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Abstract: Aggregation of the misfolded proteins β-amyloid, tau, huntingtin, and α-synuclein is one
of the most important steps in the pathology underlying a wide spectrum of neurodegenerative
disorders, including the two most common ones—Alzheimer’s and Parkinson’s disease. Activity and
toxicity of these proteins depends on the stage and form of aggregates. Excessive production of free
radicals, including reactive oxygen species which lead to oxidative stress, is proven to be involved in
the mechanism of pathology in most of neurodegenerative disorders. Both reactive oxygen species
and misfolded proteins play a physiological role in the brain, and only deregulation in redox state
and aggregation of the proteins leads to pathology. Here, we review the role of misfolded proteins in
the activation of ROS production from various sources in neurons and glia. We discuss if free radicals
can influence structural changes of the key toxic intermediates and describe the putative mechanisms
by which oxidative stress and oligomers may cause neuronal death.

Keywords: neurodegeneration; reactive oxygen species; β-amyloid; α-synuclein; tau protein; mutant
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1. Introduction

With an increase in life expectancy, the prevalence of age-related neurodegenerative diseases has
dramatically increased. Neurodegenerative disorders are associated with neuronal loss in specific
brain regions. This leads to a progressive decline in cognitive function (such as Alzheimer’s disease or
frontotemporal dementia) and/or movement (Parkinson’s disease, amyotrophic lateral sclerosis (ALS)).
Neurodegenerative disorders are mostly regarded as a sporadic disease and with genetic factors also
playing a role in disease pathogenesis. Importantly, the main characteristics for both sporadic and
familial forms of neurodegenerative disorders are the deposition and spreading of aggregated proteins,
oxidative stress, chronic neuroinflammation, and mitochondrial dysfunction, causing neuronal loss [1].

Oxidative stress is the oxidative damage of biological molecules which leads to abnormal function
and initiation of cell death. It is induced by an imbalance between the production of free radicals
(including reactive oxygen species (ROS)) and the efficiency of the antioxidant system [2]. ROS are
produced in the cells enzymatically (mitochondrial enzymes, NADPH oxidase, xanthine oxidase, etc.)
and non-enzymatically (UV) and play multiple physiological roles in the brain cells [3]. The reactivity
and toxicity of oxygen depends on its electronic structure. Kinetically stable oxygen contains the
identical spin states of its two outer orbital electrons. Partially reduced forms of oxygen which contain
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a free radical are very unstable and must either accept or be a donor of electrons. Considering this,
they are very active and have a very short lifetime. There are various partially reduced ROS including
oxygen radicals: superoxide (O2•−) and the hydroxyl radical (OH•). Although hydrogen peroxide
(H2O2), singlet oxygen (1O2), or ozone (O3) are non-radicals, they can be easily converted to free
radicals and also named “ROS”. High reactive activity of ROS and ability for fast chemical interaction
with biological molecules is adopted by cells for fast signaling or regulatory purposes, which is
controlled by a highly effective antioxidant system.

Overproduction of ROS or/and deregulation of the antioxidant system can lead to oxidation of
proteins, DNA, or lipid peroxidation that severely alter cell homeostasis.

Aggregated misfolded proteins are specific for each neurodegenerative disease: β-amyloid, which
forms extracellular senile plugs, and aggregates of tau protein (major component of intracellular tangles)
are the histopathological features of Alzheimer’s disease [4]. Parkinson’s disease is associated with
aggregated α-synuclein in intracellular occlusions called Lewy bodies in the brain stem, neocortical
regions, and spinal cord [5].

It should be noted that some of the aggregated proteins are not linked only to a specific disease.
Thus, α-synuclein aggregation (synucleinopathy) is also characterized as dementia with Lewy bodies
and multiple system atrophy [6], while tau aggregates are not specific for Alzheimer’s only and
appear in a number of neurodegenerative disorders, tauopathies, including primary age-related
tauopathy, progressive supranuclear palsy (PSP), frontotemporal dementia, and parkinsonism linked
to chromosome 17, Pick’s disease, and corticobasal degeneration [7]. Importantly, mutation in the
alpha-synuclein gene (SNCA) leads to Parkinson’s disease, and the Tau gene FTDP-17 with 10 + 16
MAPT mutation is shown to be linked to a familial form of frontotemporal dementia [8]. Familial
forms of Alzheimer’s disease are also associated with mutations in the production of β-amyloid [9],
confirming the importance of misfolded proteins in the development of pathology in neurodegenerative
diseases. One of the main histopathological features of Huntington’s disease is the aggregation of
huntingtin protein [10,11]. All these aggregates in the brain consist mostly of protein fibrils, which are
predominantly non-toxic, and more likely toxic small oligomeric forms of these proteins are the trigger
of cellular pathology and neurodegeneration in these diseases. Misfolded proteins could be seeded
and spread in neurons and some astrocytes in a prion-like mechanism [12].

Most of these proteins play a physiological role in monomeric form. Thus, α-synuclein is
shown to be important in synaptic transmission and mitochondrial bioenergetics [13–15]. Tau is a
microtubule-associated protein which also plays a role in stabilizing neuronal microtubules and thus
promotes axonal outgrowth [16]. Transformation to a toxic form for these proteins requires aggregation,
and for tau, phosphorylation is also needed. This is distinctive and a multifactual process which may
be dependent on the oxidative state of the cells, and an aggregated form of β-amyloid or α-synuclein
can be formed with metal-ions such as copper, iron, or zinc [17]. Transition metals can produce ROS,
and considering this, aggregated misfolded proteins require ROS for aggregation but can also be the
source of ROS production [18].

One of the major problems associated with neurodegenerative disorders is finding the biomarkers
for early diagnostics, and, importantly, both aggregated misfolded proteins and products of oxidative
stress are currently tested as potential biomarkers for neurodegenerative diseases.

In this review, we summarize the role of ROS and the products of oxidation in the mechanism of
pathology and misfolding and the accumulation of abnormally aggregated proteins.

2. α-synuclein and Oxidative Stress

The most common neurodegenerative movement disorder is also the second most common case
of dementia. Lewy bodies and aggregated α-synuclein are essential histopathological hallmarks
of degenerating neurons in the brains of patients with Parkinson’s disease, but also for a group
of neurodegenerative disorders, a variety of clinical syndromes underlies, including movement
disorders/parkinsonism (Parkinson’s disease, pantothenate kinase-associated neurodegeneration),
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dementias (dementia with Lewy body and Parkinson’s disease dementia), and autonomic dysfunction
(pure autonomic failure, multiple system atrophy).

The role of oxidative stress in the pathology of Parkinson’s disease was established in toxic (MPP+)
models and cells from sporadic Parkinson’s patients [19,20].

There is a growing number of publications demonstrating the importance of synucleins and,
particularly, α-synuclein in physiology. In fact, the physiological form of α-synuclein is non-toxic and
does not activate ROS production in neurons and glia [21,22]. The monomeric form of α-synuclein is a
soluble protein which aggregates to a structure which forms insoluble Lewy body fibrils via several
conformational changes including the most toxic oligomeric intermediates.

Although α-synuclein is an intracellular protein, all forms (monomeric, oligomeric, and fibrillar)
are able to pass through plasma and intracellular membranes [21,23]. Importantly, application of
different forms of α-synuclein to primary neurons or human neurons induced ROS production and
a decrease in the level of endogenous antioxidant (GSH) only when the toxic oligomeric form was
present [21,22]. Oligomer-induced ROS production and oxidative stress were shown to be independent
of inhibitors of NADPH oxidase and xanthine oxidase, and importantly, monomers, oligomers, and
fibrils had no effect on the rate of ROS production in mitochondria that suggests a non-enzymatic
way of ROS production [22,24,25]. Oligomers, in contrast to monomers and fibrils, can produce ROS
in vitro by themselves (Figure 1) [26]. Importantly, α-synuclein (oligomer)-induced ROS production in
salt solution or in cells can be blocked by chelators of copper, iron, or zinc [22,26]. This ROS production
is less likely to be produced only by transition metals in the medium, because the same medium was
used for monomers and fibrils which did not produce ROS and is possibly connected to some structural
changes in the α-synuclein molecule induced by these metals ions, although α-synuclein binds these
metals in very small amounts [27–29].
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Figure 1. Effect of oligomeric α-synuclein on the redox balance in neurons. α-Synuclein-induced
reactive oxygen species (ROS) lead to decreased endogenous antioxidant (GSH), lipid peroxidation,
and oxidation. Although oligomeric α-synuclein has no effect on ROS production in mitochondria,
α-synuclein produced ROS oxidase mitochondrial proteins including subunits of F1-F0-ATPase.
In combination with calcium overload, it induces mitochondrial permeability transition pore (mPTP)
opening and cell death.

This ability of oligomeric α-synuclein to generate ROS may be important in the mechanism of
neurotoxicity. Thus, α-synuclein can form ion channels and initiate calcium signal in neurons and
astrocytes (Figure 1) [30,31]. Interaction of oligomers with lipids leads to lipid peroxidation [32], and
oxidized lipids increase the α-synuclein-induced channel formation and calcium signal [33].
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Although α-synuclein has no effect of ROS production in mitochondria, ROS produced by
oligomeric α-synuclein target mitochondrial function. Physiological monomeric α-synuclein binds
to F0-F1-ATPsythase and increases efficiency in ATP production [14]. Oligomeric α-synuclein binds
to the same subunit of this mitochondrial enzyme. Most of ROS toxicity, due to their short lifetime,
is mainly limited to the site of their origination. Production of superoxide by oligomer oxidizes proteins
of F0-F1-ATPsynthase and in combination with mitochondrial calcium overload leads to forming
and opening of the mitochondrial permeability transition pore and consequently to cell death [26].
It should be noted that oligomeric α-synuclein is involved in triggering apoptosis [32], necrosis [24,26],
and ferroptosis [33].

Although acute action of α-synuclein did not induce any effect on enzymatic ROS production in
neurons and astrocytes, in human neurons withα-synuclein triplication, part of the ROS overproduction
was sensitive to inhibitors of NADPH oxidase [22]. Importantly, oligomeric α-synuclein or oligomers
with A53T and A30P mutations are shown to be activators of NADPH oxidase in microglia that trigger
inflammation [34,35]. In agreement with that, it was shown that inhibiton of NADPH oxidase apocynin
prevents learning and memory deficits in a mouse Parkinson’s disease model [36]. Selective activation
of NADPH oxidase by α-synuclein in microglia compare to other cell types could be potentially
explained by direct integration of extracellular oligomers with the microglial P2X7 receptor [37].

Oligomeric α-synuclein binds with chaperons that change activity of this protein including its
ability to produce ROS [38] that can be neuroprotective. However, this ability may have a negative
effect on cell function as well. Thus, oligomeric α-synuclein interacts with the Hsp70 system that
inhibits the chaperone activity by weak interactions with J-domain co-chaperones that may contribute
to the disruption of protein homeostasis, impair organellar function, and contribute to the mechanism
of neurodegeneration in Parkinson’s disease [39], but on the other hand, it can be a part of a natural
neuronal control strategy to suppress α-synuclein aggregation [40].

Such an intensive α-synuclein-induced production of ROS in the cells lead to oxidation of DNA
and activation of DNA repairing enzymes. Thus, ROS activates poly (ADP-ribose) polymerase
(PARP) activity in Parkinson’s disease-related Fbxo7-deficient cells that induce alteration of the energy
metabolism via depletion of the NAD+ content [41]. Oligomeric and mutated α-synuclein activates
PARP-1, generating PAR that accelerates the further formation of pathologic α-synuclein, resulting in
cell death via parthanatos (poly ADP ribose polymerase-mediated cell death). Importantly, a high
level of PAR is shown in cerebrospinal fluid of patients with Parkinson’s disease [42].

3. Tau, Tauopathies, and Oxidative Stress

Tauopathies, including progressive supranuclear palsy, corticobasal syndrome, most frontotemporal
dementias, chronic traumatic encephalopathy, and importantly, Alzheimer’s disease, are progressive
neurodegenerative disorders with tau deposits as a histopathological feature in the brain. Although
intracellular tangles were known in Alzheimer’s for decades, only in 1975, a protein contaminant that
co-purified with microtubules was identified which was later associated with pathological tangles and
named tau [43,44].

Tau is a microtubule-associated protein (MAP) that is encoded by the MAPT gene. This protein
is known to interact with α- and β-tubulin in aid of microtubule assembly. With age, tau enriches
and aggregates in axons and dendrites. Tau can exist in six isoforms generated through alternative
mRNA splicing and can be phosphorylated at multiple possible sites [45]. Phosphorylation may lead
to oligomerization, and this transition from an intrinsically disordered monomer to a highly structured
filament is recognized to drive pathogenesis in tauopathies [46]. Tau aggregates exhibit cell–cell
transfer that leads to seeding and further aggregation, which underpins the region–region spread of
disease in tauopathies [46].

Application of extracellular tau at different stages of aggregation to cortical co-cultures of neurons
and astrocytes showed that only insoluble aggregates of tau are able to induce ROS production by
activation of NADPH oxidase via a calcium-dependent way (Figure 2) [47]. However, it was not
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associated with a decrease in the level of GSH and could be associated with physiological processes.
Possibly, it can activate tau production because antioxidants and NADPH-oxidase (NOX) inhibitors
are shown to effectively reduce the expression of tau and MAP2 [48]. Activation of NADPH oxidase in
combination with membrane-active properties of tau aggregates induced neuronal cell death [47].
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Figure 2. Phosphorylated tau forms a channel on the neuronal membrane and induces a calcium signal
which activates ROS production in NADPH oxidase. Tau aggregates inhibit mitochondrial respiration
and induce ROS overproduction in this organelle.

Tau protein effectively induces ROS production in mitochondria. Thus, in human iPSC-derived
neurons with the 10+16 intronic mutation in MAPT gene (FTDP-17) encoding tau, mild inhibition
of mitochondrial complex I switches the F1F0 ATPase to reverse mode for maintenance of the
mitochondrial membrane potential [49]. This type of maintenance of mitochondrial potential in cells
with complex I inhibition may lead to mitochondrial hyperpolarization which induces excessive ROS
production (Figure 2) [50]. This mechanism of ROS overproduction in mitochondria in neurons with
FTDP-17 triggered cell death which could be prevented by incubation of these cells with mitochondrial
antioxidants [49]. Importantly, these neurons are associated with altered electrophysiology which can
also be damaged by oxidative stress [51]. Similar mechanisms of oxidative stress via mitochondrial
ROS overproduction were found in mesenchymal stem cells (MSCs) derived from the bone marrow
of patients with another form of tauopathy–progressive supranuclear palsy [52]. Hippocampal
phosphorylated tau in tau mice with P301L mutation also induced mitochondrial disfunction resulting
in ROS (hydrogen peroxide) production and lipid peroxidation, which was shown to be the trigger for
neuronal loss [53,54].

Potentially, mitochondrial antioxidants could have a positive effect in these forms of tauopathies,
although normalization of the mitochondrial metabolism and ROS production by Nrf2 activation can
also be effective as a therapeutic strategy for these diseases [55,56].

Various antioxidants are shown to be effective in cellular and mouse models of Alzheimer’s
disease, including hyperphosphorylated tau models. However, it is not clear if these antioxidants
reduce the oxidative damage produced by tau or decrease the ROS-reduced hyperphosphorylation of
tau in these models of tauopathy [57].

4. β-amyloid and Oxidative Stress in the Mechanism of Neurodegeneration

The most common neurodegenerative disorder was described more than 100 years ago by Alois
Alzheimer but still remains uncurable. Alzheimer’s disease is the most common case for dementia
in older people. Although symptoms of sporadic Alzheimer’s disease start to appear after 60 years
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of age, the actual neurodegenerations occur years earlier. Oxidative stress has been proven to be
one of the major triggers for Alzheimer’s disease pathology for decades. Thus, products of lipid
peroxidation were shown to be elevated in blood samples and brain autopsy of patients of Alzheimer’s
disease [58,59]. β-amyloid is a main component of the senile plaques which are surrounded by
activated microglia which could already be proof of involvement of this peptide in the initiation of
the ROS production. β-amyloid is produced from the amyloid precursor protein by a cleavage by β-
and γ-secretase generating a peptide ranged between 39 and 43 amino acid residues long, where the
hydrophobic nature of β-amyloid 1-40 and 1-42 promotes self-aggregation and neurotoxicity.

There is a link between β-amyloid and redox metal dysregulation, which was supported by
post-mortem analysis of amyloid plaques, which revealed accumulation of copper, iron, and zinc [60].
Considering the involvement of redox metals in the accumulation of β-amyloid, the generation of ROS
by complex β-amyloid-transition metal was suggested [61]. It can be partially confirmed by the effects
of heavy metal chelators on the β-amyloid-induced oxidative stress; however, it can also be explained
by the structural changes of β-amyloid in the absence of metal ions. The second hypothesis is more
probable because production of ROS by β-amyloid by itself in vitro was not shown [62].

β-amyloid more effectively incorporates in the membranes of astrocytes and forms pores which
can stimulate a calcium signal because of a higher cholesterol level in these cells compared to neurons
(Figure 3) [63,64]. A β-amyloid-induced calcium signal in astrocytes activates NADPH oxidase in these
cells that induces GSH decrease, activation of DNA-repairing enzyme poly(ADP-ribose) polymerase,
mitochondrial depolarization, and neuronal cell death (Figure 3) [65–67]. Importantly, β-amyloid is
neurotoxic and is able to stimulate a calcium signal and activate NADPH oxidase only in oligomeric
but not in monomeric or fibrillar form. Oligomers can be active even in picomolar concentrations [68].
The hormone melatonin, which is decreased with age, also possesses antioxidant properties. Melatonin
can suppress the action of β-amyloid on the ROS production and neurotoxicity [69,70].
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β-Amyloid-induced NADPH oxidase activation in combination with generation of nitric oxide
can stimulate peroxinitrite generation which is a trigger for neurotoxicity [71,72].

However, the effect of β-amyloid on ROS production and the level of endogenous antioxidants
depend on the aggregation and on the cell type—it predominantly activates ROS production in
microglia and astrocytes that induce oxidative stress and cell death in neurons.
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5. Huntingtin and Oxidative Damage

Huntington’s disease is a devastating neurodegenerative disorder characterized by chorea motor
impairment and gradual intellectual decline which lead to psychiatric illness, pathologically by loss of
long projection neurons in the cortex and striatum [73]. This disease is associated in with mutations
in the huntingtin protein (Htt) characterized by multiple CAG (Gln) repeats. The expansion of
polyglutamine repeats leads to altered Htt conformation, which activates aggregation of this protein.
As a result of this specific mutation, the protein huntingtin is modified—mutant huntingtin protein
(mHtt). The mHtt or its fragments are capable of initiating a damage cascade of molecular processes,
which ultimately results in mitochondrial dysfunction, formation of ROS, and elevated oxidative
stress [74–79]. Oxidative damage has been confirmed by immunohistochemical data and in biochemical
tests in patients with Huntington’s disease [80–82].

Intracellular protein aggregation directly causes free radical production and subsequent cellular
damage, with ROS production dependent on the amount of glutamine residues [83]. Mutant huntingtin
causes aberrant transcription regulation by binding to several transcription regulators and disrupting
their function. Mitochondrial disorders in Huntington’s disease can go by reducing the expression of the
main metabolic co-regulator, which plays an important role in suppressing oxidative stress–PGC-1α [84].
Several mechanisms of supposed PGC-1α-mediated stress are described. Cui et al. demonstrated that
mHtt prevents the CREB/TAF4 complex formation that regulates the transcription and expression of
the PGC-1α gene [85].

mHtt induces the production of ROS mainly in mitochondria by direct interaction with
mitochondrial proteins, as translocase of the inner membrane 23, disrupting mitochondrial proteostasis
and inducing ROS production; considering this, mitochondrial and redox-based therapeutic strategies
are intensively discussed for Huntington’s disease [86].

Another major producer of ROS in Huntington’s disease is NADPH oxidase. Thus, polyQ-expanded
proteins, including native huntingtin, are interact with gp91, the major membrane NADPH-oxidase -2
subunit [87].

One important function of the p53 protein is its involvement in antioxidant protection through
activation of a group of genes, encoding a set of antioxidant proteins [88]. The pathogenic domain of
mutant Htt interacts with critical cellular transcription factors and potentially modulates p53-induced
transcriptional events in cells [89].

Another possible way to influence mHtt by oxidative stress is to disrupt the expression of
cystathionine γ-lyase (CSE) by sequestration of SP1, the main transcription factor for CSE [90,91].
Low levels of CSE and cysteine transporters lead to decreased levels of cysteine in cells, leading to
increased oxidative stress.

Another evidence that huntingtin may induce oxidative stress not through overproduction of
ROS but by decrease in the level of antioxidant defense is shown for full-length mutant Htt (FL-mHtt).
Thus, cells with expression of FL-mHtt are shown to have decreased glutamate-cysteine ligase and
glutathione synthetase activities suggesting decreased de novo synthesis of glutathione. In combination
with inhibition of activity of the multidrug resistance protein 1 which mediates cellular export of
glutathione conjugates, it maintains GSH-related antioxidant defense mechanisms insufficiently to
protect cells against basic ROS production [92].

Another possible way of participation of mHtt in the development of oxidative stress is the
decrease in expression of a transcription factor, the nuclear factor -κB (NF-κB), which mediates
antioxidant and antiapoptotic signaling as a response of the endoplasmic reticulum to a stress [93].

It has been reported that mHtt fragments bind to the translocase of the inner mitochondrial
membrane 23 (TIM23) complex and inhibit the mitochondrial protein import by altering the
mitochondrial proteome, leading to mitochondrial dysfunction [94,95].

Mutant huntingtin significantly decreases the Ca2+ threshold and directly induces the opening of
the mitochondrial permeability transition pore (mPTP) [96–98].
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The balance of mitochondrial fission and fusion is significantly impaired in Huntington’s
disease, leading to accumulation of fragmented and damaged mitochondria followed by increased
oxidative stress [99]. It is believed that the disruption of the mitochondrial fission–fusion balance and
mitochondrial transport along axons and dendrites occurs through direct interaction of mHtt with
Drp1 [100,101] or through modulation of S-nitrosylation of Drp1 [102].

6. Conclusions

There is a growing number of publications reporting evidence of the involvement of misfolded
proteins in the mechanism of oxidative damage in neurodegenerative disorders. Despite the fact
that most of the aggregated proteins have a strong effect of oxidative stress, the mechanism of ROS
production or the effect on the antioxidant system is different. Thus, the most active among the
misfolded proteins is the β-amyloid which activates ROS production in microglia and astrocytes via
the activation of NADPH oxidase; oligomeric α-synuclein can generate ROS by itself, while tau and
huntingtin activate the production of ROS in the mitochondrial electron transport chain. This excessive
ROS production targets various pathways that lead to differences in the types of neurodegeneration.

Although implication of the aggregated misfolded proteins in ROS production and oxidative stress
in neurodegeneration is clearly stated by a number of publications on different levels—from single
molecules to in vivo models and patient post brain samples—all clinical trials in neurodegenerative
disorders based on antioxidant therapy were unsuccessful. This phenomenon is typical not only for
neurodegenerative disorders and related to many factors, including antioxidant delivery, quenching of
the antioxidant properties before it reaches the oxidized area, etc. Considering this, it is difficult to
generalize an antioxidant strategy for these disorders, and therefore, each neurodegenerative disease
demands a highly targeted treatment. Non-antioxidant, targeted protection against oxidative stress,
including transition metal chelators, compounds which modify oligomeric structure and inhibitors of
enzymatic ROS production (such a NADPH oxidase) may potentially have a strong therapeutic effect
against neurodegenerative disorders, and these directions are now rapidly developing. Although
misfolded proteins activate ROS production and induce oxidative stress, these processes cannot be
separated from other mechanisms which occur in the brain during the development of pathology.
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