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1  | INTRODUC TION

Fish feed and faeces are known to be the most intensive wastes of 
aquaculture systems resulting in enriching the nutrient pool of re-
ceiving water (Bartozek, Bueno, & Feiden, 2016; Borges, Train, & 
Dias, 2010; Huang, Wu, et al., 2016). During intensive production of 
fish in fish cages, the uneaten feed is released directly into the envi-
ronment and may cause negative ecological effects on the surrounding 

water (Wang et al., 2013). The pollution from the aquaculture industry 
has restricted sustainable fishery production (Amirkolaie, 2011; Wen, 
Zhang, & Wen, 2000). Penczak, Galicka, and Molinski (1982) stud-
ied the feeding of rainbow trout in freshwater cages and found that 
30% of the dry feeds are not used. Phosphorus in aquaculture water 
is mainly released from feeding feed, and with the extension of the 
breeding cycle, the fish feed in water cannot be fully assimilated by 
the organism, resulting in the accumulation of phosphorus in the water 
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Abstract
Nitrogen and Phosphorus are the major end products of fish feed loading and af-
fect the water environment as a whole. A magnetic stirrer was used to simulate 
the intensity of water flow by using different stirring strengths (0, 600, 1,200 rpm), 
and kinetic experiments on nutrients release from different fish feed (0.2500 and 
0.5000 g) were performed. Results have shown that total phosphorus (TP) increase 
rapidly and become stable in about 96 hr, while orthophosphate (PO3−

4
− P), total ni-

trogen (TN) and ammonia nitrogen (NH+

4
− N) increase relatively slowly and gradually 

reach stable from 200, 300 and 300 hr respectively. Both released contents of unit 
weight fish feed (i.e. released nutrients contents) and released nutrients concentra-
tions in the condition of stirring were higher than those in the static condition. All of 
the pseudo-first-order, pseudo-second-order and Elovich kinetic models can be used 
to describe variations of released TP, PO3−

4
− P, TN and NH+

4
− N contents with time, 

while the pseudo-first-order kinetic and Elovich kinetic models give better results 
with R2 = .66–.99 and R2 = .57–.99 respectively. Variance analysis showed that both 
stirring strength and fish feed type have significant effects on released TP, TN and 
NH

+

4
− N contents (p < .05), while fish feed dosage has no significant effects (p > .05).

In addition, only the fish feed type does have significant effects on PO3−

4
− P con-

tents (p < .05). In sum, the release kinetics and the factors related to the release of 
nutrients from fish feed are essential in planning strategies of nutrient management 
and pollution control.
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(Zhang, Gu, Li, Song, & Zhou, 2015). Meanwhile, nitrogen is also the 
essential nutrient incorporated in formulated fish feed for achieving 
efficient growth of fish (Wang, Wen, & Chai, 2004). Amirkolaie (2011) 
believed that aquacultural waste may be present in both solid and 
liquid form: solid waste is mainly derived from residual fish feed and 
fish excreta; dissolved waste includes nitrogen, phosphorus and COD, 
partly directly from fish waste and partly from the further decomposi-
tion of solid waste.

The residual fish feed is the main pollutant in aquaculture water 
(Akhan & Gedik, 2011; Amirkolaie, 2011; Liu, Cui, & Liu, 1997), and 
its impact on environment has received much attention (Akhan & 
Gedik, 2011; Amirkolaie, 2011; Kibria, Nugegoda, Fairclough, & 
Lam, 1997; Nędzarek, Tórz, & Stepanowska, 2009). The fractional 
composition of nutrients and the release of nutrients from fish feed 
in the rearing of Australian native fish silver perch Bidyanus bidyanus 
fingerling are investigated, and both temperature and pH affected 
the release of nutrients from fish feed and faeces (Kibria et al., 1997). 
Wu, Huang, Zang, Du, and Scholz (2012) studied the effects of the 
quantities and size of fish feed on the nutrients release from fish 
feed, and the results showed that the nitrogen and phosphorus con-
centrations in water increase with increasing dosages of fish feed, 
while the size of fish feed has no significant effect on nitrogen and 
phosphorus concentrations with the same fish feed dosage (Wu 
et al., 2012). Huang's, Kong, Yang, Yu, and Li (2019) experiment also 
showed that fish feed release a large amount of nitrogen and phos-
phorus after they enter the water, and further promote the growth 
of Microcystis aeruginosa, and the density of M. aeruginosa increases 
with increasing dosages of fish feed.

In general, water disturbances and changes of water flow con-
ditions exist in natural aquaculture water such as rivers, lakes and 
reservoirs. Methods of on-site observation, indoor experiments and 
numerical simulation have been used to study the effects of turbu-
lent action, wind and wave disturbance, hydrodynamic action on 
sediment adsorption, desorption and release of pollutants (Gao, Sun, 
& Zhang, 2007; Huang et al., 2015; Huang, 2001, 2003; Sun, Qin, 
& Zhu, 2007; Sun et al., 2016; Xia, Zhang, Jiang, & Nie, 2014; Xia, 
Zhang, & Nie, 2014). Huang (2001, 2003) believed that the turbu-
lence intensity has a direct impact on the movement of particulate 
matter in water, the concentration of suspended particulate matter 
and the composition of the particle size, which has a significant im-
pact on the release or desorption of pollutants off sediments. Huang, 
Xi, et al. (2016) and Huang, Wu, et al. (2016) also observed that the 
eutrophication level of lakes is sensitive to dynamic water flow (i.e. 
disturbance) due to the small depth in shallow lakes and high content 
of nutrients in riverbed sediment.

Nutrient levels are important factors affecting the sustainability 
of aquaculture water (Akhan & Gedik, 2011), while hydrodynamic 
processes are important factors affecting nutrients migration and 
transformation (Huang et al., 2015; You et al., 2007). At present, the 
release of nitrogen and phosphorus from fish feed has become a 
consensus (Ackefors & Enell, 1994; Akhan & Gedik, 2011; Gao, Xu, & 
Liu, 2008; Wu et al., 2012), and the influence of hydraulic conditions 
on release of pollutants from sediment has also been studied (Huang 

et al., 2015; Huang, 2003; Xia, Zhang, Nie, et al., 2014). However, 
the influence of hydraulic conditions on the release of nitrogen and 
phosphorus from fish feed remains to be further explored.

It is noted that the nutrient release process of fish feed is 
often described by empirical equations such as quadratic equa-
tions and exponential equations (Akhan & Gedik, 2011; Huang 
& Kong, 2017; Kibria et al., 1997). The research conducted by 
Huang and Kong (2017) have shown that the exponential equa-
tion describing the variations of TP concentrations with time from 
fish feed is the same as the pseudo-first-order kinetic equation. 
Generally, some kinetic models such as the pseudo-first-order, 
pseudo-second-order and Elovich kinetic models are mostly used 
to describe adsorption (or uptake) and desorption (or release) ki-
netics based on the solution concentrations (Gera, Yewalkar, Nene, 
Kulkarni, & Kamble, 2016; Ho, 2006a, 2006b; Qian, Chu, Zhang, 
Liu, & Wan, 2019; Ranjbar & Jalali, 2014). The pseudo-second-or-
der equation (Ho, 2006a) and Elovich equation (Qian et al., 2019; 
Ranjbar & Jalali, 2014) are believed to be an empirical equation. 
The release of nutrients from sediment is often described by 
pseudo-first-order kinetic model, Elovich kinetic model and so on 
(Cao & Tao, 1999; Chien & Clayton, 1980; Morin & Morse, 1999; 
Wang, Wang, Jin, Zhang, & Zhu, 2007). However, whether these 
kinetic models are valid for describing the release of nutrients 
from fish feed has not been discussed. Thus, pseudo-first-order, 
pseudo-second-order and Elovich kinetic models are applied to 
discuss the release of nutrient from fish feed.

Polyculture of Chinese carp use large amount of commercial 
compound freshwater fish feed. Nutrients contents of different 
types' fish feed might vary slightly with location source, season and 
so on. Therefore, compound freshwater fish feed from three differ-
ent manufactures with two dosages were selected to investigate the 
applicability and universality of these kinetic models in describing 
the nutrients release from fish feed. Meanwhile, a magnetic stirrer 
was used to simulate different hydrodynamic conditions by using 
different stirring strength, and further the effects of stirring inten-
sity on the nutrients release was also explored. The study is benefi-
cial to understand the secondary pollution problem of residual fish 
feed, to provide scientific basis for improving the utilization rate of 
aquaculture fish feed, and to prevent and control the eutrophication 
of aquaculture water.

2  | MATERIAL AND METHODS

2.1 | Experimental materials

Commercial adult fish feed was selected from Huaian Tongwei 
Company Limited, Hebei Panda Feed Company Limited and 
Zhongshan City Taishan Feed Company Limited, and the three fish 
feeds were named as HT fish feed, HP fish feed and ZT fish feed 
respectively. All these fish feeds are used for polyculture of fresh-
water fish in freshwater bodies such as lakes, reservoirs, ponds and 
so on. These fish feeds were crushed and sieved through Taylor pore 



size of 0.85 mm before use. Nutritional indicators of these fish feed 
disclosed by their respective manufacturers are shown in Table 1.

The experimental magnetic stirrer model used in this study was 
Chi Jiu 84-1 (Shanghai Meiying Instrument and Meter Manufacturing 
Co., Ltd.).

2.2 | Batch beaker experiment

Effects of stirring intensity and fish feed dosage on released nutri-
ents from fish feed were assessed using batch beaker experiments. 
Three different fish feed samples of 0.2500 and 0.5000 g of the 
three fish feed were added into 2 L beakers containing 1 L of distilled 
water respectively. With the same dosage (0.25 or 0.50 g) and same 
type (HT, HP, ZT) of fish feed, magnetic stirrer was used to design 
three stirring intensities of 0, 600, 1,200 rpm, each stirring intensity 
was set to three parallels. In general, the velocities of water in the 
beaker will increase with increasing speed of rotation, but it is dif-
ficult to measure the velocities during the experimental period.

After the addition of fish feed, samples were analysed at 0, 6, 24, 
48, 96, 144, 192, 240, 288, 336, 408, 480 and 624 hr. The analytical 
method of nutrients is based on the ‘Water and wastewater moni-
toring and analysis method’ (China's State Environmental Protection 
Administration, 2002) to monitor total phosphorus (TP), dissolved or-
thophosphate (PO3−

4
− P), total nitrogen (TN) and ammonia nitrogen 

(NH+

4
− N). The concentrations of TP and PO3−

4
− P were determined 

by molybdenum antimony spectrophotometry. The TN concentration 
was determined by ultraviolet spectrophotometry. The TN concentra-
tion was determined by sodium reagent spectrophotometry. The ex-
perimental results were averaged using parallel samples.

2.3 | Release kinetics of nutrients from fish feed

The released nutrients contents of unit weight fish feed, Qt (mg/g) 
was determined by using the following equation defined as:

For the convenience of discussion, Qt is simplified as ‘released 
nutrients contents’, and it can reflect the release ability of nutrients 
from fish feed when it reaches stable. C (mg/L) is released nutrients 

concentrations, and it can reflect water pollution level directly. C0 
(mg/L) is background concentration; V (L) is the solution volume and 
m (g) is the mass of fish feed added initially. Released nutrients con-
centrations from fish feed and released nutrients contents of unit 
weight fish feed are two indicators describing nutrients release.

Three widely used kinetic models, that is pseudo-first-order, 
pseudo-second-order and Elovich kinetic models, were employed 
to interpret the kinetic results. Equation 2 is the pseudo-first-order 
kinetic model.

in which Qe−1 (mg/g) and Qt−1 (mg/g) are the release nutrient content 
of unit weight fish feed at the equilibrium and at any time t (hr) time 
respectively. k1 (hr−1) is the rate constant of pseudo-first-order kinetic
model.

The pseudo-second-order kinetic model is given as follows:

in which Qe−2 (mg/g) and Qt−2 (mg/g) are also the release nutrient con-
tent of unit weight fish feed at the equilibrium and at any time t (hr) 
time respectively. k2 (hr−1) is the rate constant of pseudo-second-order
kinetic model.

In the present study, Elovich model is used to describe the diffusion 
process of nutrients from fish feed, and the release process is also divided 
into a fast phase and a slow phase. Elovich model is written as follows:

where X (mg/g) and Y (g·hr·mg−1) are constants. The intercept (1/Y)ln(XY) 
(mg/g) coincides with the released quantity during the fast phase (also 
known as the initial rate), whereas the slope 1/Y (mg·(g·hr)−1) represents 
the slow release in relation to the duration of second phase. Qt−3 (mg/g) 
is the release content of unit weight fish feed at any time t (hr).

2.4 | Data analysis

Data processing and statistical analysis were performed using Origin 
8.6 and SPSS 19.0.

(1)Qt=

(

C−C0

)

×V

m

(2)Qt−1=Qe−1(1−e−k1t)

(3)
t

Qt−2

=
1

k2Q
2

e−2

+
t

Qe−2

(4)Qt−3=
1

Y
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Y
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TA B L E  1   Nutritional indicators of fish feed

Fish feed
Crude protein 
(%) Crude fibre (%) Crude fat (%)

Crude 
ash (%) Calcium (%) TP (%) NaCl (%) Moisture (%)

Lysine 
(%)

HT ≥28.0 ≤12.0 ≥3.0 ≤15.0 0.5–2.0 ≥0.60 0.2–1.5 ≤12.5 ≥1.2

HP ≥28.0 ≤12.0 ≥3.0 ≤18.0 0.5–2.0 ≥0.80 0.3–1.5 ≤13.0 ≥1.3

ZT ≥20.0 ≤17.0 ≥2.0 ≤15.0 ≤2.0 ≥0.50 ≤2.0 ≤12.5 ≥0.9

Note: HP, HP fish feed is produced by Hebei Panda Feed Company Limited; HT, HT fish feed is produced by Huaian Tongwei Company Limited; TP, 
total phosphorus in fish feed; ZT, ZT fish feed is produced by Zhongshan City Taishan Feed Company Limited.



3  | RESULTS AND DISCUSSION

3.1 | Release kinetics of phosphorus from fish feed

Phosphorus is a component of chemical compounds in fish feed 
(Hua & Bureau, 2006), and the labile form (PO3−

4
− P) is a majority 

of phosphorus (Wu et al., 2012). Thus, release kinetics of TP and 
PO

3−

4
− P from fish feed are discussed in this part.

3.1.1 | Release kinetics of TP from fish feed

Figure 1 shows the variations of released TP concentrations and 
released contents in all treatments. Either released TP concentra-
tions or released TP contents increase to the maximum values rap-
idly in 96 hr from beginning, and became stable afterwards, which 
is generally consistent with the experimental results of Huang and 
Kong's (2017) and Wu et al.'s (2012) result. According to Figure 1 
and Equation 1, released TP concentrations in treatments with 0.5 g 
fish feed were nearly two times higher than those of treatments 
with 0.25 g fish feed, while released TP contents of unit weight fish 
feed in treatments with 0.5 g fish feed were quite close to those 
of treatments with 0.25 g fish feed. Leaching from feeds of south-
ern Bluefin tuna is fast and experiments reached equilibrium within 
the first hour in Fernandes's, Angove, Sedawie, and Cheshire (2007) 
study; this may be because the feed for feeding different fish are 
also different in quality, composition, retention time and so on. A 
rapid increase in phosphorus release was also detected in both fae-
ces and food samples in first few days and thereafter it is decreased 
in Akhan and Gedik's (2011) study, which may be due to the rea-
son that microorganisms are abundant in faeces and take up a lot of 
phosphorus.

From Figure 1, with same fish feed dosage and stirring intensity, 
the relationship among released TP concentrations and contents 
of three different fish feed is HT > HP > ZT. As shown in Table 1, 
HT and HP fish feed have higher crude fat and crude protein than 
ZT fish feed, it indicates that our results are related to the fish feed 
nutrition composition and quality. In Nędzarek et al.'s (2009) study, 
the nutrient emission dada from different fish feed are also differ-
ent, they believe higher nutrient emission was noted with high fat 
feed. With same type and dosage of fish feed, either released TP 
concentrations or released TP contents increase with increasing stir-
ring intensity, following the order 1,200 rpm > 600 rpm > 0 rpm (in 
Figure 1). Experimental results of Geng, Wang, Wang, Qi, and Wang 
(2015) demonstrated that phosphorus in sediments has obviously 
been released under hydrodynamic conditions relative to hydro-
static conditions. Although the composition of fish feed is different 
from the sediment, the releasing process of TP from fish feed is also 
affected by hydrodynamic conditions.

The release kinetic model can be used to describe the release 
of contaminant from sediment in static experiments (Xiao, Cheng, 
Tang, & Li, 2015). Wang, Shen, and Ma (2010) studied the kinetics of 
phosphorus released from rock sources in Chaohu Lake Basin with 

first-order kinetic model, Elovich kinetic model, weight kinetic model 
and parabolic kinetic model. Shariatmadari and Jafari (2006) used 
the first-order, second-order and Elovich kinetic models to describe 
the kinetics of phosphorus release from the solid phase to the aque-
ous phase in the soil. However, these models have not been applied 
in describing the released process of TP from fish feed in previous 
studies. In the present study, from Table 2 and Figure 1, all of the 
pseudo-first-order kinetic model, pseudo-second-order kinetic 
model and Elovich model can describe the variations of TP released 
from fish feed, and the corresponding correlation coefficients (R2) 
are .93–.99, .53–.97, .90–.99. The fitting results of pseudo-first-order 
and Elovich kinetic models are better. As shown in Table 2, with the 
same stirring intensity and fish feed dosage, Qe−1 and Qe−2 of HT is 
most, Qe−1 and Qe−2 of HP is next while Qe−1 and Qe−2 of ZT is small-
est, which conforms to experimental results. With the same type 
and dosage of fish feed, both Qe−1 and Qe−2 increase with increasing 
stirring intensity, the fitting result is also well agreement with experi-
mental results. According to the parameters of Elovich kinetic model 
in Table 2, (1/Y)ln(XY) is obviously higher than 1/Y, and (1/Y)ln(XY) 
increases with increasing stirring intensity, which indicates that the 
release of TP from fish feed is mainly in fast stage, and released TP 
contents of unit weight fish feed in fast phase increase with increas-
ing stirring intensity.

Effects of stirring intensity, fish feed dosage and fish feed type 
on released TP concentrations and released TP contents from fish 
feed are conducted by variance analysis (Data are shown in Table 
S1). From Table S1, both the stirring intensity and fish feed types 
have significant effects on released TP concentrations and contents 
from fish feed (p < .05), while fish feed dosage only has significant 
effect on released TP concentrations (p < .05) and has no significant 
effect on released TP contents (p > .05). This happens because the 
released TP concentrations increase in proportion to the increase in 
the dosage of fish feed, which conforms to experimental results and 
Equation 1. In addition, there is no interaction among the stirring 
intensity, fish feed dosage and fish feed type for released TP con-
centrations and released TP contents. According to the released TP 
contents, it can be observed that the release ability of TP from fish 
feed is related to the hydraulic conditions and the nature (type) of 
fish feed regardless of the fish feed dosage.

3.1.2 | Release kinetics of PO3−

4
− P from fish feed

Variations of released PO3−

4
− P concentrations and released

PO
3−

4
− P contents with time in each treatment are shown in

Figure 2. In static water, both released PO3−

4
− P concentrations and 

contents increase rapidly during the first 96 hr, and then increase 
slowly and became stable about 200 hr, which is consistent with 
Huang and Kong's (2017) and Wu et al.'s (2012) study. With stirring, 
both released PO3−

4
− P concentrations and contents increase rap-

idly during 0–24 hr, and decrease slightly during 24–48 hr, and then 
continues to increase until they reach stable. Variations of released 
PO

3−

4
− P concentrations (or released PO3−

4
− P contents) are not



consistent with variations of released TP concentrations (or released 
TP contents) completely. This may be because variations of TP con-
centrations (or released TP contents) are also affected by the releas-
ing process of other phosphorus forms such as organic phosphorus, 
but more detailed reasons need to be further explored. Meanwhile, 
according to Equation 1 and Figure 2, consistent with results of TP, 
released PO3−

4
− P concentrations in treatments with 0.5 g fish feed 

are nearly two times higher than those of treatments with 0.25 g fish 
feed, while released PO3−

4
− P contents in treatments with 0.5 g fish 

feed are quite close to those of treatments with 0.25 g fish feed. Our 

experimental results indicated that both TP and PO3−

4
− P released 

from fish feed occurs rapidly. Thus, to avoid nutrient enrichment of 
water environment, uneaten fish food should be removed quickly 
(Akhan & Gedik, 2011).

In addition, from Figure 3, with the same fish feed dosage and 
stirring intensity, either released PO3−

4
− P concentrations or re-

leased PO3−

4
− P contents from different fish feed conforms that HT 

fish feed is most, HP is the next while ZT is smallest. With the same 
fish feed type and dosage, either released concentrations or contents 
of PO3−

4
− P from fish feed among treatments with different stirring 

F I G U R E  1   Pseudo-first-order kinetic of TP from fish feed
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intensities (1,200, 600 and 0 rpm) are quite close. By conducting the 
in situ experiment, Chao et al. (2011) find that the dissolved nutrients 
do not increase significantly during the high wind. Geng et al.'s (2015) 
experimental results show that the total released nutrients amount is 
larger under dynamic conditions than that of static conditions (such as 
TP). However, due to turbulence, the water and water–soil interface 
are oxygenated, and the metal elements such as iron and manganese 
are adsorbed and dissolved due to oxidation (Geng et al., 2015). Thus, 
dynamic disturbances only cause total nutrient release and do not nec-
essarily lead to the release of dissolved nutrients (Geng et al., 2015). 
Zhu, Qin, and Gao (2004) also believed that the reoxygenation process 
in water is rapid and sufficient during strong winds, and the oxidation 
conditions are beneficial to the adsorption of phosphorus by parti-
cles in water and do not cause significant concentration of dissolved 
phosphorus in water. In the present experiment, stirring strength also 
did not significantly increase the released PO3−

4
− P concentrations or 

contents (in Figure 2), which may be related to the reoxygenation of 
the water surface during stirring. However, more specific reasons have 
yet to be explored.

According to fitting results of kinetic models in Table 3 and 
Figure 2, all of pseudo-first-order kinetic model, pseudo-second-or-
der kinetic model and Elovich kinetic model can describe the varia-
tions of released PO3−

4
− P contents well in the present experiment, 

and the correlation coefficients (R2) are .67–.98, .30–.65 and .91–
.97, respectively, and the fitting result of Elovich model is optimal. 
According to the fitting results of Elovich kinetic model in Table 3, 
1/Y is higher than (1/Y)ln(XY) when the stirring strength is 0 rpm, 

which indicates that the releasing process of PO3−

4
− P mainly oc-

curs in the slow phase. However, the releasing process of PO3−

4
− P 

from HT fish feed is mainly fast phase when the stirring intensity is 
600 and 1,200 rpm ((1/Y)ln(XY) > 1/Y), and the releasing process 
of PO3−

4
− P from HP and ZT fish feed are mainly slow phase when 

the stirring intensity is 600 and 1,200 rpm ((1/Y)ln(XY) < 1/Y). This 
may be because the released ability of PO3−

4
− P from fish feed is 

affected by both fish feed type and stirring intensity. Wang, Shen, 
et al. (2010) reported that Elovich model can describe a process 
involving a series of reaction mechanisms, including not only the 
diffusion of solute at the body or interface, but also the activation 
and deactivation of the surface. The process with a single reaction 
mechanism is not suitable, but it is very suitable for processed with 
large changes in activation energy during the reaction process (such 
as sediment and other processes). These kinetic models have not 
been applied in describing variations of PO3−

4
− P concentrations 

released from fish feed, but the results showed that these kinetic 
models are suitable and consistent with variations of PO3−

4
− P from 

sediments or soil. Shariatmadari and Jafari (2006) studied the re-
lease kinetics of phosphorus from soil using soil contaminated with 
KH2PO4 solution, and the results also show that the Elovich model 
can describe the kinetic data well. Chien and Clayton (1980) also 
uses Elovich model to better fit the process of releasing phosphate 
from sediments in the lake.

Variance analysis of released PO3−

4
− P concentrations and 

contents from fish feed is given in Table S1. From Table S1, it 
is indicated that both fish feed dosage and fish feed type have 

TA B L E  2   Release kinetics of TP from fish feed

Groups

Pseudo-first-order kinetic model Pseudo-second-order kinetic model Elovich kinetic model

Qe k1 R2 Qe k2 R2 (1/Y)ln(XY) 1/Y R2

HT 0.25 g + 0 12.75 0.07 .97 11.91 −7.5 × 1024 .70 5.02 1.39 .94

HT 0.25 g + 600 13.93 0.31 .98 13.75 −2.2 × 1018 .95 10.64 0.63 .99

HT 0.25 g + 1,200 14.08 0.35 .98 13.93 −7.9 × 1016 .97 11.37 0.52 .99

HT 0.5 g + 0 12.33 0.06 .99 11.33 −4.4 × 1025 .62 3.88 1.51 .90

HT 0.5 g + 600 13.43 0.30 .99 13.25 −1.1 × 1018 .96 10.66 0.53 .99

HT 0.5 g + 1,200 13.93 0.31 .99 13.75 −1.4 × 1017 .97 11.61 0.44 .99

HP 0.25 g + 0 10.03 0.04 .94 9.10 −1.7 × 1024 .62 2.69 1.30 .95

HP 0.25 g + 600 10.96 0.41 .97 10.89 −1.1 × 1013 .97 9.02 0.38 .99

HP 0.25 g + 1,200 11.36 0.37 .98 11.25 −1.1 × 1014 .97 9.39 0.38 .99

HP 0.5 g + 0 10.53 0.03 .96 9.30 −7.4 × 1020 .53 1.31 1.62 .96

HP 0.5 g + 600 10.75 0.36 .96 10.64 −1.9 × 1015 .95 8.35 0.46 .99

HP 0.5 g + 1,200 11.29 0.33 .98 11.16 −7.8 × 1015 .96 9.00 0.44 .99

ZT 0.25 g + 0 10.24 0.06 .95 9.45 −1.1 × 1024 .66 3.17 1.27 .97

ZT 0.25 g + 600 10.61 0.20 .95 10.33 −5.8 × 1020 .86 6.38 0.80 .99

ZT 0.25 g + 1,200 11.28 0.18 .93 10.96 −4.8 × 1021 .84 6.41 0.92 .99

ZT 0.5 g + 0 9.52 0.04 .98 8.57 1.1 × 1024 .57 1.75 1.38 .96

ZT 0.5 g + 600 10.78 0.28 .96 10.61 −9.9 × 1017 .93 7.82 0.57 .99

ZT 0.5 g + 1,200 11.03 0.27 .96 10.84 −4.6 × 1018 .92 7.81 0.61 .99



significant effects on released PO3−

4
− P concentrations (p < .05), 

while only fish feed type has a significant effect on the released 
PO

3−

4
− P contents (p < .05). This is because the released PO3−

4
− P

concentrations increase proportionally with increasing of fish 
feed dosage (Wu et al., 2012). In addition, there is no interaction 
among the stirring intensity, fish feed dosage and fish feed type 
(p > .05). In addition, PO3−

4
− P is the main component of TP in 

fish feed, average released PO3−

4
− P concentrations account for 

68%–85% of average released TP concentrations (Data are shown 
in Table S2).

3.2 | Release kinetics of nitrogen from fish feed

3.2.1 | Release kinetics of TN from fish feed

Figure 3 shows the effect of stirring intensity, fish feed type and 
fish feed dosage on released TN concentrations (or released TN 
contents) from fish feed. As shown in Figure 3, under non-stirring 
condition, released TN concentrations (or released TN contents) in-
crease gradually during 0–300 hr and keep stable in the following 
hours, the results conform to Wu et al.'s (2012) experimental results. 

F I G U R E  2   Elovich kinetic of PO3−

4
− P from fish feed
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Under stirring condition, fish feed is suspended in a large amount in 
the initial stage of water agitation, and released TN concentrations 
(or released TN contents) increase rapidly to the maximum value 
with time during 0–300 hr, and also keep stable afterwards. Either 
released TN concentrations or released TN contents increase with 
increasing of stirring intensity. In addition, consistent with variations 
of TP and PO3−

4
− P, released TN concentrations in treatments with 

0.5 g fish feed are about two times higher than those of treatments 
with 0.25 g fish feed, and released TN contents in treatments with 
0.5 g fish feed are equals to those of treatments with 0.25 g fish 
feed generally.

In addition, released TN contents of unit weight fish feed are 
similar under strong stirring intensity (1,200 rpm) and weak stirring 
intensity (600 rpm), and both are higher than non-stirring conditions 
(0 rpm). Consistent with the experimental TP and PO3−

4
− P concen-

trations (or contents), released TN concentrations (or contents) from 
HT fish feed are highest, followed by HP fish feed, and ZT fish feed 
with same fish feed dosage and stirring intensity. The result also con-
forms to the crude protein and crude fat composition of three fish 
feed as shown in Table 1.

Table 4 shows the fitting results of pseudo-first-order, pseu-
do-second-order and Elovich kinetic models for TN release. Results 

F I G U R E  3   Pseudo-first-order kinetic of TN from fish feed
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showed that pseudo-first-order and Elovich kinetic models (R2 is 
.89–.99 and .85–.99, respectively) can describe variations of released 
TN contents better than pseudo-second-order kinetic model (R2 is 
.23–.52). From Table 4, with same fish feed and dosage, both k1 and 
Qe−1 increase with increasing of stirring intensity, which indicates 
that the release rate and released TN contents can be improved by 
increasing stirring intensity. With same stirring intensity and fish 
feed dosage, Qe−1 of HT is most, Qe−1 of HP is next while Qe−1 of ZT 
is smallest, and the results are consistent with measured results. In 
addition, according to parameters of Elovich model in Table 4, 1/Y is 
obviously higher than (1/Y)ln(XY), which means the process of TN 
released from fish feed is mainly slow phase.

Variance analysis of the effect of stirring intensity, fish feed dos-
age and fish feed type on released TN concentrations and released 
TN contents are shown in Table S1. All of factors including stirring 
intensity, fish feed dosage and fish feed type have significant effects 
on released TN concentrations (p < .05). Meanwhile, both stirring 
intensity and fish feed type have significant effects on released TN 
contents (p < .05) while fish feed dosage has not (p > .05). And there 
is no interaction among stirring intensity, fish feed dosage and fish 
feed type for both TN concentrations and TN contents (p > .05) as 
shown in Table S1. The results of variance analysis for TN is consis-
tent with that of TP, i.e. both hydraulic conditions and fish feed type 
are the main factors affecting released TN contents are related to 
regardless of fish feed dosage. In the present experiment, the con-
centrations (or contents) of TN released from fish feed was higher 

with stirring condition, and the stirring intensity has a significant im-
pact on the released TN concentrations and contents. Chen, Zhao, 
and Sun (2007) and Fan et al. (2003) also found that resuspension of 
particulate matter promoted the release of large amounts of TN in 
the field experiment of marine and lakes.

3.2.2 | Release kinetics of NH+

4
− N from fish feed

It is generally believed that the NH+

4
− N release process is rela-

tively complicated owing to the ammonization of organic nitrogen, 
the nitrification of ammonia nitrogen, the denitrification of nitrate 
nitrogen and the absorption of ammonia nitrogen by organic micro-
organisms. As shown in Figure 4, when the stirring intensity is 600 
and 1,200 rpm, the fish feed is suspended in a large amount at the 
beginning of the experiment, and the released concentrations and 
contents of NH+

4
− N increased, and the concentrations and contents 

increased slowly and gradually became stable at the end of the ex-
periment (from 300 hr), which is consistent with Wu et al.'s (2012) 
experimental results. According to Figures 1–4, it is obvious that the 
nitrogen (TN and NH+

4
− N) release was slower than the phosphorus 

(TP and PO3−

4
− P) release from fish feed. This is because labile form 

of phosphorus is directly added into fish feed and that make most 
of phosphorus can be released directly, while nitrogen is added into 
fish feed in forms of protein and lysine which has to be transformed 
in water before released.

TA B L E  3   Release kinetics of PO3−

4
− P from fish feed

Groups

Pseudo-first-order kinetic model Pseudo-second-order kinetic model Elovich kinetic model

Qe k1 R2 Qe k2 R2 (1/Y)ln(XY) 1/Y R2

HT 0.25 g + 0 10.90 0.032 .93 9.64 −6.79 × 1011 .5 1.57 1.64 .97

HT 0.25 g + 600 10.02 0.167 .72 9.71 −7.90 × 1021 .65 3.32 1.30 .95

HT 0.25 g + 1,200 10.11 0.175 .71 9.82 −8.48 × 1021 .64 3.32 1.32 .94

HT 0.5 g + 0 10.31 0.037 .97 9.17 1.21 × 1024 .54 0.62 1.79 .97

HT 0.5 g + 600 10.12 0.034 .68 8.88 −9.36 × 1021 .59 2.19 1.36 .93

HT 0.5 g + 1,200 10.14 0.043 .66 8.84 −5.99 × 1021 .60 2.78 1.23 .92

HP 0.25 g + 0 8.99 0.019 .97 7.45 −7.97 × 1020 .38 −0.82 1.68 .93

HP 0.25 g + 600 9.00 0.027 .78 7.91 −9.44 × 1022 .53 1.10 1.38 .96

HP 0.25 g + 1,200 9.26 0.028 .75 8.19 −1.52 × 1023 .52 1.02 1.45 .95

HP 0.5 g + 0 9.80 0.014 .98 7.70 −7.25 × 1021 .30 −2.39 2.04 .93

HP 0.5 g + 600 9.97 0.019 .80 8.44 −5.49 × 1023 .49 0.73 1.56 .95

HP 0.5 g + 1,200 10.45 0.016 .80 8.67 −1.43 × 1024 .47 0.35 1.69 .95

ZT 0.25 g + 0 9.01 0.014 .96 7.14 −8.83 × 1020 .33 −1.69 1.79 .92

ZT 0.25 g + 600 10.00 0.011 .90 7.66 −4.61 × 1024 .35 −1.34 1.82 .91

ZT 0.25 g + 1,200 10.16 0.012 .87 7.84 −3.58 × 1024 .37 −1.08 1.81 .91

ZT 0.5 g + 0 9.44 0.013 .97 7.31 −1.58 × 1025 .30 −2.23 1.93 .94

ZT 0.5 g + 600 9.99 0.011 .91 7.70 −4.71 × 1024 .35 −1.32 1.83 .92

ZT 0.5 g + 1,200 10.20 0.012 .89 7.93 −4.23 × 1024 .37 −1.10 1.83 .92



Both released NH+

4
− N concentrations and released NH+

4
− N 

contents of unit weight fish feed increase with increasing of 
stirring intensity, and released NH+

4
− N concentrations and 

contents under stirring condition (1,200 and 600 rpm) are ob-
viously higher than the released NH+

4
− N concentrations and 

contents under non-stirring conditions (0 rpm). In Akhan and 
Gedik's (2011) study, ammonium release from fish food was 
slow in the first few days of experiments but ammonium re-
lease increased in later periods and reached the highest rate in 
day 11, and it is basically consistent with our results. In Wang, 
Wang, and Wang (2010) experiment, the bed shear stress was 
reduced when the water flow structure was affected by plants, 
thereby reducing sediment suspension and NH+

4
− N release. 

In addition, according to Figure 4 and Equation 1, released 
NH

+

4
− N concentrations in treatments with 0.5 g fish feed are

nearly two times higher than those of treatments with 0.25 g 
fish feed, while released NH+

4
− N contents in treatments with 

0.5 g fish feed were quite close to those of treatments with 
0.25 g fish feed.

Wang et al. (2007), Cao and Tao (1999), and Morin and 
Morse (1999) used first-order kinetic model to describe the re-
lease of NH+

4
− N from sediments. In the present study, we try 

these kinetic models to describe the release of NH+

4
− N from 

fish feed. As shown in Table 5, both pseudo-first-order and 
Elovich kinetic models can better describe variations of released 

NH
+

4
− N contents of unit weight fish feed with R2 = .94–.99 and

R2 = .57–.94, respectively, than pseudo-second-order model with 
R2 = .034–.19. From Table 5, with same fish feed dosage and 
type, Qe−1 increases with increasing of stirring intensity; and with 
same fish feed dosage and stirring intensity, the order of Qe−1 
among three fish feed is HT > HP > ZT. According to parameters 
of Elovich kinetic model, the release of NH+

4
− N from fish feed 

mainly occurs in the slow release stage (1/Y is higher than (1/Y )
ln(XY )), and 1/Y increase with increasing of stirring intensity with 
same type and dosage of fish feed.

From Table S1, either stirring intensity or fish feed type has 
significant effects on both released NH+

4
− N concentrations from 

fish feed and released NH+

4
− N contents of unit weight fish feed 

(p < .05), while fish feed dosage only does have significant effects 
on released concentrations (p < .05). Meanwhile, there are no in-
teraction among stirring intensity, fish feed dosage and fish feed 
type for released NH+

4
− N concentrations and contents (p > .05). 

Thus, different with NH+

4
− N concentrations, released NH+

4
− N 

contents of unit weight fish feed is influenced by hydraulic condi-
tions and the nature (type) of fish feed instead of fish feed dosage. 
In addition, as shown in Table S3, NH+

4
− N is the main component 

of TN, and the average released NH+

4
− N concentrations are 54%–

74% of average released TN concentrations, and the maximum 
released NH+

4
− N concentrations are 70%–88% of maximum re-

leased TN concentrations.

TA B L E  4   Release kinetics of TN from fish feed

Groups

Pseudo-first-order kinetic model Pseudo-second-order kinetic model Elovich kinetic model

Qe k1 R2 Qe k2 R2 (1/Y)ln(XY) 1/Y R2

HT 0.25 g + 0 36.56 0.0074 .92 25.27 −4.45 × 1015 .27 −9.30 7.01 .82

HT 0.25 g + 600 48.86 0.0214 .98 41.00 −1.60 × 1017 .40 −3.64 9.05 .94

HT 0.25 g + 1,200 49.95 0.0339 .99 43.87 −1.63 × 10E17 .48 3.69 8.14 .92

HT 0.5 g + 0 36.91 0.0081 .96 25.69 −1.81 × 1016 .24 −13.36 7.01 .94

HT 0.5 g + 600 50.35 0.0225 .95 42.78 −1.13 × 1017 .44 −1.01 9.06 .97

HT 0.5 g + 1,200 53.09 0.0312 .97 46.61 −1.07 × 1017 .52 5.04 7.46 .96

HP 0.25 g + 0 26.51 0.0096 .89 19.78 −4.67 × 1014 .33 −4.506 4.92 .92

HP 0.25 g + 600 44.65 0.0107 .94 33.89 −3.29 × 1016 .33 −8.80 8.67 .96

HP 0.25 g + 1,200 43.31 0.0284 .92 37.78 −2.69 × 1016 .49 1.55 7.34 .99

HP 0.5 g + 0 28.81 0.005 .90 17.41 −3.52 × 1014 .23 −7.95 5.14 .85

HP 0.5 g + 600 40.54 0.016 .97 32.63 −4.06 × 1016 .35 −7.51 8.13 .98

HP 0.5 g + 1,200 41.06 0.019 .96 33.97 −4.14 × 1016 .38 −5.30 7.96 .98

ZT 0.25 g + 0 26.76 0.015 .96 21.17 −3.67 × 1015 .32 −6.68 5.64 .98

ZT 0.25 g + 600 34.43 0.018 .97 28.32 −1.49 × 1016 .38 −4.85 6.72 .98

ZT 0.25 g + 1,200 37.88 0.019 .97 31.41 −2.23 × 1016 .40 −4.15 7.21 .98

ZT 0.5 g + 0 25.33 0.010 .97 18.82 −1.18 × 1015 .29 −7.05 5.24 .96

ZT 0.5 g + 600 32.54 0.014 .97 25.90 −7.40 × 1015 .35 −5.87 6.44 .96

ZT 0.5 g + 1,200 33.75 0.019 .96 28.03 −9.046 × 1015 .40 −3.12 6.31 .97



4  | CONCLUSIONS

Effects of stirring intensity, fish feed dosage and fish feed type on 
aquaculture water environment is investigated in the present study. 
The two main conclusions can be drawn as follows.

1. Released TP, PO3−

4
− P, TN and NH+

4
− N contents of unit weight

fish feed can be described by pseudo-first-order, pseudo-sec-
ond-order and Elovich kinetic models, in which the fitting results
of Elovich and pseudo-first-order kinetic models are more valid.
From parameters of Elovich model, the release of TP from fish

feed mainly happens in fast phase, and the release of TN and 
NH

+

4
− N mainly happens in slow phase. However, affected by

stirring intensity and fish feed type, the release process of 
PO

3−

4
− P from HT fish feed in static water is dominated by

fast release, while the release process of PO3−

4
− P in other 

conditions is mainly dominated by slow release. In addition, 
PO

3−

4
− P and NH+

4
− N is the main component of TP and TN

respectively.
2. Variance analysis shows that stirring intensity and fish feed type

have significant effects on both released concentrations and con-
tents of TP, TN and NH+

4
− N (p < .05), stirring intensity and fish

F I G U R E  4   Pseudo-first-order kinetic of NH+

4
− N from fish feed

0 100 200 300 400 500 600
0

10

20

30

40

Re
le

as
ed

 N
H

4+ -N
 c

on
te

nt
s  

of
 u

ni
t w

ei
gh

t 
fis

h 
fe

ed
/ (

m
g/

g)

Time / (hr)

HT 0.25 g + 0 r/min

HT 0.25 g + 600 r/min

HT 0.25 g + 1,200 r/min

(a) HT 0.25 g

0

5

10

15

Re
le

as
ed

 N
H

4+ -N
 c

on
ce

nt
ra

tio
ns

 / 
(m

g/
L)

0 100 200 300 400 500 600
0

10

20

30

40

R
el

ea
se

d 
N

H
4+ -N

 c
on

te
nt

s o
f u

ni
t w

ei
gh

t 
fis

h 
fe

ed
 / 

(m
g/

g)

Time / (hr)

HT 0.5 g + 0 r/min

HT 0.5  g + 600 r/min

HT 0.5  g + 1,200 r/min

(b) HT 0.5 g

0

10

20

30

R
el

ea
se

d 
N

H
4+ -N

 c
on

ce
nt

ra
tio

ns
 / 

(m
g/

L)

0 100 200 300 400 500 600 700

0

8

16

24

32

40

R
el

ea
se

d 
N

H
4+ -N

 c
on

te
nt

s o
f u

ni
t w

ei
gh

t 
fis

h 
fe

ed
 / 

(m
g/

g)

Time / (hr)

HP 0.25 g + 0 r/min

HP 0.25  g + 600 r/min

HP 0.25 g + 1,200 r/min

(c) HP 0.25 g

0

5

10

15

R
el

ea
se

d 
N

H
4+ -N

 c
on

ce
nt

ra
tio

ns
 / 

(m
g/

L)

0 100 200 300 400 500 600
0

8

16

24

32

40

R
el

ea
se

d 
N

H
4+ -N

 c
on

te
nt

s o
f u

ni
t w

ei
gh

t 
fis

h 
fe

ed
 / 

(m
g/

g)

Time / (hr)

HP 0.5 g + 0 r/min

HP 0.5 g + 600 r/min

HP 0.5  g + 1,200 r//min

(d) HP 0.5 g

0

10

20

30

R
el

ea
se

d 
N

H
4+ -N

 c
on

ce
nt

ra
tio

ns
 / 

(m
g/

L)

0 100 200 300 400 500 600

0

7

14

21

28

35

R
el

ea
se

d 
N

H
4+ -N

 c
on

te
nt

s o
f u

ni
t w

ei
gh

t 
fis

h 
fe

ed
 / 

(m
g/

g)

Time / (hr)

ZT 0.25 g + 0 r/min
ZT 0.25  g + 600 r/min
ZT 0.25  g + 1,200 r/min

(e) ZT 0.25 g

0

5

10

15

R
el

ea
se

d 
N

H
4+ -N

 c
on

ce
nt

ra
tio

ns
 / 

(m
g/

L)

0 100 200 300 400 500 600

0

7

14

21

28

35

Re
le

as
ed

 N
H

4+ -N
 c

ap
ac

iti
es

 / 
(m

g/
g)

Time / (hr)

ZT 0.5 g + 0 r/min
 ZT 0.5  g + 600 r/min
 ZT 0.5  g + 1,200 r/min

(f) ZT 0.5 g

0

7

14

21

28

35

Re
le

as
ed

 N
H

4+ -N
 c

on
ce

nt
ra

tio
ns

 / 
(m

g/
L)



feed type also have significant effects on released PO3−

4
− P con-

centrations (p < .05) but only fish feed type do have significant 
effects on the released PO3−

4
− P contents of unit weight fish feed 

(p < .05). In addition, released concentrations of TP, PO3−

4
− P, TN 

and NH+

4
− N also can be influenced by fish feed dosage (p < .05), 

while released TP, PO3−

4
− P, TN and NH+

4
− N contents cannot be 

influenced (p > .05).
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