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a  b  s  t  r  a  c  t

TiO2 thin films were deposited on woven stainless-steel mesh by pulsed DC magnetron

sputtering, at room temperature without substrate bias or annealing. Woven stainless-steel

mesh is inexpensive, flexible, semi-transparent and has a high surface area. This coat-

ing/substrate combination was selected for future photocatalytic reactor integration. The

effect of operating pressure and magnetron power on coating crystallinity and photocat-

alytic  activity were investigated. Results indicate that magnetron power is a key factor, as

it  affects the crystallinity and morphology of the thin films. A combination of low pressure

and high-power lead to a one-step synthesis of TiO2 coatings with a mixed anatase and

rutile phase. An optimised sample was produced and tested for methylene blue, methyl

orange and rhodamine B decomposition under UV-A. Using various trapping agents, •OH

and  O2
-• radicals were identified as the main photogenerated species responsible for the

model  pollutant degradation. Finally, durability tests revealed little to no photocatalytic

performance deterioration after ten repeated cycles. This confirmed the suitability of this

coating/substrate combination for future photocatalytic reactor integration.

https://doi.org/10.1016/j.cviu.2017.00.000

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the

CC  BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.  Introduction

It was estimated that, in 2015, 844 million people still lacked
basic access to drinking water, while 711 million people used
inadequately treated sewer connections [1]. As a result, one

∗ Corresponding author.
E-mails: marina ratova@hotmail.com, m.ratova@mmu.ac.uk (M. Ratova).

child dies from contaminated water every two minutes [2].
These deaths are preventable and highlight the need for new
and reliable methods to treat unsanitary water. Photocataly-
sis is an advanced oxidation process, which uses solar energy
to mineralise organic compounds. It is a cost effective, simple
and sustainable method for water or air purification [3].
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Nomenclature

RMS  Reactive magnetron sputtering
CPC Compound parabolic collectors
UV-A Ultraviolet A (315−400 nm)
MB Methylene blue
MO Methyl orange
RhB Rhodamine B
DC Direct current
TMP  4-hydroxy TEMPO (4-Hydroxy-2,2,6,6-

tetramethylpiperidine 1-oxyl)
IPA Isopropyl alcohol
SO Sodium oxalate
SN Sodium nitrate
SEM Scanning electron microscopy
XPS X-ray photoelectron spectroscopy
SZM Structure-zone model
T/Tm Ratio of substrate temperature to melting tem-

perature
AVG Average
STD Standard deviation

To date, the most widely used photocatalyst remains crys-
talline titanium dioxide, whose properties were discovered by
Fujishima and Honda in 1969 [4]. When irradiated by a light
source with an energy equal or greater to its bandgap (3.20 eV)
[5], crystalline titanium dioxide generates electron-hole pairs.
These excitons react at the surface of TiO2, with surrounding
molecules to form reactive species, such as hydroxyl (•OH) and
superoxide (•O2

−) radicals, capable of mineralising organic
compounds. TiO2, also known as titania, is non-toxic, stable,
inexpensive and has been widely used for various applica-
tions, such as water electrolysis, dye-sensitised solar cells,
air/water purification, self-cleaning coatings, non-spotting
glass, self-sterilising coatings, etc. [6–11].

TiO2 thin films can be produced via chemical vapor deposi-
tion, sol-gel, pulsed laser deposition, solvothermal synthesis,
etc. [12–15]. TiO2 and other photocatalysts are often produced
and tested as powders [16–18]. Although efficient, the treated
wastewater must be separated from the photocatalytic pow-
der, with expensive membranes, to recover the photocatalyst
and safely discharge the treated water.

Reactive magnetron sputtering (RMS) has the advantage of
directly immobilising the catalyst on the substrate, facilitat-
ing the catalyst recovery. This process is reproducible, scalable,
produces uniform films and provides great control over chemi-
cal and morphological properties [19]. Unfortunately, TiO2 thin
films deposited by RMS  are often amorphous when produced
without substrate bias [20], radio frequency power supplies
[20,21], substrate heating [22] or post-annealing [23–25].

Ratova et al., successfully deposited anatase on glass via
RMS  without any of these, using relatively elevated working
pressures to drive the sputtering process [26]. Herein, a sim-
ilar set of conditions were used to not only investigate the
influence of pressure, but also power, on the crystallisation
process.

Stainless steel 304 L woven mesh was chosen as a substrate,
for its high surface area, low cost, flexibility, porosity to light

and tolerance for high temperatures [3]. This coated stainless
steel mesh could easily be integrated in a compound parabolic
collector, for efficient photocatalytic waste water treatment
[27,28]. As the substrate is semi-transparent, several layers of
mesh could be stacked inside the photoreactor, to increase the
catalyst load whilst maintaining light permeability.

Herein, the crystallinity and photocatalytic activity of 9
samples, coated at varying levels of working pressure and
power were investigated. Consequently, an optimised sample
was prepared under working pressure and power conditions
believed to maximise photocatalytic activity. This optimised
sample was tested for methylene blue (MB), methyl orange
(MO) and rhodamine B (RhB) degradation under UV-A. These
dyes respectively belong to the xanthene, azo and thiazine
families and account for almost 90% of the research, in the
field of dye photodecomposition. Evaluating the performance
of a photocatalyst using a single dye does not validate the
performance of a photocatalyst in real-world conditions [29].
Testing a set of different dyes partially negate this effect and
is, therefore, recommended to confirm the efficiency of a pho-
tocatalyst.

The present work describes a parametric study of TiO2

deposition on woven stainless-steel mesh via pulsed DC RMS.
Herein, a combination of high sputtering power and low oper-
ating pressure were identified as the optimum conditions,
to obtain a mixture of anatase and rutile titanium dioxide,
in a one-step process. Obtaining such coatings on woven
stainless-steel mesh, without post treatment or expensive
equipment could provide a route towards high scale produc-
tion of stainless-steel mesh-based photocatalytic reactors.

2.  Materials  and  methods

2.1.  Deposition

Titanium dioxide thin films were deposited with a Nordiko
sputtering rig [30] (schematic representation of the rig is given
in Figure S1, Supplementary material), under a high vac-
uum, achieved through a combination of rotary (BOC Edwards
80) and turbo molecular (Leybold TMP1000) pumps. A single
300 × 100 mm titanium target (99.5% purity) was fitted on a
Gencoa Ltd unbalanced type II magnetron [19]. The distance
between the target and the substrate was 50 mm.  The argon
flow rate was kept constant at 50 sccm for all deposition runs.
The oxygen flow was regulated by a Speedflo®TM controller
from Gencoa Ltd, to produce stoichiometric films whilst min-
imising target poisoning. The magnetron was powered by an
Advanced Energy Pinnacle Plus power supply, in pulsed DC
mode, operating at a frequency of 100 kHz and 60% duty. TiO2

thin films were deposited onto square sheets of stainless-
steel 304 L mesh (3 × 3 cm2), with an aperture of 0.41 mm and
a wire diameter of 0.22 mm;  the substrate was ultrasonically
pre-cleaned in acetone. All chemicals used were purchased
from Sigma Aldrich, unless stated otherwise. Power delivered
to the target and the operating pressure, were varied along
three levels, as described in Table 1. The samples were pro-
duced in the following randomized order: No. 3, 4, 5, 1, 9, 8, 6,
2 and 7 and the deposition time was fixed at two hours. The
chamber pressure was varied by adjusting the aperture of the
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Table 1 – Parameters used for each deposition.

Sample Pressure (Pa) Power (W)

No.1 0.44 250
No. 2 0.44 500
No. 3 0.44 750
No. 4 1.77 250
No. 5 1.77 500
No. 6 1.77 750
No. 7 3.10 250
No. 8 3.10 500
No. 9 3.10 750

No. 10 0.44 1000

gate valve between the turbomolecular pump and the cham-
ber. These power and pressure ranges were chosen to ensure
plasma stability. An additional optimised coating, termed No.
10, was produced under conditions predicted to yield superior
photocatalytic activity.

2.2.  Characterisation

The thin film morphology was evaluated by scanning elec-
tron microscopy (SEM) using a Zeiss Supra 40 VP-FEG-SEM.
The composition was determined by energy-dispersive X-ray
spectroscopy (EDX), with an EDAX Trident system installed on
the FEG-SEM. Strands of the mesh were partly cut through
and subsequently fractured to reveal their cross-sections and
measure the coatings’ thicknesses. The thin films’ crystallinity
was assessed by X-ray diffraction (XRD), on a Panalytical Xpert
system. CuK� radiation at 0.154 nm was used, in grazing inci-
dence mode at 3◦, over a scan range from 20 to 70◦ 2�. The
accelerating voltage and applied current were set to 40 kV and
30 mA respectively. Raman mapping was performed on sam-
ples determined to be crystalline by XRD, with a DXR Raman
microscope from Thermo Scientific. The laser was operated
at a wavelength of 532 nm,  with a power of 10 mW,  900 lines
per mm grating, a long working distance microscope objec-
tive with magnification of 50, an estimated spot size of 1.1 �m
and a 25 �m pinhole. 1677 Raman spectra were acquired using
a step size of 100 �m along the Y and X axes. The oxida-
tion state information was obtained using X-ray photoelectron
spectroscopy (XPS), performed with an AMICUS photoelectron
spectrometer (Kratos Analytical Ltd.) equipped with Mg  K X-
rays as the primary excitation source. The binding energy was
referenced to the C 1s line at 284.8 eV for calibration. Curve
fitting was performed applying a Gaussian function with a
Shirley background. The average roughness (Ra) of the coated
and uncoated stainless-steel mesh samples were measured
using a white light interferometer Profilm3D from Filmetrics,
with a magnification of 50. Three images were obtained on
random areas of the mesh and were averaged to find the Ra
(ISO 4287).

2.3.  Methylene  blue  degradation

The photocatalytic properties of the produced samples were
first assessed and compared by monitoring their ability to

degrade methylene blue (MB), under UV-A light. Schematic
representation of the testing set-up and emission spectrum
of the light source used are given in the Figures S2 and S3
of Supplementary material, respectively. In brief, samples
were placed on top of a sample holder, in a quartz cuvette
filled with 50 mL  of methylene blue solution (2 �mol/L), pur-
chased from Alfa Aesar. The samples were left in the dark
for 60 min  under continuous stirring, to reach adsorption-
desorption equilibrium. Then, they were irradiated by a UV-A
source (2 × 15 W Sankyo Denki BLB lamps, peaked at 365 nm)
for 60 min. The source’s integrated irradiance was measured
at 273 W/m2. The methylene blue main absorption peak
(664 nm)  was monitored with an Ocean Optics USB4000 UV–vis
spectrometer. The pseudo-first-order rate constant k� was
obtained by plotting Ln(Ao/At) against the time, by calculat-
ing the gradient of the plot [26]. The obtained k� values were
used to compare the photocatalytic activity of each sam-
ple.

2.4.  Investigation  of  the  photogenerated  species  via
trapping  reactions

The optimised sample No.10 was tested for its ability to
degrade methyl orange (MO), in the presence of different
scavengers. The following trapping agents were employed:
isopropanol for •OH [31–33], 4-hydroxy TEMPO for O2

−•

[31,34], sodium oxalate for h+ [35,36] and sodium nitrate
for e- [37]. Methylene blue having a complementary colour
to 4-hydroxy TEMPO, it formed a green solution when
mixed. To prevent possible self-photosensitization effects
due to coloured substance interactions [38], methyl orange
(MO) was chosen instead. Sample No. 10 was placed on
top of a sample holder in a quartz cuvette, immersed
in a 50 mL  solution of methyl orange (1.5 �mol/L) in the
presence of each scavenger (7 mmol/L). The sample was
left in the dark for 60 min  under continuous stirring, to
reach adsorption-desorption equilibrium. The same irradia-
tion source described in 2.3, was used to illuminate the sample
for 1 h. The main absorption peak of methyl orange (465 nm)
was monitored with an Ocean Optics USB4000 UV–vis spec-
trometer.

2.5.  Reusability  assessment

The reusability of sample No. 10 was evaluated by testing its
ability to degrade rhodamine B (RhB), a dye known to be more
resilient to photocatalytic degradation than methylene blue
[39]. Afterwards, the sample was washed with distilled water,
dried with compressed air and the operation was repeated
with the same sample 9 more  times. Sample No. 10 was placed
on top of a sample holder, in a 100 mL  beaker and immersed
in a 50 mL solution of rhodamine B (2 �mol/L). The sample
was left in the dark for 60 min  under continuous stirring, to
reach adsorption-desorption equilibrium. The same irradia-
tion source, as described in 2.3, was used to irradiate the
sample for 1 h. The main absorption peak of rhodamine B at
554 nm was measured before and after UV-A exposition with
a Cary 300 UV–vis spectrophotometer.
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Fig. 1 – FE-SEM micrographs at different magnifications of (A, B) sample No. 3 (500 W – 1.77 Pa) and (C, D) sample No. 5
(750 W – 0.44 Pa), TiO2 thin films on woven stainless-steel mesh prepared by RMS.

Fig. 2 – FE-SEM micrographs of the cross-section of (A) sample No. 3 (500 W – 1.77 Pa) and (C, D) sample No. 5 (750 W –
0.44 Pa), TiO2 thin films on woven stainless-steel mesh prepared by RMS.

3.  Results  and  discussion

3.1.  Characterisation  of  TiO2 coated  mesh  samples

Scanning electron microscopy revealed the presence of two
distinct coating morphologies. The first one, observed for sam-
ples No.1, 2, 4, 5, 6, 7, 8 and 9 is a dense cauliflower-like
structure, as illustrated by the surface micrograph of sample
No. 5 prepared at 500 W – 1.77 Pa (Fig. 1A, B). The second mor-
phology, only observed in sample No. 3 (750 W – 0.44 Pa), is
a dense mixture of cauliflower-like and crystal-like features
(Fig. 1C, D). A dense columnar structure was identified across
all samples, as shown for samples No. 3 and No. 5 (Fig. 2).

The substrate was identified as a mixture of Fe4.00 and Fe2.00

from the JCPDS cards 96-900-8470 & 96-901-3476, respectively
(Fig. 3). Crystalline TiO2 diffraction peaks were only identi-
fied in sample No.3 (Fig. 3). Anatase peaks at 25.4◦ (101), 37.9◦

(004), 53.9◦ (105) and 55.3◦ (211) were identified with the JCPDS
card 96-720-6076, while a rutile peak was identified at 27.4◦

(110) with the JCPDS card 96-900-4145. The other samples did
not show any detectable peaks, which may indicate that they
are amorphous or nanocrystalline, with crystallites below the
detection limit of the XRD system used here.

The Raman mapping performed on sample No. 3 (750 W
– 0.44 Pa) revealed the presence of anatase on every thread
of the stainless-steel mesh (Fig. 4). The coating seems to be
homogeneously distributed, despite the substrate’s complex
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Fig. 3 – XRD patterns of TiO2 thin films deposited onto stainless steel mesh.

Fig. 4 – Raman mapping sample No.3 produced at 750 W – 0.44 Pa (A) corresponding Raman spectrum (B).

geometry. This analysis was not performed on other samples
because of their amorphous or nanocrystalline nature.

Chemical states of the elements were studied with X-ray
photoelectron spectroscopy; Gaussian functions were used for
deconvolution of the individual peaks. Selected examples of
the elements XPS spectra for sample No. 3 (750 W – 0.44 Pa)
and No. 7 (250 W – 3.10 Pa) are presented in Fig. 5A, D. As
expected, survey spectra of both samples No. 3 (Fig. 5A) and
No. 7 (Fig. 5D), only revealed Ti 2p, O 1s and C 1s peaks. The
latter one is due to adventitious carbon on the surface; the
binding energies of the other elements were referenced to this
peak at 284.8 eV. High resolution spectra of the Ti 2p shown
in Fig. 5B and E of samples No. 3 and No. 7, respectively, had
no significant variations, regardless of the sputtering condi-
tions used. On these spectra of Ti 2p, the peak positioned at
458.3 eV corresponds to Ti 2p3/2, while the peak at 464.1 eV can
be assigned to Ti 2p1/2; the positions of both peaks are in good

agreement with the positions of Ti in TiO2, indicative of the
fact that Ti atoms are in the form of the Ti4+ valence state.
High resolution spectra of O 1s of selected samples No. 3 and
No. 7 are given in Fig. 5C and F, respectively. All high-resolution
oxygen spectra can be deconvoluted into two peaks, where the
peak at 529.5 ± 0.3 eV can be attributed to the lattice oxygen
and the peak at 531−533 eV (marked Oa in Fig. 5) is typically
attributed to the presence of adsorbed O2 and/or H2O (−OH) on
the surface of TiO2 films [40,41]. It is evident that increasing the
power applied to the titanium target to 750 W for sample No.
3 resulted in increased intensity of the lower binding energy
peak and weaker adsorbed oxygen peak. This can be used as
a confirmation of the fact that higher sputtering powers lead
to more  energetic conditions at the substrate and therefore
transformation of adsorbed oxygen into Ti-O bonds; similar
phenomenon was reported by Zhou et al. [41] who  studied
preparation of TiO2 by thermal oxidation of sputtered tita-
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Fig. 5 – Selected XPS spectra of titanium dioxide coatings: (A) survey spectrum of sample No. 3; (B) Ti 2p spectrum of sample
No. 3; (C) O 1s spectrum of sample No. 3; (D) survey spectrum of sample No. 7; (E) Ti 2p spectrum of sample No. 7; (F) O 1s
spectrum of sample N. 7.

Fig. 6 – MB  pseudo first rate order degradation kinetics
calculated for every TiO2 coated and uncoated woven
stainless-steel mesh samples.

nium. A similar trend in high resolution spectra of oxygen
(decrease of absorbed oxygen peak with increased sputtering
power) was observed for the other studied samples (results are
not shown).

3.2.  Photocatalytic  activity  evaluation  of  the  TiO2

coated  mesh  samples

Table 2 summarises the studied properties of the uncoated
and TiO2 coated stainless steel mesh samples. When consid-
ering 9 combinations of the variable sputtering conditions,
sample No. 3 stands out as the only crystalline sample, which
explains its significantly higher MB  degradation rate (Fig. 6). As
shown in Table 2, the measured thickness of the coated mesh
varied from < 200 nm to > 800 nm.  The measured roughness
of the samples was of the same magnitude as the uncoated

mesh. Therefore, the photocatalytic performances of the coat-
ings were compared directly with no additional factor required
for the effect of surface area. The results seem to suggest
that increasing the target power and reducing the operat-
ing pressure tend to favour the crystallisation of TiO2, with
an associated increase in photocatalytic activity. Although no
XRD peaks were observed for all runs except sample No. 3, the
fact that photocatalytic activity was measured for the other
samples does suggest that they may possess nano crystallites
(Figs. 7 and 8).

3.3.  Crystallisation  process  investigation

During RMS deposition, the growing film is bombarded with
energetic ions from the plasma. Substrate bombardment by
high energy ions can provide sufficient mobility to the sput-
tered adatoms, to produce crystalline thin films without
additional substrate heating [42,43]. Alfonso et al. studied the
crystallinity of ZrNxOy thin films sputtered at different powers
and, similarly to our results, found out that a power threshold
had to be reached to obtain a crystallised structure. This effect
was attributed to the increased ion bombardment [43].

To investigate this, the current drawn at the substrate
holder during selected run conditions was estimated using
a biased probe. For each set of conditions, the bias voltage
applied to the probe was increased progressively using an
Advanced Energy MDX power supply. The current drawn at
the substrate was recorded from the power supply. Two sets
of conditions were tested; pressure fixed at 0.44 Pa and power
varied from 250 to 750 W (Fig. 7A) and power fixed at 750 W
and pressure varied from 0.44 to 3.10 Pa (Fig. 7B). According to
probe theory [44], without any potential applied to an electri-
cally isolated probe facing a plasma, the net measured current
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Table 2 – Overview of the TiO2 coating properties and photocatalytic activity.

Sample Thickness (nm) Ra (�m) Crystalline phase k� (10−5 s-1) R2

Control – 0.340 – 1.30 0.93
No. 1 0.230 0.460 Amorphous 1.91 0.97
No. 2 0.260 0.290 Amorphous 1.52 0.85
No. 3 0.830 0.140 Anatase & rutile 4.50 0.94
No. 4 0.180 0.400 Amorphous 2.36 0.96
No. 5 0.150 0.410 Amorphous 2.27 0.96
No. 6 0.540 0.280 Amorphous 2.27 0.99
No. 7 0.310 0.180 Amorphous 1.43 0.96
No. 8 0.510 0.220 Amorphous 1.80 0.86
No. 9 0.600 0.240 Amorphous 2.46 0.95

The bold value signifies the best performing sample.

Fig. 7 – Plasma I-V characteristics with increasing power (250–750 W)  at constant pressure (0.44 Pa) (A) and increasing
pressure (0.44–3.10 Pa) at constant power (750 W)  (B). (Ip: probe current, Vp: probe voltage, Vf: floating potential, I: ion
saturation.

Fig. 8 – Substrate measured temperature with increased power (250–750 W)  at constant pressure (0.44 Pa) (A) and increased
pressure (0.44–3.10 Pa) at constant power (750 W)  (B).

should be null and a floating potential ranging from −20 to
−30 V should be measured. The null current is due to an equal
number of ions and electrons reaching the probe. The nega-
tive potential, also called floating potential Vf, is a result of
the self-biasing of the probe, which arises due to the greater
e− mobility, compared to ions. By applying an increasing neg-
ative potential to the probe, the electrons are increasingly
repelled, which is observed by a greater current drawn by
the probe and marks a transition region (II). If the applied
potential is sufficiently large, all the electrons are repelled
from the probe and only ions are collected in the ion satu-
ration region (I). The current drawn in this region gives an

estimate of the ion current incident, at the substrate. The
I–V characteristics of the probe revealed an increased ion cur-
rent with higher target power (Fig. 7A), while an inverse effect
was found for higher pressure (Fig. 7B). At high power, the
greater ion flux density bombarding the substrate is likely pro-
viding enough mobility to the adatoms to form a crystalline
structure. On the other hand, at high pressure, the greater
amount of gas phase collisions is probably responsible for
the loss in ion energy, which may hinder the crystallisation
process.

It is widely known that amorphous thin TiO2 films can be
converted into anatase when annealed at temperatures above
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Fig. 9 – Cross-section (A) and top view (B) FE-SEM micrograph of thin TiO2 film No. 10 synthesized at 1000 W – 0.44 Pa onto a
stainless-steel mesh substrate by RMS.

673 K [45–,46,47,48,49]. Therefore, the substrate’s temperature
was measured at equilibrium, using a PicoSens probe from
Opsens, with the same two sets of conditions to make sure that
there was no direct annealing during the deposition; pressure
fixed at 0.44 Pa and power varied from 250 to 750 W (Fig. 8A)
and power fixed to 750 W and pressure varied from 0.44 to
3.10 Pa (Fig. 8B). In both cases increasing the power (Fig. 8A)
and the pressure (Fig. 8B) did increase the temperature, but not
to the same extent, as power seemed to have a greater impact.
However, in our set of conditions, the temperature stayed well
below the 673 K mark (Fig. 8), which suggests that the crystalli-
sation occurred mainly because of the ion bombardment and
not by direct substrate annealing.

Contrary to other studies, increasing the pressure did not
increase the photocatalytic activity but had the opposite effect
[26,50]. This could be due to the substrate difference; stain-
less steel was used in present work, while most of earlier
reported studies were performed on glass. As for the power,
a similar study by Wang et al. found that it was possible to
obtain crystalline TiO2, in a one step process on an aluminium
alloy substrate, by increasing the magnetron power and sub-
strate bias voltage [51]. This is in accordance with our results,
although crystallised TiO2 was obtained in a without substrate
bias.

3.4.  Optimised  sample

To confirm the influence of power and pressure over the
coating’s properties, a confirmation sample, No. 10, was syn-
thesized. The pressure was set to the lowest achievable value
of 0.44 Pa, for which a stable plasma can be obtained (with
process gases flows as described in Section 2.1 and gate valve
in fully open position). The power was set to 1000 W to con-
firm the observed effect of higher sputtering power on the
films’ crystallinity and photocatalytic activity. The resulting
sample No. 10, proved to be crystalline as well, outperform-
ing all previous samples and confirming our assumptions on
the effects of working pressure and applied power. Further
power increases (up to 1.5 kW)  were investigated but resulted
in films with photocatalytic activity similar to sample No.10,
and thus were not included in the presented dataset. More-
over, further increase of the applied power can possibly cause
issues with less efficient target cooling and were not consid-

Fig. 10 – XRD patterns of TiO2 thin films on stainless steel
mesh synthesized at 750 W – 0.44 Pa (No.3) and 1000 W –
0.44 Pa (No. 10).

ered practical for this system. Sample No. 10 was thoroughly
characterised and compared to sample No.3. The optimised
sample having the highest photocatalytic activity, it was used
to investigate the mechanisms involved in the degradation of
a model pollutant (methyl orange). Additionally, the reusabil-
ity of this optimised sample was evaluated for its ability to
degrade rhodamine B, over 10 consecutive cycles.

3.5.  Characterisation  of  the  optimised  sample

The scanning electron microscopy analysis of the optimised
sample No. 10 revealed the disappearance of the cauliflower-
like features in favour of angular crystal-like features (Fig. 9A).
The coating’s columnar profile became more  prominent, as
revealed by the cross-section shown in Fig. 9B.

The XRD patterns of sample No. 10 are presented in Fig. 10.
Just like sample No. 3, the optimised sample has the same
anatase peaks at 25.4◦ (101), 37.9◦ (004), 53.9◦ (105) and 55.3◦

(211) (JCPDS card 96-720-6076) and rutile peak identified at
27.4◦ (110) (JCPDS card 96-900-4145). The anatase peaks of sam-
ple No. 10 became sharper, when compared to sample No. 3.
Additionally, new anatase peaks were identified at 37◦ (103),
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Table 3 – Overview of the photocatalytic activity of the
optimised sample No. 10 (1000 W - 0.44 Pa) for three
different types of dye.

Pollutant Dye family Removal %
after 1h

k� (10−5 s-1)

Methylene blue Xanthene 18.0 ± 1.7 5.3 ± 0.6
Methyl orange Azo 17.2 ± 0.7 5.3 ± 0.4
Rhodamine B Thiazine 11.2 ± 2.9 3.3 ± 0.9

38.6◦ (112), 48.1◦ (200) and 62.7◦ (204) (JCPDS card 96-720-6076),
highlighting an increased crystallinity for the optimised sam-
ple, produced at a higher power.

The coating’s uniformity was assessed by performing a
Raman mapping and EDX analysis (summary of the EDX analy-
sis is given in Table S1 of Supplementary material). Analogous
to sample No. 3, the Raman mapping performed on sample
No. 10 revealed the presence of anatase on every strand of
the stainless-steel mesh (Fig. 11). Some small regions may
seem uncoated, but in reality, the overlapping of some threads
interfered with the microscope focus. To further investigate
the quality of the coating, the elemental composition of the
coatings was obtained by EDX (Fig. 12) and performed on five
different points. A standard deviation <5% was calculated, fur-
ther confirming the uniformity of the coatings deposited by
pulsed DC magnetron sputtering.

The XPS analysis of the optimised sample revealed, as
expected, Ti 2p, O 1s and C 1s peaks (Fig. 13). The high-
resolution spectra of the Ti 2p of the optimised sample (Fig. 13)
did not reveal any significant difference compared to sample
No. 3 (Fig. 5). On the other hand, the high-resolution spectra of
the O 1s of samples No. 3 (Fig. 5) and No. 10 (Fig. 13) revealed a
continuity of the phenomena discussed in 3.1. An increase of
power applied to the titanium target resulted in a more  intense
lower binding energy peak than the adsorbed oxygen peak.
This further confirms that a higher sputtering powers results
in higher substrate temperatures and therefore transforma-
tion of adsorbed oxygen into Ti-O bonds as reported by Zhou
et al. [41].

3.6.  Photocatalytic  activity  evaluation  of  the  optimised
sample

The optimised sample was tested for the degradation under
UV-A of the three most common dyes used in the field of
photocatalysis. The summary of the photocatalytic tests is
presented in Table 3 and reveals that sample No.10 was able
to achieve good levels of degradation for each dye. Compared
sample No. 3, the optimised sample degraded MB 18% more
effectively. Considering the small surface area of an immo-
bilised photocatalyst, the ability of the optimised sample to
degrade rapidly all these model pollutants makes it a good
candidate for future photocatalytic reactor integration.

3.7.  Investigation  of  the  photocatalytic  degradation
mechanisms

To understand the mechanism behind the photocatalytic
degradation of pollutants, the optimised sample was used to
decompose methyl orange (MO) under UV-A in the presence

of different trapping agents. 4 hydroxy-TEMPO was used to
scavenge superoxide radicals, isopropanol as a hydroxyl rad-
icals’ scavenger, sodium oxalate for holes and finally sodium
nitrate for electrons. The results of the experiments are given
in Fig. 14. When isopropanol and 4 hydroxy-TEMPO were
used (Fig. 14C and D, respectively), no dye degradation was
observed, suggesting that •OH and O2

-• are the main active
species generated on the photocatalysts’ surface. In the pres-
ence of sodium oxalate (hole scavenger) and sodium nitrate
(electron scavenger) no degradation rate change was observed
(Fig. 14A and B). The excitons do not seem to directly partici-
pate in the degradation of the dye. Therefore, the oxidation
pathway may be designated as indirect oxidation [52]. The
•OH radicals produced by oxidation of surface hydroxyl or
adsorbed water, are known to play an important role in ini-
tiating oxidation reactions. It is especially true when the
adsorption is negligible, as it is the case in thin films [52].

3.8.  Reusability  assessment

The durability of sample No.10 was assessed by testing its abil-
ity to degrade rhodamine B, under UV-A, during 10 consecutive
cycles (Fig. 15). The sample’s ability to degrade rhodamine
B did not decrease significantly after multiple uses. These
results confirm this substrate/catalyst combination’s poten-
tial, for future integration into a photocatalytic reactor.

4.  Discussion

This work demonstrates that crystalline, photocatalytically
active, TiO2 thin films can be deposited in a one-step process,
on woven stainless-steel mesh substrates. A combination of a
low working pressure and high applied power tend to produce
the best results in terms of both crystallinity and photocat-
alytic activity. Ion current measurements suggest that a high
ion current is required for crystallisation to occur. Raising
the power resulted in an increased ion current drawn at the
substrate, while pressure had an opposite outcome. High ion
current is believed to improve adatom mobility, facilitating
the crystallisation process [43]. However, these results contra-
dict the findings of several authors, who reported previously
that using high pressure improved the crystallinity of thin
TiO2 films [26,50,53–55]. It should be noted though, the earlier
findings were all reported for glass being used as the sub-
strate, while in the current study the coatings were deposited
onto stainless steel. This may indicate that the substrate’s
nature plays an important role in the crystallisation process.
Deposition on a conductive substrate may not necessarily be
following the trends observed for a non-conductive substrate,
e.g. glass.

In multiple recent publications, TiO2 was produced by
magnetron sputtering using small (4–8 cm diameter) metallic
target [51,56–58]. These target sizes are not fit for high-
volume industrial processes. Our results were obtained using
a 300 × 100 mm metallic target, in a large chamber without
substrate bias [20], radio frequency power supplies [20,21],
substrate heating [22] or post-annealing [23–25], keeping the
deposition process simple and reproducible. Our methodol-
ogy could easily be replicated and scaled up for high-volume
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Fig. 11 – Raman mapping of an optimised TiO2 coated mesh by magnetron sputtering at 1000 W – 0.44 Pa (left) and
corresponding Raman spectrum (right).

Fig. 12 – EDX spectra (A) of a stainless-steel thread coated by magnetron sputtering with TiO2 at 1000 W – 0.44 Pa and
corresponding SEM micrograph (B).

Fig. 13 – Selected XPS spectra of titanium dioxide coatings: A – survey spectrum of sample No. 10; B – Ti 2p spectrum of
sample No. 10; C – O 1s spectrum of sample No. 10.

production of photocatalytically active TiO2 supported on
stainless steel mesh.

However, TiO2 still suffers from its large band-gap and
charge carrier recombination rate [3]. Therefore, we  believe
that follow up work should aim at addressing its short-
comings, while keeping the production process simple and
economically friendly. Additionally, the semi-transparent
nature of this substrate/catalyst combination means that
there is a limit of to the number of mesh that can be stacked
in a photocatalytic reactor. To maximise quantum yield, it will

have to be taken into consideration when designing a photo-
catalytic reactor. Finally, although no corrosion was observed
during our tests, the substrate has yet to be tested in a severe
environment, more  representative of real-world conditions.

5.  Conclusion

In summary, crystallised titanium dioxide was successfully
grown onto stainless-steel mesh in a one-step process by
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Fig. 14 – MO  degradation under UV-A light by mesh coated with TiO2 under optimised conditions of 1000 W and 0.44 Pa in
the presence of h+(A), e− (B), O2

-• (C) and •OH (D) scavengers.

Fig. 15 – Cycling test of optimised sample No. 10 (1000 W –
0.44 Pa) for RhB degradation under UV-A for 1 h.

pulsed DC magnetron sputtering without annealing, substrate
heating, substrate bias or additional energy sources. This
one-step process production of crystallised TiO2 thin film
on stainless steel is industry friendly. High sputtering power
was identified as essential, to obtain photocatalytically active
crystalline TiO2, on stainless steel mesh. On the other hand,
increasing the pressure seemed to hinder the crystallisation
process and had to be kept to a minimum. Methylene blue,

methyl orange and rhodamine B, the three most common
types of dye used in the photocatalysis field, were success-
fully degraded under UV-A, by the TiO2 coated stainless steel
mesh. The scavenger test revealed that the degradation mech-
anism seemed to be mainly superoxide and hydroxide radical
driven. Finally, the reusability of the coated mesh has been
demonstrated with little to no photocatalytic activity loss after
10 consecutive cycles. Therefore, this substrate/coating com-
bination seems to be a good fit for a high scale production of
affordable stainless-steel mesh-based photocatalytic reactors.
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