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“If I had asked people what they wanted, they would have said faster horses.” 
Attributed by some to Henry Ford. 
 
“The answer to the ultimate question of life, the universe, and everything, calculated by an 
enormous supercomputer named DeepThought is 42. Unfortunately, no one knows what the 
question is.” Douglas Adams in The Hitchhiker's Guide to the Galaxy. 
 

In this issue of JACC, Jing et al investigate the application of machine learning (ML) to a 

large administrative set of health-care data for patients with heart failure (1). As most people 

with cardiovascular disease will develop heart failure before they die this is an issue of 

immense importance to health-care systems worldwide (2, 3). Importantly, Jing et al don’t 

just try to build a better prognostic model but also to identify the effect of correcting 

deficiencies in care on mortality, overall and for each individual and each intervention. This 

approach has many benefits. It enables health-care providers to identify and prioritise 

individual patients whose management could be improved and to audit and enhance their 

overall organisational performance. It also provides an educational tool for health-care 

professionals and patients about which interventions will have the greatest effect on longevity 

and for whom. This takes us one step closer to delivering the right intervention, to the right 

patient at the right time; and avoiding the converse. 

 

Patients with heart disease suffer from a surfeit of predictive models (4), which are usually 

based on patients selected for and willing to participate in clinical trials (5), with very little 

purpose other than making a better guess at which patients will die or be re-hospitalised. This 

academic output may have very little relevance to patient care, especially for patients with 

more unstable or more advanced heart failure for whom symptom-control rather than 

prognosis may be the key issue. For instance, only patients with severe symptoms that are not 

responding to guideline-recommended therapy will be selected for heart transplantation or a 

left ventricular assist device. Patients who respond to treatment will have such interventions 

deferred. Patients who fail to respond to therapy have a poor prognosis and there is no further 

practical need to apply risk scores. When creating predictive models, authors should be clear 

about the reasons, which is often given as identification of high-risk patients in need of closer 

monitoring and greater attention, although precisely what this entails is rarely specified and 

evidence that it makes a difference rarely provided. A cynic might say that the purpose of 

developing prognostic models is more to do with adding to the authors’ list of publications 

than to improving scientific knowledge or patient-care.  
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What then should be the purpose of predictive models for heart failure? Ultimately, they 

should improve the efficacy, efficiency and quality of healthcare. They may indeed achieve 

this by identifying those who have an excellent prognosis with existing therapy who are 

unlikely to obtain benefit from further intervention or else by identifying those at high-risk 

who might be prioritised for further therapy, assuming that their risk can be favourably 

modified. Predictive models can also be used to audit outcomes within or amongst health-

care systems. For instance, admissions for heart failure in the United Kingdom (UK) are 

associated with lengths of stay and mortality that are much higher than in the United States of 

America (US)(6). However, after risk adjustment, the mortality in the UK is exactly what 

models based on US data predict, suggesting that thresholds for hospital admission in the US 

are lower than for the UK, perhaps reflecting defensive medicine or financial incentives. A 

third useful purpose of predictive models is for education of patients, clinicians and 

organisations to show the benefits of an intervention, the harm done by their inadvertent 

omission and which interventions should be prioritised. 

 

The concept of ML as a method of applying artificial intelligence to challenging problems 

has been around since the 1950s. There has been an exponential growth in applications of ML 

to many aspects of life over the last decade driven by a growth in the availability of data and 

in computing power. Medicine has lagged behind for several reasons including lack of 

financial incentives, lack of interest or scepticism from clinicians, lack of easy access to 

large, comprehensive, well-curated data-sets due to data-privacy regulations failure and, last 

but not least, lack of clinically intelligent questions. Recent reports of ML applications in 

medicine make it clear that many data-scientists don’t understand the clinical issues and that 

few clinicians are sufficiently engaged with or provide constructive, critical evaluation. ML is 

an unbiased technique that only does what it is programmed to do, which may well be to 

provide an answer such as “42”, as in the Hitchhiker’s Guide to the Galaxy, and leave 

everyone wondering how to interpret the result.  

 

Health-care administrative systems now provide access to large amounts of data, including 

the full range of patients seeking assistance and many variables that are not conventionally 

included in prognostic models. However, many patients may not be referred for specialist 

investigation or care and so the diagnosis of interest may not be robust. Essential data may be 

missing (eg:- echocardiographic results) and this will often not be at random, rendering 

imputation of missing-data potentially hazardous. Clinical trials and registries usually 
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identify patients with a more robust diagnosis and provide more complete data but they 

exclude patients who do not come in contact with the specialists conducting the research, 

those who don’t quite fit the selection criteria (often the largest and most interesting group of 

patients) and those who refuse to participate (Table). Well-curated data-sets should be of 

great value at a health service or population level for prognostic modelling but, for heart 

failure, most such administrative data-sets are sufficiently incomplete to be of uncertain 

value. 

 

Jing et al applied ML to more than 200 variables collected in electronic health records from 

thirteen regional hospitals and a network of primary and specialty clinics belonging to the 

Geisinger health system(1, 7). The models were trained on a data-set of 26,971 patients with 

heart failure and either a reduced (HFrEF) or preserved (HFpEF) left ventricular ejection 

fraction. Of the ML models employed, one called XGBoost performed best, modestly 

improving the area-under-the sensitivity/specificity curve (AUC) for one-year mortality from 

0.74 to 0.77. This is no better than that reported for many prognostic models using more 

conventional statistical techniques (8, 9). Possible reasons for the disappointing performance 

was the large amount of missing data that was imputed (48 variables had values for <50% of 

cases) and the age of the population (25% were aged ≥84 years); a key but unmodifiable 

driver of prognosis. Efficient health-care systems should focus on treating modifiable risk 

and compassionate management of that which is not.  

 

The next step in the analysis was much more innovative. Three omissions of care (care-gaps) 

were considered generic to all heart failure phenotypes (percentages in brackets refer to 

patients who were eligible for an intervention but with a care-gap), including flu vaccination 

(59%), a haemoglobin A1c <8% (36% of diabetics) and blood pressure of >130/80mmHg 

(30%), although none of these care-gaps has yet been shown in randomised trials of heart 

failure to be actionable. Five care-gaps were relevant only to patients with HFrEF, including 

use of angiotensin converting enzyme inhibitors (ACEi) or angiotensin-II receptor blockers 

(ARB) with or without neprilysin inhibition (41%), mineralocorticoid receptor antagonists 

(74% excluding patients with severe renal dysfunction or hyperkalaemia), evidence-based 

beta-blockers (25%), hydralazine and nitrate (91% of those for whom ACEi/ARB were 

contraindicated) and cardiac resynchronisation therapy (65% of those with left bundle branch 

block and a QRS duration ≥150ms). At least four of these would be considered essential for 

good care for HFrEF. Clearly, care-gaps are common even in an excellent health-care system 
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and audit can potentially have a large impact on performance. The model predicted that, of 

13,238 patients alive in November 2019, 2,844 (21%) would die in the following year and 

that 231 deaths (only 8% fewer deaths) would be prevented by plugging care-gaps. 

Surprisingly, a similar number of deaths were predicted to be prevented for HFrEF and 

HFpEF, suggesting a substantial benefit from plugging the generic but poorly substantiated 

care-gaps. Importantly, much of this benefit was driven by small benefits in 8,897 lower-risk 

patients. Only 808 patients, just 6% of those at-risk, were predicted to be both at high-risk 

(~50% one-year mortality) and to receive a large benefit (absolute risk reduction ~18% or 

~120 lives-saved) if the care-gaps were plugged. A much larger group of patients (3,452) had 

a predicted one-year mortality of 50% but were not expected to receive any benefit from 

plugging the care-gaps. These anomalies may be driven largely by age. Younger patients may 

be at lower risk but have greater modifiable risk; cardiovascular interventions may have little 

effect on risk in older patients. We should not presume that models based on the whole 

population work equally well for all sub-groups.  

 

From a population perspective, plugging care-gaps that make a small difference to many 

lower-risk patients may save the greatest number of lives. However, from the perspectives of 

patients, clinicians, payers and health-care organisations, it makes more sense to focus on 

those for whom intervention makes the largest difference. Indeed, for heart failure, perhaps 

the greatest current unmet need is for the identification of people who have little to gain from 

further treatment, either because they are too well or too sick (10). 

  

Ultimately, machine learning is just a method of searching for associations and is only as 

intelligent as the question being asked. The reasons for associations, especially when there is 

a lot of data missing for a reason, can be obscure and difficult to interpret. If you ask a dumb 

question, you should expect a dumb answer. There is nothing artificial about intelligence. 

 

Footnote: Incidentally or by design “42” doesn’t seem to be such a dumb answer – check it 

out on Wikipedia. 
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Sources of Information for Prognostic Models in Heart Failure 

 Clinical Trials Registries Administrative Data 
Usual Size <5,000 <20,000 >100,000 
Patients Highly Selected Selected Relatively 

Unselected 
Co-morbidity Often Low Intermediate High 
Risk Profile Intermediate (high & 

low risk often excluded) 
Variable All Included 

Older People Under-represented Under-represented Highly Represented 
Minority Groups Under-represented Variable Reflects 

Epidemiology 
Diagnosis of Heart Failure    
Diagnostic Specificity Very High High Low 
Diagnostic Sensitivity Not addressed Low High 
Symptoms & Signs Collected Collected Variable / NLP* 
LVEF: Bias High Intermediate Low 
LVEF: Quality High Intermediate Variable 
Atrial Volume Variable Variable Variable 
Natriuretic Peptides If pre-specified Variable Variable 
Treatment at Visits Yes Yes Variable 
All Treatment Variable Variable Variable 
Prognostic Variables    

Pre-specified Yes Yes No 
Number Small Small Large 

Frequency of Measurement Low Low May be high 
Missing if pre-specified Low Low N/A 

Missing if not pre-specified Usually Usually Often 
Well-Curated Usually Often Often Not 

 

Footnote 

Clinical trials generally have well-curated data-sets, with a limited selection of variables, 
relatively few missing data on relatively few, highly-selected patients. There will be many 
biases for patient selection including those imposed by the protocol, those applied by the 
investigator (including biased interpretation of the protocol and those that can be attributed to 
patients who agree to participate. Clinical registries are similar to clinical trials in many 
respects, especially if they require patient-consent, but may be larger, enrol patients more 
representative of clinical practice, at least for the specialist group enrolling them, and may 
collect specific data that is not available in either trial or administrative data-sets. NLP* = 
natural language processing that enables information in reports and discharge/clinic letters to 
be extracted and added to data-sets.  
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