
Representations and evaluation strategies for
feasibly approximable functions1

Michal Konečný

Aston University, Birmingham, UK
m.konecny@aston.ac.uk

Eike Neumann2

University of Oxford, UK
eike.neumann@ox.ac.uk

Abstract

A famous result due to Ko and Friedman (1982) asserts that the prob-
lems of integration and maximisation of a univariate real function are com-
putationally hard in a well-defined sense. Yet, both functionals are routinely
computed at great speed in practice.

We aim to resolve this apparent paradox by studying classes of functions
which can be feasibly integrated and maximised, together with represent-
ations for these classes of functions which encode the information which is
necessary to uniformly compute integral and maximum in polynomial time.
The theoretical framework for this is the second-order complexity theory for
operators in analysis which was introduced by Kawamura and Cook (2012).

The representations we study are based on approximation by polynomials,
piecewise polynomials, and rational functions. We compare these represent-
ations with respect to polytime reducibility.

We show that the representation based on approximation by piecewise
polynomials is polytime equivalent to the representation based on approxim-
ation by rational functions.

With this representation, all terms in a certain language, which is ex-
pressive enough to contain the maximum and integral of most functions of
practical interest, can be evaluated in polynomial time. By contrast, both the
representation based on polynomial approximation and the standard repres-
entation based on function evaluation, which implicitly underlies the Ko-
Friedman result, require exponential time to evaluate certain terms in this
language.

We confirm our theoretical results by an implementation in Haskell, which
provides some evidence that second-order polynomial time computability is
similarly closely tied with practical feasibility as its first-order counterpart.

1 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No 731143.

2Most of this work was carried out when Eike Neumann was affiliated with Aston University.

1

ar
X

iv
:1

71
0.

03
70

2v
3

 [
cs

.C
C

]
 2

1
O

ct
 2

01
9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/327061652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction
Consider the integration and maximisation functionals on the space C ([−1,1]) of
univariate continuous functions over the compact interval [−1,1]:

f 7→
∫ 1

−1
f (x)dx and f 7→ max

x∈[−1,1]
f (x)

Both functionals constitute fundamental basic operations in numerical math-
ematics. They are considered to be easy to compute for functions that occur in
practice. It was hence surprising that when Ko and Friedman [10] introduced a
rigorous formalisation of computational complexity in real analysis and analysed
the computational complexity of these functionals within this model, they found
that both problems are computationally hard in a well-defined sense. They con-
structed an infinitely differentiable polytime computable function f0 : [−1,1]→R

such that the function g(x) = ∫ x
−1 f0(t)dt is again polytime computable if and

only if FP =]P and an infinitely differentiable polytime computable function
f1 : [−1,1] → R such that the function h(x) = maxt∈[−1,x] f1(t) is again polytime
computable if and only if P = NP. Moreover, the real number g(1) = ∫ 1

−1 f0(t)dt is
polytime computable if and only if FP1 =]P1, and the number h(1)=maxt∈[−1,1] f1(t)
is again polytime computable if and only if P1 =NP1.

This obvious discrepancy between practical observations and theoretical pre-
dictions deserves further discussion. We will focus on two possible explanations
for this observation:

• Accuracy of results. Hardness in the theoretical results refers to how
hard it is to compute the values of the function to an arbitrary accuracy.
An algorithm for computing a real number takes as input a natural num-
ber n, encoded in unary, and outputs an approximation to x to n bits of
accuracy. An algorithm for computing a real function f takes as input a
real number x, encoded as an oracle which maps accuracy requirements to
approximations, and a natural number n, encoded in unary, and is required
to output an approximation to f (x) to n bits of accuracy. The running time
of the algorithm is a function of n which measures the number of steps the
algorithm takes. By contrast, practitioners usually work at a fixed floating-
point precision, which implies a fixed maximum accuracy. It hence may not
be justified to measure the complexity in the output accuracy, and other
complexity parameters should be considered more important. In fact, if
one relaxes the definition of polytime computability such that in both the
definition of real number computation and real function computation the
requirement that the approximation be correct to n bits of accuracy is re-
laxed to the requirement that the approximation be 1/n close to the true
value, then the range and integral of every polytime computable function
are polytime computable. So maybe the theoretical infeasibility of these
functionals is an artefact of poorly chosen normalisation.

• Representation of functions. Theoreticians use a simple representa-
tion (which we call Fun) that treats all continuous functions equally, in
the sense that a function is polynomial time computable if and only if it
has a polynomial time computable Fun-name. Practitioners, on the other
hand, tend to work on a much more restricted class of functions. They

2

tend to work with functions which are given symbolically or which can be
approximated well by certain kinds of (piece-wise) polynomial or rational
functions. As not every polynomial time computable function can be ap-
proximated by polynomials or rational functions in polynomial time, the
implicit underlying representations favour a certain class of functions, for
which it is easier to compute integral and range.

The aim of this paper is to discuss these different explanations both from
a theoretical and a practical perspective and to resolve the apparent contradic-
tion between the theoretical hardness results and practical observations. To this
end we study the computational complexity of the maximisation and integration
functionals with respect to various representations of continuous real functions
within the uniform framework of second-order complexity theory, introduced by
Kawamura and Cook [7], and compare the practical performance of algorithms
which use these representations on a small family of benchmark problems.

Classes of feasibly approximable functions. The complexity of integration
and maximisation of univariate real-valued functions has been studied by vari-
ous authors: Müller [16] showed that if f is a polytime analytic function, then
the function g(x) = ∫ x

−1 f (t)dt is again polytime (and analytic), and the function
h(x) = maxt∈[−1,x] f (t) is again polytime (but not differentiable in general). This
result was generalised by Labhalla, Lombardi, and Moutai [13] to the strictly
larger class of polytime functions in Gevrey’s hierarchy, a class of infinitely dif-
ferentiable functions whose derivatives satisfy certain growth conditions. These
functions are characterised in [13] as those functions which can be approximated
by a polynomial time computable fast converging Cauchy sequence of polynomi-
als with dyadic rational coefficients. It is also shown that integral and maximum
of a function are uniformly polytime computable from such a sequence. These
results were strengthened and refined in various ways by Kawamura, Müller,
Rösnick, and Ziegler [8] who studied the uniform complexity of maximisation
and integration for analytic functions and functions in Gevrey’s hierarchy in de-
pendence on certain parameters which control the growth of the derivatives or
the proximity of singularities in the complex plane.

While these results already show that maximisation and integration are poly-
time computable for a large class of practically relevant functions, there are many
practically relevant functions which are not contained in the class of infinitely
differentiable functions with well-behaved derivatives:

• For applications in control theory it is often necessary to work with func-
tions which are constructed from smooth functions by means of pointwise
minimisation or maximisation, and thus differentiability is usually lost.

• It is not difficult to show that the class of polytime computable functions
in Gevrey’s hierarchy is not uniformly polytime computably closed (with
respect to the representation introduced in [8]) under division by functions
which are uniformly bounded by 1 from below (see Appendix A for a proof).

Also, while for any polytime computable f in Gevrey’s hierarchy, the func-
tion h(x)=maxt∈[−1,x] f (t) is again polytime computable, it is in general no longer
smooth. Thus, assuming P 6= NP, the question arises whether h(x) is easy to
maximise and, more generally, whether every function which is obtained from

3

a polytime computable function in Gevrey’s hierarchy by repeatedly applying
the parametric maximisation operator f 7→ λx.maxt∈[−1,x] f (t) is polytime com-
putable.

One of our main contributions is to identify a larger class of feasibly approx-
imable functions which supports polytime integration and maximisation and is
closed under a larger set of operations, including division and pairwise and para-
metric maximisation.

Compositional evaluation strategies. In practice, functions of interest are
usually constructed from a small set of (typically analytic) basic functions by
means of certain algebraic operations, such as arithmetic operations, taking prim-
itives, or taking pointwise maxima. In other words, most functions of practical
interest can be expressed symbolically as terms in a certain language. Our main
observation is that there is such a language which is rich enough to arguably
contain the majority of functions of practical interest, yet restrictive enough to
ensure that all functions which are expressible in this language admit uniformly
polytime computable integral, maximum, and evaluation.

To make this claim precise, we introduce the notion of “compositional evalu-
ation strategy” for a structure Σ. To motivate this notion, consider how a user
might specify a computational problem involving real numbers and functions.
We assume that the user specifies the problem symbolically as a term in a cer-
tain language and that the end result will be a real number which is expected
to be produced to a certain accuracy. A library for exact real computation will
translate the symbolic representation of the inputs into some internal repres-
entation, the details of which will be irrelevant to the user. It will operate on
the internal representations — usually in a modular, compositional manner —
to eventually produce a name of a real number in the standard representation,
which can be queried for approximations to an arbitrary accuracy. Thus, there
are certain types, such as real numbers in this example, whose representation
is relevant to the user, as the user is interested in querying information about
them according to a certain protocol, and other types, such as real functions in
this example, which are only used internally and whose internal representation
can be freely chosen by the library.
The structures Σ we consider consist of:

1. Fixed spaces: A class of topological spaces with a given representation.
These kinds of spaces correspond to the kinds of objects which are to be
used, among other things, as inputs and outputs, so that the kind of in-
formation we can obtain on them is fixed.

2. Free spaces: A class of topological spaces without any given representa-
tion. These kinds of spaces correspond to the types of intermediate results,
whose internal representation is irrelevant to the user.

3. A set of constants and operations on these spaces.

A compositional evaluation strategy provides representations for the free spa-
ces in Σ and algorithms, in terms of these representations, for all constants and
operations in Σ. It allows us to evaluate a term in the signature of Σ by apply-
ing the algorithms in a compositional manner. Compositional evaluation can be

4

Figure 1: Evaluating the term
∫ sin(1)

0
∣∣sin(100t2)

∣∣dt as a real number. The output
is represented in the standard representation ρ of real numbers. The underlined
type C of real functions is used for internal computations only and its represent-
ation δC can be freely chosen by the library.

contrasted with evaluation that involves processing whole terms, for example,
symbolic differentiation.

We say that a compositional evaluation strategy is polytime if it evaluates
every term of fixed space type whose free variables are all of fixed space type
in polynomial time. Hence the resource usage of a strategy is measured only in
terms of those representations that are relevant to the user.

Any representation of a space X offers a trade-off between the ability to con-
struct names efficiently and the ability to extract information from names effi-
ciently. If α and β are representations of some space X with α reducing to β in
polynomial time, then any function f : X →Y that is polytime when X is repres-
ented by β is also polytime when X is represented by α. Dually, any function
g : Y → X that is polytime when X is represented by α is also polytime when
X is represented by β. In other words: the higher a representation sits in the
reducibility lattice, the fewer functionals and the more points become polytime
computable with respect to this representation. However, the task of evaluat-
ing symbolic expressions in a modular manner will usually involve functions of
“symmetric” type X → X or X n → X , such as algebraic operations or closure op-
erations on X . In general, if α reduces in polynomial time to β but not vice versa,
then neither does polytime computability of a function f : X → X with respect to
α imply polytime computability with respect to β nor vice versa. Thus, polytime
reducibility does not allow us to measure how well a given representation trades
off the ability to construct names with the ability to extract information from
names. On the other hand, the study of compositional evaluation strategies will
allow us to compare the trade-offs that are offered by different representations.

Results. We study various representations of the space C ([−1,1]) based on
polynomial and rational approximations and their relationships in terms of poly-
time reducibility. We show that the representation based on rational approxima-
tions is polytime equivalent to the representation based on piecewise polynomial
approximations (Corollary 22). This result helps us prove that the class of func-
tions which are representable by polynomial time computable fast converging

5

Cauchy sequences of piecewise polynomials is uniformly closed under a set of
operations which are typically used in computing to construct more complicated
functions from simpler ones.

In particular, we give a compositional evaluation strategy that uses the rep-
resentation based on approximation by piecewise polynomials which evaluates in
polynomial time all terms of a structure whose constants are the polytime com-
putable functions in Gevrey’s hierarchy and whose operations include evaluation,
range computation, integration, arithmetic operations (including division), point-
wise and parametric maximisation, anti-differentiation, composition, and square
roots.

We observe that no compositional evaluation strategy that uses the repres-
entations based on polynomial approximation, piecewise affine approximation,
or black-box function evaluation can evaluate this structure in polynomial time.
This suggests that when it comes to computing with certain functions of practical
interest, the representation based on piecewise polynomial approximations offers
a better trade-off between the ability to construct names efficiently and the abil-
ity to extract information from names efficiently than other commonly considered
representations.

Implementation. Whilst in the discrete setting the link between polytime com-
putability and practical feasibility is - up to the usual caveats - well established
and confirmed by countless examples of practical implementations, to our know-
ledge, little to no work has been done to link the somewhat more controver-
sial model of second order complexity in analysis with practical implementation.
Thus, in order to demonstrate the relevance of our theoretical results to practical
computation, we have implemented compositional evaluation strategies based on
the aforementioned representations for a small fragment of the aforementioned
structure within AERN2, a Haskell library for exact real number computation.
We observed that for the most part the benchmark results fit our theoretical pre-
dictions quite well. Our separation results translate to big differences in practical
performance, which can be observed even for moderate accuracies.

This suggests that the latter of the two explanations offered on page 2 is more
applicable: The infeasibility of maximisation and integration with respect to the
“standard representation” of real functions is not a mere accuracy normalisation
issue, and the differences between theoretical predictions and practical observa-
tions are really due to the choice of representation. The proofs which establish
polytime computability translate to algorithms which seem to be practically feas-
ible, at least up to some common sense optimisations.

2 The Computational Model
Here we briefly review the basic aspects of the theory of computation with con-
tinuous data in the tradition of computable analysis, as well as the basics of
second-order complexity theory. For background on computability in analysis see
e.g., [20, 18, 22, 19]. Second-order computational complexity for computable ana-
lysis was developed in [7], building on ideas from [10, 9].

Let 2 = {0,1}. Let 2∗ denote the set of all finite binary strings. Let B = (2∗)2
∗

denote Baire space 1. A partial function f : ⊆B →B is called computable if there
1In computable analysis it is more common to use the computably isomorphic spaceNN of functions

6

exists an oracle Turing machine M which on input u ∈ 2∗ with oracle p ∈ dom(f)
computes f (p)(u) ∈ 2∗. Sometimes, to emphasize the distinction, we will refer to
u as the “input string” and to p as the “input oracle” to M.

A represented space (X ,δX) consists of a set X together with a partial sur-
jection δX : ⊆ B → X called the representation. We will usually write X for
(X ,δX) if δX is clear from the context. A partial multi-valued function f : ⊆
(X ,δX)â (Y ,δY) between represented spaces (X ,δX) and (Y ,δY) is just a relation
f ⊆ X ×Y on the underlying sets. We write f (x)= {y ∈Y | (x, y) ∈ f } and dom(f)=
{x ∈ X | f (x) 6= ;}. If f : ⊆ (X ,δX)â (Y ,δY) and g : ⊆ (Y ,δY)â (Z,δZ) are partial
multi-valued functions, then their composition g ◦ f : ⊆ (X ,δX) â (Z,δZ) is the
partial multi-valued function with dom(g ◦ f) = {x ∈ dom(f) | f (x)⊆ dom(g)} and
g ◦ f (x) = ⋃

y∈ f (x) g(y). If (X ,δX) and (Y ,δY) are represented spaces, and f : ⊆
(X ,δX) â (Y ,δY) is a partial multi-valued function, we call F : ⊆ B → B a real-
iser of f if dom(F) ⊇ dom(f ◦δX) and f (δX (p)) 3 δY (F(p)) for all p ∈ dom(f ◦δX).
The map f is called computable if it has a computable realiser. The composition
of computable partial multi-valued functions is again computable. If X carries
a topology τ then δX : ⊆ B → X is called admissible for τ if δX is continuous
and every continuous map ϕ : ⊆ B → X factors through δ via some continuous
Φ : ⊆ B → B, i.e., ϕ = δX ◦Φ. One can show that if X and Y are represen-
ted spaces and their respective representations are admissible for topologies on
X and Y , then a partial function f : ⊆ X → Y is sequentially continuous with
respect to these representations if and only if it is computable relative to some
oracle. It was shown by Matthias Schröder [20, 21] that the class of represented
spaces which admit an admissible representation are precisely the qcb0-spaces:
T0 quotients of countably based spaces. The qcb0 spaces with (sequentially) con-
tinuous total functions form a Cartesian closed category. For further details see
[20].

Let us now turn to computational complexity, following the ideas of Kawamura
and Cook [7]. A string function ϕ : 2∗ → 2∗ is called length-monotone if

|u| ≤ |v|→ |ϕ(u)| ≤ |ϕ(v)|

for all u,v ∈ domϕ. If ϕ is a length-monotone function, we define its size |ϕ| : N→
N via

|ϕ|(n)= |ϕ(0n)|.
Note that length-monotonicity implies that |ϕ(u)| = |ϕ(v)| whenever |u| = |v|,
which justifies the seemingly arbitrary choice of the string 0n in the definition
of the size. Let M ⊆B denote the set of length-monotone string functions. Note
that there is a computable retraction of B onto M, so that computability the-
ory remains unaffected by replacing B with M. Thus, a mapping f : ⊆M →M is
computable if there is an oracle Turing machine which on input oracle ϕ ∈ dom(f),
and input string u ∈ 2∗ outputs f (ϕ)(u) ∈ 2∗. The mapping f is computable in
time T : NN×N→N, if there is such a machine which outputs f (ϕ)(u) within time
T(|ϕ|, |u|).

We now introduce the class of “feasibly computable functions” within this set-
ting. The set of second-order polynomials is defined inductively as follows:

1. The “free variable” X and the “constant” 1 are second-order polynomials.

on the natural numbers, but this choice is of course inconsequential.

7

2. If P and Q are second-order polynomials then so are their sum P+Q, their
product P ·Q, and the term Φ(P).

A second-order polynomial P defines a map �P� : NN×N→N which is induct-
ively defined as follows:

1. �1� (f ,n)= 1.

2. �X� (f ,n)= n.

3. �P +Q� (f ,n)= �P� (f ,n)+�Q� (f ,n)

4. �P ·Q� (f ,n)= �P� (f ,n) · �Q� (f ,n)

5. �Φ(P)� (f ,n)= f (�P�)
We will from now on just write P both for the second-order polynomial P and the
induced map �P�.

A partial mapping f : ⊆ M → M is called polytime computable if f (ϕ)(u) is
computable in time P(|ϕ|, |u|) for some second-order polynomial P. The class of
total second-order polytime computable functions coincides with the class of basic
feasible functionals [5].

These notions translate to represented spaces in the usual way: A point x in a
represented space (X ,δX) is polytime computable if and only if it has a polytime
computable name. A partial multi-valued function f : ⊆ (X ,δX)â (Y ,δY) is poly-
time computable if and only if it has a polytime computable (δX ,δY)-realiser. It
is often convenient to express the assertion that a function f : X →Y is polytime
computable by saying that the value f (x) is uniformly polytime computable in x.
The composition of polytime computable functions is again a polytime comput-
able function. If X is a represented space with representations δX : ⊆ M → X
and δ′X : ⊆ M → X we say that δX reduces to δ′X in polynomial time and write
δX ≤ δ′X if the identity idX on X is polytime (δX ,δ′X)-computable. If δX ≤ δ′X and
δ′X ≤ δX then we say that δX and δ′X are polytime equivalent and write δ′X ≡ δX .

We will need to introduce canonical representations of finite products. Let
δX i : ⊆ M → X i be a finite family of representations where i = 1, . . . ,n. Our goal
is to define the product representation δX1 ×·· ·×δXn : ⊆M → X1×·· ·×Xn Encode
the numbers 1, . . . ,n in binary with a fixed number of digits (∼ log2 n) and denote
the resulting strings by 1, . . . ,n. Let ϕi : 2∗ → 2∗ be length-monotone functions
for i = 1, . . . ,n. Let

l(k)=max
{|ϕ j|(k) | j = 1, . . . ,n

}
.

Define the length-monotone function

〈ϕ1, . . . ,ϕn〉(i ·u)=ϕi(u) ·1 ·0l(|u|)−|ϕi |(k)

Extend this function to all of 2∗ by letting 〈ϕ1, . . . ,ϕn〉(u)= ε, where ε denotes the
empty string, if |u| < |1| and 〈ϕ1, . . . ,ϕn〉(u)= 0l(|u|−|1|)+1, if |u| ≥ |1| and 〈ϕ1, . . . ,ϕn〉(u)
was not previously defined. Now define the representation as follows:

dom
(
δX1 ×·· ·×δXn

)= {〈ϕ1, . . . ,ϕn〉 | ϕi ∈ dom
(
δX i

)}
δX1 ×·· ·×δXn

(〈
ϕ1, . . . ,ϕn

〉)= (
δX1 (ϕ1), . . . ,δXn (ϕn)

)
Finally, let us give some concrete examples of represented spaces that we

will use in the rest of the paper. Countable discrete spaces such as the space

8

of natural numbers N, the space of dyadic rationals D, or the space of rationals
Q are represented via standard numberings, e.g., νQ : N→ Q. By identifying N
with 2∗, we can view such numberings as maps νQ : 2∗ → Q, which allows us
to introduce representations such as δQ : M → Q, where δQ(ϕ) = νQ(ϕ(ε)). As a
more interesting example, consider the space R of real numbers. Let ρ : ⊆M →R

with dom(ρ) = {
ϕ ∈M | ∀u,v ∈ 2∗.

(∣∣νD (
ϕ

(
0|u|))−νD (

ϕ
(
0|v|))∣∣≤ 2−|u|+2−|v|)} and

ρ(ϕ) = limn→∞νD
(
ϕ (0n)

)
. Using the canonical product construction, we obtain a

representation ρn of Rn.
Remark 1. When working with a compact space, one can restrict its represent-
ation to a compact subset of M, removing the need for second-order complexity
bounds. Let us illustrate this in the case of the compact unit interval [−1,1]. Us-
ing a suitable encoding of dyadic numbers we can find for every real number x a
dyadic approximation of x to error 2−n which uses at most 2

(⌊
log2(|x|+1)

⌋+n
)+3

bits. Hence, the interval [−1,1] admits a representation ρ[−1,1] : ⊆ M → [−1,1]
with dom(ρ[−1,1])⊆

{
ϕ ∈M | |ϕ|(n)≤ 2(n+1)+3

}
.

It is worth noting that we can restrict ρ in a similar way to obtain a represent-
ation of all of R, where every name of x ∈R is bounded by 2

(⌊
log2(|x|+1)

⌋+n
)+3,

so that we can bound the running time of an algorithm in terms of the output
accuracy and the single number log2(|x| +1) alone, without having to resort to
general second-order bounds.

In contrast, the use of genuine second-order bounds cannot be avoided with
spaces that are not σ-compact, such as C ([−1,1]), the focus of this work.

3 Representations of C ([−1,1])

In this section we introduce a number of commonly used representations of the
space C ([−1,1]) of continuous functions over the interval [−1,1] and study their
relation in the polytime-reducibility lattice. Most of these representations and
their relationships have been studied already by Labhalla, Lombardi, and Moutai
[13], albeit in a slightly different framework. Nevertheless, many proofs from [13]
carry over easily to our chosen framework. The main new result is the equival-
ence of rational- and piecewise-polynomial approximations, which is left as an
open question in [13].

Most of the representations we study are so-called Cauchy representations,
where an element of a metric space is represented by a fast converging Cauchy
sequence of elements from a countable dense subset. To spell it out explicitly:

Definition 2. Let X be a separable metric space. Let A ⊆ X be a countable
dense subset of X . Let νA : 2∗ → A be a numbering of A. Then the Cauchy
representation of X induced by νA is the representation of X where a length-
monotone string function ϕ ∈M is a name of x ∈ X if and only if for all u ∈ 2∗ we
have d(νA(ϕ(u)), x)< 2−|u|.

Definition 3. We define representations Poly, PPoly, Frac, PFrac, PAff, and Fun
of the space C ([−1,1]) of continuous functions over the interval [−1,1] as follows:

1. A Fun-name of a function f ∈ C ([−1,1]) is a length-monotone string func-
tion ϕ ∈M such that ϕ(·) encodes a sampling of f on dyadic rational points
and |ϕ|(·) encodes a modulus of uniform continuity of f . More explicitly, we
require ∣∣νD (

ϕ(〈u,v〉))− f (νD(u))
∣∣≤ 2−|v|,

9

where 〈·, ·〉 denotes a standard pairing function on binary strings, and for
all x, y ∈ [−1,1]:

|x− y| < 2−|ϕ|(n) ⇒| f (x)− f (y)| < 2−n.

2. A Poly-name of a function f ∈ C ([−1,1]) is a fast converging Cauchy se-
quence of polynomials in the monomial basis with dyadic rational coeffi-
cients. More formally, fix a standard numbering νD[x] : 2∗ → D[x] of the
polynomials with dyadic rational coefficients. The representation Poly is
the Cauchy representation induced by νD[x].

3. A piecewise polynomial with dyadic rational breakpoints and coefficients is
a continuous function g : [−1,1] → R such that there exist dyadic rational
numbers −1 = a0,a1, . . . ,an = 1 such that g|[ai ,ai+1] is a polynomial with
dyadic rational coefficients. A PPoly-name of a function f ∈ C ([−1,1]) is a
fast converging Cauchy sequence of piecewise polynomials in the monomial
basis with dyadic rational breakpoints and coefficients. More formally, fix a
standard numbering of the piecewise polynomials with dyadic breakpoints
and coefficients and let PPoly be the Cauchy representation of C ([−1,1])
induced by this numbering.

4. A PAff-name of a function f ∈ C ([−1,1]) is a fast converging Cauchy se-
quence of piecewise affine functions with dyadic breakpoints and coeffi-
cients. Piecewise affine functions are defined analogously to piecewise poly-
nomials. More formally, fix a standard numbering of the piecewise af-
fine functions with dyadic breakpoints and coefficients and let PAff be the
Cauchy representation of C ([−1,1]) induced by this numbering.

5. A Frac-name of a function f ∈ C ([−1,1]) is a fast converging Cauchy se-
quence of rational functions with dyadic coefficients. A rational function is
a quotient of two polynomials whose denominator has no zeroes in [−1,1].
We choose our notation such that every such rational function is given as
a quotient of two polynomials P,Q ∈ D[x] which is normalised such that
Q(x) ≥ 1 for all x ∈ [−1,1]. More formally, fix a standard numbering of the
rational functions with dyadic coefficients and let Frac be the Cauchy rep-
resentation of C ([−1,1]) induced by this numbering.

6. A PFrac-name of a function f ∈ C ([−1,1]) is a fast converging Cauchy se-
quence of piecewise rational functions with dyadic breakpoints and coeffi-
cients. Piecewise rational functions are defined analogously to piecewise
polynomials and piecewise affine functions. We again require that the de-
nominator of every rational function be bounded from below by 1. More
formally, fix a standard numbering of the piecewise rational functions with
dyadic breakpoints and coefficients and let PFrac be the Cauchy represent-
ation of C ([−1,1]) induced by this numbering.

The representation Fun is the most efficient representation which renders
evaluation computable, in the sense that it satisfies the following universal prop-
erty:

Proposition 4 ([7]). The following are equivalent for a representation of continu-
ous functions δ : ⊆M → C ([−1,1]):

10

1. Evaluation
eval: C ([−1,1])× [−1,1]→R, (f , x) 7→ f (x)

is polynomial-time (δ×ρ,ρ)-computable.

2. δ≤Fun.

Proof sketch. It is easy to see that evaluation is polytime computable with respect
to Fun. Hence, if δ ≤ Fun, then evaluation is polytime computable with respect
to δ. Conversely, assume that δ renders evaluation polytime computable. Given
a δ-name of a function f we can clearly evaluate f on dyadic rational points in
polynomial time, which yields “half” a Fun-name of f . It remains to show that a
modulus of continuity of f can be uniformly computed in polynomial time. Since
δ renders evaluation polytime computable there exists a second-order polynomial
P which bounds the running time of some algorithm which computes eval. Since
[−1,1] is compact, we can assume that the running time of the algorithm on input
〈ϕ,ξ〉, where δ(ϕ) = f , ρ(ξ) = x, is bounded by the function P(|ϕ|,n) (since the
size of ξ can be bounded independently of ξ, cf. Remark 1). Since this function
bounds the running time of a (δ×ρ,ρ)-algorithm which computes eval(f , ·) : R→R,
it follows that P(|ϕ|, ·) is a modulus of continuity of f . As ϕ is length-monotone
we have |ϕ|(n)= |ϕ(0n)|, so that this modulus of continuity is uniformly polytime
computable in the name ϕ.

Corollary 5. Let f : [−1,1] →R be a continuous function. Then f has a polytime
computable realiser if and only if it has a polytime computable Fun-name.

On the other hand, the representation PPoly is interesting since it allows
for maximisation and integration in polynomial time. The following result is
folklore, see e.g., [1, Algorithm 10.4]:

Theorem 6. There exists a polytime algorithm which takes as input a non-constant
dyadic polynomial P ∈ D[x], a rational number y ∈ Q, and an accuracy require-
ment n ∈N and outputs a list of disjoint intervals [a1,b1], . . . , [am,bm] such that

• Every interval contains a solution to the equation P(x)= y.

• Every solution to the equation P(x)= y is contained in some interval.

• Every interval has diameter ≤ 2−n.

Corollary 7. The operators

paramax: C ([−1,1])→ C ([−1,1]) , f 7→λx. (max { f (t) | t ≤ x}) ,

max: C ([−1,1])×C ([−1,1])→ C ([−1,1]) , (f , g) 7→max(f , g)

and

join: ⊆ [−1,1]×C ([−1,1])×C ([−1,1])→ C ([−1,1]) ,

(a, f , g) 7→λx.

{
f (x) if x ≤ a
g(x) if x ≥ a

,

where dom(join)= {(a, f , g) | f (a)= g(a)}, are uniformly polytime computable with
respect to PPoly.

11

Proof idea. The proof is very elementary but requires a fair amount of easy but
cumbersome quantitative estimates of the size of the objects involved in the con-
struction. We will therefore only sketch the main ideas behind the proof.

All three claims easily reduce to the claim that the respective operation is
computable in polynomial time when the input is a dyadic polynomial and the
output is a fast converging Cauchy sequence of dyadic piecewise polynomials.

To compute paramax for a given polynomial f on an interval [a,b], first use
Theorem 6 to compute a sufficiently good approximation of the set of critical
points of f in [a,b]. Use this to find a list of points a = x0 < x1 < ·· · < xm = b
meeting the following three conditions: Every xi is close to either a critical point
or a boundary point, we have the inequalities f (a) ≤ f (x0) < f (x1) < ·· · < f (xm),
and f (xi) satisfies f (xi)= supx≤xi

f (x).
On the open interval (xi, xi+1) the equation f (x)= f (xi) has either no solution,

e.g., if xi is a saddle point, or exactly one solution, e.g., if xi is a local minimum.
We can use Theorem 6 to find out in polynomial time which is the case, and in
case there is a solution, compute this solution in polynomial time to arbitrary
accuracy. Put ci = xi if there is no solution, and if there is a solution, let ci be
a sufficiently good approximation to this solution. We then have an ascending
sequence of points

a = x0 ≤ c0 < x1 ≤ c1 < ·· · < xm−1 ≤ cm−1 < xm = b.

On the intervals of the form [xi,mi] a good approximation of paramax(f) is given
by the constant function f (xi). On the intervals of the form [ci, xi+1] a good ap-
proximation of paramax(f) is given by f .

The computation of the pointwise maximum of two polynomials reduces to
the problem of solving the equation P(x)−Q(x)= 0 to sufficient accuracy.

To avoid case distinctions involving boundary points, it is easiest to compute
a piecewise polynomial approximation to max(P,Q) on all of R. Given two dyadic
polynomials P and Q, use Theorem 6 to compute intervals [a1,b1], . . . , [am,bm]
that enclose the solutions to the equation P(x)=Q(x) on R to sufficient accuracy.

Then, by construction, on all intervals of the form [bi,ai+1] either P is strictly
larger than Q or Q is strictly larger than P. We can decide which of these is the
case by comparing P

(
bi+ai+1

2

)
and Q

(
bi+ai+1

2

)
. This yields a polynomial approxim-

ation to max(P,Q) on all intervals of the form [bi,ai+1]. An analogous argument
yields a polynomial approximation on the intervals (−∞,a1) and (bm,∞).

It remains to compute an approximation on intervals of the form [ai,bi]. We
have already computed a polynomial approximation f to max(P,Q) on [bi−1,ai]
and another polynomial approximation g to max(P,Q) on [bi,ai+1]. On [ai,bi],
let the approximation be the linear interpolation of the values f (ai) in ai and
g(bi) in bi. If [ai,bi] is sufficiently small, then P and Q will be very close on
[ai,bi], so that this yields a good approximation.

The polytime computability of join is established using similar ideas.

Our goal is to fully understand the relationship between the representations
we have just introduced with respect to polytime reducibility.

Proposition 8. There exists a polytime algorithm which takes as input a piece-
wise rational function f (given by our standard numbering) and returns as output
a Lipschitz constant of f .

12

Proof. If R(x) = P(x)/Q(x) is a rational function with Q(x) ≥ 1 for all x ∈ [−1,1],
then by the mean value theorem, a Lipschitz constant of f is given by a bound
on R′(x) = (

P ′(x)Q(x)−P(x)Q′(x)
)
/Q(x)2 over [−1,1]. Since Q(x)2 ≥ 1 it suffices

to compute a bound on the absolute value of the polynomial A(x) = P ′(x)Q(x)−
P(x)Q′(x). If A(x) = ∑n

i=0 aixi then |A(x)| ≤ ∑n
i=0 |ai| for all x ∈ [−1,1]. This is

clearly computable in polynomial time. If f is a piecewise rational function with
pieces R1, . . . ,Rm then a Lipschitz constant for f is given by the maximum of the
Lipschitz constants of the Ri ’s.

Proposition 9. We have Poly ≤ PPoly ≤ PFrac ≤ Fun, PAff ≤ PPoly, and Frac ≤
PFrac.

Proof. The reductions Poly ≤ PPoly ≤ PFrac, PAff ≤ PPoly, and Frac ≤ PFrac are
immediate. It hence suffices to show PFrac ≤ Fun. We will use the universal
property of Fun (Proposition 4) to do so, i.e., it suffices to prove that a piecewise
rational function can be evaluated in a point in polynomial time.

Suppose we are given a piecewise rational function f with dyadic breakpoints
and coefficients, a point x ∈ [−1,1] encoded as a ρ-name and an accuracy require-
ment n ∈ N. By Proposition 8 we can compute a Lipschitz constant L of f in
polynomial time. Query the ρ-name of x for a dyadic rational approximation x̃ to
error 2−n−1/L. We can determine an interval [a,b] with x̃ ∈ [a,b] and f |[a,b] = P/Q
with Q ≥ 1 in polynomial time. Now, a dyadic rational approximation ỹ to error
2−n−1 of P(x̃)/Q(x̃) is computable in polynomial time. We have

| ỹ− f (x)| ≤ | ỹ− f (x̃)|+ | f (x̃)− f (x)| ≤ 2−n−1 +L|x̃− x| ≤ 2−n.

Remarkably, the reduction Frac≤PFrac reverses:

Theorem 10 ([13]). Frac≡PFrac.

The proof of Theorem 10 given in [13] relies mainly on Newman’s theorem
[17] on the rational approximability of the absolute value function. To establish
lower bounds in the reducibility lattice we need to employ Markov’s inequality.
For a proof of Markov’s inequality see e.g., [3].

Lemma 11 (Markov’s inequality). Let P be a polynomial of degree ≤ n on the
interval [−1,1]. Then ∣∣P ′∣∣≤ n2 |P| .
On the interval [a,b] we hence have

∣∣P ′∣∣≤ 2n2

b−a
|P| .

Proposition 12. We have Poly 6≤PAff and PAff 6≤Poly.

Proof. The absolute value function |x| is trivially polytime PAff-computable. By
Markov’s inequality, it is not polytime Poly-computable: Assume that (Pn)n is
a sequence of polynomials such that |Pn(x)−|x|| < 2−n for all n ∈ N. Then on
the interval [−1,0] we have Pn(x)+ x < 2−n and on the interval [0,1] we have

13

Pn(x)−x < 2−n. Let dn denote the degree of Pn±x. Applying Markov’s inequality
to the polynomial Pn(x)+ x on the interval [−1,0] yields:

|P ′
n(x)+1| ≤ 2d2

n |Pn(x)−|x|| ≤ d2
n2−n+1.

Applying the inequality to Pn(x)− x on [0,1] yields:

|P ′
n(x)−1| ≤ 2d2

n |Pn(x)−|x|| ≤ d2
n2−n+1.

If dn ∈ o(2n) then this implies that P ′
n(0) converges to 1 and −1 at the same time,

which is absurd. It follows that the size of (Pn)n grows exponentially in n. In
particular, (Pn)n cannot be polytime computable.

For the converse direction we show that the polynomial x2 does not have a
polynomial size PAff-name. Consider a piecewise linear approximation L to x2

to error 2−n with breakpoints x1, . . . , xm and values y1, . . . , ym. We have |yi − x2
i | <

2−n, and hence for all t ∈ [0,1]:

|(1− t)yi + tyi+1 − (1− t)x2
i − tx2

i+1| < 2−n.

We may hence assume without loss of generality that yi = x2
i . Consider a segment

[xi, xi+1]. We have

2−n ≥ ∣∣L− x2∣∣
≥

∣∣∣L (1
2 xi + 1

2 xi+1
)− (1

2 xi + 1
2 xi+1

)2
∣∣∣

=
∣∣∣ 1

2 x2
i + 1

2 x2
i+1 −

(1
2 xi + 1

2 xi+1
)2

∣∣∣
= (xi+1 − xi)2

4
.

Now, there exists a segment [xi, xi+1] with |xi+1 − xi| ≥ 2
m . It follows that m ≥p

2
n
.

Together with a result which is proved in the next section (Corollary 22), we
arrive at a complete overview of the reducibility lattice:

Theorem 13. The following diagram shows all reductions between the represent-
ations introduced, up to taking the transitive closure:

Poly

PPoly Frac PFrac Fun

PAff

No arrow reverses unless indicated.

Proof. Proposition 9 establishes the more obvious reductions. Proposition 12
implies that PPoly does not reduce to either PAff or Poly, for any such reduc-
tion would establish a reduction from Poly to PAff or vice versa. The reduc-
tion PPoly ≤ Frac follows immediately from PFrac ≡ Frac. The converse is Co-
rollary 22 in Section 4. To see that Fun 6≤ PFrac, consider the family of func-
tions 2−n sin(2nπx). It is clearly uniformly polytime Fun-computable in n, but

14

not uniformly polytime Frac-computable: Any approximation to the function
2−n sin(2nπx) on [−1,1] to error 2−n−1 has at least 2n zeroes, so that any rational
approximation to this error has a numerator of degree at least 2n.

The class of polytime computable points with respect to the representation
Poly has a useful analytic characterisation which was proved by Labhalla, Lom-
bardi, and Moutai [13] and strengthened by Kawamura, Müller, Rösnick, and
Ziegler [8]. For B > 0, `> 0, and γ> 0 let

Gev(B,`,γ)=
{

f ∈ C∞[−1,1] |
∣∣∣ f (n)

∣∣∣≤ B ·`n ·nγn
}

denote the set of Gevrey’s [4] functions of level γ with growth parameters B and
`. Note that ` = 1 corresponds to the class of analytic functions. The results in
[13, 8] imply in particular that the above hierarchy collapses on Gev(B,`,γ) for
all fixed B, `, and γ:

Theorem 14 ([13, 8]). Let B, `, and γ be fixed. On Gev(B,`,γ) we have

Poly≡PPoly≡Frac≡PFrac≡Fun .

Proof sketch. It suffices to show that Fun≤Poly. Given a Fun-name of a function
f ∈ Gev(B,`,γ), compute a polynomial approximation via Chebyshev interpola-
tion. Since the Chebyshev interpolation is a near-best approximation and f can
be approximated efficiently by polynomials, the number of nodes we need in or-
der to compute a polynomial approximation to error 2−n is bounded polynomially
in n. Since we know the constants B, `, and γ, we can choose the right number
of nodes in advance. See [8, Proposition 21 (e), Theorem 23 (b)] for details. Also
note that the proof in [8] establishes a much stronger uniform result, where B, `,
γ are not fixed but given as part of the input.

Corollary 15. Let f ∈ Gev(B,`,γ) for some positive constants B,`,γ. Then f is
polytime computable if and only if it has a polytime computable Poly-name.

4 Bounded division for piecewise polynomials
We now establish the reduction Frac ≤ PPoly by giving a polytime division al-
gorithm for piecewise polynomials. The algorithm will first compute a linear
interpolation of the divisor and then employ an iteration to improve the ap-
proximation. As we cannot evaluate the divisor to infinite precision, we have
to use the following notion: Let f : [−1,1] → R be a continuous function. Let
x1, . . . , xm ∈ [−1,1]. A linear ε-interpolation of f at x1, . . . xm is a piecewise linear
function L with breakpoints x1, . . . , xm which satisfies |L(xi)− f (xi)| < ε.
Algorithm 16 (Bounded Division).

• Input: A non-constant polynomial P ∈ D[x] with P(x) ≥ 1 on [−1,1]. An
accuracy requirement n ∈N.

• Output: A piecewise polynomial approximation to 1/P on [−1,1] to error 2−n.

• Procedure:

15

– Compute a Lipschitz constant ` of P using Proposition 8 and use it to
compute an upper bound on the range of P of the form [1,2r] for some
r ∈N.

– Use Theorem 6 to compute interval upper bounds on the solutions to
the equations

P ′(x)= 0,

P(x)= 2k for 0≤ k ≤ r,

P(x)= 2k+2/3 for 0≤ k < r,

to error 2−r−3/`. By this we mean a list of intervals such that each
interval contains a solution, each solution is contained in an interval,
and each interval has diameter at most 2−r−3/`.

– Sort the intervals together with the boundary points (viewed as degen-
erate intervals) in ascending order to get a list

[−1,−1]= I1 < I2 < ·· · < Im = [1,1].

If two intervals should overlap, refine them such that they are either
disjoint or their union has diameter smaller than 2−r−3/`. In the latter
case replace them with their union.

– Compute a linear 2−r−4-interpolation Q0 of 1/P at the centres of the
intervals.

– Let N = dlog2(3n)e.
– For k = 1, . . . , N:

* Put Qk+1 = 2Qk −PQ2
k.

– Output QN .

Remark 17.

1. The iteration employed in Algorithm 16 is the well-known Newton-Raphson
division method.

2. While, by Lemma 20 below, Algorithm 16 already runs in polynomial time,
its practical performance can be improved significantly by employing, within
the iteration, size-reduction techniques such as degree reduction and sweep-
ing, maintaining rigorous error bounds.

3. The resource usage of Algorithm 16 is mainly dominated by the multi-
plication of polynomials with potentially large degree within the Newton-
Raphson iteration. While the degrees can sometimes be kept small by the
aforementioned size-reduction techniques, there are practical instances of
the problem where the degrees grow quite large, resulting in poor practical
performance, despite the algorithm being polytime. For more details, see
Section 7.

4. If P ∈ D[x] is any non-constant polynomial with P(x) ≥ b > 0 on [−1,1], we
can apply Algorithm 16 to P/b and use it to compute an approximation
to 1/P(x) = (1/b)

/
(P(x)/b) . If we know that P(x) > 0, without knowing a

bound, we can use Corollary 7 to find a lower bound b > 0, but since we
need to witness that b is above 0, the complexity depends additionally on
log2(infx∈[−1,1] P(x)).

16

Figure 2: Overview of the notation used in the correctness proof of Algorithm 16
(Lemma 18).

Lemma 18. Algorithm 16 is correct.

Proof. Let −1 = a1 < a2 < ·· · < am = 1 be the union of the boundary points and
the zeroes of P ′(x), sorted in an increasing order, so that 1/P is monotone on each
interval [ai,ai+1]. On [ai,ai+1], let

ai = bi
1 < bi

2 < ·· · < bi
ki

= ai+1

be the solutions of the equations P(x) = 2k and P(x) = 2k+2/3, where k ∈ [0, r],
together with the boundary points. Let

−1= x1 < x2 < ·· · < xl = 1

denote the bi
j ’s, sorted in an increasing order. Let L be the linear interpolation of

1/P in the xi ’s.
The proof relies on the following two inequalities:

• Claim 1: |L(x)−1/P(x)| < 1/(2P(x)) for all x ∈ [−1,1].

• Claim 2: |Q0(x)−L(x)| ≤ 1/(4P(x)) for all x ∈ [−1,1].

We prove by induction on k the inequality |Qk(x)−1/P(x)| ≤ (3/4)2
k ·(1/P(x)) for all

x ∈ [−1,1]. The base case is established by combining the above claims using the
triangle inequality. The induction step is given below:

|Qk+1(x)−1/P(x)| = |2Qk(x)−P(x)Qk(x)2 −1/P(x)|
= |P(x)| · |2Qk(x)/P(x)−Qk(x)2 − (1/P(x))2|
= |P(x)| · |Qk(x)−1/P(x)|2

≤ (3/4)2
k+1 · (1/P(x)).

Using the definition N = dlog2(3n)e we obtain |QN (x)−1/P(x)| ≤ 2−n which finishes
the proof.

17

Proof of Claim 1. We claim that |L(x)−1/P(x)| < 1/(2P(x)) for all x ∈ [−1,1].
Consider an interval of the form [xi, xi+1]. Since 1/P is monotone on the interval,
we have

|L(x)−1/P(x)| ≤ |1/P(xi)−1/P(xi+1)|.
If xi and xi+1 are inner points of the interval [−1,1] then there are four cases:

1. P(xi)= 2k, P(xi+1)= 2k+2/3. We have:

|1/P(xi)−1/P(xi+1)| = |2−k −3 ·2−k−2| = 2−k−2.

Since P is monotonically increasing, we have:

1/(2P(x))≥ 1/(2P(xi+1))= 3
2 2−k−2 ≥ 2−k−2.

2. P(xi)= 2k, P(xi+1)= 2(k−1)+2/3. We have:

|1/P(xi)−1/P(xi+1)| = |2−k −3 ·2−k−1| = 2−k−1.

Since P is monotonically decreasing, we have:

1/(2P(x))≥ 1/(2P(xi))= 2−k−1.

3. P(xi)= 2k+2/3, P(xi+1)= 2k+1. We have:

|1/P(xi)−1/P(xi+1)| = |3 ·2−k−2 −2−k−1| = 2−k−2.

Since P is monotonically increasing, we have:

1/(2P(x))≥ 1/(2P(xi+1))= 2−k−2.

4. P(xi)= 2k+2/3, P(xi+1)= 2k. We have:

|1/P(xi)−1/P(xi+1)| = |3 ·2−k−2 −2−k| = 2−k−2.

Since P is monotonically decreasing, we have:

1/(2P(x))≥ 1/(2P(xi))= 3
2 2−k−2 ≥ 2−k−2.

The cases where xi or xi+1 is a boundary point are treated similarly.

Proof of Claim 2. We claim that |Q0(x)− L(x)| < 1/(4P(x)) for all x ∈ [−1,1].
By construction every xi is contained in some interval I j which is computed by
Algorithm 16. Conversely every interval I j contains some xi. Let x̃i denote the
centre of the interval I j which contains xi. Note that different xi ’s could yield
equal x̃i ’s.

As both L and Q0 are piecewise linear, the distance |L(x)−Q0(x)| attains its
maximum in one of the xi ’s or one of the x̃i ’s.

Let us introduce some notation to improve the readability of the following
estimates. Write h(x) = 1/P(x). Write εx = 2−r−4/` for the distance between xi
and x̃i. Write εy = 2−r−4 for the distance between Q0(x̃i) and h(x̃i).

18

We find:

|Q0(x̃i)−L(x̃i)| ≤ |Q0(x̃i)−h(x̃i)|+ |h(x̃i)−L(xi)|+ |L(xi)−L(x̃i)|
= |Q0(x̃i)−h(x̃i)|+ |h(x̃i)−h(xi)|+ |L(xi)−L(x̃i)|
≤ εy +`εx +`εx

≤ 2−r−4 +2−r−3

≤ 1
4P(x)

The last line uses that r is by definition an upper bound on log2 P(x). The estim-
ate of the second factor in the third-to-last line uses the fact that any Lipschitz
constant for h is also a Lipschitz constant for L. Note that since P is bounded by
1 from below, any Lipschitz constant for P on [−1,1] is also a Lipschitz constant
for 1/P on [−1,1].

To estimate |Q0(xi)−L(xi)| we need to find a bound on the Lipschitz constant
of Q0. As Q0 is piecewise linear, it suffices to compute a number `Q satisfying

|Q0(x̃i)−Q0(x̃i+1)| ≤ `Q |x̃i − x̃i+1|

for all i.
If x̃i = x̃i+1 then any non-negative `Q will do. Hence let us assume that x̃i 6=

x̃i+1. Then by construction |x̃i − x̃i+1| > 2εx. We calculate:

|Q0(x̃i)−Q0(x̃i+1)| ≤ |Q0(x̃i)−h(x̃i)|+ |h(x̃i)−h(x̃i+1)|+ |h(x̃i+1)−Q0(x̃i+1)|
≤ 2εy +`|x̃i − x̃i+1|
≤

(
εy
εx

+`
)
|x̃i − x̃i+1|.

We now obtain:

|Q0(xi)−L(xi)| ≤ |Q0(xi)−Q0(x̃i)|+ |Q0(x̃i)−h(x̃i)|+ |h(x̃i)−h(xi)|+ |h(xi)−L(xi)|
≤

(
εy
εx

+`
)
εx +εy +`εx

= 2εy +2`εx

= 2−r−3 +2−r−3

≤ 1
4P(x)

Let us now show that Algorithm 16 runs in polynomial time. The following
lemma ensures that the initial approximation can be computed in polynomial
time:

Lemma 19. There exists a polytime algorithm which takes as input a Fun-name
of a function f ∈ C ([−1,1]), a list of points x1, . . . , xm ∈ [−1,1], and an error bound
Q 3 ε> 0, and returns as output a linear ε-interpolation of f at x1, . . . , xm.

Lemma 20. Algorithm 16 runs in polynomial time.

Proof. The size of the Lipschitz constant ` of P is bounded polynomially in the
degree and the size of its coefficients. The bound [1,2r] on the range can be
given as r = dlog2(`+1)e. Hence there are only polynomially many equations to

19

solve, and since the algorithm in Theorem 6 runs in polynomial time, the overall
complexity of the construction of the initial approximation Q0 is polynomial. In
particular, the number of segments of Q0 is polynomial in the size of P. The
degree of the kth approximation is (2k − 1)degP + 2k, so the degree of the Nth

approximation is in O ((6n+1)degP +6n), which is polynomial in the size of P
and n. The number of segments does not change during the iteration.

It remains to estimate the size of the coefficients. For a polynomial A, en-
coded as a list of dyadic rational numbers in standard notation, let tA denote the
number of terms of A, i.e., tA = deg A+1, and let cA (by abuse of notation) denote
the bitsize of the coefficients of the given encoding of A. Let ck = cQk and tk = tQk .
We have tk = deg(Qk)+1= (2k−1)degP+2k+1. If A and B are polynomials, then
cAB ≤ cA + cB +min{tA , tB} so that

cQ2
k
≤ 2ck + tk

and hence

ck+1 = c2Qk−PQ2
k
≤max {ck +1, cP + (2ck + tk)+min{tk, tP }}≤ cP +2ck +2tP .

it follows by induction that

ck ≤ (2k −1)cP +2k c0 +2(2k −1)tP

Hence we have:
cN ∈O ((n+1)cP +nc0 +2(n+1)tP)

which is polynomial in cP and n.

By applying Algorithm 16 piece-by-piece we obtain:

Theorem 21. Bounded division,

div: ⊆ C ([−1,1])×C ([−1,1])→ C ([−1,1]) , (f , g) 7→ f /g,

where

dom(div)= {(f , g) ∈ C ([−1,1])×C ([−1,1]) | g(x)≥ 1 for all x ∈ [−1,1]}

is uniformly (PPoly,PPoly)-polytime computable.

Corollary 22. PPoly≡Frac.

Proof. Suppose we are given a fast converging sequence (Pn(x)/Qn(x))n of ra-
tional functions which converge to f : [−1,1]→R, normalised such that Qn(x)≥ 1
on [−1,1]. Apply Algorithm 16 to obtain a piecewise polynomial approximation
gn to Pn+1(x)/Qn+1(x) to error 2−n−1. Then the sequence (gn)n is a fast converging
sequence of piecewise polynomials with limit f , in other words, a PPoly-name of
f .

We also obtain a corollary on the complexity of integrating rationally approx-
imable functions, which is not immediately obvious:

Corollary 23. The integration functional∫
: C([−1,1])×R→R, (f , x) 7→

∫ x

−1
f (t)dt

is uniformly (Frac×ρ,ρ)-polytime computable.

20

5 Compositional Evaluation Strategies
In this section we introduce the notion of compositional evaluation strategy over
an algebraic structure Σ. This will allow us to state our main result on the exist-
ence of a modular polytime algorithm for evaluating all sufficiently simple sym-
bolic expressions which involve maximisation or integration.

For a class of spaces C, let Prodω(C) denote the class of all finite and countable
products of members of C, i.e., a space A belongs to Prodω(C) if and only if it is
of the form A1 ×·· ·× An or

∏
i∈N A i with A i being members of C.

Consider structures of the form

Σ= (Fix,Free,Op,Const)

where

1. Fix is a set of represented spaces (Y ,δY), containing at least the space
(N,δN) of natural numbers with the standard representation induced by
the binary notation.

2. Free is a set of represented spaces.

3. Op is a set of partial multi-valued operations of the form f : ⊆ A â B where
A,B ∈Prodω(Fix∪Free).

4. Const is a subset of the disjoint union of all spaces in Prodω(Fix∪Free).

The set Fix is called the set of fixed spaces, the set Free is called the set of
free spaces, the set Op is called the set of operations and the set Const is called
the set of constants. An operation of the type A1 ×·· ·× An â B1 ×·· ·×Bm will be
called an (n,m)-ary operation. An (n,1)-ary operation will also be called an n-ary
operation for short.

A constant c ∈ X where X ∈Prodω(Fix∪Free) will be called a constant of type
X and we write c : X . For every X ∈ Prodω(Fix∪Free) we introduce a countable
set of free variables xn : X of type X . A term over the signature of Σ is defined
inductively as follows:

1. Every free variable of type X is a term of type X .

2. Every constant of type X is a term of type X .

3. If t1 : X1 and t2 : X2 are terms, then (t1, t2) is a term of type X1 × X2.

4. If t : X is a term of type X with a free variable n of type N then λn.X is a
term of type XN.

5. If t : X is a term and f : ⊆ X âY is an operation, then f (t) is a term of type
Y .

A term is called closed if it contains no free variables. We denote the set of closed
terms of Σ by CT(Σ). If t : X is a closed term we denote by �t�Σ the set of elements
of X which it represents under the obvious semantics2. A term t : Y is called

2 The application of a partial operation could lead to the semantics of a term to be undefined. It is
however straightforward to define (inductively) what it means for a term to be well-defined, and we
will henceforth assume that all terms are well-defined.

21

semi-closed if it contains no free variables of free space type. We denote the set of
semi-closed terms of Σ by SCT(Σ). If x1 : X1, . . . , xn : Xn are the free variables in t,
then on the semantic side t defines a partial operation

�t�Σ : ⊆ X1 ×·· ·× Xn âY .

Suppose we are given a structure Σ. A compositional evaluation strategy for
Σ consists of:

1. For every free space X of Σ a representation δX : ⊆M → X .

2. For each operation f : ⊆ X âY of Σ an algorithm which computes a (δX ,δY)-
realiser of f .

3. For each constant x : X of Σ an algorithm which computes a δX -name of x.

A compositional evaluation strategy S defines a map

evalS : ⊆CT(Σ)→M

which sends a closed term t : X of type X to a point evalS(t) ∈M with δX (evalS(t)) ∈
�t�Σ. We define the running time of S on t

TS(t, ·) : N→N

as the time it takes to compute evalS(t)(·) using the compositional evaluation
strategy. The map evalS extends to a map

evalS : ⊆SCT(Σ)→MM

which sends a semi-closed term t : Y to a realiser of the operation �t�Σ. The
running time of S on t ∈ SCT(Σ) - if it exists - is then the smallest second-order
function

TS(t, ·, ·) : NN×N→N,

such that TS(t, |ϕ|, |u|) is a bound on the time it takes to compute evalS(t)(ϕ,u)
using S. We say that a strategy S is polytime if it evaluates every semi-closed
term of Σ of fixed space type in polynomial time.

It should be noted that a strategy being polytime does not imply that the
running time of the strategy grows polynomially in the size of the term it is
evaluating. For example, consider the structure Σ= ({R},;, {square}, {Q}), where
square(x) = x2 is the squaring operation. This structure can be evaluated in
polynomial time. However, when evaluating the term

square(n)(2)= square◦ · · · ◦square︸ ︷︷ ︸
n times

(2)

to an accuracy of 1 bit, the running time of any compositional evaluation strategy
for this structure grows super-exponentially in n.

22

6 On the complexity of integration and maxim-
isation for common functions

Consider the structure

Σ= ({R}, {C ([−1,1])},Op,Const)

where Const is the disjoint union of all polytime computable real numbers and
all polytime computable functions in Gevrey’s hierarchy and Op consists of the
following operations:

1. const: R→ C ([−1,1]) , x 7→λt.x.

2. + : C ([−1,1])×C ([−1,1])→ C ([−1,1]) , (f , g) 7→ f + g.

3. × : C ([−1,1])×C ([−1,1])→ C ([−1,1]) , (f , g) 7→ f · g.

4. − : C ([−1,1])→ C ([−1,1]) , f 7→ − f .

5. div: ⊆ C ([−1,1])×C ([−1,1])→ C ([−1,1]) , (f , g) 7→ f /g, where

dom(div)= {(f , g) ∈ C ([−1,1])×C ([−1,1]) | g(x)≥ 1 for all x ∈ [−1,1]} .

6.
p| · | : C ([−1,1])→ C ([−1,1]) , f 7→√| f |.

7. ◦ : ⊆ C ([−1,1])×C ([−1,1])→ C ([−1,1]) , (f , g) 7→ f ◦ g, where

dom(◦)= {(f , g) ∈ C ([−1,1])×C ([−1,1]) | g([−1,1])⊆ [−1,1]} .

8. max: C ([−1,1])×C ([−1,1])→ C ([−1,1]) , (f , g) 7→max(f , g).

9. paramax: C ([−1,1])→ C ([−1,1]) , f 7→λt.max { f (s) | s ∈ [−1, t]} .

10.

join: ⊆ [−1,1]×C ([−1,1])×C ([−1,1])→ C ([−1,1]) ,

(a, f , g) 7→λx.

{
f (x) if x ≤ a,
g(x) if x ≥ a,

where dom(join)= {(a, f , g) | f (a)= g(a)}.

11. primit: C ([−1,1])→ C ([−1,1]) , f 7→λt.
∫ t
−1 f (s)ds .

12. eval : C ([−1,1])× [−1,1]→R, (f , x) 7→ f (x).

Note in particular that Σ allows us to express the integral
∫ b

a f (x)dx as

eval(primit(f),b)−eval(primit(f),a)

and the maximum maxx∈[a,b] f (x) as

eval(paramax(join(a,const(eval(f ,a)), f)),b).

The structure Σ arguably contains most univariate functions on a compact in-
terval that are used in practical computing, as it contains the polytime analytic
functions and all commonly available closure operations.

23

Theorem 24. There exists a compositional evaluation strategy for Σ, using PPoly
to represent the space C ([−1,1]), that runs in polynomial time.

Proof. Let f be a polytime computable function in Gevrey’s hierarchy. Then f
has a polytime computable Fun-name by Proposition 4. It follows from Theorem
14 that f has a polytime computable PPoly-name.

It remains to show that the operations listed above are polytime computable
with respect to PPoly. Polytime computability of the first four operations is ob-
vious. Polytime computability of div is proved in Theorem 21. Polytime comput-
ability of composition is easily established for Frac, which is polytime equival-
ent to PPoly by Corollary 22. The polytime computability of

p| · |, follows from
Newman’s Theorem [17] on the rational approximability of the square root (see
[13] for details) in conjunction with the polytime computability of division and
the polytime computability of composition. The polytime computability of max,
paramax, and join is established in Corollary 7. The polytime computability of
primit is elementary. The polytime computability of eval is established in Pro-
position 9.

Theorem 24 can be taken as evidence that there are no “natural” functions
whose integral and maximum are difficult to compute.

Theorem 25. There is no evaluation strategy which uses the representations Poly,
PAff, or Fun which evaluates Σ in polynomial time.

Proof. Consider the problem of computing
∫ 1
−1 |x|dx which can be expressed by

the term eval(primit(max(−x, x)),1) of Σ.
Any correct algorithm that sends a Fun name of a function f to a Cauchy

name of the real number
∫ 1
−1 f (x)dx has to query its input function at least 2ω f (n)

times, where ω f is the modulus of continuity provided by the Fun name of f ,
to produce an approximation to error 2−n. A fortiori any compositional evalu-
ation strategy using Fun requires running time at least 2n when evaluating the
term eval(primit(max(−x, x)),1) to error 2−n. This shows that no compositional
evaluation strategy using Fun evaluates Σ in polynomial time.

Any correct algorithm that sends a Poly name of a function f to a Cauchy
name of the real number

∫ 1
−1 f (x)dx has to query its input for a polynomial ap-

proximation to f to error at least 2−n in order to compute an approximation to
the output to error 2−n. But it was shown in the proof of Proposition 12 that the
size of any sequence of polynomial approximations to |x| grows exponentially in
the accuracy of the approximation. This shows that no compositional evaluation
strategy using Poly evaluates Σ in polynomial time.

To show the analogous claim for the representation PAff consider the term
eval(primit(x2),1) which represents the number

∫ 1
−1 x2 dx and use that, by the

proof of Proposition 12, any PAff name of x2 grows exponentially.

Compare Theorems 24 and 25 with Theorem 13. By Theorem 13 there is a
strict linear chain of polytime reductions

Poly<PPoly<Fun .

Intuitively this says that among the three representations Poly contains the
greatest amount of information about a function while Fun contains the least,
with PPoly being somewhere in the middle. By Theorem 25 and its proof, the

24

representation Poly contains too much information to evaluate all terms of the
structure Σ in polynomial time, as it does not render sufficiently many points
of C ([−1,1]) polytime computable. By contrast, the representation Fun contains
too little information to evaluate all terms of Σ in polynomial time, as it does not
render sufficiently many functionals on C ([−1,1]) polytime computable.

By Theorem 24 and its proof, the representation PPoly does evaluate all terms
of Σ in polynomial time, which can be intuitively interpreted as saying that PPoly
contains just the right amount of information to evaluate Σ efficiently.

7 Experiments
We describe a set of experiments we conducted to gauge the practical efficiency
of the representations Fun, Poly, PPoly, Frac as well as some more efficient vari-
ants:

• BFun represents a function f : [−1,1] → R by F: ID[−1,1] → ID , where
ID is the discrete space of intervals with dyadic rational endpoints, such
that f (x)=⋂

{F(X) |x ∈ X ∈ID[−1,1]} for each x ∈ [−1,1].

• DBFun represents a continuously differentiable function f by a pair F,F ′
where F is a BFun name of f and F ′ is a BFun name of f ′.

• “Local” representation LPoly that represents f by a dependent-type func-
tion F that maps each D ∈ ID to a Poly-name of f |D . Representations
LPPoly and LFrac are defined analogously.

The representation BFun is the standard representation of continuous func-
tions in interval analysis. Our benchmarks confirm that it is much more efficient
than Fun from a practical perspective. The main reason why we use Fun instead
of BFun in our theoretical considerations is that BFun is not a well-behaved rep-
resentation from the point of view of second-order complexity, as the size func-
tion of a name does not provide sufficient information on the “complexity” of that
name. In fact, it is easy to show that every computable function has a polytime
computable BFun-name. On the other hand, the use of Fun is justified by Pro-
position 4. We consider DBFun, although it is not a representation of continuous
functions, because it alleviates one of the disadvantages that Fun and BFun have
compared to polynomial-based representations, namely the in-ability to utilise
the potential smoothness of f . The “local” representations are polytime equival-
ent to their “global” counterparts, so that we did not have to consider them in
the theoretical part of this paper. However, it is obvious that they offer a great
practical advantage, as it would be wasteful to compute an approximation over
the whole interval [−1,1] when only a local approximation over a small interval
is needed.

For each representation, we implemented a calculator for the following task:

Input: A real function x 7→ f (x) given as a symbolic expression over a signature
with the functions x 7→ 1, x 7→ x and pointwise sine, cosine, maximum, and
field operations

Output: maxx∈[−1,1] f (x) or
∫ 1
−1 f (x)dx encoded as a fast converging Cauchy se-

quence

25

Note that the input and output are independent of the chosen function rep-
resentation. Thus all the calculators have the same “user interface”.

The input expressions are evaluated bottom-up using an evaluation strategy
based on the chosen representation. E.g., on input sin(sin(x)) the Poly-calculator
constructs a polynomial approximation of sin(x) and feeds this approximation
again to the same implementation of sine that produces a polynomial approxim-
ation of sin(sin(x)). The calculators do not attempt to simplify, differentiate or
otherwise symbolically manipulate the given expression.

In other words, we implement compositional evaluation strategies for the
structure

Σ=
({

(R,ρ)
}
, {C ([−1,1])} ,

{
range,

∫
,+,×,−,div,sin,cos,max

}
, {1, x}

)
.

based on the different representations. Theorems 24 and 25 suggest that rep-
resentations based on PPoly will perform best in our benchmarks. In particular,
they should perform better than representations based on Fun for almost any
function. They should also perform better than representations based on Poly for
non-smooth functions. Our experimental findings confirm this for the majority of
functions we have considered.

7.1 Implementation
Due to space constraints we describe only the most significant aspects of our im-
plementation. We describe it in more detail in the technical paper [12]. The
source code3 is available online. It should be emphasized that our implementa-
tion is not designed to outperform practical algorithms for integration and range
computation, but to provide a common framework to offer a fair comparison of
different algorithmic approaches. Our implementation framework is not optim-
ised for speed, and, with the exception of DBFun, we do not exploit any informa-
tion about the derivatives of our functions, which in practice makes an enormous
difference.

Fun representations. Most operations over Fun, BFun and DBFun are im-
plemented in a straightforward manner ball/point-wise. Range maximum and
integration are implemented using bisection. The target accuracy of integration
is raised by 1 bit with each domain bisection. Integration bisection ends when
the area of the “box” enclosing the function over the segment is below the tar-
get accuracy. The maximisation algorithm employs a simple branch and bound
method to prune away intervals where the maximum is not attained. The de-
rivative available in DBFun is used solely to improve the interval extension of f
using the formula f ([c±ε])⊆ f (c)±ε · f ′([c±ε]).

Polynomial representations. Polynomials are represented primarily sparsely
in the Chebyshev basis over [−1,1] with dyadic coefficients. Any terms that are
smaller than the current accuracy target are sweeped away, i.e., removed and
their size added to the error radius. The choice of the Chebyshev basis is motiv-
ated by the fact that this sweeping procedure works well in the Chebyshev basis,
but not in the monomial basis. While our theoretical results are formulated with

3http://tinyurl.com/aern2-fnreps

26

http://tinyurl.com/aern2-fnreps

respect to the monomial basis, it is straightforward to verify that the transla-
tions between the Chebyshev basis and the monomial basis are computable in
polynomial time. The range maximisation algorithm combines the root counting
techniques described in Chapter 10 of [1] with a branch and bound method sim-
ilar to the one employed in the maximisation algorithm for BFun. It temporarily
translates the polynomials to a dense representation in the monomial basis with
integer coefficients.

Poly division, pointwise maximisation, and for very large polynomials also
multiplication, is computed using an interval version of Chebyshev interpolation
for analytic functions via the encoding of discrete cosine transform (DCT) from
[2].

PPoly division is described in Section 4. PPoly, Frac, and local representa-
tions use essentially the same algorithm as Poly for range maximisation. Frac
integration is computed via a translation to PPoly.

The local representations delegate integration to their non-local counterparts
over the equidistant partition of the domain into n segments where n is the target
accuracy 4.

7.2 Benchmarks and results
Well-behaved analytic functions. First, consider the functions in Fig. 3 that
are analytic on the whole complex plane. As the charts are linear-logarithmic,
exponential maps show as straight lines and a polynomial maps show as logar-
ithmic curves.

We have not included timings for representations PPoly, Frac, LPPoly and
LFrac in Fig. 3 because for these expressions our implementations of PPoly and
Frac compute identical approximations as our implementation of Poly.

Fun performed so poorly that we struggled to get any points within the con-
straints of our charts. Therefore we applied it on the first and simplest function
only.

DBFun has computed the range of sin(10x)+ cos(20x) much more efficiently
than the range of sin(10x)+ cos(7πx). This indicates that DBFun maximisation
is very sensitive to the quality of the interval extension of f . We expect that
BFun is also sometimes similarly sensitive although we have not observed it in
our benchmarks.

These examples confirm our prediction that range and integral for these kinds
of functions are much more efficient to compute via polynomial approximations
than simply via Fun representations. Moreover, localisation seems to help when
functions are defined by a nested application of elementary functions.

Functions with division and pointwise maximum. The first two functions
in Fig. 4 are variants of the Runge family of functions, which have singularities
in the complex plane near our domain [−1,1]. It is shown in the proof of The-
orem 27 that the degree of any polynomial approximation to the function 1

1+ax2

to error 2−n is polynomial in n but exponential in loga. Thus, these functions
are expected to be difficult to approximate by polynomials even for moderately
large values of a. This turns out to be the case in our implementation, separat-
ing the performance of Poly from that of PPoly and Frac. Still, PPoly performs

4i.e., the required error bound is 2−n.

27

Execution time (s) vs Accuracy (bits)

Range maximum over [−1,1] Integral over [−1,1]

f (x)= sin(10x)+cos(20x)

f (x)= sin(10x)+cos(7πx)

f (x)= sin(10x+sin(7πx2))+cos(10x)

Figure 3: Measurements for analytic functions without nearby singularities

28

Execution time (s) vs Accuracy (bits)

Range maximum over [−1,1] Integral over [−1,1]

f (x)= sin(10x)+cos(7πx)
100x2 +1

f (x)= sin(10x)+cos(7πx)
10(sin(7x))2 +1

f (x)=max(sin(10x),cos(11x))

f (x)=max
(

x2

2
,
sin(10x)+cos(7πx)

10(sin(7x))2 +1

)

Figure 4: Measurements for functions with division and max

29

quite poorly for both functions, which suggests that while our division algorithm
runs in polynomial time, it cannot be considered practically feasible. However,
the local version LPPoly performs very well on both examples. The Fun repres-
entations seem to perform with an exponential or worse time complexity, which
is in line with our complexity results.

The last two functions in Fig. 4 are non-smooth and thus cannot be efficiently
approximated by polynomials. The simpler of these two function is easily handled
by the Fun representations because there is no dependency error, as x appears in
the expression effectively only once over each point in the domain. As predicted,
Poly cannot cope with these functions but its local version performs acceptably for
the simpler function. In theory, Frac should be able to approximate non-smooth
functions as well as PPoly, but we have not yet found an efficient algorithm for
this.

Note that DBFun does better for the last function in Fig. 4 than for the very
similar function without max. This again points to an element of luck due to a
high sensitivity of the Fun representations to the quality of the interval extension
of f . The local representations have consistently outperformed their global coun-
terparts, and while the representation PPoly did quite poorly on some inputs, its
local version performed reasonably well overall.

References
[1] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry.

Springer-Verlag New York, Inc., 2006.

[2] G. Baszenski and M. Tasche. Fast polynomial multiplication and convolu-
tions related to the discrete cosine transform. Linear Algebra and its Ap-
plications, 252(1 – 3):1 – 25, 1997.

[3] E. W. Cheney. Introduction to Approximation Theory. AMS Chelsea, 1966.

[4] M. Gevrey. Sur la nature analytique des solutions des équations aux
dérivées partielles. Premier mémoire. Annales scientifiques de l’École Nor-
male Supérieure, 35(3):129 – 190, 1918.

[5] B. M. Kapron and S. A. Cook. A New Characterization of Type-2 Feasibility.
SIAM J. Comput., 25(1):117–132, Feb. 1996.

[6] A. Kawamura and S. A. Cook. Complexity theory for operators in analysis.
Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC
2010), pages 495 – 502, 2010.

[7] A. Kawamura and S. A. Cook. Complexity Theory for Operators in Analysis.
ACM Transactions on Computation Theory, 4(2):5, 2012.

[8] A. Kawamura, N. Müller, C. Rösnick, and M. Ziegler. Computational bene-
fit of smoothness: Parameterized bit-complexity of numerical operators on
analytic functions and Gevrey’s hierarchy. Journal of Complexity, 31(5):689
– 714, 2015.

[9] K.-I. Ko. Complexity Theory of Real Functions. Birkhäuser, 1991.

30

[10] K.-I. Ko and H. Friedman. Computational complexity of real functions. The-
oretical Computer Science, 20:323–352, 1982.

[11] U. Kohlenbach. Proof Theory and computational analysis. Electronic Notes
in Theoretical Computer Science, 13, 1998.

[12] M. Konečný and E. Neumann. Implementing evaluation strategies for con-
tinuous real functions. CoRR, abs/1910.04891, 2019.

[13] S. Labhalla, H.Lombardi, and E.Moutai. Espaces métriques rationnelle-
ment présentés et complexité, le cas de l’espace des fonctions réelles uni-
formément continues sur un intervalle compact. Theoretical Computer Sci-
ence, 250:265–332, 2001.

[14] B. Lambov. The basic feasible functionals in computable analysis. Journal
of Complexity, 22(6):909 – 917, 2006.

[15] K. Mehlhorn. Polynomial and Abstract Subrecursive Classes. In Proceed-
ings of the Sixth Annual ACM Symposium on Theory of Computing, STOC
’74, pages 96–109, New York, NY, USA, 1974. ACM.

[16] N. T. Müller. Uniform computational complexity of Taylor series. In Auto-
mata, Languages and Programming, volume 267 of Lecture Notes in Com-
puter Science, pages 435–444. Springer, 1987.

[17] D. J. Newman. Rational approximation to |x|. Michigan Math. Journal,
11:11 – 14, 1964.

[18] A. Pauly. On the topological aspects of the theory of represented spaces.
Computability, 5(2):159–180, 2016.

[19] M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics.
Springer, 1989.

[20] M. Schröder. Admissible Representations for Continuous Computations.
PhD thesis, FernUniversität Hagen, 2002.

[21] M. Schröder. Extended admissibility. Theoretical Computer Science,
284:519–538, 2002.

[22] K. Weihrauch. Computable Analysis. Springer, 2000.

A On the uniform complexity of division for func-
tions in Gevrey’s hierarchy

In this appendix we prove the claim made in the introduction that bounded divi-
sion is not polytime computable with respect to the representation for functions
in Gevrey’s hierarchy that is implicit in [8].

An infinitely differentiable function f : [−1,1] → R belongs to Gevrey’s hier-
archy if and only if there exist positive constants B, ` and γ such that for all
x ∈ [−1,1] and all k ∈N we have:∣∣∣ f (k)(x)

∣∣∣≤ B`kkγk (1)

31

The following definition is essentially due to Kawamura, Müller, Rösnick, and
Ziegler [8]. While the use of explicit representations is avoided throughout [8],
the following is implicit in [8, Definition 22 (a)].

Definition 26. The space G ([−1,1]) of Gevrey functions on [−1,1] is the repres-
ented space of all functions in Gevrey’s hierarchy, where a name of a function
f : [−1,1] → R is given by a Fun-name of f (see Definition 3) together with pos-
itive integer constants B, `, and γ satisfying (1). The constant B is encoded in
binary, the constant ` is encoded in unary, and the constant γ is given by an
encoding of 2γ in unary.

The encodings for the integer constants in Definition 26 are chosen such that
a polytime algorithm on the space of Gevrey functions is required to run in poly-
logarithmic time in B, in polynomial time in `, and in exponential time in γ. This
convention ensures that [8, Theorem 23] translates to a result on second-order
polytime computability on the represented space of Gevrey functions. One should
note that a different representation of the space of Gevrey functions is implicitly
given in [8, Definition 22 (b)], but it is polytime equivalent to the above by virtue
of [8, Theorem 23 (a) and (b)].

Theorem 27. Bounded division

div: ⊆G ([−1,1])×G ([−1,1])→G ([−1,1]), (f , g) 7→ f /g

where

domdiv= {(f , g) ∈G ([−1,1])×G ([−1,1]) | g(x)≥ 1 for all x ∈ [−1,1]}

is not polytime computable with respect to the representation given in Definition
26.

Proof. Consider the family of polynomial functions:

fn(x)= 1+2nx2.

This sequence is bounded by 1 from below and uniformly polytime computable
with respect to the above representation of Gevrey functions.

Now consider the sequence of reciprocals:

gn(x)= 1
1+2nx2 .

If bounded division is polytime computable, then this sequence is again uniformly
polytime computable. We will however show that any sequence of names for (gn)n
in the above representation grows super-polynomially.

Let (Bn)n, (`n)n, and (γn)n be sequences of natural numbers satisfying∣∣∣g(k)
n (x)

∣∣∣≤ Bn`
k
nkkγn

for all k ∈N and all x ∈ [−1,1].
The function gn has exactly two singularities in the complex plane: the ima-

ginary numbers i
2n/2 and − i

2n/2 . It follows that the radius of convergence of the

32

Taylor series of gn about 0 is equal to 1
2n/2 . By the Cauchy-Hadamard theorem

we obtain for all n ∈N:

limsup
k→∞

∣∣∣∣∣ gk
n(0)
k!

∣∣∣∣∣
1/k

= 2n/2.

Using the assumption on (Bn)n, (`n)n, and (γn)n we obtain for all n ∈ N and all
k ∈N:

B1/k
n `n

kγn

(k!)1/k ≥ 2n/2.

Use the estimate k!≥ (k/e)k:

B1/k
n `nekγn−1 ≥ 2n/2.

Take binary logarithms on both sides:

1
k log(Bn)+ log(`n)+ log(e)+ (γn −1)log(k)≥ n/2.

Put k = 2
p

n:
1

2
p

n log(Bn)+ log(`n)+ log(e)+p
n(γn −1)≥ n/2.

Then at least one of the sequences (log(Bn))n, (`n)n, or (2γn)n has to grow at least
as fast as 2

p
n. It follows that the size of any sequence of names of (gn)n grows

super-polynomially.

33

	1 Introduction
	2 The Computational Model
	3 Representations of C([-1,1])
	4 Bounded division for piecewise polynomials
	5 Compositional Evaluation Strategies
	6 On the complexity of integration and maximisation for common functions
	7 Experiments
	7.1 Implementation
	7.2 Benchmarks and results

	A On the uniform complexity of division for functions in Gevrey's hierarchy

