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Abstract
We consider the class of multiple Fourier series associated with functions in the Dirich-
let space of the polydisc. We prove that every such series is summable with respect to
unrestricted rectangular partial sums, everywhere except for a set of zero multi-parametric
logarithmic capacity. Conversely, given a compact set in the torus of zero capacity, we con-
struct a Fourier series in the class which diverges on this set, in the sense of Pringsheim. We
also prove that the multi-parametric logarithmic capacity characterizes the exceptional sets
for the radial variation and radial limits of Dirichlet space functions. As a by-product of the
methods of proof, the results also hold in the vector-valued setting.

Keywords Dirichlet space · Polydisc · Multiple Fourier series · Capacity · Multi-parameter

Mathematics Subject Classification (2010) 31B15 · 32A40

1 Introduction

This article will consider unrestricted rectangular summation and other multi-parameter
summation methods of the multiple Fourier series

f (θ) ∼
∑

α∈Zn

aαei(α1θ1+···αnθn). (1)

To clarify this objective, note that there are several natural ways to form the partial sums of
a multiple Fourier series. For example, one can attempt to sum the series via square partial
sums,

lim
M→∞

∑

|αj |≤M

aαei(α1θ1+···αnθn),

spherical partial sums,

lim
R→∞

∑

α2
1+···+α2

n≤R

aαei(α1θ1+···αnθn),
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or unrestricted rectangular partial sums,

lim
Nn�N→∞

∑

|αj |≤Nj

aαei(α1θ1+···αnθn), (2)

where N → ∞ means that min1≤j≤n Nj → ∞, with no assumption made on the rela-
tionship between Nj and Nk , 1 ≤ j, k ≤ n. These three modes of convergence behave
quite differently, and typically require different techniques to treat. The first two summa-
tion methods only depend on one parameter (M or R), while the the third is an example of a
multi-parameter summation method. We refer to [4] and [23, Ch. XVII] for an introduction
to multi-parameter summation methods for Fourier series.

Carleson [10] famously proved that the Fourier series of a function f ∈ L2(T) converges
for almost every θ ∈ [0, 2π). This can be exploited to show that the Fourier series of a
function f ∈ L2(Tn), n ≥ 2, converges with respect to square partial sums for almost every
θ ∈ [0, 2π)n [2, 12, 21, 22]. On the other hand, C. Fefferman [13] constructed a continuous
function f ∈ C(T2) whose Fourier series diverges with respect to unrestricted rectangular
sums for every θ ∈ [0, 2π)2. Under spherical summation, the convergence question is still
open for Fourier series of f ∈ L2(Tn), n ≥ 2, but we refer to [16] for some related negative
results.

Let us now bring potential theory into the discussion. For a series f (θ) ∼ ∑
k∈Z ake

ikθ

such that
∑

k∈Z |k||ak|2 < ∞, Beurling [8] showed that f (θ) is summable for every
θ ∈ T \ E, where E is a set of zero logarithmic capacity. This was given a one-parameter
generalization to multiple Fourier series by Lippman and Shapiro [17]. They proved that if
f ∈ L1(Tn), n ≥ 2, is as in Eq. 1 and satisfies that

∑
α∈Zn(α2

1 + · · · + α2
n)|aα|2 < ∞, then

f (θ) is summable with respect to spherical partial sums, except for on a set E ⊂ T
n of zero

ordinary capacity (logarithmic capacity for n = 2 and Newtonian capacity for n ≥ 3, under
the identification T

n 
 (R/Z)n).
An interest in the multi-parameter summation method Eq. 2 thus leads us to seek a suit-

able concept of capacity. A notion of multi-parametric logarithmic capacity has appeared
recently in function-theoretic investigations of the Dirichlet space D(Dn) of the polydisc
[5–7, 15]. In particular, in [3], it was proven that bi-parameter logarithmic capacity char-
acterizes the Carleson measures of D(D2). It is therefore natural to generalize Beurling’s
result to this context.

Before stating the main results, let us fix some notation. For a positive integer n, consider
the multiple Fourier series

f (θ) ∼
∑

α∈Nn

aαei(α,θ),

where N = {0, 1, 2, . . .}, θ ∈ [0, 2π)n, and the coefficients belong to some Hilbert space
H, aα ∈ H. We say that f belongs to the Dirichlet space of the n-disc, f ∈ D(Dn,H), if

∑

α∈Nn

(α1 + 1) · · · (αn + 1)‖aα‖2
H < ∞.

If H = C, we simply write D(Dn). Occasionally, it will be very useful for us to view for
example the Dirichlet space of the bidisc as a Dirichlet space-valued one-variable Dirichlet
space,

D(D2) = D(D,D(D)).

This is the reason that we consider the vector-valued setting.
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Through iterated Poisson extension, any f ∈ D(Dn,H) defines an H-valued holomor-
phic function in z = (r1e

iθ1 , . . . , rne
iθn) ∈ D

n,

f (z) = fr(θ) =
∑

α∈Nn

aαrαei(α,θ), r ∈ [0, 1)n, θ ∈ [0, 2π)n.

We will freely identify [0, 2π)n with the n-torus Tn.
For a positive measurable function f on T

n, let

Bf (θ) =
∫

Tn

1

|eiθ1 − eiψ1 | 1
2

· · · 1

|eiθn − eiψn | 1
2

f (ψ)dψ,

where dψ denotes the normalized Lebesgue measure on T
n. For a set E ⊂ T

n in the n-torus,
we then define the following outer capacity:

C(E) = inf
{
‖f ‖2

L2(Tn)
: f ≥ 0, Bf (θ) ≥ 1 for all θ ∈ E

}
. (3)

When n = 1 and E is a Borel set (or more generally a capacitable set, see Section 2), C(E)

is equivalent to the usual (gently modified) logarithmic capacity of E. For n ≥ 2, C(E)

is a multi-parameter analogue of logarithmic capacity. The capacity C(·) fits the general
theory of [1, Ch. 2.3–2.5], allowing us to access certain basic tools of potential theory such
as equilibrium measures. However, we warn the reader that a number of familiar properties
from the one-parameter setting do not hold. Notably, the associated n-logarithmic potentials
defined in Section 2 generally fail to satisfy any kind of boundedness principle [3].

We shall actually prove convergence in a stronger sense than that given by Eq. 2. We
say that the series f (θ) converges in the sense of Pringsheim if it converges with respect to
unrestricted rectangular partial sums,

f (θ) = lim
Nn�N→∞

N1∑

α1=0

· · ·
Nn∑

αn=0

aαei(α,θ), (4)

and it holds that

sup
N∈Nn

∥∥∥∥∥∥

N1∑

α1=0

· · ·
Nn∑

αn=0

aαei(α,θ)

∥∥∥∥∥∥
H

< ∞. (5)

Finally, we say that a property holds quasi-everywhere if it holds everywhere on T
n but

for a set of capacity 0. Our first main result is the following.

Theorem 1 If f ∈ D(Dn,H), then for quasi-every θ ∈ [0, 2π)n, f (θ) converges in the
sense of Pringsheim.

Our second main theorem shows that Theorem 1 is sharp.

Theorem 2 If E ⊂ T
n is compact and C(E) = 0, then there exists a function f ∈ D(Dn)

such that f (θ) diverges in the sense of Pringsheim for θ ∈ E.

To prove Theorems 1 and 2, we will first prove that multi-parametric logarithmic capacity
characterizes the exceptional sets for the radial variation Vnf (θ) of f ∈ D(Dn,H),

Vnf (θ) =
∫

[0,1]n
‖∂rfr (θ)‖Hdr,

where ∂r = ∂r1 · · · ∂rn and dr = dr1 · · · drn.
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Theorem 3 If f ∈ D(Dn,H), then Vnf (θ) is finite for quasi-every θ .

Remark When n = 2 and H = C, this theorem is an immediate corollary of the work in
[3]. In that paper, the Carleson measures for D(D2), which also turn out to be embedding
measures for the radial variation, were given a potential-theoretic characterization. How-
ever, the characterization of Carleson measures is a much more complicated problem than
the characterization of exceptional sets for the radial variation—see [14, 18].

Applying Theorem 3, we obtain the following corollary on unrestricted iterated Abel
summation, that is, on the radial limits of a function f ∈ D(Dn,H).

Corollary 4 If f ∈ D(Dn,H), then for quasi-every θ it holds that

f ∗(θ) = lim
r→(1,··· ,1)

fr (θ)

exists, and furthermore that

sup
r

‖fr(θ)‖H < ∞.

The value of f ∗(θ) coincides with the Pringsheim sum f (θ) quasi-everywhere.

Theorem 3 is also sharp.

Theorem 5 If E ⊂ T
n is compact and C(E) = 0, then there exists a function f ∈ D(Dn)

such that

lim
z→ζ

Re f (z) = ∞, ζ ∈ E.

To complete the analogy with Beurling’s work [8], we shall also prove the following
result on the strong differentiability of the integral of f . For θ ∈ [0, 2π)n and h ∈ (0, π)n,
let

Fh(θ) = πn

h1 · · · hn

∫

(θ1−h1,θ1+h1)

· · ·
∫

(θn−hn,θn+hn)

f (ψ)dψ .

Theorem 6 If f ∈ D(Dn,H), then

lim
h→(0,...,0)

Fh(θ) = f (θ)

for quasi-every θ .

2 Preliminaries

2.1 Multi-parametric Capacity

First, let us slightly modify the kernel of B (without otherwise changing the notation).
Letting

b(θ) = 3 +
∞∑

k=1

cos kθ

k
1
2

, θ ∈ [0, 2π),
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we note that b(θ) ≥ 1 is convergent and continuous for θ > 0, and that

b(θ) ≈
∣∣∣∣sin

θ

2

∣∣∣∣
− 1

2

.

See [23, Ch. V.1–V.2]. Hence, if we let B(θ) = b(θ1) · · · b(θn), and for positive finite Borel
measures μ on T

n define

Bμ(θ) =
∫

Tn

B(θ − ψ)dμ(ψ), θ ∈ [0, 2π)n,

this only changes the definition of C(·) in Eq. 3 up to constants.
Note that the convolution of b with itself satisfies that

h(θ) := b ∗ b(θ) = 9 + 1

2
log

1

|1 − eiθ | .

The kernel H(θ) = h(θ1) · · · h(θn) defines the n-logarithmic potential,

Hμ(θ) =
∫

Tn

H(θ − ψ)dμ(ψ), θ ∈ [0, 2π)n.

The energy of a measure μ is thus given by

‖Bμ‖2
L2(Tn)

=
∫

Tn

Hμ(θ)dμ(θ) =
∫

Tn

∫

Tn

H(θ − ψ)dμ(ψ)dμ(θ).

Since B(θ) is lower semi-continuous on T
n, the theory of [1, Ch. 2.3–2.5] applies to C(·),

as was mentioned in the introduction. In particular, every Borel set E ⊂ T
n is capacitable,

that is,

C(E) = inf{C(G) : G ⊃ E open} = sup{C(K) : K ⊂ E compact}.
For any capacitable set E, C(E) can be computed through the dual definition of capacity,
which might give the reader a more familiar definition in the case of logarithmic capacity.
More precisely,

C(E)1/2 = sup
{
μ(E) : supp μ ⊂ E, ‖Bμ‖L2(Tn) ≤ 1

}
. (6)

In particular, the set E has capacity 0, C(E) = 0, if and only if every non-zero positive
finite measure μ with support in E has infinite energy,

∫

Tn

∫

Tn

H(θ − ψ)dμ(ψ)dμ(θ) = ∞.

Furthermore, the following simple lemma, which we shall use without mention, is clear
from Eqs. 3 and 6.

Lemma 7 If E1, . . . , En are Borel sets, then

C(E1 × · · · × En) = C(E1) · · · C(En).

The final piece of information that we require is the existence of equilibrium measures.
For any compact set K ⊂ T

n, the extremal to the capacity problem is generated by a
measure μK such that: supp μK ⊂ K , HμK(θ) ≤ 1 for θ ∈ supp μK , Hμ(θ) ≥ 1 for
quasi-every θ ∈ K and

μK(K) =
∫

Tn

∫

Tn

H(θ − ψ)dμK(ψ)dμK(θ) = C(K).
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2.2 n-Harmonic Functions

A continuous function on D
n is n-harmonic if it is harmonic in each variable zj separately,

z = (z1, . . . , zn) ∈ D
n. For a finite measure μ on T

n, we denote by Pμ the n-harmonic
function

Pμ(z) = Pμ(r, θ) =
∫

Tn

Pr1(θ1 − ψ1) · · ·Prn(θn − ψn)dμ(ψ),

where z = (r1e
iθ1 , . . . , rne

iθn) ∈ D
n and Pr(θ) denotes the usual Poisson kernel,

Pr(θ) = 1 − r2

1 − 2r cos θ + r2
.

We refer to [19, Ch. 2] for the fundamentals of n-harmonic functions and multiple Poisson
integrals. We only need to know the following, which can be extracted from Theorems 2.1.3
and 2.3.1 in [19].

Lemma 8 If u ≥ 0 is n-harmonic and non-negative on D
n, then there exists a function

0 ≤ g ∈ L1(Tn) and a singular measure σ ≥ 0 on T
n such that

u(z) = Pν(z), dν = gdθ + dσ, z ∈ D
n.

Furthermore, for almost every θ ∈ [0, 2π)n, it holds that

lim
t→1− u(teiθ1 , . . . teiθn ) = g(θ).

Remark Since we will prove theorems about unrestricted summation and strong differentia-
bility, we note that unlike the one-variable setting, the proof of the lemma does not specify
for which points θ the limit exists. In general, localization fails for multiple Poisson inte-
grals. In fact, let f 1 ∈ C∞(T) be such that f 1(θ1) = 0 for |θ1| ≤ ε, for some ε > 0, and
such that there is a sequence tj → 1 for which P [f 1dθ1](tj , 0) > 0. Let f 2 ∈ D(D) be
any function such that limt→1 Re P [f 2dθ2](t, 0) = ∞. Let

f (θ) = f 1(θ1)f
2(θ2) ∼

∑

α∈Z2

aαei(α,θ).

Then the Fourier coefficients of f satisfy that
∑

α∈Z2

(|α1| + 1)(|α2| + 1)|aα|2 < ∞,

and f (θ) vanishes in an open neighborhood of 0, but still

lim
(r1,r2)→(1,1)

P [f dθ ](r, 0) �= 0.

In fact, the limit does not exist.

3 Convergence Theorems

We begin by proving Theorem 3. Given f ∈ D(Dn,H), note that

E = {θ : Vnf (θ) = ∞} =
⋂

i≥1

⋃

j≥1

{
θ :

∫

[0,1−1/j ]n
‖∂rfr (θ)‖Hdr > i

}
(7)
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is a Gδ-set, hence capacitable. The following proof is in the spirit of Salem and Zygmund’s
approach to exceptional sets for one-variable Dirichlet spaces [20].

Proof of Theorem 3 We may assume that the Fourier coefficients of f are supported in
(Z≥1)

n, f ∼ ∑
α∈(Z≥1)

n aαei(α,θ). For k ≥ 0, let

ck =
(

k − 1/2

k

)
= 1√

πk1/2

(
1 + O(k−1)

)
, (8)

so that

b̃(θ) :=
∞∑

k=0

ck cos kθ = Re
1

(1 − eiθ )1/2
, 0 < θ < 2π,

see [23, Ch. V.2]. Note that b̃(θ) is another uniformly positive function with the same singu-
lar behavior as b(θ). Let h̃ = b̃∗b̃. Then h̃ ≥ c > 0 for some c, and by Eq. 8 we see that h̃(θ)

has the same logarithmic singularity as h(θ), when sin θ
2 → 0. Let B̃(θ) = b̃(θ1) · · · b̃(θn),

H̃ (θ) = h̃(θ1) · · · h̃(θn), and for r ∈ [0, 1)n,

B̃r (θ) = P [B̃(ψ)dψ](r, θ) =:
∑

α∈Zn

Cαr
|α1|
1 · · · r |αn|

n ei(α,θ).

Note that
Cα = cα1 · · · cαn

2n
, α ∈ (Z≥1)

n. (9)

We will also rely on the estimate
∫

[0,1]n
|∂r B̃r (θ)|dr �

∫

[0,1]n
1

|1 − r1eiθ1 |3/2
· · · 1

|1 − rneiθn |3/2
dr

�
∣∣∣∣sin

θ1

2

∣∣∣∣
− 1

2 · · ·
∣∣∣∣sin

θn

2

∣∣∣∣
− 1

2

� B̃(θ). (10)

Suppose now that the set E of Eq. 7 has positive capacity. Then there exists a non-zero
finite measure μ, supported in E, such that

‖B̃μ‖2
L2(Tn)

=
∫

Tn

∫

Tn

H̃ (θ − ψ)dμ(ψ)dμ(θ) < ∞,

where B̃μ(θ) = ∫
Tn B̃(θ − ψ)dμ(ψ). Let F be the H-valued series

F(θ) ∼
∑

α∈(Z≥1)
n

C−1
α aαei(α,θ).

The coefficients of F are square-summable, by Eqs. 8, 9, and the fact that f ∈ D(Dn,H).
Thus F(θ) has meaning for almost every θ , and

∫

Tn

‖F(θ)‖2
Hdθ < ∞.

By our assumption on the support of the Fourier coefficients of f we have that

∂rfr (θ) =
∫

Tn

F (ψ)∂r B̃r (θ − ψ)dψ,

and therefore by Eq. 10 that

Vnf (θ) �
∫

Tn

‖F(ψ)‖HB̃(θ − ψ)dψ .
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But then, by the assumption of finite energy,
(∫

Tn

Vnf (θ)dμ(θ)

)2

�
(∫

Tn

‖F(ψ)‖HB̃μ(ψ)dψ

)2

≤ ‖B̃μ‖2
L2(Tn)

∫

Tn

‖F(ψ)‖2
Hdψ < ∞.

This is obviously a contradiction.

Proof of Corollary 4 We give the proof for n = 2. The proof is the same for n ≥ 3, but the
notation is more difficult. Given f ∈ D(D2,H), define f 1, f 2 ∈ D(D,H) by

f 1(z) = f (z, 0), f 2(w) = f (0, w), z,w ∈ D.

Let
E =

{
θ ∈ [0, 2π)2 : V2f (θ) = ∞

}
,

and

E1 =
{
θ1 ∈ [0, 2π) : V1f

1(θ1) = ∞
}

, E2 =
{
θ2 ∈ [0, 2π) : V1f

2(θ2) = ∞
}

.

Let F = E ∪ (E1 × T) ∪ (T ∪ E2). Then C(F) = 0, by three applications of Theorem 3.
Suppose now that θ /∈ F , and for r, r ′ ∈ [0, 1)2, write by analyticity

fr(θ) − fr ′(θ) =
∫ r1

0

∫ r2

0
∂ρfρ(θ)dρ −

∫ r ′
1

0

∫ r ′
2

0
∂ρfρ(θ)dρ

+
∫ r1

r ′
1

∂ρ1f
1
ρ1

(θ1)dρ1 +
∫ r2

r ′
2

∂ρ2f
2
ρ2

(θ2)dρ2.

Thus

‖fr(θ) − fr ′(θ)‖H ≤
∫ 1

min(r1,r
′
1)

∫ 1

0
‖∂ρfρ(θ)‖Hdρ +

∫ 1

0

∫ 1

min(r2,r
′
2)

‖∂ρfρ(θ)‖Hdρ

+
∫ 1

min(r1,r
′
1)

‖∂ρ1f
1
ρ1

(θ1)‖Hdρ1 +
∫ 1

min(r2,r
′
2)

‖∂ρ2f
2
ρ2

(θ2)‖Hdρ2.

Since V2f (θ), V1f
1(θ1), and V1f

2(θ2) are all finite, it follows that

‖fr(θ) − fr ′(θ)‖H → 0, r, r ′ → (1, 1).

Hence f ∗(θ) = limr→(1,1) fr (θ) exists, for every θ outside the capacity zero set F . Letting
r ′ = 0 in the estimate also shows that ‖fr(θ)‖H is uniformly bounded in r .

We postpone the proof that f ∗(θ) coincides with the sum f (θ) quasi-everywhere to the
proof of Theorem 1.

For n = 1 and H = C, a series f ∈ D(D) is summable at θ ∈ [0, 2π) if and only if it is
Abel summable at θ . This is sometimes known as Fejér’s Tauberian theorem. Thus, in this
case Theorem 3 immediately implies Theorem 1. To prove Theorem 1 for n ≥ 2, we begin
by stating a vector-valued version of Fejér’s theorem.

Lemma 9 For N ∈ N and θ ∈ [0, 2π), define SH
N,θ , P

H
N,θ : D(D,H) → H by

SH
N,θf =

N∑

k=0

ake
ikθ , PH

N,θf = f1−1/N (θ), f ∈ D(D,H).
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Then there is an absolute constant C > 0 such that

‖SH
N,θf − PH

N,θf ‖H ≤ C‖f ‖D(D,H).

Moreover, for every fixed f we have that

SH
N,θf − PH

N,θf → 0, N → ∞,

uniformly in θ .

Proof Let r = 1 − 1/N , and note that 1 − rk ≤ k/N , to see that

‖SH
N,θf − PH

N,θf ‖H ≤ 1

N

N∑

k=1

k‖ak‖H +
∞∑

k=N

‖ak‖Hrk .

For M ≤ N , we estimate

1

N

N∑

k=1

k‖ak‖H ≤ 1

N

M∑

k=1

k‖ak‖H + 1

N

(
N∑

k=M

k‖ak‖2
H

)1/2 (
N∑

k=M

k

)1/2

.

By first choosing M large, and then N , we see that 1
N

∑N
k=1 k‖ak‖H → 0 as N → ∞. For

the second term we have that
∞∑

k=N

‖ak‖Hrk ≤ 1√
N

( ∞∑

k=N

k‖ak‖2
H

)1/2 ( ∞∑

k=N

r2k

)1/2

,

and thus this term also tends to 0 as N → ∞. This second estimate, together with the first
estimate for M = 0, also shows the uniform bound of the operator norm of SH

N,θ −PH
N,θ .

In the proof of Theorem 1 we will consider tensors of the operators SN,θ and PN,θ ,
interpreted in the obvious way. For instance, if N ∈ N

n, θ ∈ [0, 2π)n, and f ∈ D(Dn,H),
then

(SN1,θ1 ⊗ · · · ⊗ SNn,θn)f =
N1∑

α1=0

· · ·
Nn∑

αn=0

aαei(α,θ),

and

(PN1,θ1 ⊗ · · · ⊗ PNn,θn)f = f(1−1/N1,...,1−1/Nn)(θ)

=
∞∑

α1=0

· · ·
∞∑

αn=0

aα(1 − 1/N1)
α1 · · · (1 − 1/Nn)

αnei(α,θ).

Similarly, we consider mixed tensor products, such as

(SN1,θ1 ⊗ PN2,θ2)f =
N1∑

α1=0

∞∑

α2=0

aα1,α2(1 − 1/N2)
α2ei(α,θ).

Proof of Theorem 1 We will deduce the result from Theorem 3, Lemma 9, and an inductive
procedure which exploits the fact that

D(Dn,H) = D(Dn−1,D(D,H)).

We already know that Theorem 1 is true for n = 1, precisely by Theorem 3 and Lemma 9.
Thus we first consider the case n = 2. By Corollary 4, there is a Borel set E ⊂ T

2 such
that C(T2 \ E) = 0, and for every θ = (θ1, θ2) ∈ E we have that (PN1,θ1 ⊗ PN2,θ2)f



K.-M. Perfekt

is uniformly bounded in N1, N2 and convergent to f ∗(θ) as N1, N2 → ∞. To prove the
theorem, it is thus sufficient to provide a set F ⊂ E such that C(E \ F) = 0 and such that
for every θ ∈ F it holds that

lim
N1,N2→∞ ‖(SN1,θ1 ⊗ SN2,θ2 − PN1,θ1 ⊗ PN2,θ2)f ‖H = 0, (11)

and
sup

N1,N2

‖(SN1,θ1 ⊗ SN2,θ2 − PN1,θ1 ⊗ PN2,θ2)f ‖H < ∞. (12)

Constructing such a set F of course also proves that f ∗(θ) = f (θ) quasi-everywhere, as
claimed in Corollary 4.

We write

(SN1,θ1 ⊗ SN2,θ2 − PN1,θ1 ⊗ PN2,θ2)f

= ((SN1,θ1 − PN1,θ1) ⊗ SN2,θ2)f + (PN1,θ1 ⊗ (SN2,θ2 − PN2,θ2))f .

Now, by the n = 1 case of the theorem, applied to f ∈ D(D,D(D,H)), there is a set
G2 ⊂ T such that C(T \ G2) = 0, and such that for every θ2 ∈ G2 we have the existence of

hθ2 := lim
N2→∞ S

D(D,H)
N2,θ2

f ∈ D(D,H). (13)

Next, for θ2 ∈ G2, note that

((SN1,θ1 − PN1,θ1) ⊗ SN2,θ2)f = (SH
N1,θ1

− PH
N1,θ1

)S
D(D,H)
N2,θ2

f

= (SH
N1,θ1

− PH
N1,θ1

)(S
D(D,H)
N2,θ2

f − hθ2) + (SH
N1,θ1

− PH
N1,θ1

)hθ2 .

Thus, by Lemma 9 and Eq. 13 it follows that, for any fixed (θ1, θ2) ∈ T × G2, the term
((SN1,θ1 − PN1,θ1) ⊗ SN2,θ2)f is uniformly bounded in N1, N2 and tends to 0 as N1, N2 →
∞.

By a very similar argument (after reordering the variables θ1 and θ2), there is a set G1 ⊂
T such that C(T \ G1) = 0, and such that for every θ1 ∈ G1 and θ2 ∈ T, the term
(PN1,θ1⊗(SN2,θ2−PN2,θ2))f is uniformly bounded in N1, N2 and tends to zero as N1, N2 →
∞. Thus the proof for n = 2 is finished by letting

F = E ∩ (G1 × T) ∩ (T × G2).

Note that in the course of the proof we have also established that (PN1,θ1 ⊗ SN2,θ2)f is
uniformly bounded in N1, N2 and converges to f ∗(θ) as N1, N2 → ∞, for θ ∈ F .

For n = 3, Corollary 4 gives us a set E ⊂ T
3 such that C(T3 \ E) = 0 and on which

(PN1,θ1 ⊗ PN2,θ2 ⊗ PN3,θ3)f converges and is uniformly bounded. We then write

(SN1,θ1 ⊗ SN2,θ2 ⊗ SN3,θ3 − PN1,θ1 ⊗ PN2,θ2 ⊗ PN3,θ3)f

= ((SN1,θ1 − PN1,θ1) ⊗ SN2,θ2 ⊗ SN3,θ3)f + (PN1,θ1 ⊗ (SN2,θ2 − PN2,θ2) ⊗ SN3,θ3)f

+(PN1,θ1 ⊗ PN2,θ2 ⊗ (SN3,θ3 − PN3,θ3)f .

Now we apply the n = 2 case of the theorem, together with the remark at the end of its
proof, three separate times to f ∈ D(D2,D(D,H)). Arguing with Lemma 9 as before, this
produces three sets H1, H2, H3 ⊂ T

3 such that C(T3 \ Hj) = 0, and such that, for θ ∈ Hj ,
the j :th term is uniformly bounded in N1, N2, N3 and converges to zero as N1, N2, N3 →
∞. Thus (SN1,θ1 ⊗SN2,θ2 ⊗SN3,θ3)f is uniformly bounded and converges as N1, N2, N3 →
∞, for θ ∈ E ∩H1 ∩H2 ∩H3. Furthermore, the same is true of (PN1,θ1 ⊗SN2,θ2 ⊗SN3,θ3)f

and (PN1,θ1 ⊗ PN2,θ2 ⊗ SN3,θ3)f .
It is now clear how the construction extends by induction to n ≥ 4.
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To conclude this section, we consider Theorem 6. One potential approach is to use a
capacitary weak type inequality for the strong maximal function, or for the iterate of one-
variable maximal functions. See [1, Theorem 6.2.1] for the one-parameter case. Instead of
pursuing this, we will give a different argument which directly connects Theorem 6 with
Theorem 1.

Proof of Theorem 6 Note first that

Fh(θ) =
∑

α∈Nn

aα

sin(α1h)

α1h
· · · sin(αnh)

αnh
ei(α,θ). (14)

This is obviously true for polynomials, and for all f ∈ D(Dn,H) by continuity. For this
last statement, note that, with continuous dependence on f , the values f (θ) are square-
integrable on T

n, and the right-hand side of Eq. 14 is absolutely convergent.
The argument is now very similar to the proof of Theorem 1. First we consider the case

n = 1, letting

RH
h,θf =

∞∑

k=0

ak

sin(kh)

kh
eikθ , f ∈ D(D,H),

for θ ∈ [0, 2π) and h ∈ (0, 1). Let 1 ≤ N ∈ N be such that 1
N+1 ≤ h < 1

N
, and let M ≤ N .

Then

‖RH
h,θf − SH

N,θf ‖H �
N∑

k=1

‖ak‖H(kh)2 +
∞∑

k=N

‖ak‖H
kh

≤
M∑

k=1

‖ak‖H(kh)2

+
(

N∑

k=M

k‖ak‖2
H

) 1
2
(

h4
N∑

k=M

k3

) 1
2

+
( ∞∑

k=N

k‖ak‖2
H

) 1
2
(

1

h2

∞∑

k=N

1

k3

) 1
2

.

By this estimate, RH
h,θ − SH

N,θ : D(D,H) → H is uniformly bounded in N and converges

pointwise to 0 as N → ∞, as long as 1
N+1 ≤ h < 1

N
. Thus Theorem 1 implies Theorem 6

in the case that n = 1.
For n ≥ 2 we proceed precisely as in the proof of Theorem 1. For instance, for n = 2 we

write

(SN1,θ1 ⊗ SN2,θ2 − Rh1,θ1 ⊗ Rh2,θ2)f

= ((SN1,θ1 − Rh1,θ1) ⊗ SN2,θ2)f + (Rh1,θ1 ⊗ (SN2,θ2 − Rh2,θ2))f,

where N = (N1, N2) is related to h = (h1, h2) by the facts that 1
Nj +1 ≤ hj < 1

Nj
, j = 1, 2.

The rest of the proof is essentially repetition.

4 Sharpness of results

To prove Theorem 5 in the multi-parameter setting, we adapt a one-variable construction of
Carleson which is well described for example in [11, Theorem 3.4.1].

Proof of Theorem 5 Since C(·) is outer and C(E) = 0, we may choose a sequence G1 ⊃
G2 ⊃ G3 ⊃ · · · of open sets such that E ⊂ Gj , for all j , and

∞∑

j=1

C(Gj )
1/2 < ∞.
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Since E is compact, we may additionally assume that Gj+1 ⊂ Gj for every j . Letting
Fj = Gj , we thus have a decreasing sequence F1 ⊃ F2 ⊃ F3 ⊃ · · · of compact sets
containing E, such that

∞∑

j=1

C(Fj )
1/2 < ∞. (15)

Let μFj
be the equilibrium measure of Fj , and define fj ∈ D(Dn) by the relationship

fj (z) =
∫

Tn

(
C + log

1

1 − z1e−iψ1

)
· · ·

(
C + log

1

1 − zne−iψn

)
dμFj

(ψ),

for z ∈ D
n. Let

G(ψ) =
(

C + log
1

1 − e−iψ1

)
· · ·

(
C + log

1

1 − e−iψn

)
, ψ ∈ [0, 2π)n.

It is key to the proof that if we choose C > 0 sufficiently large, then

Re G(ψ) ≈ H(ψ). (16)

In particular,

Re

(
C + log

1

1 − z1e−iψ1

)
· · ·

(
C + log

1

1 − zne−iψn

)
≥ 0,

for z ∈ D
n and ψ ∈ [0, 2π)n, since the left-hand side is the Poisson integral of Re G(ψ −·).

Therefore we fix C as a constant such that Eq. 16 holds. The choice of C only depends on n.
With μ̂Fj

(α) = ∫
Tn e−i(α,θ)dμFj

(θ), we then have that

‖BμFj
‖2
L2(Tn)

=
∫

Tn

∫

Tn

H(θ − ψ)dμFj
(ψ)dμFj

(θ)

≈ Re
∫

Tn

∫

Tn

G(θ − ψ)dμFj
(ψ)dμFj

(θ) ≈
∑

α∈Nn

|μ̂Fj
(α)|2

(α1 + 1) · · · (αn + 1)
,

where the last step follows by a computation with coefficients (including a straightforward
approximation argument). A computation with Fourier coefficients also yields that

‖fj‖2
D(Dn) ≈

∑

α∈Nn

|μ̂Fj
(α)|2

(α1 + 1) · · · (αn + 1)
≈ ‖BμFj

‖2
L2(Tn)

= C(Fj ).

In view of Eq. 15 we may therefore define the function

f =
∞∑

j=1

fj ∈ D(Dn).

We will demonstrate that limz→ζ Re f (z) = ∞, for every ζ ∈ E.
Since Re fj is n-harmonic and non-negative, there is by Lemma 8 a measure dμj =

gjdθ + dσj such that 0 ≤ gj ∈ L1(Tn), σj ≥ 0 is singular, and Re fj (z) = Pμj (z) for
z ∈ D

n. Actually σj = 0, since fj belongs to the Hardy space H 2(Dn) [19, Ch. 3.4], but
we do not need to know this. By Corollary 4 the limit limt→1 Re fj (te

iθ1 , . . . , teiθn ) exists
for quasi-every, and thus almost every, θ ∈ [0, 2π)n. Furthermore, by Fatou’s lemma and
the properties of an equilibrium measure, we have that

lim
t→1

Re fj (te
iθ1 , . . . , teiθn ) ≥ Re

∫

Tn

G(ψ − θ)dμFj
(ψ) ≈

∫

Tn

H(θ − ψ)dμFj
(ψ) ≥ 1
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for quasi-every θ ∈ Fj . On the other hand, by Lemma 8, we have that

lim
t→1

Re fj (te
iθ1 , . . . , teiθn ) = gj (θ)

for almost every θ ∈ [0, 2π)n. We conclude that there is a constant c > 0, independent of
j , such that gj (θ) ≥ c for almost every θ in the open set Gj ⊃ E.

Note that P [dψ] ≡ 1. Given ϑ ∈ [0, 2π)n and ε > 0, let

Iϑ,ε = {ψ : max
j

|eiϑj − eiψj | < ε}.
Then

P [χTn\Iϑ,ε
dψ](z) ≤

n∑

j=1

∫

|eiϑj −e
iψj |≥ε

Prj (θj − ψj )dψj ,

where z = (r1e
iθ1 , . . . , rne

iθn) ∈ D
n. Thus

P [χIϑ,ε dψ](z) = 1 − P [χTn\Iϑ,ε
dψ](z) → 1,

as z → (eiϑ1 , . . . , eiϑn). We conclude, for ζ ∈ E ⊂ Gj , that

lim
z→ζ

Re fj (z) ≥ lim
z→ζ

cP [χGj
dψ](z) ≥ c.

Hence, for ζ ∈ E,

lim
z→ζ

Re f (z) ≥
∞∑

j=1

lim
z→ζ

Re fj (z) = ∞.

Proof of Theorem 2 This follows at once from Theorem 5 and the fact that a multiple series
which converges in the sense of Pringsheim has uniformly bounded and convergent iter-
ated Abel means. This can be deduced from the standard proof of Abel’s theorem, see for
example [9].

For completeness, let us sketch a proof for our setting, in the case that n = 2. Hence
assume that f ∈ D(D2,H) and that f (θ) is Pringsheim convergent. Without loss of
generality, we may suppose that f (θ) = 0. Then the summation by parts formula

fr1,r2(θ) = (1 − r1)(1 − r2)
∑

N∈N2

r
N1
1 r

N2
2 (SN1,θ1 ⊗ SN2,θ2)f (17)

is clearly justified, since both sides are absolutely convergent. Indeed, by assumption,

C = sup
N∈N2

‖(SN1,θ1 ⊗ SN2,θ2)f ‖H < ∞.

The Eq. 17 immediately shows that supr1,r2
‖fr1,r2(θ)‖H < ∞. Furthermore, for any M ∈

N
2, splitting the summation into the four index regions

N1 ≤ M1, N2 ≤ M2; N1 ≤ M1, N2 > M2;
N1 > M1, N2 ≤ M2; N1 > M1, N2 > M2,

yields the estimate

‖fr1,r2(θ)‖H ≤ C(M1 + 1)(M2 + 1)(1 − r1)(1 − r2) + C(M1 + 1)(1 − r1)

+C(M2 + 1)(1 − r2) + sup
N1>M1,N2>M2

‖(SN1,θ1 ⊗ SN2,θ2)f ‖H.

This evidently implies that fr1,r2(θ) → 0 as (r1, r2) → (1, 1).
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