kanR and control plasmid pRRC, using standard conditions (as stated in 

Materials and Methods) and altered conditions (higher resistance of 600 Ω) (Gaasbeek et al., 

2009). Overall, neither of the electroporations produced any chloramphenicol-resistant colonies 

for RM1221/pRRC or kanamycin-resistant colonies for RM1221/pUC19-cje0256-kanR. In an 

attempt to troubleshoot, the protocol was slightly modified; 10 µM EDTA was incorporated to 

check for its DNase-hindering effects as executed by Brown et al. (2015b), since the strain 

consists of three DNase enzymes. However, the modification did not improve the 

electroporation efficiency, which suggests that EDTA alone was not sufficient to counteract 

the intracellular nuclease activity. 

In a further modification, DNA methylation was carried out to provide extra protection from 

potential DNA-degrading enzymes. A generic methyltransferase NEB EcoGII, which targets 

the adenine (A) residues of RM1221, was chosen. This enzyme was selected because the target 
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sequence of Campylobacter RM1221 was unknown. Beauchamp et al. (2017) identified the 

target sequence for methylation of C. jejuni 11168 as RAATTY. Given this study as a 

reference and the fact that Campylobacter has AT-rich genomes, the selection of EcoGII, which 

targets all adenine in any sequence context, was justifiable. Complete methylation was not 

achieved, which was acceptable, as only < 75% methylation of plasmid DNA was guaranteed 

by NEB (Figure 65). Re-methylation was attempted, but it did not produce a drastic change in 

the methylation pattern, which could be due to the steric hindrance created by the already 

methylated adenine residues. No transformants were produced with the methylated and re-

methylated DNA when introduced into EDTA-treated and untreated RM1221 cells. Gaasbeek 

et al. (2009) listed RM1221 as a naturally non-transformable strain due to the presence of the 

same gene (cje0256) that inhibits the natural competence of the cells. Despite modifications to 

the DNA and competent cells, the construction of the knockout strain was unsuccessful. This 

failure may indicate that the strain is not just resistant to natural transformation, as 

demonstrated by Gaasbeek et al. (2009), but also resistant to electroporation procedures under 

normal conditions without incorporating any host-specific modifications, due to the 

cytoplasmic nuclease activity. No studies were found describing direct electroporation of 

exogenous DNA into RM1221 cells. However, a study by Miller et al. (2000) demonstrated 

electroporation of pMW10-based vectors, after modifying the vector according to the host-

specific requirements. The vector was first introduced into an RM1221/Strr derivative strain 

by triparental mating. This transformed vector was then used for direct electroporation with 

wild-type RM1221 cells. Since the strain produces more than one DNA-degrading enzyme but 

adenine methylation did not succeed, future work could consider other methylase targeting 

C/G-recognizing bases instead. As an alternative strategy, to determine the role of cje0256 in 

biofilm, future work should examine the regulation of the expression of this gene and its effects 

on RM1221 biofilm-forming properties. 
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Furthermore, expression plasmids designed for protein purification were successfully 

constructed and verified by sequencing to be free of any mutations. Protein expression 

experiments with both pBAD33-cje0256 and pBAD33-cje0256LP were carried out. The 

staining procedures used were similar to Cj0979 detection experiments. Neither Cje0256 nor 

Cje0256LP proteins were detectable using Coomassie staining or Western blotting techniques. 

Western blotting is a high sensitivity assay allowing detection in the pg level. Coomassie 

staining detects proteins up to 7 ng, and the dye binds to arginine, lysine, and histidine residues. 

Analysis of the amino acid sequences of Cj0979 and Cje0256, using ExPASY Bioinformatics 

research portal, revealed that there was no significant difference in the composition of arginine, 

lysine, and histidine residues between the two proteins. This indicates that there were no issues 

with the detection technique used. The OD600 readings of the induced cultures of E. 

coli/pBAD33-cje0256 and E. coli/pBAD33-cje0256LP were lower than their respective 

uninduced cultures, which indicates arabinose utilization by the cells. Lack of protein detection 

could be due to one of the following reasons: the protein is toxic to E. coli; the protein is not 

stable and rapidly degrades during the expression process; or the yield obtained was too low 

even for detection with Western blotting. Future research could focus on studying the optimum 

conditions required for protein stability by performing a time-course experiment or by 

purifying the protein at relatively lower temperatures. If 6xHis tag is inaccessible, then 

attaching the His tag to the start of the protein (i.e., N-terminus) could be considered as a 

strategy for purification. Alternatively, if protein toxicity is the issue, choosing another 

recipient strain that is more robust and built for the expression of difficult proteins could be 

considered. 
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Chapter 5: Conclusion 

This study aimed to develop a regulatory gene expression system in Campylobacter, 

incorporating the widely used arabinose-inducible PBAD promoter, to investigate the effects of 

essential genes and other genes whose functions are unknown. Campylobacter does not utilise 

glucose or other carbohydrates for metabolism, as it lacks the transporters and other vital 

enzymes within the glycolytic pathway (Stahl et al., 2012). This study provided an early 

understanding of the introduction and the lack of expression of arabinose transporter genes in 

C. jejuni. Despite the successful introduction of araE and lacYA177C into these bacteria, the 

induction of the reporter gene gfp was not achieved when compared to E. coli strains.  

This study was the first to examine the exogeneous introduction of these two arabinose 

transporter genes into C. jejuni. Although the maintenance of the constructed regulated system 

in Campylobacter did not succeed, such a system remains important for the study of other vital 

genes in Campylobacter. Furthermore, the biofilm studies conducted in this research revealed 

that Cj0979 possesses enzymatic properties. Reduction in biofilm formation was obtained 

when tested with purified Cj0979. Neither this protein nor its properties have been studied 

elsewhere. Similar to this study, an attempt to study the role of the cje0256 gene in C. jejuni 

RM1221 was undertaken since it was listed as a DNAse encoding gene in a previous study 

(Gaasbeek et al., 2009). This strain consists of two other DNase encoding genes and was found 

to be non-transformable (Gaasbeek et al., 2010).  

In conclusion, this study was undertaken to better understand the factors and mechanisms 

involved in CFF and biofilm dispersal of C. jejuni, since these bacteria are known to persist in 

the environment for longer periods and cause infections in humans. Identifying the key 

determinants in these processes will aid in the development of antimicrobials that will 

decrease the prevalence of these bacteria and thereby reduce the spread of campylobacteriosis. 
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Appendix  

 

Figure S1. Scheme of construction of plasmid p1051-tetR. Not in scale.  
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Figure S2. Scheme of construction of plasmid p0979-kanR. Not in scale.
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>cj0979_PCR_product 

AAAATCTAGAAGGAGGTATACCATGAGAATAAATTATAAAAAAATATTTAATCTGAGAAAATTACTAAGTGATCCAAAAAAACTTTT 

TTCTGTATTAATCTTCACTCTTGTAGTTGTTTTTATCCAGAACTATATTGCCCAAAATTCTAGTTTTGAAGGAAAAGTAGTTAGAAT 

TATTGATGGAGATACTATAGAAGTTAATCATGAAAACAAACTCGCTAGAATAAGATTTTTCGGTATAGATGCACCAGAACTTAAACA 

AAGTTTTGGAAAGCAGTCAAAAGAAGCTTTAAGTAGAATTTTAAGTGGCAAACAAGTTGAAATTATTTATAAAAATAAAGATACTTA 

TGGTAGAATTGTTGCTATTGTAAAGCTTAATGATGTTGATATTAATCGATTTTTGGTAAGCAAAGGCTATGCTTGGGCTGATACTTA 

CTATAGTAACGCTTATACCAAAGAACAAGAAAATGCTAAGAAAAATCATTTAGGTCTTTGGAAAGAGAGTAATCCTATAGAGCCTTA 

TAAATGGAGAAAACACAATAAATTCCATCACCATCACCATCACTAAGCATGCGGAA 
Figure S3. cj0979 region amplified with primers cj0979_expr_for and 

cj0979_expr_rev. Highlighted in yellow- coding sequence for 6xHis tag. 

 
>cj0979N_PCR_product  

AAAATCTAGAAGGAGGTATACCATGCACCATCACCATCACCATAGAATAAATTATAAAAAAATATTTAATCTGAGAAAATTACTAA 

GTGATCCAAAAAAACTTTTTTCTGTATTAATCTTCACTCTTGTAGTTGTTTTTATCCAGAACTATATTGCCCAAAATTCTAGTTTTG 

AAGGAAAAGTAGTTAGAATTATTGATGGAGATACTATAGAAGTTAATCATGAAAACAAACTCGCTAGAATAAGATTTTTCGGTATAG 

ATGCACCAGAACTTAAACAAAGTTTTGGAAAGCAGTCAAAAGAAGCTTTAAGTAGAATTTTAAGTGGCAAACAAGTTGAAATTATTT 

ATAAAAATAAAGATACTTATGGTAGAATTGTTGCTATTGTAAAGCTTAATGATGTTGATATTAATCGATTTTTGGTAAGCAAAGGCT 

ATGCTTGGGCTGATACTTACTATAGTAACGCTTATACCAAAGAACAAGAAAATGCTAAGAAAAATCATTTAGGTCTTTGGAAAGAGA 

GTAATCCTATAGAGCCTTATAAATGGAGAAAACACAATAAATTCTAAGCATGCAAGCGGAA 

Figure S4. cj0979N region amplified with primers cj0979_N_expr_for and 

cj0979_N_expr_rev. Highlighted in yellow- coding sequence for 6xHis tag. 
 
>Cj0979  

MRINYKKIFNLRKLLSDPKKLFSVLIFTLVVVFIQNYIAQNSSFEGKVVR 

IIDGDTIEVNHENKLARIRFFGIDAPELKQSFGKQSKEALSRILSGKQVE 

IIYKNKDTYGRIVAIVKLNDVDINRFLVSKGYAWADTYYSNAYTKEQENA  

KKNHLGLWKESNPIEPYKWRKHNKF 

 

>Nuc(Thermonuclease,Staphylococcus aureus) 
MTEYLLSAGICMAIVSILLIGMAISNVSKGQYAKRFFFFATSCLVLTLVVVSSLSSSANASQTDNGVNRS 

GSEDPTVYSATSTKKLHKEPATLIKAIDGDTVKLMYKGQPMTFRLLLVDTPETKHPKKGVEKYGPEASAF 

TKKMVENAKKIEVEFDKGQRTDKYGRGLAYIYADGKMVNEALVRQGLAKVAYVYKPNNTHEQLLRKSEAQ  

AKKEKLNIWSEDNADSGQ 

Colour code: Red-leader peptide; Green- pro-protein upstream region 

 
>Nuc2(Thermonuclease,Staphylococcus aureus) 
MKSNKSLAMIVVAIIIVGVLAFQFMNHTGPFKKGTNHETVQDLNGKDKVHVQRVVDGDTFIAN 

QNGKEIK VRLIGVDTPETVKPNTPVQPFGKEASNYSKKTLTNQDVYLEYDKEKQDRYGRTLA 

YVWISKD 

 

Alignment of amino acid sequences generated by Clustal Omega 
Cj0979      ---------------------------MRINYKKIFNLRKLLSDPKKLFSVLIFTLVVVF 

Nuc         MTEYLLSAGICMAIVSILLIGMAISNVSKGQYAKRFFF----FA----TSCLVLTLVVVS 

Nuc2        ---MKSNKSLAMIVVAIIIVGV-------------------------------------- 

                                                                         

 

Cj0979      IQN--------------------------YIAQNSSFEGKVVRIIDGDTIEVNHENKLAR 

Nuc         SLSSSANASQTDNGVNRSGSEDPTVYSATSTKKLHKEPATLIKAIDGDTVKLMYKGQPMT 

Nuc2        -LAF---QFMNHTGPFKKGTNHETVQDLN-----GKDKVHVQRVVDGDTFIANQNGKEIK 

                                               .    : : :****.    :.:    

 

Cj0979      IRFFGIDAPELKQS------FGKQSKEALSRILS-GKQVEIIY---KNKDTYGRIVAIVK 

Nuc         FRLLLVDTPETKHPKKGVEKYGPEASAFTKKMVENAKKIEVEFDKGQRTDKYGRGLAYIY 

Nuc2        VRLIGVDTPETVKPNTPVQPFGKEASNYSKKTLTNQD-VYLEYDK-EKQDRYGRTLAYVW 

            .*:: :*:**  :       :* ::.   .: :   . : : :   :. * *** :* :  

 

Cj0979      LNDVDINRFLVSKGYAWADTYYSNAY------TKEQENAKKNHLGLWKESNPIEPYKWRK 

Nuc         ADGKMVNEALVRQGLAKVAYVYKPNNTHEQLLRKSEAQAKKEKLNIWSEDNADSGQ---- 

Nuc2        ISKD-------------------------------------------------------- 

             .                                                           

 

Cj0979      HNKF 

Nuc         ---- 

Nuc2        ---- 

 

Just with Nuc: 
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Cj0979      ---------MRINYKKIFNLRKLLSD------PKKLF----SVLIFTLVVVFIQNYIAQ- 

Nuc         MTEYLLSAGICMAIVSILLIGMAISNVSKGQYAKRFFFFATSCLVLTLVVVSSLSSSANA 

                     : :   .*: :   :*:       *::*    * *::*****   .  *:  

 

Cj0979      -------------------------NSSFEGKVVRIIDGDTIEVNHENKLARIRFFGIDA 

Nuc         SQTDNGVNRSGSEDPTVYSATSTKKLHKEPATLIKAIDGDTVKLMYKGQPMTFRLLLVDT 

                                       .  ..::: *****::: ::.:   :*:: :*: 

 

Cj0979      PELKQSF------GKQSKEALSRI-LSGKQVEIIY---KNKDTYGRIVAIVKLNDVDINR 

Nuc         PETKHPKKGVEKYGPEASAFTKKMVENAKKIEVEFDKGQRTDKYGRGLAYIYADGKMVNE 

            ** *:        * ::.   .::  ..*::*: :   :..*.*** :* :  :.  :*. 

 

Cj0979      FLVSKGYAWADTYYSNA------YTKEQENAKKNHLGLWKESNPIEPYKWRKHNKF 

Nuc         ALVRQGLAKVAYVYKPNNTHEQLLRKSEAQAKKEKLNIWSEDNADSGQ-------- 

               ** :* * .   *.          *.: :***::*.:*.*.*  .           
Figure S5. Clustal Omega comparison of Cj0979, Nuc and Nuc 2. Start of pro-

protein (green), start of mature proteins/catalytic domains (purple)  
 

Prediction for Cj0979: 
Leader peptide (39 aa) in read: 

 

A 
>Cj0979  

MRINYKKIFNLRKLLSDPKKLFSVLIFTLVVVFIQNYIAQNSSFEGKVVRIIDGDTIEV 

NHENKLARIRFFGIDAPELKQSFGKQSKEALSRILSGKQVEIIYKNKDTYGRIVAIVKL 

NDVDINRFLVSKGYAWADTYYSNAYTKEQENAKKNHLGLWKESNPIEPYKWRKHNKF 

 

B 
>cj0979  

ATGAGAATAAATTATAAAAAAATATTTAATCTGAGAAAATTACTAAGTGATCCAAAAAA 

ACTTTTTTCTGTATTAATCTTCACTCTTGTAGTTGTTTTTATCCAGAACTATATTGCC 

 

CAAAATTCTAGTTTTGAAGGAAAAGTAGTTAGAATTATTGATGGAGATACTATAGAAGT 

TAATCATGAAAACAAACTCGCTAGAATAAGATTTTTCGGTATAGATGCACCAGAACTTA 

AACAAAGTTTTGGAAAGCAGTCAAAAGAAGCTTTAAGTAGAATTTTAAGTGGCAAACAA 

GTTGAAATTATTTATAAAAATAAAGATACTTATGGTAGAATTGTTGCTATTGTAAAGCT 

TAATGATGTTGATATTAATCGATTTTTGGTAAGCAAAGGCTATGCTTGGGCTGATACTT 

ACTATAGT AACGCTTATACCAAAGAACAAGAAAATGCTAAGAAAAATCATTTAGGTCT 

TTGGAAAGAG AGTAATCCTATAGAGCCTTATAAATGGAGAAAACACAATAAATTCTAA 

 

C 
>cj0979LP  

CAAAATTCTAGTTTTGAAGGAAAAGTAGTTAGAATTATTGATGGAGATACTATAGAAGT 

TAATCATGAAAACAAACTCGCTAGAATAAGATTTTTCGGTATAGATGACCAGAACTTAA 

ACAAAGTTTTGGAAAGCAGTCAAAAGAAGCTTTAAGTAGAATTTTAAGTGGCAAACAAG 

TTGAAATTATTTATAAAAATAAAGATACTTATGGTAGAATTGTTGCTATTGTAAAGCTT 

AATGATGTTGATATTAATCGATTTTTGGTAAGCAAAGGCTATGCTTGGGCTGATACTTA 

CTATAGTAACGCTTATACCAAAGAACAAGAAAATGCTAAGAAAAATCATTTAGGTCTTT 

GGAAAGAGAGTAATCCTATAGAGCCTTATAAATGGAGAAAACACAATAAATTCTAA 

Figure S6. Sequence of cj0979LP. Font in red - sequence corresponding to leader 

peptide. A- amino acid sequence of Cj0979, B- nucleotide sequence of gene 

cj0979, C-nucleotide sequence of gene cj0979LP without leader peptide. 

>cj0979LP_PCR_product 

AAAATCTAGAAAGAAGGAGATATACCATGCAAAATTCTAGTTTTGAAGGAAAAGTAGTTAGAATTATTGATGGAGATACTATAGAAG 

TTAATCATGAAAACAAACTCGCTAGAATAAGATTTTTCGGTATAGATGCACCAGAACTTAAACAAAGTTTTGGAAAGCAGTCAAAAG 

AAGCTTTAAGTAGAATTTTAAGTGGCAAACAAGTTGAAATTATTTATAAAAATAAAGATACTTATGGTAGAATTGTTGCTATTGTAA 

AGCTTAATGATGTTGATATTAATCGATTTTTGGTAAGCAAAGGCTATGCTTGGGCTGATACTTACTATAGTAACGCTTATACCAAAG 

AACAAGAAAATGCTAAGAAAAATCATTTAGGTCTTTGGAAAGAGAGTAATCCTATAGAGCCTTATAAATGGAGAAAACACAATAAAT 

TCCATCATCATCATCATCACTAAGCATGCGGAA 

Figure S7. cj0979LP region amplified with primers cj0979LP_for and 

cj0979LP_rev. Highlighted in yellow- coding sequence for 6xHis tag. 

>Cje1441  

MKKLIILSLLSTLAFADYTQYKPSEDFAKYFTKQNCSQVLDKFYYINCYDYSLKGTKAVAYRLEADNLKG 

EQIKKRPRFEDDTNIPKKYRTTWSDYKNSGYDRGHTLSNASMRKTTQAQRSTFLMSNITPQNPQINQRVW 

NKIEKRERQVALKLGSLEVLNLVNYDNNPQRIKNNIAIPSSYTKILKGDNFKECYQVPNHDVENENLRIY  

KVKCDNF 
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BLASTp result: 

DNA/RNA non-specific endonuclease [Campylobacter]  

Identity: 66%, Coverage percentage: 100% 
Query  1    MKKLIILSLLSTLAFADYTQYKPSEDFAKYFTKQNCSQVLDKFYYINCYDYSLKGTKAVA  60 

            MK  I L  +S   FA    YKPS DF+ YF   NCSQ+LDKF+Y+NCYDY LKGTKAVA 

Sbjct  1    MKIFIFLLTISLNIFA-LEPYKPSADFSSYFNNINCSQILDKFFYLNCYDYKLKGTKAVA  59 

 

Query  61   YRLEADNLKGEQIKKRPRFEDDTNIPKKYRTTWSDYKNSGYDRGHTLSNASMRKTTQAQR  120 

            Y++EA NLK  QIKKRPRFEDDTNIPKKYRTTWS+YKNSGY RGHT  NAS   +  AQ  

Sbjct  60   YKVEASNLKDRQIKKRPRFEDDTNIPKKYRTTWSNYKNSGYTRGHTAPNASFSFSKAAQN  119 

 

Query  121  STFLMSNITPQNPQINQRVWNKIEKRERQVALKLGSLEVLNLVNYDNNPQRIKNNIAIPS  180 

            S FLMSNITPQN QIN ++WN+IE+RER +AL+  S+EVLNLV YD  PQ IKN IAIPS 

Sbjct  120  SVFLMSNITPQNAQINNKIWNEIEQRERNLALEFQSIEVLNLVLYDKEPQYIKNRIAIPS  179 

 

Query  181  SYTKILKGDNFKECYQVPNHDVENENLRIYKVKCDNF  217 

             Y KI+K   FKECYQ PNH+V +EN++ Y++ CD F 

Sbjct  180  FYVKIIKTPKFKECYQAPNHEVNDENIKQYQINCDKF  216 

 

 
>Cje0566  

MKKLILLPLLSTLAFADYTQYKPSEEFAKYFTKQSCSQVLDKFYYLNCYDYNLKGTKAVAYKLEVDNLKG 

EQIKKRPRFEDDTNIPKKYRTTWSDYKNSGYDRGHTLSNASMRKTTQAQRSTFLMSNITPQNPQINQRVW 

NKIEKRERQVASKLGSLEVLNLVNYDNNPQRIRNQIAIPSSYIKILKGENFKECYQVPNHEVEDENIRKY  

KIDCDKI 
BLASTp result: 

DNA/RNA non-specific endonuclease [Campylobacter]  

Identity: 66%, Coverage percentage: 100% 
Query  1    MKKLILLPLLSTLAFADYTQYKPSEEFAKYFTKQSCSQVLDKFYYLNCYDYNLKGTKAVA  60 

            MK  I L  +S   FA    YKPS +F+ YF   +CSQ+LDKF+YLNCYDY LKGTKAVA 

Sbjct  1    MKIFIFLLTISLNIFA-LEPYKPSADFSSYFNNINCSQILDKFFYLNCYDYKLKGTKAVA  59 

 

Query  61   YKLEVDNLKGEQIKKRPRFEDDTNIPKKYRTTWSDYKNSGYDRGHTLSNASMRKTTQAQR  120 

            YK+E  NLK  QIKKRPRFEDDTNIPKKYRTTWS+YKNSGY RGHT  NAS   +  AQ  

Sbjct  60   YKVEASNLKDRQIKKRPRFEDDTNIPKKYRTTWSNYKNSGYTRGHTAPNASFSFSKAAQN  119 

 

Query  121  STFLMSNITPQNPQINQRVWNKIEKRERQVASKLGSLEVLNLVNYDNNPQRIRNQIAIPS  180 

            S FLMSNITPQN QIN ++WN+IE+RER +A +  S+EVLNLV YD  PQ I+N+IAIPS 

Sbjct  120  SVFLMSNITPQNAQINNKIWNEIEQRERNLALEFQSIEVLNLVLYDKEPQYIKNRIAIPS  179 

 

Query  181  SYIKILKGENFKECYQVPNHEVEDENIRKYKIDCDKI  217 

             Y+KI+K   FKECYQ PNHEV DENI++Y+I+CDK  

Sbjct  180  FYVKIIKTPKFKECYQAPNHEVNDENIKQYQINCDKF  216 

 

Figure S8. Homologues of C. jejuni RM1221 DNases checked against C. jejuni 

NCTC 11168 genome using non-redudant protein database. Amino acid 

sequences of Cje1441, Cje0566 and Cje0256 were used as the query sequence for 

BLASTp analysis. 

 
Cje0256/Cj0979 

Coverage percentage-38%, Identity-50% 
Query  19  KKLFSVLIFTLVVV  32 

           KK+ SVLI  L ++ 

Sbjct  2   KKIISVLILALSLL  15 

 

Query  154  HLGLWKES  161 

            HL  WKE  

Sbjct  100  HLPCWKEG  107 

 

Query  129  SKGY-AWADTYYSNAYTKEQENAKKNHLGLWKESNPIE  165 

            SKG+ A +  Y S  Y     + ++  +  W +  P++ 

Sbjct  176  SKGWIARSYLYMSKTYNIRLSDQERKLMEAWDKQYPMD  213 

 

Query  80  QSFGKQ  85 

           Q+FGK  

Sbjct  95  QNFGKH  100 

 

Query  141  NAYTKE  146 

            N YTK+ 
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Sbjct  71   NEYTKK  76 

 

Query  153  NHLG--LWKESNPIEPYKWRKHNKF  175 

            N LG   W +     P+K  K  K+ 

Sbjct  32   NDLGSSYWYDFYCQAPFKVNKKGKY  56 

 

Cje0566/Cj0979 

Coverage percentage-34%, Identitiy-27% 
Query  20   KLFSVLIFTLV-----VVFIQNYIAQNSSFEGKVVRIIDGDTIE-----VNHENKLARIR  69 

            KL S+ +  LV        I+N IA  SS+    ++I+ G+  +      NHE +   IR 

Sbjct  153  KLGSLEVLNLVNYDNNPQRIRNQIAIPSSY----IKILKGENFKECYQVPNHEVEDENIR  208 

 

Query  70   FFGIDAPEL  78 

             + ID  ++ 

Sbjct  209  KYKIDCDKI  217 

 

Query  138  YYSNAY  143 

            YY N Y 

Sbjct  44   YYLNCY  49 

 
Cje1441/Cj0979 

Coverage percentage-34%, Identitiy-27% 
Query  20   KLFSVLIFTLV-----VVFIQNYIAQNSSFEGKVVRIIDGDTIE-----VNHENKLARIR  69 

            KL S+ +  LV        I+N IA  SS+     +I+ GD  +      NH+ +   +R 

Sbjct  153  KLGSLEVLNLVNYDNNPQRIKNNIAIPSSY----TKILKGDNFKECYQVPNHDVENENLR  208 

 

Query  70   FFGI  73 

             + + 

Sbjct  209  IYKV  212 

 

Query  138  YYSNAY  143 

            YY N Y 

Sbjct  44   YYINCY  49 

 

Figure S9. Amino acid sequence similarity of C. jejuni 11168 Cj0979 and C. 

jejuni RM1221 DNases. Amino acid sequences were used as the query sequence 

for BLASTp analysis  
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Figure S10. Scheme of construction of plasmid pUC19-cje0256-kanR. Not in 

scale.  
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A 

>Cje0256  

MKKIISVLILALSLLNAKSFEESKKELVKFYNDLGSSYWYDFYCQAPFKVNKKGKYISFE 

VIKSDLYAPRNEYTKKGKINQRIKRIEWEHIMPAQNFGKHLPCWKEGGRKACKNDPTFAK 

MEADKQNLVPAIGEINGDRSNFRYAEAPTNLKYTQYGNCKVYTDFKAKRFYPANYSKGWI 

ARSYLYMSKTYNIRLSDQERKLMEAWDKQYPMDEKEKRIRALL 

 

B  

>cje0256 

ATGAAAAAAATAATAAGCGTTTTAATACTTGCTTTAAGCTTATTAAATGCT 

 

AAAAGTTTTGAAGAAAGCAAAAAAGAATTAGTAAAATTTTATAATGATCTAGGGAGCTC 

TTACTGGTATGATTTTTATTGTCAAGCACCTTTTAAGGTTAATAAAAAAGGAAAATATA 

TTAGTTTTGAAGTGATTAAAAGTGATTTATATGCTCCTAGAAACGAATACACCAAAAAA 

GGAAAAATTAACCAAAGAATCAAACGCATAGAATGGGAGCATATTATGCCCGCCCAAAA 

CTTTGGAAAGCATTTACCTTGCTGGAAAGAAGGTGGCAGAAAAGCTTGTAAAAATGATC 

CAACTTTTGCAAAAATGGAAGCCGATAAACAAAACCTAGTTCCAGCCATAGGAGAGATA 

AATGGGGATAGAAGCAATTTTAGATATGCTGAGGCTCCTACTAATTTAAAATATACTCA 

ATATGGAAATTGTAAGGTTTATACTGATTTTAAAGCAAAAAGATTTTATCCTGCAAATT 

ATTCTAAAGGCTGGATTGCAAGAAGCTATTTATATATGAGCAAAACTTATAATATCAGA 

TTATCCGACCAAGAAAGAAAACTTATGGAGGCTTGGGATAAACAATACCCTATGGATGA 

GAAAGAAAAAAGAATTAGAGCATTACTCTAA 

 

C  

>cje0256LP  

AAAAGTTTTGAAGAAAGCAAAAAAGAATTAGTAAAATTTTATAATGATCTAGGGAGCTCT 

TACTGGTATGATTTTTATTGTCAAGCACCTTTTAAGGTTAATAAAAAAGGAAAATATATT 

AGTTTTGAAGTGATTAAAAGTGATTTATATGCTCCTAGAAACGAATACACCAAAAAAGGA 

AAAATTAACCAAAGAATCAAACGCATAGAATGGGAGCATATTATGCCCGCCCAAAACTTT 

GGAAAGCATTTACCTTGCTGGAAAGAAGGTGGCAGAAAAGCTTGTAAAAATGATCCAACT 

TTTGCAAAAATGGAAGCCGATAAACAAAACCTAGTTCCAGCCATAGGAGAGATAAATGGG 

GATAGAAGCAATTTTAGATATGCTGAGGCTCCTACTAATTTAAAATATACTCAATATGGA 

AATTGTAAGGTTTATACTGATTTTAAAGCAAAAAGATTTTATCCTGCAAATTATTCTAAA 

GGCTGGATTGCAAGAAGCTATTTATATATGAGCAAAACTTATAATATCAGATTATCCGAC 

CAAGAAAGAAAACTTATGGAGGCTTGGGATAAACAATACCCTATGGATGAGAAAGAAAAA  

AGAATTAGAGCATTACTCTAA 

Figure S11. Sequence of cje0256LP. Font in red - sequence corresponding to 

leader peptide. A- amino acid sequence of Cje0256, B- nucleotide sequence of 

gene cje0256, C- nucleotide sequence of gene cje0256LP without leader peptide. 

>cje0256_PCR product 

ATAATCTAGAAAGAAGGAGATATACCATGAAAAAAATAATAAGCGTTTTAATACTTGCTTTAAGCTTATTAAATGCTAAAAGTTTTG 

AAGAAAGCAAAAAAGAATTAGTAAAATTTTATAATGATCTAGGGAGCTCTTACTGGTATGATTTTTATTGTCAAGCACCTTTTAAGG 

TTAATAAAAAAGGAAAATATATTAGTTTTGAAGTGATTAAAAGTGATTTATATGCTCCTAGAAACGAATACACCAAAAAAGGAAAAA 

TTAACCAAAGAATCAAACGCATAGAATGGGAGCATATTATGCCCGCCCAAAACTTTGGAAAGCATTTACCTTGCTGGAAAGAAGGTG 

GCAGAAAAGCTTGTAAAAATGATCCAACTTTTGCAAAAATGGAAGCCGATAAACAAAACCTAGTTCCAGCCATAGGAGAGATAAATG 

GGGATAGAAGCAATTTTAGATATGCTGAGGCTCCTACTAATTTAAAATATACTCAATATGGAAATTGTAAGGTTTATACTGATTTTA 

AAGCAAAAAGATTTTATCCTGCAAATTATTCTAAAGGCTGGATTGCAAGAAGCTATTTATATATGAGCAAAACTTATAATATCAGAT 

TATCCGACCAAGAAAGAAAACTTATGGAGGCTTGGGATAAACAATACCCTATGGATGAGAAAGAAAAAAGAATTAGAGCATTACTCC 

ATCATCATCATCATCACTAAGCATGCTTCT 

Figure S12. cje0256 region amplified with primers cje0256_for and cje0256_rev. 

Highlighted in yellow-coding sequence for 6xHis tag. 

 
>cje0256LP_PCR_product 

ATAATCTAGAAAGAAGGAGATATACCATGAAAAGTTTTGAAGAAAGCAAAAAAGAATTAGTAAAATTTTATAATGATCTAGGGAGCT 

CTTACTGGTATGATTTTTATTGTCAAGCACCTTTTAAGGTTAATAAAAAAGGAAAATATATTAGTTTTGAAGTGATTAAAAGTGATT 

TATATGCTCCTAGAAACGAATACACCAAAAAAGGAAAAATTAACCAAAGAATCAAACGCATAGAATGGGAGCATATTATGCCCGCCC 

AAAACTTTGGAAAGCATTTACCTTGCTGGAAAGAAGGTGGCAGAAAAGCTTGTAAAAATGATCCAACTTTTGCAAAAATGGAAGCCG 

ATAAACAAAACCTAGTTCCAGCCATAGGAGAGATAAATGGGGATAGAAGCAATTTTAGATATGCTGAGGCTCCTACTAATTTAAAAT 

ATACTCAATATGGAAATTGTAAGGTTTATACTGATTTTAAAGCAAAAAGATTTTATCCTGCAAATTATTCTAAAGGCTGGATTGCAA 

GAAGCTATTTATATATGAGCAAAACTTATAATATCAGATTATCCGACCAAGAAAGAAAACTTATGGAGGCTTGGGATAAACAATACC 

CTATGGATGAGAAAGAAAAAAGAATTAGAGCATTACTCCATCATCATCATCATCACTAAGCATGCTTCT 

Figure S13. cje0256LP region amplified with primers cje0256_LP_for_mod  

and cje0256_LP_rev_mod. Highlighted in yellow- coding sequence for 6xHis tag. 

 

 


