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Estimation of Quality Scores from Subjective Tests
- beyond Subjects’ MOS

Sergio Pezzulli, Maria G. Martini, Senior Member, IEEE, Nabajeet Barman, Member, IEEE

Abstract—Subjective tests for the assessment of the quality
of experience (QoE) are typically run with a pool of subjects
providing their opinion score using a 5-level scale. The subjects’
Mean Opinion Score (MOS) is generally assumed as the best
estimation of the average score in the target population. Indeed,
for a large enough sample we may assume that the mean of the
variations across the subjects approaches zero, but this is not
the case for the limited number of subjects typically considered
in subjective tests. In this paper we propose an approach based
on Generalized Linear Models (GLM) for the estimation of the
population average QoE. The motivating dataset is composed of
the individual scores assigned by 25 subjects to a set of gaming
videos evaluated under different resolutions and compression
ratios. The approach recognizes the Multinomial nature of the
data and allows for correlation between scores of the same
subject. The resulting estimated average QoE is shown to follow
more credible patterns than the MOS, in particular for higher
bitrates, for which the model estimates present a more coherent
behaviour. Similar convincing results are found on a second
dataset, showing the validity of the approach.

I. INTRODUCTION

While in the past the design of multimedia services was
performed relying only on Quality of Service (QoS) criteria,
delivering an appropriate Quality of Experience (QoE) is
increasingly important and the capability of measuring it
accurately is crucial in order to select the best transmission
system technologies and parameters. The most appropriate
way to measure QoE is by collecting the users’ opinion via
subjective tests. Subjective tests for quality of experience are
typically run with a pool of subjects providing their opinion
score using a 5-level scale. The subjects’ mean opinion score
(MOS) is generally assumed as the best estimation of the
quality [1] [2]. Subjects present variations in perceiving and
assessing the quality and it is known that, if the sample of
subjects is large enough, the mean of the collected opinion
scores approaches the population mean. More precisely, the
mean is a consistent estimator of the population mean, i.e.
it converges in probability to the population mean when the
sample size tends to infinity. 1

Performing subjective tests with a large number of subjects
is however expensive in terms of time and resources. Thus, for
practical reasons only a small number of subjects is involved
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1Let Mn denote the sample mean over a sample of size n and let µ denote

the population mean. Then for all ε > 0, P (|Mn − µ|> ε) → 0 when
n→∞.

(e.g., 15 is the minimum recommended number according to
ITU [1] [2] and often used in actual tests). On the other hand,
subjective tests are often performed on several videos which
present limited variations in terms of technical features and
content. Therefore, the use of an appropriate modelling tech-
nique may help distinguishing the individual variability from
the relative merit of each video for estimating the population
average QoE. The MOS, in fact, can be seen as the population
mean estimate according to a model characterized by the
maximum number of linearly independent parameters, which
can be compared to simpler alternatives by using standard
model selection techniques.

In this paper we show this approach on a dataset composed
of the individual scores assigned by 25 subjects to a set
of gaming videos evaluated under different resolutions and
bitrates [3]. We apply a model that recognizes the ordinal
Multinomial nature of the data and allows for correlation
between scores of the same subject. The resulting estimated
average QoE is shown to follow more credible patterns than
the MOS, in particular for higher bitrates, for which the model
estimates present a more coherent behaviour.

The main contributions of this paper are:

• A detailed analysis of the subjective scores from the
dataset in [3] in terms of subject consistency and depen-
dence of the subjects’ opinion scores on the content. Such
analysis can benefit the research on quality of experience
on gaming video and further studies on statistics and
models for quality assessment in general. The dataset
in [3] is publicly available (Processed Video Sequences
(PVSs) and associated MOS scores). The per-subject
scores will also be made available upon publication of
this paper.

• A modelling technique for estimating the average QoE
in the population (that we will refer in the following as
Estimated Population Mean Opinion Score (EPMOS)),
exploiting jointly the information on the whole dataset.
Such model can be used as a replacement for MOS across
subjects. We applied such modelling technique to the
dataset in [3]. In order to show the general validity of
the approach, in Appendix 1 we also report the results
on a second example, regarding a dataset of natural scene
videos [4].

• The software that implements the model is made publicly
available to enable reproducible results and application of
the model to different datasets.2

2The link for downloading the per-subject scores and the code will appear
here.
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The remainder of this paper is structured as follows. Section
II presents the related work. Section III introduces the dataset
considered in this study. A detailed data analysis is presented
in Section IV. Section V introduces the proposed model,
the results of which are presented in Section VI. Finally,
discussion and conclusions are presented in Section VII.

II. RELATED WORK

The Likert scale [5] was developed in 1932 as a five-
point scale used for response in surveys of opinions, with the
labels of the original five categories of response ranging from
strongly disagree - corresponding to 1 - to strongly agree -
corresponding to 5. Such scales fall within the ordinal level of
measurement, since the response categories have a rank order,
but not necessarily the intervals between values are equal.
However, it is common in research to assume the that such
intervals are equal [6]. We will find a confirmation of this in
our study.

For quality assessment tests based on the Likert scale, a
number of statistical tests is typically used to analyze the data.
In [7] three reasons are listed why the use of various para-
metric methods, such as analysis of variance and regression,
is not appropriate: (a) the sample size is too small, (b) the
data are not normally distributed, (c) the data are from Likert
scales, which are ordinal, so parametric statistics cannot be
used. In the same paper, however, the author states that many
studies consistently show that parametric statistics are robust
with respect to violations of the underlying assumptions.

Similar considerations are done in [8], where the authors
aim at fixing a common practice of improper use of statistical
tests.

Recently, statistical quality of experience analysis was also
discussed in [9], focusing in particular on planning the sample
size based on the requested accuracy and statistical signifi-
cance testing.

The advantages of considering quality of experience dis-
tributions rather than Mean Opinion Scores are highlighted
in [10], where the author proposes to consider the full QoE
distribution over the ordinal rating categories for evaluating
and reporting QoE results instead of using MOS-based metrics.

In the following, we discuss the two main elements influ-
encing the results of a subjective test: the reliability of subjects
and the type of content used in the tests.

A. Reliability of subjects

As recommended in [1], the reliability of the subjects can
be qualitatively evaluated by checking their behaviour when
“reference/reference” pairs are shown. In this case we expect
the score is the maximum one (5 if a 5-point ordinal scale is
used) and we can assume the subject has a low reliability if
the score provided is far from this value.

In addition, the reliability of the subjects can be checked by
using procedures described in [2] for the Single Stimulus Con-
tinuous Quality Evaluation (SSCQE) method. In this method,
the reliability of the votes depends on the following two
parameters: systematic shifts and local inversions. During a
test, a viewer may be too optimistic or too pessimistic, or may

have misunderstood the voting procedures (for instance the
voting scale). This can lead to a series of votes systematically
shifted from the average series. On the other side, observers
can sometimes vote without paying too much attention. In this
case, local inversions can be observed.

The use of a tool allowing to detect and, if necessary, discard
inconsistent observers is recommended in [1].

In [2] a methodology for screening observers is provided,
with a first step, based on mean, standard deviation, and
kurtosis of the data, to discard observers who have produced
votes significantly distant from the average scores. A second
step is proposed for the detection of local vote inversions,
where the scores are preliminarily centred around the overall
mean to minimize the shift effect which has already been
treated at the first process stage.

A new method of data filtration is presented in [11]. The
method proposes the use, for subjects’ scores, of Mandel’s
k and h statistics that were developed for the comparison of
inter-laboratory experiments [12], considering ”the subject as a
laboratory”. The method results in a decrease of MOS standard
deviation, which is exemplified via SSCQE data of compressed
video results.

To deal with the inevitable variations between each subject’s
use of the quality scale, possibly also across sessions, Z-scores
are typically computed [13].

B. “Criticality” of the content and PVS

In [14] the authors studied the relationship between MOS
and Standard deviation of Opinion Scores (SOS). They in-
cluded a factor depending on the artefacts / use case (e.g.,
image coding artefacts, video streaming, cloud gaming), mea-
suring the difficulty that subjects had assessing the quality of a
particular dataset. ITU recommendations [2] also highlight that
the scores obtained for different test sequences are dependent
on the criticality of the test material used. For this reason,
presenting results for different test sequences separately, rather
than only as aggregated averages across all the test sequences,
is recommended. The “picture content failure characteristic”
of the system under test can be observed arranging the
results for individual test sequences in a rank order of test
sequence criticality on an abscissa [2]. However, the ITU
recommendation highlights that this form of presentation only
describes the performance of the codec and does not provide
an indication of the likelihood of occurrence of sequences with
a given degree of criticality. Further studies of test sequence
criticality and the probability of occurrence of sequences of a
given level of criticality are hence recommended.

C. Modelling subject bias and influence of content / PVS

Some recent works have proposed theoretical models for the
characterization of subjects performing subjective tests [15]
[16]. These models postulate that the obtained subjective score
of each PVS can be considered as a combination of a true
quality score associated to the PVS and two additional terms -
typically depending on content - associated to the subject bias
and inconsistency. Subject bias refers to the fact that some
viewers are more picky and tend to be biased toward lower
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scores, and vice versa. Subject inconsistency refers to the fact
that viewers may not give the same score to the same PVS
in a second visualization. Some subjects tend to rate more
consistently than others.

In [15] the authors study subject bias and scoring error as
function of both PVS and subject. They propose to normalize
the opinion scores with subject bias, mentioning that this
seems to improve the ability of datasets to distinguish between
PVS and MOS.

A Maximum Likelihood Estimation (MLE) based quality
recovery model was presented in [16], enabling the estimation
of subject bias and subject inconsistency, that could be used
to reduce the number of subjects in a test to reach a given dis-
criminability. The authors in [17] conducted a discriminability
vs. numbers of subjects analysis, employing the score recovery
model from [16], highlighting the potential saving in terms of
number of subjects required.

Our work also addresses the impact of subject bias and PVS
on quality assessment. Unlike [16] we abandon the normality
assumption in favour of the multinomial distribution, more
appropriate for data from Likert scale. Also, our model is more
parsimonious in terms of number of parameters in order to
avoid the danger of overfitting. We report in the results section
a comparison of our proposed model with this one, where we
observe for our model a more coherent pattern for increasing
bitrate.

Subject bias is also considered in the model developed in
[18]. We highlight, however, that our goal is different since
our model only considers the results of the subjective tests
and does not attempt to establish a relationship between QoS
and QoE as in [18].

III. DATASET

In this work we use GamingVideoSET [19], an open source
dataset of gaming video sequences containing subjective and
objective quality assessment ratings. The dataset consists of
twenty-four uncompressed raw gaming video sequences from
twelve different games, each of 30 seconds duration, 1080p
resolution, and 30 fps. The games are selected to cover a
wide range of genres and content complexity representative of
real world streaming applications such as Twitch.tv. Subjective
assessment ratings in terms of Mean Opinion Scores (MOS)
are available for 90 distorted sequences (stimuli) obtained
by encoding six reference gaming video sequences at 15
multiple resolution-bitrate pairs, i.e., considering three reso-
lutions (1080p, 720p and 480p) and five different bitrates per
resolution as shown in Table I. Subjective tests were conducted
in line with the ITU-R BT.500 recommendation using the ACR
methodology with a scale of 1 to 5 and with a total of 25 valid
test subjects.

To summarize, the dataset consists of M = 2250 scores
given by N = 25 subjects for evaluating the quality of K = 90
distorted video sequences. The scores are in ordinal scale from
1 to 5. The six games considered are: Counter Strike: Global
Offensive (CSGO), FIFA 2017 (FIFA), H1Z1: Just Survive
(H1Z1), Hearthstone (HSTO), League of Legends (LOL) and
Project Cars (PCAR).

TABLE I: COMPRESSION LEVELS BY RESOLUTION

Resolution
A: 1920 x 1080 0.6 0.75 1.2 2 4
B: 1280 x 720 0.5 0.6 1.2 2 4
C: 640 x 480 0.3 0.6 1.2 2 4

Bitrate (Mbps)

In order to show that the approach can be generalized to
different datasets, in the first Appendix we report results for
the dataset in [4].

IV. DATA ANALYSIS

The available observations constitute a completely balanced
dataset of repeated measures, as each video has been evaluated
by all individuals, with no missing data, and the data can
be partitioned into N clusters of observations from the same
individual.

For the graphical representation, we found useful the
spaghetti plot and the image plot. The first one allows studying
the individual choices, while the second one represents the
distribution of the observed scores for each video. The aim
of the spaghetti plot is to study the scoring behaviour of
individual subjects by representing the scores as piecewise
linear functions of a quantitative variable. In our case, the
opinion score as a function of bitrate after compression gives
us 25 piecewise lines for each game and resolution (one for
each subject). In order to distinguish the lines produced by
each subject, we added in the spaghetti plots some random
noise to the data and use coloured lines. We plotted the curves
by treating the bitrate with two alternative approaches: as a
quantitative variable and as an ordered qualitative variable,
so that the rate levels are plotted as if they were equidistant.
Since the individual trajectories are more clear in the latter, in
particular for small rates of compression, we use the qualitative
scale in the following two figures.

The scores for the full dataset are reported in Fig. 1, where
each observed subject contributes with one piecewise line with
the same colour for each plot. We notice several cases of
locally decreasing trajectories. These patterns are inconsistent
with the fact that improved compression cannot deteriorate
the video quality. Before exploring further those erratic cases,
notice from Fig. 1 that this behaviour is common to all
games and resolutions, and it appears also widespread among
individuals.

Fig. 2 focuses on the score distributions, by showing the
image plots of the counts of the individual scores for each level
of score and compression. The distributions are represented
by the colour intensity on the five vertical cells in each plot,
whose frequencies sum up to the number N=25 of individuals.

We analyzed spaghetti and image plots for hints on both
the general pattern and the individual scoring behaviour. It
can be seen, for example, that the best resolutions A and B
seem closer and better than C. In fact, the scores on the effect
of compression span the full range in both A and B, while
in resolution C the impact produced by the highest bitrates
is reduced, with none or few of the highest scores. From
both Fig. 1 and Fig. 2 it is clear that the game HSTO is
different from the other games. In both resolutions A and B the
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Fig. 1: Spaghetti plots of opinion scores vs. bitrate.
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Fig. 2: Image plots of opinion scores frequency distributions.

empirical frequencies are generally more stable and centered
on higher scores than in the other games, with a mode of
Y=3 at the lowest bitrate. On the contrary, the scores are
lower for HSTO when reproduced at resolution C. Finally, for
HSTO resolution A seems better than B and B seems better
than C (e.g., in terms of mode) for all compression levels,
whilst this is not the case for the other games. Those patterns
are confirmed in Fig. 3, showing the MOS trajectories when
varying compression. For each game, the mean scores in case
of resolution A, B and C are shown connected with a piecewise
line (blue, red and black, respectively). The difference between
HSTO and the other five games is striking. In all the cases
bar HSTO, the three lines produce some intersection, while
the resolutions appear strictly ordered for the HSTO game.

A possible explanation is that the content participates in
the definition of the QoE itself, so that the enjoyment in

playing each game depends in different ways on the accurate
reproduction of images, sound, background details, dynamics,
etc. Those elements play different roles when the measured
QoE is too different. In our case, while games like, e.g., FIFA
and PCAR reproduce fast action in full screen, HSTO is a
fast game in terms of events occurring. However, rather than
movement, the action consists of localized objects like cards,
balloons, arrows, etc., that appear or explode, flash or tremble.
While the other games rely more on the synchronicity between
reproduced events and player’s reactions, HSTO is more
based on turns of events and heavily pictorial backgrounds
representing important, changing “elements” to be kept in
mind along the play. We believe that under resolution C those
crucial components are highly impaired, while in resolution A
and B those graphical objects are clearly distinguishable, so
that the QoE is low in C whilst remains acceptable all along
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the tested range of compression in case of A and B.

A. Subjects Consistency

Subject consistency is studied in prior work via repetition of
tests with the same stimulus for the same subject [15]. Since in
our dataset we do not have repeated measurements, we adopt
another approach.

When the bit rate after compression increases we expect
an improved (or unchanged, in case of bitrate increase below
JND) QoE, so that the decreasing “steps” observed in Fig. 1
show inconsistent behaviours by the subjects. From Fig. 2 we
can notice that often the mode of the Opinion Scores (OS)
remains constant but never decreases. We verified that also the
observed median is a non-decreasing function of the bitrate.
This does not always occur for the MOS, instead, as shown
in Fig. 3, where we can see few cases in which it is locally
decreasing. More precisely, this occurs in six cases.

Fig. 3 shows also the 95% confidence intervals around the
MOS. In order to distinguish the intervals under different
resolutions we slightly dis-aligned the points on the horizontal
axis.

The question is now whether a locally decreasing MOS
is due to a peculiar misbehaviour of the mean operator or
an actual incoherent performance of the panel of subjects. It
is known, in fact, that the mean is not resistant to extreme
observations because even a single outlier may unduly affect
its value. In order to address this question we use a statistic
that we call compression advantage. Assume that we sample
two scores Y0 and Y1, from their empirical distributions,
where both scores refer to the same video but the latter
is reproduced at a higher bit rate. Then we expect that
P (Y0 < Y1) ≥ P (Y0 > Y1), with the equality sign only
if below just noticeable difference, that is the compression
advantage, is:

A = P (Y0 < Y1)− P (Y0 > Y1) ≥ 0. (1)

Assuming the two samples are independent, the probabilities
in (1) are simply calculated. For example, denoting the empir-
ical probability mass function of Y0 and Y1 by p1, p2, . . . , p5
and q1, q2, . . . , q5 respectively, then

P (Y0 < Y1) =

4∑
i=1

pi

5∑
j=i+1

qj .

Unlike the mean, A is based on the ordering of the data
and hence it is robust with respect to outliers. Thus, a negative
compression advantage is a strong evidence that the sample of
subjects has expressed a preference for the PVS reproduced
at the poorer compression rate. Out of the 72 comparisons
between consecutive compression levels, we found seven cases
of those distributional inconsistencies, shown in Table II. In all
but the PCAR case, where it is constant, the MOS is signalling
this occurrence. Thus, on one hand, we have the confirmation
that the observed cases of locally decreasing MOS are not due
to single outliers. On the other hand, this shows that erratic
scoring is a non trivial occurrence even in case of moderately
large samples.

Finally, the number of inconsistent scores per individual
was found to be less than 20% in all cases except for one
subject (28%) who was consistent only 52 times out of 72.
In Fig. 4 we show the performance of each subject in terms
of consistency. We also plotted the same data in forms of
distribution of inconsistent evaluations (not reported here due
to space limitation). Based on these, we believe that even the
less accurate individual is not “bad enough” to be considered
an outlier, as it seems to “correctly prolong” the performance
of the less talented individuals in the population.

In conclusion, given the previous analysis in terms of both
collective and individual behaviours, it appears that inconsis-
tent scoring is not an isolated fact, but an inherent consequence
of the variability of the evaluation process. For a deeper
analysis it seems simplistic to remove or correct the data, since
any full or partial omission might overlook the population
variability. Rather, we will show that the model presented in
the next section is able to correct most of those inconsistencies
without posing any constraint, but acknowledging both the
ordinal multinomial nature of the data and the existence of
subject’s error in eliciting the scores.

V. THE COMMON SLOPE MODEL

The ordinal multinomial regression model is a Generalized
Linear Model (GLM) used for regressing a multinomial vari-
able Y = 1, 2, .., k against a set of predictors x = (x1, .., xp).
As in ordinary linear regression, the vector x may be formed
by either categorical “dummy” variables or quantitative vari-
ables (see, e.g., [20] and [21]). In the most general formulation,
that we call the General Ordinal Multinomial (GOM) model,
the distribution function (DF) of the score Fj = P (Y ≤ j) is
modelled as

h(Fj) = αj − µj (2)

(with j = 1, 2, ..., k − 1 and Fk = 1), where h is a non-
decreasing function and µj is a linear combination of the
predictors µj = β′jx. Note that the negative sign of µj makes
it an increasing measure of the quality. In fact, since (2) grows
with Fj , µj grows with 1− Fj = P (Y > j).

The GOM is very flexible because it includes an intercept
parameter αj and a parameter vector of slopes βj for each
j = 1, 2, .., k−1. A more parsimonious model is the Common
Slope Model (CSM) which assumes a constant slope vector β.
This assumption is based on the latent variable interpretation
of the scoring process. The idea is that the QoE of a video is
actually perceived on a continuous scale, so that the observed
score is a discretized version of a not observed (latent)
continuous variable into k ordered classes.

Note that being a thought experiment does not mean that we
have to perform it, nor to believe that actually occurred, but
just assume that it is sufficiently realistic. We can imagine, for
example, that the subject’s latent quality evaluation is between
0 and 100 and he/she has to choose between “bad”, “medium”
and “good”, or between k = 5 scores as in our case. Hence
the interval 0-100 must be partitioned into k ordered intervals
defined by (k − 1) cut off points α1, ..., αk−1.

Thus we assume that the subject’s perceived quality is a not
observable variable

Z = µ+ ε
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Fig. 3: MOS under resolution A (blue line), B (red line) and C (grey line) with 95% confidence intervals.

TABLE II: CASES OF OBSERVED DISTRIBUTIONAL INCONSISTENCIES: OBSERVED SCORE COUNTS, MODE, MEDIAN, MEAN
(MOS) AND COMPRESSION ADVANTAGE (A)

1 2 3 4 5

2 0 3 12 10 0 3 3 3.28
4 0 1 18 5 1 3 3 3.24
0.6 20 3 2 0 0 1 1 1.28
0.75 22 3 0 0 0 1 1 1.12
1.2 1 4 16 4 0 3 3 2.92
2 2 7 11 5 0 3 3 2.76
2 1 2 6 15 1 4 3 3.52
4 0 1 11 12 1 4 3 3.52
2 1 0 6 14 4 4 4 3.80
4 0 1 7 14 3 4 4 3.76
1.2 2 11 10 2 0 3 2 2.48
2 1 16 6 2 0 3 2 2.36
2 1 6 13 4 1 3 3 2.92
4 0 9 11 5 0 3 3 2.84

H1Z1 A -9.0%

Video Resolution
Bitrate 
(Mbps)

OS Frequencies
Mo OS Me OS MOS A

CSGO C -7.7%

LOL C -5.8%

HSTO B -5.9%

HSTO C -11.4%

FIFA C -10.4%

PCAR C -7.0%

where µ is the average QoE in the latent scale and ε is a
measurement error with distribution function G(ε). Note that
no error is assumed in the discretization step, as it would be
confounding with the measurement error ε. It follows that the

DF of Z is G(Z − µ) and the DF of Y is:

Fj = P (Z ≤ αj) = G(αj − µ), j = 1, 2, ...k − 1. (3)

Fig. 5 exemplifies the latent variable interpretation for a 5-
levels score Y. The cut off points α1, . . . , α4 are envisioned
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Fig. 5: Example of the latent variable interpretation. The probability
density function of the latent score is centered on the average QoE
(µ); the cut-off points (α’s) identify five categories. The shaded area
equals F2.

as unknown points on the latent scale. In this case the average
QoE, µ, is in the third interval, delimited by α2 and α3,
However, since the individual’s evaluations Z will distribute
around that value, the observable score will be Y = 3 most
of the times, but not always. For example, the probability of
a lower score Y ≤ 2 is the shaded area in the figure. Notice
how easily this model may produce misplaced assessments,
especially when µ is close to a cut off point.

As a result, the DF of the OS Y is identified by the DF of
the evaluation error G, the average QoE in the latent scale µ
and the cut off values αj . In fact, from (3), and by putting
h = G−1 we obtain

h(Fj) = αj − µ. (4)

By comparing (4) with (2), we see that this apparently
innocuous set of assumptions is enough to eliminate a large
number of candidate models. Since the population average
QoE in continuous scale is a unique value, it cannot depend
on j. Thus the effect of the predictors will be measured by a
single vector β of common slopes:

µ = β′x. (5)

A. Generalized Estimating Equations

Finally, we come to the fact that the N = 2250 observations
have been repeatedly taken on the same 25 subjects, so that
the independence assumption is hardly valid. In other words,
we expect to find some correlation between scores given
by a subject on different videos, which may be inherited,
for example, from the existence of subjective bias and other
sources of systematic shifts as discussed in the introduction.

We also notice that the subjects are a random sample from
the population of players and gaming viewers. However, rather
than the QoE of the videos conditional to those particular
subjects, we are interested in the average QoE with respect to
the full population of subjects.

It is well known that the ordinary approaches are not
efficient in this case. Thus, we follow the approach based
on generalized estimating equations (GEE) [22]. This is a
semiparametric method that is appropriate when the focus of
the analysis is on estimating population-averaged parameters
like in our case. Moreover, the semiparametric approach
ensures the consistency of the estimates towards the population
parameters even when the covariance structure is misspecified.

Let Yh, h = 1 . . . n denote the h-th score on a particular
cluster of n observations which are supposedly correlated.
Each response Yh may be represented by a vector Dh =
(Dh1, Dh2 . . . , Dhk−1) of indicator variables

Dhj = 1(Yh ≤ j)

where 1(E) = 1 if E is true and 1(E) = 0 otherwise.
In the ordinary approach we model the average of those
indicator variables: Fj = E(Dhj) (j = 1, 2, . . . k − 1). The
GEE approach introduces a further equation for modelling the
correlation between scores which are inside the same cluster,
whilst the no correlation assumption remains valid when they
belong to different clusters.
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The case of the ordinal multinomial distribution was devel-
oped by [23] via the so called alternating logistic regression
algorithm. Instead of modelling the correlation directly, which
for the multinomial is constrained within limits that depend in
a complicated way on the means of the data, the association
between responses is modelled by the generalized log odds
ratio (LOGOR). Consider two observations Yh and Yi belong-
ing to the same cluster; then, for any pair of score values j
and c, the LOGOR is defined as

(6)

LOGOR(Dhj , Dic)

= log

(
P (Dhj = 1, Dic = 1)P (Dhj = 0, Dic = 0)

P (Dhj = 1, Dic = 0)P (Dhj = 0, Dic = 1)

)
.

Positive values of (6) indicate the tendency to associate
similar scores and vice-versa a negative LOGOR indicates
negative correlation. We thus followed the GEE approach by
using the alternating logistic regression algorithm as imple-
mented in SAS 9.4, where the LOGOR is assumed to be
constant for each pair j, c = 1, 2, ..., k − 1.

B. The general approach to model selection

The model selection process is a sequence of trials and er-
rors that can only be summarily described here. It requires the
diligent evaluation of significance levels and other goodness of
fit statistics but also the careful comparison of model’s results
with prior knowledge. The components of a CSM with intra-
group correlation are:
• the elements of the vector x in (5);
• the link function h(F ) or equivalently the probability

distribution function of the evaluation error G = h−1;
• the clusters of correlated observations.
The most critical step is to identify the best set of predictors

forming the vector x in (5). In fact, x defines the analytic
structure of the mean in the latent scale and therefore repre-
sents a fundamental step of model identification. On the other
hand, the choice of the link function is typically within few
alternatives, e.g., the inverse of symmetric distributions like the
logistic or the normal (called the logit link and the probit link
respectively). Moreover, as we found in our case-studies and
is often noticed in literature (e.g., [24], [20]), the final results
are not sensibly affected by the link function. Similarly, we
do not have many choices for the correlation structure. As we
will show later, in case of the game scores we checked four
alternative groupings, whilst for our second example we had
only two.

For the components of x, on the other hand, the choice
is very large, highly critical and, unlike the other two steps,
it cannot be performed in terms of goodness of fit only. In
fact, this vector must represent both quantitative effects and
group effects. For the latter, several alternatives are usually
possible and for the former the choice is much larger. In fact,
the quantitative effects may be described by the original, un-
transformed predictor but also by one or more transformations
of the original variable.

In the games data, for example, we used categorical vari-
ables for testing alternative grouping of games, resolutions and

compression levels. We also tested the use of the bitrate as a
continuous variable R (say). It is obvious that the choice of
which and how many transforms of R are needed is potentially
unlimited. A flexible and parsimonious approach is to consider
fractional polynomials (see, e.g., [25] and [26] for recent
applications). More precisely, we evaluated the opportunity
to introduce the powers Rv , for v = ±0.5,±1, . . . ,±5. We
also tested the natural logarithm log(R) and the exponential
transforms exp(−R) and exp(R). A convenient algorithm
is the “stepwise” procedure implemented in the SAS “proc
logistic” routine, based on significance testing for inclusion
and exclusion of the variables, which consents to identify the
most valuable predictors.

Once a few candidate formulations of (5) have been se-
lected, the resulting models can be compared by trading off
model’s parsimony with goodness of fit. In fact, the goodness
of the fit can be always improved by increasing the number of
parameters, which may cause overfitting. In order to avoid
this, the classical GLM literature offers two main criteria
which are valid in case of non-correlated observations. The
Akaike information criterion (AIC), proposed by [27], is
an estimate of the Kullback–Leibler divergence between the
current model and the true model. On the other hand, the
Bayesian information criterion (BIC), developed by [28], aims
to evaluate the posterior probability of the model. Both the
criteria aim to minimize the negative twice likelihood plus a
penalty which increases with the number of parameters. Since
the penalty increases with the model’s complexity, both the
criteria realize, as required, a compromise between simplicity
and goodness of fit.

For a candidate model to be definitely accepted, we must
check the common slope assumption, the link function and
the correlation structure. Although a rigid procedure is not
advisable, we give a schematic representation of the full
approach in Fig. 6. The select predictors box represents the
process of identifying the best model for the mean in the
latent scale by first identifying few candidate models (i.e., by
using the stepwise procedure) and then comparing them via
the AIC and the BIC criteria. This may be done under the
independence assumption and the default (logit) link. Then
alternative links can be used for checking whether there are
noticeable differences, the common slope assumption can be
tested and, finally, the best correlation structure can be chosen.
For the latter, the only available criterion which corresponds
to the AIC is the so called Quasi-Likelihood Information
Criterion (QIC) proposed by [29].

All those analyses and comparisons are essentially iterative
and characterize the model identification step. Finally, the
selected model can be checked by using tests of fit and
subjective judgments against independent knowledge, like,
e.g., the expectation that the population average score is a
smooth and non decreasing function of the bitrate.

VI. GAMES DATA: RESULTS

By using the stepwise procedure we eventually found out
that no grouping of games and resolution is worthwhile,
whilst the effect of compression can be based on the log
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Fig. 6: Block diagram of the adopted approach.

transform and the square root of the bitrate. As a result, the
number of linearly independent slope parameters is 26, so that
including the intercepts the proposed model reaches a total of
30 parameters.

Table III compares the selected quantitative compression
model (labelled as QCM) against three noteworthy alterna-
tives under the independence assumption. The general ordinal
multinomial (GOM) model in its full parametrization (indi-
cated as FGOM) is the unequal slopes model (2) with the
maximum number of parameters. More specifically, we use
four parameters for each one of the 90 PVS. As well known,
the maximum likelihood method in case of the Multinomial
distribution is such that the probabilities of each score are then
estimated by the observed relative frequencies. Thus the esti-
mated distributions replicate exactly the empirical distributions
and, with it, any other observed statistic including the MOS.

The other models are all based on the common slope
assumption. In the first CSM (Cat 7), the compression level
is treated as a categorical variable, so that each one of the
seven adopted bitrate levels (0.3, 0.5, 0.6, 0.75, 1.2, 2 and 4
Mbps) corresponds to a different parameter. Similarly, in the
second CSM (Cat 5), the compression is also categorical but
uses the ranks (from 1st to 5th), i.e., the ordinal values of
the five compression levels observed for each resolution. Both
the categorical models include all the two way interactions
between game, resolution and compression, while the three-
way interaction was found not significant.

A further test provided by SAS regards the common slope
assumption. It is known that the test is rather liberal (see [24])
as it tends to reject too frequently the assumption. In our case,
the test rejects the hypothesis for Cat 7 but accepts the CS
assumption for both Cat 5 and the QCM.

All the asymptotic chi-square tests based on the likelihood

TABLE III: PROPOSED MODEL WITH QUANTITATIVE COM-
PRESSION SPECIFICATION (QCM) COMPARED TO THREE
ALTERNATIVES IN TERMS OF GOODNESS OF FIT STATISTICS

Model No Parameters -2 log L AIC BIC

FGOM 360 4434 5154 7213
Cat 7 63 4696 4822 5182
Cat 5 53 4713 4819 5122
QCM 30 4736 4796 4968

ratio against the full model favour the simpler model, as can be
easily checked from Table III by noticing that the loss in the
twice log-likelihood is lower than its expected value, that is the
difference between the number of parameters. Since QCM can
be seen as nested into Cat7, the same test gives a chi-square
of 40 with 33 degrees of freedom (p-value 18.7%). Thus the
QCM can be preferred in terms of significance testing.

From Table III it is also clear that both the AIC and the
BIC criteria suggest to select the model with quantitative
compression.

We then investigated the candidate models by using the GEE
approach for allowing correlated observations (and using the
SAS proc GEE algorithm). For each model, the QIC criterion
can be used to verify that the correlated structure realizes an
improvement with respect to the uncorrelated structure. With
the same criterion, candidate models can be compared under
the assumption of correlated observations. In our experience
(e.g., in both our case studies) the analytical form for µ chosen
under the independence assumption appears to be the best
model even in these cases.

In particular, for the game scores data, we considered the
following structures:

(a) 25 clusters: one for each subject, each cluster formed by
of 90 observations;

(b) 75 clusters: one for each combination of subject and
resolution, each cluster formed by of 30 observations;

(c) 150 clusters: one for each combination of subject and
game, each cluster formed by 15 observations;

(d) 450 clusters: one for each combination of subject, game
and resolution, each cluster formed by 5 observations.

Table IV shows the values of the QIC statistic for the
proposed model by assuming either independence or corre-
lation inside each clustering structure. It can be noticed that
in all the cases the QIC improved by assuming the correlation
structure. Moreover, since the minimum is reached in case
(c), we present the corresponding results in the following
subsection.

As noticed before for the independent case and in results
not reported here for brevity for the correlated case, the QIC
statistic of the other candidate models (FGOM, Cat 7, Cat 5)
is always higher than the corresponding value in Table IV. In
particular, for the FGOM, which corresponds to adopting the
observed frequencies and the MOS, the best structure is (d)
with assumed independence and a QIC equal to 4844.

It is also worth mentioning that the estimated LOGOR
indicates a moderate positive association in all the instances.
The appropriateness of the QCM was finally validated by the



11

Hosmer-Lemeshow goodness of fit test for the multinomial
distribution (70% p-value).

TABLE IV: QIC STATISTIC OF THE QCM UNDER EACH
CLUSTERING STRUCTURE, ASSUMING INDEPENDENCE AND
CORRELATION INSIDE CLUSTERS

Structure Independent Correlated LOGOR

(a) 4865 4755 1.09
(b) 4849 4748 1.01
(c) 4844 4745 0.94
(d) 4834 4750 0.87

A. The Estimated Population Mean Opinion Score (EPMOS)

In summary, with l = 1, 2, . . . , 6 and m = 1, 2, 3 de-
noting the subscripts for game and resolution respectively,
the selected model has the form (3) with G equal to the
(standardized) logistic DF: G(z) = 1/(1 + exp(−z)) and:

(7)µ = ηl + ηm + ηlm + γ
√
R+ (δ + δl + δm) ln(R)

where R is the bitrate after compression in Mbps. In the
above, for simplicity, we adopted a slight abuse of notation by
indicating different parameters with the same letter but varying
subscripts. Hence, e.g., ηl is the effect of game l, ηm is the
effect of resolution m, and ηlm is the effect of the interaction
between the two.

Table V shows the parameters’ estimates. The parametriza-
tion follows the standard notation in linear and generalized
linear models, with the game PCAR and the resolution C as
the base levels, so that the corresponding coefficients are set to
zero. Thus, for each fixed game, resolution and compression
level, the formula (7) becomes simply

(8)µ = alm + b
√
R+ clm ln(R)

where alm = ηl + ηm + ηlm, b = γ and clm = δ + δl + δm.
For example, in case of the CSGO sequence (l = 1) at

resolution A (m = 1) we obtain a1,1 = −1.12−1.88−0.66 =
−3.66, b = −4.23 and c1,1 = 3.67+0.53+2.81 = 7.01, while
the same PVS at resolution C (m = 3) has a1,3 = −1.12,
b = −4.23 and c1,3 = 3.67 + 0.53 = 4.2.

We remind that µ is the average QoE in the latent scale, so
that the probability that the observed score falls in each of the
five categories depends on its position with respect to the cut
off points αj . As shown in Table V, those limits are almost
perfectly equispaced. Thus, the latent variable interpretation
suggests that the subjects appear to divide the range of their
perceived quality into equal intervals before eliciting their
ordinal score. This confirms a common view in research as,
e.g., discussed in [6].

In Fig. 7 we give a comprehensive comparison between the
MOS and the EPMOS. Here the EPMOS is continuously cal-
culated over the interval 0−4 Mbps thanks to the quantitative
specification of the bitrate.

We also report in the figure the results obtained applying to
our dataset the model in [16], also tested in [17].

TABLE V: PARAMETER ESTIMATES AND STANDARD ER-
RORS OF THE PROPOSED MODEL

a1 -8.26 0.72

a2 -5.76 0.64

a3 -3.37 0.61

a4 -0.71 0.63

Game CSGO -1.12 0.37

Game FIFA -1.22 0.36

Game H1Z1 -1.55 0.37

Game HSTO -1.52 0.37

Game LOL -1.18 0.39

Resolution A -1.88 0.29

Resolution B -0.24 0.22

Game*Resolution CSGO A -0.66 0.35

Game*Resolution CSGO B 0.00 0.31

Game*Resolution FIFA A 0.94 0.35

Game*Resolution FIFA B 0.71 0.28

Game*Resolution H1Z1 A -0.74 0.40

Game*Resolution H1Z1 B -0.30 0.29

Game*Resolution HSTO A 5.43 0.50

Game*Resolution HSTO B 2.78 0.38

Game*Resolution LOL A 2.00 0.39

Game*Resolution LOL B 1.30 0.34

sqrtComp -4.23 0.49

logComp 3.67 0.33

logComp*Game CSGO 0.53 0.24

logComp*Game FIFA 0.19 0.23

logComp*Game H1Z1 0.25 0.25

logComp*Game HSTO -1.43 0.20

logComp*Game LOL -0.06 0.23

logComp*Resolution A 2.81 0.17
logComp*Resolution B 1.48 0.12

Estimate
Standard 

Error
Parameter

From Fig. 7 we notice that the differences are not severe.
In fact, the MOS appears needing only relatively small correc-
tions, but they are very interesting. The model’s estimates out-
line a behaviour that is typical of technological improvements,
with an initial spurt of the QoE followed by a concavity shape
that indicates a pattern of diminishing returns. In all the three
resolutions the concavity shape is rather dominant, since the
quality improvements start to decrease from about 0.5 Mbps
onward. Moreover, the diminishing return pattern is clearly
stronger, and somewhat anticipated, when the resolution is
lower. For the HSTO video under resolution C, the model
identifies a decreasing pattern from 1200 Mpbs onwards.
However, we may cast some doubts for this solution. Note
that from Table III, this video has the strongest inconsistency
(e.g., the lowest A). This refers to the comparison between the
1200 Mpbs and 2000 Mbps. Moreover, comparing now the OS
at 1200 Mpbs vs. the 4000 Mbps ones, we have 5 subjects
scoring higher for 1200 Mbps than 4000 Mbps, against 4
subjects scoring higher for higher bitrate whilst the remaining
16 give the same score to the two videos. Thus, these repeated
inconsistencies at 2000 Mbps and 4000 Mbps deceived the
model by triggering the identification of a decreasing quality
pattern, but in fact the hypothesis that quality is about constant
after 1.2 cannot be refused from the data.



12

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4

EP
M

O
S

Bitrate (Mbps)

Estimated Population MOS: resolution A

PCAR CSGO FIFA H1Z1 HSTO LOL

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4

EP
M

O
S

Bitrate (Mbps)

Estimated Population MOS: resolution B

PCAR CSGO FIFA H1Z1 HSTO LOL

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3 3.5 4

EP
M

O
S

Bitrate (Mbps)

Estimated Population MOS: resolution C

PCAR CSGO FIFA H1Z1 HSTO LOL

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

R
ec

o
ve

re
d

 Q
o

E

Bitrate (MBps)

Model [16] estimates: resolution A

PCAR CSGO FIFA H1Z1 HSTO LOL

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

R
ec

o
ve

re
d

 Q
o

E

Bitrate (MBps)

Model [16] estimates: resolution B

PCAR CSGO FIFA H1Z1 HSTO LOL

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

R
ec

o
ve

re
d

 Q
o

E

Bitrate (MBps)

Model [16] estimates: resolution C

PCAR CSGO FIFA H1Z1 HSTO LOL

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

M
O

S

Bitrate (MBps)

MOS: resolution A

PCAR CSGO FIFA H1Z1 HSTO LOL

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

M
O

S

Bitrate (MBps)

MOS: resolution B

PCAR CSGO FIFA H1Z1 HSTO LOL

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

M
O

S

Bitrate (MBps)

MOS by bitrate: resolution C

PCAR CSGO FIFA H1Z1 HSTO LOL

Fig. 7: Left: EPMOS obtained via our model; Center: observed MOS; Right: estimated quality with model in [16]. Each row reports the
results for a different resolution.

Apart from the mentioned HSTO case, the other six MOS
inconsistencies are all corrected into an increasing shape by
the EPMOS and no further inconsistencies are introduced. This
shows the effect of the borrowing strength between sample
patterns.

For the model in [16] the recovered quality scores are
very similar to MOS values, and we can observe the same
inconsistencies present in MOS scores.

Finally, from Fig. 3 and Fig. 8 we can compare the 95%
confidence intervals for the MOS and EPMOS respectively.
For the construction of the intervals of the EPMOS we
followed the delta-method by using the estimated covariance
matrix of the regression parameters obtained from the SAS
output. Since to the best of our knowledge there is no software
that implements this calculation for the multinomial case, we
give the theoretical details in the Appendix.

The confidence intervals turn out to be almost always
smaller than the intervals corresponding to the MOS. The

MOS, in fact, uses only the 25 observations pertaining to
each configuration of Game, Resolution and Compression,
whilst the selected model uses also the rest of the data. In
other words, assuming the model is correct, the data cooperate
beyond each particular configuration and in doing so the
uncertainty is reduced.

VII. CONCLUSION

In this paper we argue that when scores are collected on
a set of PVS with similar contents, then the MOS can be
improved by multinomial modelling. An appropriate GLM
can, in fact, spot the common patterns for estimating more
efficiently the multinomial distributions involved and the cor-
responding average score in the target population. The MOS
itself corresponds to a particular GLM in which the data for
each PVS are treated separately. This is accomplished by using
the maximum number of parameters, so that in a sense the
MOS corresponds to the most complicated model. However,
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Fig. 8: EPMOS and 95% confidence intervals at resolutions A (blue), B (red) and C (grey). The corresponding subjects’ MOS results are
reported in Fig. 3.

this model can be compared and replaced by alternative models
according to standard criteria for model selection.

We demonstrated this approach on a dataset of six gaming
videos under alternative resolutions and compression ratios. To
show that the approach can be generalized, in Appendix 1 we
report results for another dataset. In both cases a multinomial
common slope model was finally selected, which is proven to
be preferable to the “fully parametrized” model corresponding
to the MOS estimate. A sign of this improvement is the
reduction of the number of inconsistencies with respect to
compression and, in the second dataset, a ”saturation” effect”,
often assumed in literature, was also clearly identified.

For the first dataset it is worth noticing that the other
two alternative models discussed above (Cat7 and Cat5) also
achieve a more coherent pattern than the MOS and give similar
results. Moreover, and apart from the HSTO(C) case, the
model average QoE shows a reasonable behaviour of quality
gain per bps increment. As another effect of the borrowing
strength between sample patterns, we see a regular law of

decreasing returns over most of the compression range and a
diminishing uncertainty around our estimates.

APPENDIX 1. SECOND CASE STUDY: RESULTS

We report here the results obtained for a different dataset,
composed of videos with natural content. The dataset [4]
is formed by six video sequences, denominated ”City Fly”,
”Costumes Run”, ”Costumes Searching”, ”Man In Fountain”,
”People Run” and ”People In Woods”. These videos were
evaluated by 20 subjects in the uncompressed format and four
levels of compression, for a total of N = 600 observations.

Let as before l = 1, 2, . . . , 6 denote the subscripts of the
PVSs and R denote the bitrate in Mbps. After the identification
step we selected a model of the form (3) with G equal (again)
to the standardized logistic DF and:

(9)µ = ηl + γ
1

R
+ δl exp{−R}.

Again, we assured that the model performs better than the
fully parametrized model (i.e. the MOS) either in terms of
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Fig. 9: MOS and EPMOS for the natural video dataset [4].

TABLE VI: QIC STATISTICS OF THE SELECTED QUANTI-
TATIVE COMPRESSION MODEL FOR THE SECOND DATASET
(QCM2) VERSUS THE MODEL BASED ON THE PREDICTORS
SELECTED FOR THE FIRST DATASET (QCM) UNDER EACH
CLUSTERING STRUCTURE, ASSUMING INDEPENDENCE AND
CORRELATION INSIDE CLUSTERS

Model Structure Independent Correlated LOGOR

QCM2 (a) 1450 1413 0.60
(b) 1447 1414 0.58

QCM (a) 1458 1420 0.58
(b) 1455 1419 0.55

AIC (and BIC) and QIC, and the parallel slope assumption is
acceptable. In this case the videos have the same resolution
and therefore the analytical form (9) is simpler. Moreover, we
only have two possible correlation structures:

(a) 20 clusters: one for each subject, each cluster formed by
30 observations;

(b) 120 clusters: one for each combination of subject and
PVS, each cluster formed by 5 observations.

Note that, instead of the square root and the logarithm
of the bitrate, the stepwise selection procedure identified the
reciprocal and the negative exponential as the best predictors
for these data. However, as shown in Table VI, it is worth
noticing that, by using the former pair of predictors, the
resulting model (QCM, say) is only marginally worse than the
selected one (QCM2). Table VI also demonstrates that under
both models the correlation assumption is preferable.

On the other hand, a subtle but significant difference
between QCM2 and QCM is the saturation effect for a
sufficiently high bitrate. This is shown in Fig. 9. The figure
compares, with the bitrate in logarithmic scale, the MOS with

EPMOS as estimated by our best model (QCM2). From Fig. 9
(b) it is evident that from about 4 − 5 Mbps the estimated
population average is practically constant in all the six PVS.
The same plot for the QCM (not shown here) shows that
the points at observed bitrates were fitted almost identically
as the QCM2 at a price of a slight concavity on the right
side. It follows that the form based on reciprocal and negative
exponential of the bitrate seems more appropriate to reproduce
a saturation effect of the QoE vs compression.

Interestingly, the presence of the exponential form to repre-
sent the saturation effect of the QoE in continuous scale was
also suggested in literature ([18] and references therein).

Finally, note that all the inconsistent concavities of the MOS
are eliminated by the model estimates, so that the EPMOS of
each PVS always appears as a smooth non-decreasing function
of the bitrate.

APPENDIX 2. SAMPLE VARIANCE CALCULATION OF THE
POPULATION MEAN ESTIMATOR

Let b denote a vector of random variables whose mean
vector and variance matrix are estimated by b̂ and V , re-
spectively. The delta method (see e.g. [30], Chapter 10.5)
use Taylor’s approximation for calculating the variance of a
nonlinear transformation µ = g(b). Let g′(b) be the column
vector of the partial derivatives of µ with respect to b. The
delta-method provides the formula

V ar(g(b)) ≈ g′(b̂)TV g′(b̂)

where T indicate the transpose. In our case, b is the regression
parameter estimator formed by 4 intercepts and 26 common
slopes.
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On the other hand, any given mean M is a linear function
of the four values of the distribution function

M = F1+2(F2−F1)+3(F3−F2)+4(F4−F3)+5(1−F4) = 5−S

where S = F1+. . .+F4, so that V ar(M) = V ar(S). Finally,
since G(z) = 1/(1 + exp(−z)), we have

S = g(b) =

4∑
j=1

1

1 + e−αj+βTx
.

Therefore

g′(b)T =

((
∂g(b)

∂α

)T
,

(
∂g(b)

∂β

)T)
has components

∂g(b)

∂αh
=

e−αh+β
T x

(1 + e−αh+βT x)2

for h = 1, 2, 3, 4, followed by

∂g(b)

∂βl
= −xl

4∑
j=i

e−αj+β
Tx

(1 + e−αj+βTx)2

for l = 1, 2, .., 26.
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