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Abstract
Tomodel the formation of orogenic gold deposits, in a global perspective, it is important to understand the ore-forming conditions
not only for deposits hosted in greenschist facies rocks but also in amphibolite facies. The Paleoproterozoic Fäboliden deposit in
northern Sweden belongs to the globally rare hypozonal group of orogenic gold deposits and, as such, constitutes a key addition
to the understanding of amphibolite facies orogenic gold deposits. The Fäboliden deposit is characterized by auriferous
arsenopyrite-rich quartz veins, hosted by amphibolite facies supracrustal rocks and controlled by a roughly N-striking shear
zone. Gold is closely associated with arsenopyrite-löllingite and stibnite, and commonly found in fractures and as inclusions in
the arsenopyrite-löllingite grains. The timing of mineralization is estimated from geothermometric data and field relations at c.
1.8 Ga. In order to constrain the origin of gold-bearing fluids in the Fäboliden deposit, oxygen, hydrogen, and sulfur isotope
studies were undertaken. δ18O from quartz in veins shows a narrow range of + 10.6 to + 13.1‰. δD from biotite ranges between
− 120 and − 67‰, with most data between − 95 and − 67‰. δ34S in arsenopyrite and pyrrhotite ranges from − 0.9 and + 3.6‰
and from − 1.5 and + 1.9‰, respectively. These stable isotope data, interpreted in the context of the regional and local geology
and the estimated timing of mineralization, suggest that the sulfur- and gold-bearing fluid was generated from deep-crustal
sedimentary rocks during decompressional uplift, late in the orogenic evolution of the area. At the site of gold ore formation,
an 18O-enriched magmatic fluid possibly interacted with the auriferous fluid, causing precipitation of Au and the formation of the
Fäboliden hypozonal orogenic gold deposit.
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Introduction

Gold has been one of the most sought-after commodities for
thousands of years. The global historical production is esti-
mated to be approximately 180,000 tons and about one-third
of that gold comes from orogenic gold deposits (Frimmel
2008). Orogenic gold deposits are considered hydrothermal
in character, having formed from gold-bearing fluids that are
focused into structural traps during metamorphism and

deformation associated with accretional and collisional re-
gimes at continental margins (Groves 1993; Groves et al.
1998, 2003; McCuaig and Kerrich 1998; Ridley et al. 2000;
Hagemann and Cassidy 2000; Goldfarb et al. 2001, 2005). In
recent years the Crustal Continuum model outlined during the
late 1980s to early 1990s (Colvine 1989; Groves 1993) has
been challenged (Phillips and Powell 2009, 2010; Tomkins
and Grundy 2009). It has been suggested that orogenic gold
deposits cannot form at metamorphic conditions beyond mid-
amphibolite facies due to the inhibited fluid flow that occurs at
temperatures above approximately 600–650 °C, and gold de-
posits hosted by rocks subjected to higher metamorphic con-
ditions are assumed to either have formed pre-peak metamor-
phism and subsequently overprinted by peak metamorphic
conditions (Tomkins and Grundy 2009), or to have formed
under retrograde PT conditions (e.g., Kolb et al. 2015). This
has led to a debate on whether all orogenic gold deposits in
amphibolite and granulite facies (hypozonal group) are in fact
metamorphically overprinted greenschist deposits (Phillips
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and Powell 2009, 2010; Tomkins and Grundy 2009; Tomkins
2010; Kolb et al. 2015). More recently, evidence suggests that
the hypozonal group is indeed post-peak metamorphic oro-
genic gold deposits (Kolb et al. 2015; Groves et al. 2019). In
relation to this debate, the estimation of the timing of miner-
alization relative to peak metamorphism is vital to the under-
standing of the formation of orogenic gold deposits.

In northern Sweden, the Lycksele-Storuman ore province
(commonly referred to as the Gold Line) is presently being
explored (Fig. 1). The Gold Line is manifested by a roughly
north-west trending linear anomaly of Au in the till overbur-
den. During the past twenty years, a number of promising gold
prospects with many features similar to orogenic gold deposits
have been discovered in this area, and only a few papers have
been published on the metallogeny of the Gold Line (e.g., Hart
et al. 1999; Bark and Weihed 2003, 2007; Bark et al. 2007,
2013; Bark and Weihed 2012; Schlöglova et al. 2013). To
date, only one of the gold deposits in the Lycksele-Storuman
area, the Svartliden gold deposit (3 Mt at 4.5 ppm Au; Dragon

Mining 2005) has been mined (Fig. 1). Approximately 30 km
from the Svartliden mine is the hypozonal Fäboliden orogenic
gold deposit (Bark and Weihed 2003, 2007). Fäboliden is
presently the largest of the known gold prospects in the area,
with previous measured and indicated mineral resources at
55 Mt at 1.0 ppm Au (Lappland Goldminers 2012). The cur-
rent owner is planning to mine the richer parts of the deposit
(10.6 Mt at 3 ppm Au, Dragon Mining 2016).

The geology and geochemistry of unaltered and altered
lithologies of the Fäboliden deposit is described in detail
by Bark and Weihed (2007) as arsenopyrite-bearing
quartz veins that occur within a high-angle shear zone in
amphibolite facies rocks, mainly metagreywacke. Based
on these observations, they considered the deposit to be
a hypozonal orogenic gold deposit. In this contribution,
stable isotope data (S, O, and H) of the mineralized quartz
veins at Fäboliden are used to characterize the ore-
forming fluid, to delineate potential fluid source rocks,
and to put the Fäboliden deposit into the larger

Fig. 1 Bedrock map of the
Lycksele-Storuman area.
Coordinates in Swedish National
Grid (RT90). Modified after Bark
and Weihed (2007)
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perspective in order to refine genetic models for the
Fäboliden and similar deposits that will be valuable for
future exploration. This is the first study of sulfur isotopes
undertaken in the Lycksele-Storuman area. Stable isotope
data, here interpreted in the context of the regional and
local geology, and the estimated timing of mineralization,
in combination with previously published fluid inclusion
data (Bark et al. 2007), suggest that the Fäboliden gold
deposit was formed from mixing of metamorphic and
18O-enriched magmatic fluids during rapid uplift and ero-
sion, after peak metamorphism.

Regional geological setting

Rifting of the Archaean craton during the early Proterozoic
generated a large oceanic basin, the Bothnian Basin, along a
continental margin (Gaál and Gorbatschev 1987; Nironen
1997). This basin was filled primarily with > 10 km thick
metasedimentary sequences that commonly host carbonate con-
cretions (Kumpulainen 2009), and subordinate metavolcanic
rocks (Lundqvist 1987). Later, these supracrustal rocks, which
are indirectly dated at > 1.95 Ga (Wasström 1993, 1996;
Eliasson and Sträng 1998; Eliasson et al. 2001), were intruded
by several generations of granitoids and, to a lesser extent, by
gabbros, during the 1.9–1.8 Ga Svecofennian orogeny
(Claesson and Lundqvist 1995). This complex orogeny has
been subdivided into phases of both extensional and collisional
tectonic regimes by Lahtinen et al. (2003, 2005). During colli-
sional tectonic stages and subsequent orogenic collapse
(Lahtinen et al. 2005), the supracrustal rocks of the Lycksele-
Storuman area (Fig. 1) were intruded by S-type granites of the
Skellefte-Härnö suite, dated at c. 1.82–1.80 Ga and alkali-calcic
granites of the Revsund suite with ages between 1.80 and
1.77 Ga (Claesson and Lundqvist 1995; Billström and
Weihed 1996; Weihed et al. 2002a).

Fäboliden orogenic gold deposit

The steeply dipping sheet-like deposit at Fäboliden extends
for about 1.3 km along strike (Fig. 2), is up to 50 m wide, and
has been observed at depths of over 350 m. The mineralized
zone is open at depth.

Geology of the Fäboliden area

The main rock type in the Fäboliden area (Fig. 2) is the late- to
post-orogenic, 1.80–1.77 Ga, Revsund granitoid (Claesson
and Lundqvist 1995; Billström and Weihed 1996; Weihed
et al. 2002a). This medium- to coarse-grained porphyritic,

isotropic granitoid surrounds a narrow belt of Bothnian
Basin metagreywackes intercala ted with mafic
metavolcanic rocks. The poorly exposed fine-grained
and biotite-rich metagreywackes are strongly foliated.
In a few outcrops, the metagreywackes are more
coarse-grained (< 1 cm grain size) and less deformed.
In less deformed areas, primary sedimentary textures
such as stratification and bedding are observed. The
fine-grained and banded metavolcanic rocks dominate
the northern parts of the Fäboliden area.

The granitic and supracrustal rocks in the Fäboliden area
are crosscut by a set of c. 1.26 Ga dolerites (Söderlund et al.
2006). The dolerites are not mineralized, and clearly post-date
the gold mineralization at Fäboliden.

Metamorphic conditions

The metasedimentary rocks in the northern part of the
Bothnian Basin, the Lycksele-Storuman area (Fig. 1),
have been metamorphosed to amphibolite facies (Weihed
et al. 1992), and locally to granulite facies (Lundström
1998). Regional metamorphic PT conditions of 3–5 kbar
and 550–700 °C were suggested by Lundqvist (1990).
Geothermometric data from supracrustal rocks indicate
peak metamorphic temperatures of 570–640 °C (garnet-
biotite) for the Fäboliden area (Bark and Weihed 2007,
2012), suggesting amphibolite facies conditions. Peak
metamorphism and known ductile deformation events in
the northern part of the Bothnian Basin occurred between
1.84 and 1.80 Ga (Weihed et al. 1992; Billström and
Weihed 1996; Bergman Weihed 2001; Rutland et al.
2001; Weihed et al. 2002b). Based on aeromagnetic data
that show discrete shear zones, denoted as D3-structures,
and their field relations with intrusive rocks, Rutland et al.
(2001) inferred that the last of the ductile events occurred
prior to 1.81 Ga. However, in the Fäboliden deposit area,
located west of the study area of Rutland et al. (2001),
discrete ductile shear zones interpreted as regional D3-
structures host the gold within the supracrustal rocks.
These shear zones at Fäboliden are seen to affect the mar-
gin of the 1.80–1.77 Ga (Claesson and Lundqvist 1995;
Billström and Weihed 1996; Weihed et al. 2002a)
Revsund granite in a ductile manner (Bark and Weihed
2003). The ductile fabric, which is sub-parallel to the
contact between the metagreywacke and the granite,
progresses laterally across the contact where it gradually
weakens and disappears a few meters into the granite.
These relationships contradict Rutland et al. (2001) and
clearly show that the margin of the granite was affected
by ductile deformation, requiring the last known ductile
event to be c. 1.80 Ga.
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Timing of mineralization

Bark and Weihed (2007) discussed the relationships between
garnet-biotite and graphite geothermometers from the
Fäboliden area, representing peak metamorphic temperatures
(garnet-biotite) and temperatures of gold-associated hydro-
thermal alteration (graphite grains spatially associated with
arsenopyrite in the gold-bearing quartz veins). Graphite is a
good indicator of temperature conditions, since the process of
graphit ization of carbonaceous material (CM) in
metasedimentary rocks during hydrothermal alteration is con-
sidered irreversible and shows no known effects on the crystal
structure during retrograde cooling of the rocks (Pasteris and
Wopenka 1991; Beyssac et al. 2002). Graphite in the
Fäboliden veins is suggested to have originated from the re-
action CO2 + CH4 – > 2C + 2H2O, during mineralization
(Bark et al. 2007). Although graphite thermometry stud-
i e s typ ica l ly focus on ana lyses o f CM from
metasedimentary rocks and not vein-hosted graphite,
Beyssac et al. (2002) have shown that graphite ther-
mometry is less sensitive to different CM precursor
types at temperatures between 330 and 650 °C. Thus,
since graphite data from Fäboliden suggest a narrow
range of peak temperatures (520–560 °C) for the graph-
itization and associated hydrothermal alteration,

considerably lower than peak metamorphic temperatures
( 5 70–640 °C ) i nd i c a t e d f r om ga r n e t - b i o t i t e
geothermometers (Bark et al. 2007) the use of graphite
thermometry in veins at Fäboliden is justified.
Assuming that the geological environment at Fäboliden
did not act as a closed system after the mineralizing
event, the graphite temperature range suggests that gold
mineralization occurred post-peak metamorphism; other-
wise, the graphite geothermometer would have indicated
temperatures matching peak metamorphic conditions.

The field observations of the ductile fabric (shearing) that
passes from the metagreywacke into the granite, together with
the relationship between the different geothermometers, sug-
gests that the gold mineralization at Fäboliden is considered
post-peak metamorphic and contemporaneous with the em-
placement of the 1.80–1.77 Ga Revsund granite.

Gold mineralization

The gold at Fäboliden is contained in quartz and sulfide veins,
which parallel the main foliation within the shear zone in the
supracrustal host rocks (Fig. 2). The metagreywacke se-
quences are the main host for the veins, which are variably
boudinaged. In places, the metavolcanic rocks are also miner-
alized. Gold has not been observed in the Revsund granite.

Fig. 2 Bedrock map of the Fäboliden area, with a cross section of the main gold ore zone with sample sites indicated. Coordinates in Swedish National
Grid (RT90). Map modified after Björk and Kero (2002)
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The sulfides are situated in semi-ductile structures, i.e. in thin
veins parallel to the foliation planes and in the necks of
boudinaged quartz veins indicating that the timing of sulfide
crystallization is syn- to late-deformation (Bark and Weihed
2003, 2007).

Sulfides proximal to the mineralization comprise mainly
arsenopyrite, löllingite (commonly as inner cores in arsenopy-
rite; Fig. 3b) and pyrrhotite with accessory chalcopyrite,
sphalerite, stibnite, and galena, whereas distal to the mineral-
ization, pyrrhotite is the dominant sulfide and As-
bearing minerals are virtually absent. Pyrrhotite occurs
throughout the metagreywacke sequence at Fäboliden
and is interpreted to have formed prior to the mineral-
ization event. However, in the proximal alteration zone,
pyrrhotite commonly occurs as fracture fillings within
the arsenopyrite, suggesting that arsenopyrite crystal-
lized prior to pyrrhotite. This paragenetic relationship
is also indicated from fluid inclusion analysis where
PT conditions are significantly different between fluid
inclusions associated with arsenopyrite, at 4 kbar, com-
pared with 0.3 kbar for pyrrhotite (Bark et al. 2007).
For example, these contradictory textural relationships
between arsenopyrite and pyrrhotite might be an effect
of re-mobilization of early-stage pyrrhotite during gold
mineralization, reflected by late pyrrhotite textures.

Gold is typically very fine-grained (below 10 μm),
and occurs mainly as inclusions and as fissure fillings
in the arsenopyrite-löllingite (Fig. 3), but also as free
grains in the silicate matrix of the host rocks (Bark
and Weihed 2003, 2007). Gold typically occurs as elec-
trum (Au/Ag 2:1), but is also closely associated with
stibnite, as auriferous stibnite.

Hydrothermal alteration

The supracrustal rocks in the northern parts of the
Bothnian Basin constitute metagreywacke sequences
with subordinate, mainly mafic, metavolcanic rocks,
and are metamorphosed to amphibolite facies (Weihed
et al. 1992; Lundström 1998). The mineral assemblage
in the metagreywackes is characterized by Ca- and Fe-
Mg-rich amphiboles together with hedenbergite, biotite,
quartz, plagioclase, and potassium feldspar. Pyrrhotite is
a common constituent together with trace amounts of
chalcopyrite, sphalerite, and galena.

The transition from regional metamorphic mineral as-
semblages to hydrothermal alteration assemblages is
gradual. Lower amphibole contents in the distal alter-
ation zone compared with those in regional metamor-
phic rocks is the only discernible feature that distin-
guishes these rocks. This style of vague distal alteration

is a common feature for hypozonal orogenic gold de-
posits globally (Eilu et al. 1999).

Proximal to the mineralized zones, the metagreywacke dis-
plays an intense compositional banding due to variations in
the abundances of biotite, amphibole, and pyroxene. Quartz
veins 1–5 cm thick are common in these proximal alteration
zones. Alteration zones enveloping the veins are comprised of
diopside, calcic amphibole, biotite, potassium feldspar, pla-
gioclase, minor andalusite, and very fine-grained tourmaline
(Bark and Weihed 2007). Compared with regional metamor-
phic mineral assemblages, proximal alteration zones contain

Fig. 3 Electron backscatter images of gold closely associated with
arsenopyrite-löllingite. a Gold and probable stibnite in fractures within
arsenopyrite-löllingite. b Electron microprobe mapping image (intensity
of As) showing arsenopyrite with common löllingite cores. Apy,
arsenopyrite; Au, gold; Löll, löllingite; Sb, probable stibnite
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more calcium-rich minerals, manifested by a higher An-
content of plagioclase. Higher An-content plagioclase, togeth-
er with the presence of diopside and calcic amphiboles, is
positively correlated with higher Au grade. There are also
thinner mineralized lenses parallel to higher grade veins,
termed satellite veins, that show intense diopside-amphibole-
biotite alteration (Fig. 2, see cross section).

Analytical methods

Quartz and biotite from the quartz vein system were analyzed
for oxygen and hydrogen isotopes. Arsenopyrite and pyrrho-
tite from the vein system were analyzed for sulfur isotopes. In
total, six drill cores were sampled at 35 different sites (for
distribution of samples, see Fig. 2). Fifty-two arsenopy-
rite, 17 pyrrhotite, 14 quartz, and 7 biotite grains were
analyzed in this study. Samples were crushed and sieved
to 75 μm. Minerals were separated using magnetic sep-
aration in two steps, followed by handpicking of
targeted minerals under stereographic microscope.
Isotopic analysis was subsequently performed at the
Scottish Universities Environmental Research Centre
(S.U.E.R.C.) in Glasgow, Scotland.

Oxygen isotope analysis

All separates were analyzed using a laser fluorination proce-
dure, involving total sample reaction with excess ClF3 using a
CO2 laser as a heat source (in excess of 1500 °C; following
Sharp 1990). All combustion resulted in 100% release of O2

from the silica lattice. This O2 was then converted to CO2 by
reaction with hot graphite, then analyzed online by a VG
SIRA 10 spectrometer. Reproducibility is better than ± 0.3‰
(1σ). Results are reported in standard notation (δ18O) as per
mil (‰) deviations from the Standard Mean Ocean Water (V-
SMOW) standard, in Table 1.

Hydrogen isotope analysis

Pure biotite samples were heated to 150 °C overnight under
high vacuum to release labile volatiles after loading into thor-
oughly outgassed Pt crucibles. Samples were then gradually
heated by radiofrequency induction in an evacuated quartz
tube, to temperatures in excess of 1200 °C. The released water
was then reduced to H2 in a chromium furnace at 800 °C
(Donnelly et al. 2001), with the evolved gas measured quan-
titatively in a Hgmanometer, before collecting using a Toepler
pump. The gas was subsequently analyzed on a VG 602D
mass spectrometer with a manual Hg, high gas-compression
inlet system. Replicate analyses of water standards

(international stds V-SMOW and GISP, and internal standard
Lt Std) gave a reproducibility of ± 2‰. Replicate analyses of
international mineral standard NBS-30 (biotite) of δD = −
65‰ (V-SMOW) also gave reproducibility around ± 2‰.
Analytical results are summarized, as δD notation as per mil
(‰) variations from the international V-SMOW standard, in
Table 1.

Sulfur isotope analysis

Sulfide separates (arsenopyrite and pyrrhotite) were ana-
lyzed by conventional techniques (Robinson and
Kusakabe 1975) in which SO2 gas was liberated by
combusting the sulfides under vacuum with excess Cu2O
at 1075 °C. In addition to the conventional analysis, a num-
ber of in situ laser combustion analyses were carried out on
polished blocks of the respective sample, following the
technique described in Wagner et al. (2004). This allowed
a spatial resolution of sulfur isotopes to be undertaken
(McConville et al. 2000).

Table 1 Oxygen and hydrogen isotope data from Fäboliden

Sample Mineral δ18O mineral δD mineral

FA20001-104.95ma Biotite − 95
FA20001-104.95mb Biotite 7.3

FA20002-075.20m Biotite − 95
FA200113-144.05m Biotite − 67
FA200113-151.33ma Biotite − 80
FA200113-151.33mb Biotite 7.7

FA200113-169.25m Biotite − 120
FA99016-033.05ma Biotite − 71
FA99016-033.05mb Biotite 8.0

FA99016-050.10m Biotite − 91
FA20001-104.95m Quartz 11.4

FA20002-073.70m Quartz 11.3

FA20002-075.20m Quartz 11.6

FA200113-144.05m Quartz 12.2

FA200113-148.00m Quartz 12.0

FA200113-151.33m Quartz 11.4

FA200113-160.34m Quartz 11.2

FA200113-166.71m Quartz 12.0

FA200113-169.25m Quartz 12.0

FA99016-025.40m Quartz 10.6

FA99016-033.05m Quartz 13.1

FA99016-036.50m Quartz 11.6

FA99016-041.65m Quartz 12.2

FA99016-050.10m Quartz 11.9

All values in per mil
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Liberated gases from both techniques were analyzed on a
VG Isotech SIRA II mass spectrometer. Calculation of δ34S
values from raw machine δ66SO2 data was carried out by
calibration with international standards NBS-123 (+ 17.1‰)
and IAEA-S-3 (− 31.5‰), as well as SUERC’s internal lab
standard CP-1 (− 4.6‰). Reproducibility was better than ±
0.2‰ (1σ). Data are reported in δ34S notation as per mil (‰)
variations from the Vienna Cañon Diablo Troilite (V-CDT)
standard. The analytical results, for conventional and
laser-combusted sulfur analysis, are summarized in
Tables 2 and 3. The majority (about 80%) of sulfur

Table 3 Sulfur isotope data for arsenopyrite and pyrrhotite, from the
Fäboliden deposit using laser combustion analysis

Sample Mineral Comments δ34SV-CDT
1

FA20001-106.95ma arsenopyrite core 2.7

FA20001-106.95mb arsenopyrite rim 2.6

FA20002-073.70ma arsenopyrite rim 2.5

FA20002-073.70mb arsenopyrite core 1.4

FA20002-073.70mc arsenopyrite rim 1.9

FA20002-075.20ma arsenopyrite core 1.7

FA20002-075.20mb arsenopyrite core 1.9

FA20003-037.75m arsenopyrite rim 1.7

FA200113-122.87ma arsenopyrite core 0.6

FA200113-122.87mb arsenopyrite core -0.1

FA200113-132.80m arsenopyrite core -0.2

FA200113-146.29m arsenopyrite core 1.2

FA200113-146.43m arsenopyrite rim 1.7

FA200113-146.57m arsenopyrite rim 3.6

FA200113-148.00ma arsenopyrite rim 2.3

FA200113-148.00mb arsenopyrite core 2.4

FA200113-149.45m arsenopyrite core 0.3

FA200113-150.78m arsenopyrite core 1.2

FA200113-151.63m arsenopyrite core 0.9

FA200113-155.70m arsenopyrite core 1.6

FA200113-157.32m arsenopyrite core 1.2

FA200113-160.17m arsenopyrite core 1.0

FA200113-160.34ma arsenopyrite core -0.8

FA200113-160.34mb arsenopyrite rim 0.4

FA99016-036.50m arsenopyrite core 2.3

FA99016-042.00ma arsenopyrite rim 2.7

FA99016-042.00mb arsenopyrite core 1.6

FA99016-043.80m arsenopyrite core 0.2

FA99016-047.92m arsenopyrite rim 0.6

FA99016-048.35m arsenopyrite core 1.8

FA99016-048.52m arsenopyrite rim/core 1.6

FA20002-075.20ma pyrrhotite core 0.8

FA20002-075.20mb pyrrhotite core 1.0

FA20003-037.75m pyrrhotite rim 0.0

FA200113-150.78m pyrrhotite core 0.8

FA200113-151.63m pyrrhotite rim 0.5

FA99016-042.00m pyrrhotite rim 1.9

FA99016-048.35m pyrrhotite core 1.5

V-CDT Vienna Cañon Diablo Troilite
1 All values were corrected from raw δ34 S values, using the laser frac-
tionation factor determined by Wagner et al. (2004) whereby;
δ34 Strue = δ

34 Smeasured + 0.4, which is the same as that calculated for pyr-
rhotite by Maynard et al. (1997). Shaded rows indicate core and rim
analysis in one and the same grain

Table 2 Sulfur isotope data for arsenopyrite and pyrrhotite, from the
Fäboliden deposit using conventional analysis

Sample Mineral δ34SV-CDT (‰)

FA20002-073.70ma Arsenopyrite 0.2

FA20002-073.70mb Arsenopyrite 0.4

FA20002-075.20m Arsenopyrite 0.6

FA20003-037.75m Arsenopyrite 0.0

FA200113-122.87m Arsenopyrite − 0.1
FA200113-123.00m Arsenopyrite 0.0

FA200113-148.00ma Arsenopyrite 1.3

FA200113-148.00mb Arsenopyrite 1.5

FA200113-149.45m Arsenopyrite 1.0

FA200113-149.82m Arsenopyrite 1.8

FA200113-155.70ma Arsenopyrite − 0.4
FA200113-155.70mb Arsenopyrite 0.9

FA200113-157.32m Arsenopyrite 0.2

FA200113-160.17m Arsenopyrite − 0.4
FA200113-160.34m Arsenopyrite − 0.5
FA99016-025.40ma Arsenopyrite 0.9

FA99016-036.50m Arsenopyrite 2.6

FA99016-041.65m Arsenopyrite 1.6

FA99016-042.00m Arsenopyrite 1.6

FA99016-043.80m Arsenopyrite − 0.9
FA99016-048.52m Arsenopyrite 1.7

FA20002-082.90m Pyrrhotite 0.4

FA200113-144.05m Pyrrhotite 0.5

FA200113-151.33m Pyrrhotite 0.2

FA200113-160.34m Pyrrhotite − 0.8
FA200113-166.71m Pyrrhotite 0.0

FA200113-169.25m Pyrrhotite − 1.5
FA99016-050.10m Pyrrhotite 0.1

FA99017-039.10m Pyrrhotite* 0.8

FA99017-076.65m Pyrrhotite* − 2.6
FA99017-116.55m Pyrrhotite* − 3.3

V-CDT Vienna Cañon Diablo Troilite

*Least altered samples
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isotope analyses were made on arsenopyrite since the
arsenopyrite is considered to be associated with the pre-
cipitation of gold at Fäboliden (Bark et al. 2007).

Results

Oxygen and hydrogen isotope data

Results of oxygen and hydrogen isotope analysis are present-
ed in Table 1. The oxygen isotope compositions of quartz
from the auriferous veins at Fäboliden are homogeneous and
range between + 10.6 and + 13.1‰. The mean value for the
quartz data is + 11.8 ± 0.6‰ (1σ, n = 14).

Oxygen isotope compositions of biotite samples show a
narrow δ18O range of + 7.3 to + 8.0‰. Hydrogen isotope
(δD) compositions range from − 120 to − 67‰ (Table 1), with
the majority of compositions between − 95 and − 67‰. The
mean δD value is − 88 ± 18‰ (1σ, n = 7).

Assuming there was equilibrium between fluids and min-
erals, the isotopic compositions for δD and δ18O of fluids
(Fig. 4) were calculated based on temperatures from graphite
geothermometry (520–560 °C) from the proximal alteration
zone at Fäboliden (Bark et al. 2007). The calculated δ18O fluid
values from quartz range between + 8.5 and + 11.3‰ and
from biotite between + 9.8 and + 10.5‰ (Bottinga and
Javoy 1973; Matsuhisa et al. 1979). Mean calculated fluid
δ18O for quartz is + 9.6 ± 0.6‰ (at 520 °C) and + 9.9 ±
0.6‰ (at 560 °C), and for biotite + 10.1‰ (520–560 °C).

Therefore, statistically, these minerals are in isotopic equilib-
rium with the same fluid at the noted temperatures. The cal-
culated δD compositions of fluids are between − 85 and
− 32‰, with most data above − 60‰ (Suzuoki and Epstein
1976). The mean value for δD fluid is − 55 and − 51‰ at
520 °C and 560 °C, respectively.

Sulfur isotope data

Results of sulfur isotope analysis show a marked isotopic
homogeneity (Tables 2 and 3 and Fig. 5). Conventional anal-
ysis yielded δ34S values for arsenopyrite from − 0.9 to + 2.6‰
(Fig. 5a), with a mean value of 0.7 ± 0.9‰ (1σ, n = 21).
Compositions in pyrrhotite range from − 1.5 to + 0.5‰, with
a mean value of − 0.2 ± 0.7‰ (1σ, n = 7).

A higher spatial resolution compared with conventional
methods was gained by analyzing individual arsenopyrite
and pyrrhotite grains in situ using laser combustion
techniques. Most analyses were of arsenopyrite because it is
temporally associated with gold at Fäboliden (Bark et al.
2007), but some pyrrhotite was also analyzed. In total, 23
arsenopyrite and 6 pyrrhotite samples were analyzed. In each
sample, one mineral grain was analyzed, but the core and rims
of 7 arsenopyrite and 1 pyrrhotite grains were also analyzed.
The rims and cores of the minerals were analyzed to test
within-grain sulfur isotope compositional variations
(Table 2). The arsenopyrite cores yielded δ34S values from
−0.8 to +2.3‰ (n = 19), whereas the rims ranged between 0
and + 3.6‰ (n = 11; Fig. 5b). The mean and 1σ standard

Fig. 4 Diagram showing the
range in calculated fluid oxygen
(quartz and biotite) and hydrogen
(biotite) isotope compositions.
The bold red bar in the center of
the symbol indicates mean oxy-
gen and hydrogen values, in the
temperature range 520 and
560 °C. Fractionations for δD af-
ter Suzuoki and Epstein (1976),
and for δ18O quartz-fluid after
Matsuhisa et al. (1979).
Metamorphic and magmatic
fields after Taylor (1974).
Orogenic gold field from Ridley
and Diamond (2000)
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deviation of these data are 1.1 ± 0.9‰ and 1.9 ± 1.0‰ for core
and rim, respectively. Thus, there is no statistically significant
isotopic variation between rim and core in the arsenopyrite
data. A similar lack of variation is suggested by analysis of
pyrrhotite, yielding a δ34S range in cores of + 0.8 to + 1.5‰
(n = 4), and analysis of the rims ranging between 0 and +
1.9‰ (n = 3). The marked isotopic homogeneity of the dataset
is evident in the combined vein sulfide data, which gives a
mean of 1.1 ± 1.0‰ for arsenopyrite, and 0.4 ± 0.9‰ for
pyrrhotite.

In an attempt to characterize background values of δ34S,
three weakly altered pyrrhotite samples from about 100 m
outside the proximal alteration zone yielded a δ34S range of
− 3.3 to + 0.8‰. These results overlap the δ34S values from
the proximal alteration zone but may indicate a slight shift
towards more negative values for pyrrhotite in regional
metagreywacke. However, further analysis is required to de-
fine a more representative sulfur isotope range for the unal-
tered metagreywackes in the Fäboliden area.

Discussion

Metamorphic fluids are widely accepted to be important in the
formation of orogenic gold deposits. For example,

metamorphic fluids leached metals from the country rocks
and were enriched in gold deposits in the Otago Schist Belt,
New Zealand, indicating metal transport by metamorphic
fluids (Pitcairn et al. 2006). Metamorphic fluids have also
been implicated in forming many other gold deposits
(Kerrich et al. 2000; Goldfarb et al. 2005; Pitcairn et al.
2006, 2010; Large et al. 2011; Phillips and Powell 2010;
Tomkins 2010, 2013; Gaboury 2013; Groves and Santosh
2016; Goldfarb et al. 2017), but orogenic gold deposits have
also been suggested to have formed from magmatic-
hydrothermal fluids (Burrows et al. 1986; Pattrick et al.
1988; Burrows and Spooner 1989; de Ronde et al. 2000;
Xue et al. 2013), from deep-convection of meteoric water
(Nesbitt et al. 1989; Hagemann et al. 1994; Jenkin et al.
1994), from mantle-derived CO2-rich fluids (Cameron 1988,
1989; Colvine 1989), or from fluids expelled during subduc-
tion of oceanic crust (Kerrich and Wyman 1990; Goldfarb
et al. 1991a; Jia et al. 2003). Mixing of different fluids has
also been suggested to be important in causing precipitation of
gold in orogenic deposits (Anderson et al. 1992; Bateman and
Hagemann 2004; Hill et al. 2013; Molnar et al. 2016; Yardley
and Cleverley 2015; Shen et al. 2016; Spence-Jones et al.
2018), whereas some authors dismiss fluid mixing as a signif-
icant process in the formation of orogenic gold systems
(Goldfarb and Groves 2015). The ultimate fluid source for
orogenic gold deposits remains controversial and the fluid
may have multiple origins (Goldfarb and Groves 2015;
Yardley and Cleverley 2015; Groves and Santosh 2016;
Groves et al. 2019).

Origin of fluid

The calculated fluid oxygen and hydrogen isotope composi-
tions of quartz in the Fäboliden deposit plot in the overlapping
fields of metamorphic and magmatic fluids (Fig. 4), suggest-
ing that the hydrothermal fluid at Fäboliden originated from a
deep-seated metamorphic and/or magmatic source. The range
in oxygen and hydrogen compositions is similar to many other
orogenic gold deposits (i.e. McCuaig and Kerrich 1998;
Hagemann and Cassidy 2000; Ridley and Diamond 2000;
Groves et al. 2003).

Oxygen isotopes from the Fäboliden deposit range from +
10.6 to + 13.1‰ (δ18Oquartz). Oxygen isotope compositions
greater than + 8‰ are interpreted as being the result of surface
or near-surface processes during sedimentation, diagenesis, or
low-temperature hydrothermal alteration (Taylor 1980), sug-
gesting that the fluid cannot be solely magmatic (McCuaig
and Kerrich 1998). Also, if the source rocks contain 18O-
enriched metasedimentary rocks, a metamorphic fluid with
δ18O values greater than + 8‰ is possible (Böhlke and
Kistler 1986; McCuaig and Kerrich 1998). The δ18Ofluid
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values from the Fäboliden gold-bearing metasedimentary host
rocks may thus suggest a purely metamorphic fluid source, or
a mixed fluid source.

In the Lycksele-Storuman area (Fig. 1), few stable isotope
studies have been undertaken. Wilson et al. (1985) presented
oxygen isotope data (n = 5, δ18OSMOW ranging from + 9.2 to
+ 11.8‰) from two different granitic suites in the northern
part of the Bothnian Basin, the Revsund type and the less
common Skellefte-Härnö type, and concluded that there is
assimilation of pelitic components in both granites but the
Skellefte-Härnö type typically has the highest degree of incor-
porated metasedimentary material. Based on geothermometry
and field relations, the mineralizing event at Fäboliden is es-
timated to be broadly coeval with emplacement of the spatial-
ly proximal 1.80–1.77 Ga Revsund granite (Claesson and
Lundqvist 1995; Billström and Weihed 1996; Weihed et al.
2002a) (Bark and Weihed 2007). The Skellefte-Härnö type
granite is not known to occur in the Fäboliden area.
Orogenic gold mineralization at about 1.8 Ga is a global phe-
nomenon (Goldfarb et al. 2001) and an alignment of orogenic
gold deposits of assumed similar age occurs in the
Fennoscandian Shield both in Sweden and Finland
(Saalmann et al. 2009; Bark and Weihed 2012). This suggests
that widespread gold-bearing fluids percolated through the
Fennoscandian crust at this time. Owing to the fact that the
oxygen isotope values of the Revsund granite are interpreted
to be the result of assimilation of metamorphosed sedimentary
country rocks (Wilson et al. 1985), a Revsund-related mag-
matic fluid would likely resemble the isotopic oxygen signa-
ture of the metamorphosed sedimentary host rocks. It is com-
mon that magmatic fluids are present in hydrothermal
systems, but the magmatic isotope signature may be
strongly overprinted or erased during subsequent events, ob-
scuring the original compositions (Rye 1993; Hedenquist and
Lowenstern 1994; Hoefs 2009; Pili et al. 2011; Yardley and
Cleverley 2015; Lüders et al. 2015; Goldfarb et al. 2017).

Therefore, a metamorphic origin of the gold-mineralizing
fluid at Fäboliden seems plausible but a magmatic component
to the fluid cannot be ruled out.

Origin of sulfur

Gold is likely transported as bisulfide complexes in metamor-
phic fluids that produced orogenic gold deposits (Groves et al.
2003; Goldfarb et al. 2005), especially at high pressure and
temperature conditions (550–725 °C and 1–4 kbar; Loucks
and Mavrogenes 1999). Therefore, the source of sulfur is an
important factor in developing a genetic model.

The remarkable homogeneity of sulfur isotope composi-
tions for all vein sulfide samples, showing a mean value of
+ 1.1 ± 1.0‰ for arsenopyrite, and + 0.4 ± 0.9‰ for

pyrrhotite, suggests that the sulfur likely originated from one
uniform source reservoir. A narrow range of sulfur isotope
values that cluster around 0‰was previously considered con-
sistent with amagmatic source for the sulfur (Ohmoto and Rye
1979). However, the local host rock can have a significant
effect on the isotope signature (Ohmoto and Goldhaber 1997).

The dominant host rock at Fäboliden is a thick sequence (>
10 km) of schistose metagreywacke, with carbonate-rich
parts, intercalated with metavolcanic units (Bark and Weihed
2007). The role of black shales, diagenetic pyrite, and orogen-
ic gold formation in sedimentary host rocks has been illustrat-
ed in a number of studies (Large et al. 2007, 2009, 2011;
Thomas et al. 2011; Gaboury 2013). The model assumes that
diagenetic pyrite is later transformed into pyrrhotite during
metamorphism and deformation, releasing the gold from the
pyrite crystal structure and concentrating the gold during oro-
genic processes, forming gold deposits. Carbonaceous shales
are a suitable source rock for elements that are commonly
enriched in orogenic gold deposits, such as S, Au, As, and
Sb (Large et al. 2011; Pitcairn 2011; Steadman et al. 2014;
Lisitsin and Pitcairn 2015).

Sedimentary rocks commonly show a wide range (+ 50 to
− 40‰) in initial sulfur isotopic composition (Fig. 6) (Ohmoto
and Rye 1979; Ohmoto 1986; Ohmoto and Goldhaber 1997;
Seal 2006; Hoefs 2009). A wide range of compositions sug-
gests either a mixture of sulfur from different sources under
reduced conditions, or precipitation of sulfur from a single
source under more oxidizing conditions (Ohmoto and Rye
1979). However, subsequent geological processes can modify
the initial isotopic signatures. Metamorphism is commonly
assumed to homogenize isotope compositions of sulfides
through recrystallization, alteration of pyrite to pyrrhotite
and sulfur, and diffusion at increased temperatures (Cook
and Hoefs 1997). However, isotopic homogenization is com-
monly restricted to specific parts of the deposit and is con-
trolled by local conditions such as focused fluid flow and
tectonic framework (Cook and Hoefs 1997). Chang et al.
(2008) showed that variable sulfur isotope compositions in
rocks hosting the Sukhoi Log orogenic gold deposit in
Russia were homogenized during metamorphism and peak
deformation.

Compilations of sulfur isotope data from a large number of
deposits show a common range of δ34S compositions from − 3
to + 9‰ for orogenic lode gold deposits globally (Steed and
Morris 1997; McCuaig and Kerrich 1998; Ramsay et al. 1998;
Ridley and Diamond 2000; Hodkiewicz et al. 2009).
Fäboliden sulfur isotope data clearly fall within this range,
with δ34S between −1.5 and + 3.6‰ (Fig. 5), a narrow range
that is similar to other hypozonal orogenic gold deposits, such
as the giant Champion deposit in the Kolar Schist Belt, India
(Hagemann and Cassidy 2000) and theWiluna, Morning Star,
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Princess Royal, and Mt. Charlotte deposits in Australia
(McCuaig and Kerrich 1998). This range of δ34S in the
gold-associated sulfide minerals has been interpreted to orig-
inate from common sulfur reservoirs such as mantle-derived
magmatic rocks, average crustal sulfur, or metamorphosed
sedimentary sulfur (Ridley and Diamond 2000; Chang et al.
2008).

A narrow range of sulfur isotope data clustering around
0‰ may suggest a single uniform source for the sulfur (and
by inference gold). Based on fluid inclusion data, Bark et al.
(2007) showed that an extremely CO2-rich fluid (75–
95 mol%) was involved in the formation of the Fäboliden
deposit. Large amounts of CO2 are generated duringmetamor-
phism (Goldfarb et al. 2017), and carbonate-rich sedimentary
rocks, such as the metagreywacke sequence at Fäboliden
would result in CO2-rich ore-related fluids. This would indi-
cate that the fluid originated from sedimentary rocks beneath
the site of ore formation, as is suggested for other hypozonal
orogenic gold deposits elsewhere (Kolb et al. 2015). Gaboury
(2019) concludes that the fluid, ligand, and metal (gold) in-
volved in orogenic gold mineral systems are all sourced from
the same carbonaceous and pyrite-rich sedimentary rock, at
conditions transitional between greenschist and amphibolite
facies. The Fäboliden data are consistent with this model.

Overall, sulfur, oxygen, and hydrogen isotopic data
interpreted in the context of the regional and local geology
suggests that the mineralizing fluid at Fäboliden originated
from metamorphic devolatilization of deep-seated sedimenta-
ry rocks, but there is a possibility that a magmatic fluid trig-
gered precipitation of metals through mixing with the gold-
bearing metamorphic fluid.

Proposed genetic model

Models for orogenic gold systems suggest that the fluid is
generated during prograde metamorphism at the greenschist-
amphibolite facies transition. Fluids and sulfur are released
from the metamorphosed rocks during the breakdown of

hydrous silicates and pyrite (Pitcairn et al. 2006; Tomkins
2010; Finch and Tomkins 2017) and, if the elemental compo-
sition of the source rock is favorable (e.g., carbonaceous
sedimentary rocks; Vilor 1983; Large et al. 2007, 2009,
2011; Gaboury 2013, 2019), the fluid has the potential of
forming orogenic gold deposits, assuming the fluid is focused
through a structural framework in the crust with subsequent
precipitation of gold over a geologically short time period.
The amount of time required to generate an orogenic gold
deposit obviously varies with size and gold concentration of
the deposit, but the actual duration of the mineralizing event is
suggested to be geologically short (<1 m.y.; Goldfarb et al.
1991b; 10,000 to 100,000 years; Weatherley and Henley
2013; Cox 2016), compared with the overall process of re-
gional metamorphism (Yardley and Cleverley 2015).
Exceptions are suggested for giant deposits, which
may take several tens of millions of years to form
(e.g., Golden Mile; Bateman and Hagemann 2004).

The generation of an ore fluid during prograde metamor-
phism as described above seems like a valid scenario for de-
posits in greenschist facies, and possibly also at lower amphib-
olite facies, but the model has difficulty explaining oro-
genic gold formation in metamorphic terranes at higher
PT conditions (Kolb et al. 2015; Groves et al. 2019), or
in deposits that clearly post-date peak metamorphism.
Based on geothermometric data, mineralization at
Fäboliden took place post-peak metamorphism, during retro-
grade conditions (Bark and Weihed 2007), requiring an alter-
native model for fluid generation.

The average gold concentration in the upper crust is typi-
cally between 0.5 and 5 ppb (Wedepohl 1995; Laznicka 1999;
Rudnick and Gao 2003; Pitcairn 2011), and thus, scavenging
of gold bymetamorphic fluids requires a large volume of crust
to generate a hydrothermal gold deposit. Yardley and
Cleverley (2015) argued that fluid production during regional
metamorphism is a slow process because heat transfers
through insulating materials, and there are two possible ways
of generating a metamorphic fluid post-peak metamorphism:

Fig. 6 Sulfur isotope ranges of
some common reservoirs. Data
compiled from Steed and Morris
1997, McCuaig and Kerrich
1998, Ramsay et al. 1998, Ridley
and Diamond 2000, Hodkiewicz
et al. 2009, and Hoefs 2009
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(1) the introduction of post-orogenic magmas that supply heat,
generating a metamorphic fluid from dehydration of the meta-
morphosed rocks, or (2) fast dehydration of the crust during
post-orogenic decompression due to rapid uplift and erosion.
Metamorphic fluids and associated gold would, in the latter
case, be generated as consequences of crustal decompression
during uplift that is commonly associated with a shift in the
far-field stress regime due to a transition from compressional
to transpressional settings (Groves et al. 1987; Goldfarb et al.
1991a; Elmer et al. 2006; Craw et al. 2010; Vry et al. 2010;
Yardley and Cleverley 2015; White et al. 2015).

At Fäboliden, a significant decrease in pressure, from 4 to
0.3 kbar, during late stages in the fluid evolution at Fäboliden
is suggested by Bark et al. (2007). This pressure drop may
indicate rapid uplift during rotation of the regional stress re-
gime (Weihed et al. 2005; Bark and Weihed 2012) and subse-
quent erosion during post-orogenic tectonic settings.

However, coeval to the mineralization at Fäboliden, large
volumes of magmatic rocks were emplaced proximal to the
site of gold deposition (Bark and Weihed 2007), supplying
heat and possibly fluids. Our isotopic data suggest that an
input of a magmatic source enriched in 18O from assimila-
tion of sedimentary rocks during emplacement cannot be
ruled out. However, the sulfur isotope data coupled with
fluid inclusion data (Bark et al. 2007) suggests significant
input of metamorphic fluid. Bark et al. (2007) suggested that
gold formation at Fäboliden was the result of possible
mixing of two fluids (a CO2 ± CH4 fluid and a H2S ±
CH4 fluid). Phase separation is a widespread mechanism
for precipitating gold from the hydrothermal fluid in orogen-
ic gold systems (Ridley and Diamond 2000; Heinrich 2007),
and the mechanism is likely triggered by fluctuations in
lithostatic pressure during progressive deformation (e.g.,
the fault-valve model; Sibson et al. 1988; Cox et al. 1995).
At Fäboliden, no evidence for phase separation (such as
boiling) has been detected (Bark et al. 2007). This may be
due to the limited data set in the fluid inclusion study (n =
14). However, the CH4-component in the fluid is a strong
reductant and would likely cause precipitation of gold from
the fluid in case of fluid mixing (Heinrich 2007).

Conclusions

The Fäboliden orogenic gold deposit was formed from ameta-
morphic fluid, that provided the sulfur (and gold), generated
during retrograde metamorphism of deep-crustal sedimentary
rocks during decompressional uplift. The metamorphic fluid
is suggested to have mixed with an 18O-enriched magmatic
fluid, causing precipitation of Au and the formation of the
Fäboliden hypozonal orogenic gold deposit. Since the

Fäboliden deposit is hosted by amphibolite facies rocks, and
formed post-peak metamorphism, this contribution adds im-
portant data to the understanding of the formation of orogenic
gold deposits in high-metamorphic terrains.

The authors obviously recognize that using only stable iso-
tope data in constraining an ore model is limiting; however, all
interpretations made from isotope data in this paper are cor-
roborated with already published data on geochemistry, min-
eralogy, petrography, and fluid inclusion data from the
Fäboliden deposit.
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