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Abstract: In this thesis we consider the application of resurgence and Picard-Lefschetz theory

to supersymmetric localisable quantum field theories in 2, 3 and 4 dimensions. We consider two

problems. First, in the theories we study, observables can be calculated exactly using localization

methods, and written in the form of a transseries. However in each non-perturbative sector,

the associated perturbation series is not asymptotic, seemingly rendering the application of

resurgence theory impossible. This problem is solved by deploying a Cheshire Cat analysis;

we slightly deform the theory rendering the series asymptotic, perform a resurgence analysis

in the deformed theory, and analytically continue the deformation back to 0, returning the

non-perturbative data in the undeformed theories. This is achieved in N = (2, 2) theories

in 2 dimensions, and N = 2 theories in 3 dimensions. Comments are made about how we

might generalize this to 4 dimensional theories. The second problem is the disappearance of

the resurgence triangle structure in N = 2 theories on a 3-sphere. This structure is recovered

by means of introducing a complex squashing parameter, uncovering a hidden topological angle

present in the theory. Finally, in the two above mentioned theories and N = 2 theories in 4

dimensions, a method is given for how to combine a resurgence analysis with additional non-

perturbative structures present in these theories to compute non-perturbative contributions with

different topological charge from the perturbative data.
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Chapter 1

Introduction

1.1 Towards understanding non-perturbative

quantum field theory

Quantum Field Theory (QFT) is the culmination of the reductionist attempt to describe

all phenomena found in nature using only a few, simple mathematical laws. It has seen

huge success in experiments at CERN describing fundamental particles, but also finds uses

as a mathematical language across the spectrum of physics, from quantum gravity, through

to condensed matter. On top of this, in recent years new results in QFT have directly

lead to new results in pure mathematics, and QFT is even being used in economics and

finance modeling. What started life as a theory for trying to make sense of the dynamics

of extremely small objects traveling extremely quickly has become a rich mathematical

framework finding applications right across the mathematical sciences.

Despite its importance, QFT still lacks a general and mathematically rigorous formulation.

Coupled to this, many important aspects of the framework are poorly understood, in

particular, non-perturbative aspects of QFT. Such non-perturbative phenomena are found

all over nature. The most famous example is the mass gap of Yang-Mills[3]. Another

example is the topic of topological insulators, where due to non-perturbative phenomena,

the interior of the material is insulating, whilst the surface contains conducting states[4].
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QFTs are generally analysed using perturbation theory in a coupling “constant” g. The

reason for the quotation marks is that in real world theories, g is rarely constant, but

runs to different values depending on the energy in the system. It has been known since

Achilles raced his tortoise friend that a series like 1 + 1
2 + 1

4 + 1
8 + ... eventually converges

to 2. However, for many Qts present in nature, the perturbation series in g encountered

when computing observables are asymptotic, and so have zero radius of convergence in g.

Thus perturbation theory can only give us, at best, approximations for results at small

g, and cannot tell us anything about strongly coupled theories where non-perturbative

effects dominate.

Developing a full, non-perturbative, well-defined formulation of QFT, is an important

outstanding problem in both physics and mathematics. In mathematics the problem is

important for putting QFT on a rigorous footing. For physics it is important for explaining

many observed phenomena, in particular non-perturbative phenomena that take place at

strong coupling. It is with the aim of bettering our understanding of non-perturbative

QFT that the research contained within this thesis has been carried out.

In recent years it has been realised that the diverging asymptotic perturbation series

encountered when analysing a quantum system is in fact not a bug of the analysis,

but a feature. By utilising Ecalle resurgence theory, one can actually determine non-

perturbative contributions to a theory from the way the series diverges. This has caused

much excitement, as it means a daunting non-perturbative analysis of a particular system

can be reduced to a much more simple perturbative analysis, followed by an application

of resurgence theory.

Whilst promising, there are however many technical obstacles to overcome before the

dream of understanding non-perturbative QFT might be realised using resurgence theory.

To name a few such difficulties, it is still poorly understood how one might apply resurgence

in a regime where the coupling is running. For many important QFTs like Yang-Mills

theory, it is typically extremely hard to calculate many orders of perturbation theory,

meaning access to the asymptotic expansion of observables is very limited. A further

problem, which is the subject of this thesis, is how to apply resurgence to theories which
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have non-perturbative effects, but no asymptotic perturbation expansion.

Over the last 30 years huge progress has been made in understanding non-perturbative

contributions to supersymmetric (susy) QFTs. In increasingly many cases various observ-

ables in particular theories can be calculated exactly, including all the non-perturbative

contributions. This has provided a new laboratory to test and develop the application of

resurgence methods to QFT.

The last problem mentioned above; the lack of asymptotic series required for a resurgence

analysis to be performed, is observed in many of these susy QFTs. In particular theories,

observables have been computed exactly, including all their non-perturbative contributions,

but the perturbation series encountered when analysing the observable, is not asymptotic.

The question then is, do these theories not have a resurgent structure, or is it present

but somehow hidden? In this thesis we tackle this question, and find the answer to be

the latter option. These theories exhibit what is known as Cheshire Cat resurgence, a

phenomena we will explore more in the remaining chapters of this thesis.

A further topic studied here relates to the topology of non-perturbative contributions.

Such contributions typically come with a topological charge. Resurgence will usually only

allow us to calculate non-perturbative data with equal topological charge to perturbation

series in consideration. Thus we see the emergence of a structure, called the resurgence

triangle, where elements of certain sets of non-perturbative data are related to other

elements of the same set, but not to elements of other sets. Two related problems emerge.

In certain theories, like the 3-dimensional theories we will study here, this resurgence

triangle structure disappears. What has happened to it? We will see that despite the

lack of topological theta angle in these theories, there is in fact a hidden topological

angle which we will uncover by deforming our theory. The second question is can some

additional non-perturbative relations be found, and used in addition to resurgence, to

calculate non-perturbative data with different topological charge. We will answer this in

the affirmative, and provide examples.
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1.2 Outline

In this thesis we will be considering the application of resurgence methods, and its to-

pological partner Picard-Lefschetz theory, in the analysis of supersymmetric localisable

quantum field theories.

In chapter 2 we will begin by giving a review of the relevant literature regarding resurgence

and Picard-Lefschetz methods, the supersymmetric theories we will be studying, and prior

works applying resurgence methods to supersymmetric quantum field theories. We will

then turn to review resurgence and Picard-Lefschetz theory themselves, and discuss some

of the non-perturbative structures that emerge, in particular the transseries and the

resurgence triangle. Will will conclude this chapter by giving a 0-dimensional example,

where we will apply both resurgence and Picard-Lefschetz theory, and see our first example

of Cheshire Cat resurgence.

In chapter 3 we will then turn our attention to analysing 2-d N = (2, 2) theory. This will

be our first example of Cheshire Cat resurgence in a QFT, and we will be able to use the

Cheshire Cat method to do a full resurgence analysis.

In chapter 4 we will analyse 3-d N = 2 theories, using resurgence and Picard-Lefschetz

theory. We will again see a manifestation of Cheshire Cat resurgence, but a new phenomena

will be observed; we will need to deform the theory further to recover the resurgence

triangle, and see the appearance of a hidden topological angle. At the end of this chapter

we will also comment on how we might generalise the Cheshire Cat method to be used

with 4-dimensional susy localisable theories.

In chapter 5 we will explore additional structures across the resurgence triangle. We

will observe how in these theories in 2, 3, and 4 dimensions, there are non-perturbative

relations that, when applied in addition to resurgence theory, allow us to calculate all the

data in the resurgence triangle, rather than just in a single column.

In chapter 6 we will then draw some conclusions, and comment on future directions. At

the end of this thesis there are appendices detailing the properties of some functions and

regularization techniques we make use of throughout the thesis.



Chapter 2

Background

In this chapter we will first introduce some known results from the literature. This will

lead us to understand the problems that this thesis aims to tackle. We will then cover

some background concepts in resurgence and Picard-Lefschetz theory that will be needed

in subsequent chapters. This will conclude with a simple example of an integral that can

be solved by applying a resurgence or Picard-Lefschetz analysis, to illustrate the ideas.

2.1 Literature Review

Given a generic quantum field theory, where there is nothing miraculous happening (e.g.

integrability or susy localization), one is typically forced to calculate observables in the

theory using perturbation theory. The result will be something like

O(g) = c0 + c1g + c2g
2 + c3g

3 + ... (2.1.1)

Dating back to 1952, an old argument by Dyson [5] suggests that, despite its acclaimed

and experimentally confirmed success, the perturbative expansion of QED must have

vanishing radius of convergence. The reason for this lack of convergence lies in the

asymptotic nature of perturbation theory usually attributed to the rapid factorial growth

of Feynman diagrams [6, 7]. Generically, in the absence of magic cancellations, we expect

that all the diagrams of a given order will contribute somewhat equally, so that when we
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sum over all of them we will obtain just from combinatorics a factorial growth for the

perturbative coefficients. We must also have that the contribution from the individual

integrals does not counter the factorial growth. For example if the number Feynman

graphs goes like n!, but the contribution from each graph goes like gn

n! , there will be no

asymptoticity. Again, back in 1952, Hurst showed that this was not the case in scalar

theories like φ3 and φ4 theory, and there is indeed asymptoticity.

The asymptotic behaviour of the perturbative series is something very general, deeply

rooted within the singular nature of perturbation theory, and an extremely recurrent

feature (rather than a bug) present not only in quantum field theory but also in quantum

mechanics [8, 9, 10] and in string theory [11, 12].

Ecalle resurgence theory [13] is the perfect mathematical framework to address the problem

of resummation of asymptotic series. The resummation method is Borel resummation,

and if we only focus on perturbation theory we do not quite get a unique physical answer

but rather a family of different analytic continuations; there is ambiguity in the resummed

answer.

The reason behind this is that perturbation theory is not the end of the story; these am-

biguities in resummation generate new non-analytic, i.e. non-perturbative, contributions.

Resurgence theory tells us how the global properties of the full solution are intimately

linked to these ambiguities [13, 14, 15, 16, 17]. Our series expansion has to be replaced by

a transseries expansion in which we add on top of the formal power series in the coupling

constant these new exponentially suppressed, non-perturbative terms accompanied with

their own formal power series. In other words the exact computation of an observable

should not be in the form of (2.1.1) but instead in the form:

O(g) =
∑
i

e−Si/g
∞∑
n=0

c(i)
n g

n . (2.1.2)

These exponentially suppressed terms cannot be captured by perturbation theory, since

e−S/g will vanish to all orders in perturbation theory. They should remind us of contribu-

tions we expect we need to include coming from finite action solutions of the equations of

motion, such as instantons. Though a proof that this is always the case does not exist, it
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is noteworthy that in all the cases analysed in the literature to date it is possible to find

a weak coupling limit of the theory where these contributions do indeed correspond to

non-perturbative objects present in the microscopic theory.

In general transseries can contain not only power series multiplied by exponentials of

power series, but also iterated exponentials, logarithms and iterated logarithms. They

were developed independently in various parts of mathematics to solve a variety of different

problems, and have their own rich body of mathematical literature. We won’t delve much

into this at all, and will be concerned with transseries of the form (2.1.2). For a nice

introduction, see [18], and references therein.

In summary, resurgence theory tells us in practice how to decode from the perturbative

data the non-perturbative pieces necessary to construct a unique resummed physical

observable. It is possible to disentangle from the perturbative coefficients the fluctuations

around different non-perturbative saddle points. A point that is sometimes overlooked

is the vice-versa is also true; we can use the series around a particular non-perturbative

contribution to construct the perturbative data, as well as all the other non-perturbative

data. The zero radius of convergence of our original perturbation series has indeed turned

out to be a feature rather than a bug in our analysis.

One important caveat must be made here. Non-perturbative contributions to a typical

QFT usually come with some topology, and thus a topological charge. As has been

noted in [19, 20], we can only use resurgence to calculate non-perturbative data within

a topological sector (contributions with equal topological charge). Thus the resurgence

structure arranges itself into what is called the resurgence triangle (see figure 2.1). We

can use a resurgence analysis to calculate all the contributions within a single column of

the triangle from just one element of that column1.

For example, a resurgence analysis of the perturbative data of Yang-Mills, Φ(0)
0 , could

produce information about the instanton-anti-instanton contribution, Φ(1)
0 , but not the

1In theories with a topological angle we often work with the complexified coupling τ = 4πi
g2 + θ

2π .
Resurgence utilises the analytic continuation of g, and the imaginary part of g should not be confused
with θ. It is the explicit dependence on θ that splits the triangle up into its constituent columns. We will
comment further on this in section 2.2.1.
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Φ0
(2)

Φ0
(1)

Φ1
(0)

Φ-4
(0) Φ4

(0)

Φ0
(0)

Φ-1
(0)

Φ2
(0)

Φ-2
(0)

Φ1
(1)Φ-1

(1) Φ3
(0)

Φ-3
(0)

Φ2
(1)

Φ-2
(1)

Figure 2.1: The Resurgence triangle. The kth non-perturbative contribution part of the
N th topological sector is denoted schematically by Φ(k)

N . Resurgence theory
allows us to reconstruct from any Φ(k)

N all the other contributions in the same
column, i.e. Φ(k′)

N .

instanton contribution, Φ(0)
1 .

When considering path-integrals, complementary to resurgence analysis [21] is the Picard-

Lefschetz theory or complexified Morse homological decomposition in steepest descent

contours [22], see also [23, 24, 25]. Rather than an analysis of a perturbation series,

Picard-Lefschetz theory utilises an analysis of the path-integral, which can be thought of

as a generalization of the saddle point decomposition method for ordinary integrals to

path-integrals. We start off with an integral that will be something like

O(g) =
∫

Γ
[Dφ]e−S[φ]/g . (2.1.3)

Here we have denoted the fields by φ, the effective action by S[φ], and the path-integral

“contour” of integration by Γ.

The key idea is that one has to deform the path-integral contour of integration into a

suitable complexification of field space. In this complexified field space one then has

to find all the saddles; these are the finite action solutions to the equations of motion.
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Associated to each complex saddle point there is a privileged, steepest descent contour

of integration, usually called a Lefschetz thimble or J cycle, and at a generic value of the

coupling constant one can rewrite the original contour as a linear combination of these

thimbles with integer coefficients2, i.e. intersection numbers. Thus we find a result in a

form very reminiscent of a transseries:

O(g) =
∑
i

nie
−Si/g

∫
Ji

[Dφ]e−S[φ]/g . (2.1.4)

Here i runs over the saddles, ni are the intersection numbers, Ji are the J cycles associated

to each saddle, and a change of variables has been made to pull out an explicit factor of

e−Si/g associated to each saddle.

The link between resurgence and Picard-Lefschetz decompositions comes from Stokes

phenomena. For special arguments of the complexified coupling constant, i.e. Stokes

directions, we have that a thimble can connect different saddles. This is usually forbidden

given the fact that the imaginary part of the action is constant along a thimble, i.e.

they are stationary phase contours. Across a Stokes direction some of the thimbles will

undergo non-trivial monodromies and the aforementioned intersection numbers will jump.

Simultaneously resurgence analysis tells us that the resummation of the asymptotic series

around the saddles involved will also jump; the ambiguities in the Borel resummations

mentioned before. These two discontinuities, of intersection numbers and resummations,

are tightly related.

We again see the appearance of the resurgence triangle from Picard-Lefschetz theory.

Whenever the theory in question contains a topological θ angle this will contribute to the

classical action of the various saddle points by an imaginary part weighted by θ times the

topological number. Thus even before complexifying the coupling constant (note that one

should not confuse the imaginary part of the complexified coupling constant with the theta

angle) we have that steepest descent paths can only connect saddles coming from the same

topological sector. Thus generally whenever a theta angle is present the path integral will

2Note that although when dealing with finite dimensional integrals the intersection numbers will always
be integers, in infinite dimensions this is not necessarily guaranteed, see for example [26].
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first split into a sum over topological sectors; then upon complexification of the coupling

constant we will see Stokes phenomena between saddles in the same topological sector.

Hence we again see the resurgence triangle structure as in Figure 2.1.

Thus we see resurgence and Picard-Lefschetz theory are two sides of the same coin.

Resurgence gives us a framework to work in, where we can analyse perturbative series to

calculate non-perturbative data. Picard-Lefschetz decompositions of path-integrals are

harder to work with, as the integrals are infinite dimensional, but give us simultaneously

a topological explanation for what is going on in resurgence theory, and a semi-classical

explanation for the exponentially suppressed contributions to the transseries.

A particularly fortuitous class of examples where we can try to apply resurgence theory

are supersymmetrically localisable field theories. Starting with Pestun’s seminal work

[27] for N = 4 and N = 2 theories on S4, many quantities like partition functions and

Wilson loops have been computed exactly using supersymmetric localisation; see [28] for

a pedagogical introduction and a more complete set of references.

The central observation of localisation is that, given a supercharge Q that squares to a

bosonic symmetry of the theory, the path integral only gets contributions from classical

configurations that are fixed points of Q, and small fluctuations around these configura-

tions. Heuristically, denoting the fields of a theory by φ and the action by S[φ], we see

that adding a Q exact term, Q(V [φ]), to the action, where V [φ] is chosen to be invariant

under the bosonic symmetry, doesn’t change the result of the path integral:

d

dt

∫
[Dφ]e−S[φ]+tQ(V ) =

∫
[Dφ]Q(V )e−S[φ]+tQ(V )

=
∫

[Dφ]Q
(
V e−S[φ]+tQ(V )

)
= 0 . (2.1.5)

The second equality here holds because Q(S[φ]) = 0, as does Q2(V [φ]). The final equality

holds as it is just a total derivative. We can thus take the t → ∞ limit without changing

the result of the path integral. In this limit, assuming we pick a sensible negative definite

Q(V [φ]), only configurations in the neighbourhood of solutions of Q(V [φ]) = 0 will

contribute. Calling these solutions φcr, we can expand the fields as φ = φcr + 1√
t
δφ. Then

in the t → ∞ limit only the quadratic terms will survive, leaving us with a Gaussian



2.1. Literature Review 11

integral to perform over δφ. The final answer is in the form of a sum over φcr, each term

containing a ratio of bosonic and fermionic one-loop determinants, weighted by e−S[φcr],

with an integral over any bosonic zero modes of each φcr. Thus the complicated path

integral is simplified greatly to a sum of finite dimensional integrals.

This method is very general and can be applied to theories living on different manifolds,

in various numbers of dimensions, and with various amounts of supercharges. For example

one can consider N = 2 theories on a squashed S4 [29], or in three dimensional N = 2

on a round [30] or squashed sphere [31], or similarly going to two dimensional N = (2, 2)

theories on a sphere [32, 33] or an ellipsoid [34].

Importantly in all these cases the exact localised partition functions and other observables

can be written as a perturbative part plus non-perturbative sectors, i.e. as a transseries

[18]. Hence a very natural question is whether or not one can apply resurgent methods to

these quantities and reconstruct the complete answers from the purely perturbative data.

This question was analysed in [35, 36, 37, 38, 39] and it was realised that in supersymmetric

field theories the resurgence story is not as straightforward.

This constructive resurgence program is a very powerful method allowing us to reconstruct

non-perturbative physics from perturbative data but ultimately it relies on the asymptotic

nature of the perturbative coefficients. However there exist interesting theories for which

magic cancellations between diagrams take place, effectively making perturbation theory

a convergent expansion, or even better cases for which there are only a finite number

of non-vanishing perturbative coefficients. For this class of “special” theories it seems

impossible that we can extract non-perturbative information from perturbation theory via

a straightforward use of the resurgence program as we do not have an asymptotic series

to begin with.

One might think that, due to cancellations between bosons and fermions, supersymmetric

theories would be the perfect candidates for this “good” but “bad” scenarios. However

just requiring the theory to be supersymmetric is not a guarantee of a convergent perturb-

ative expansion for every physical observable. In [35, 36] the authors considered different
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supersymmetric theories in 3 and 4 dimensions (see also [37, 38]) and analysed in great de-

tails the weak coupling expansion of particular observables obtained from supersymmetric

localization. Despite supersymmetry the authors showed that the perturbative expansions

of the considered observables in 4-d N = 2 super Yang-Mills (SYM) were asymptotic but

Borel summable, a consequence of the absence of neutral bions configurations as argued in

[40, 41]. However using resurgent calculus the authors of [36] were able to extract import-

ant non-perturbative information from the perturbative data, although a semi-classical

interpretation in terms of microscopic physics for some of these non-perturbative effects

is still missing, while for the 3-d N = 2 case discussed in [38] the semi-classical origin of

these non-perturbative contributions was recently understood [42] in terms of complexified

supersymmetric solutions.

If we consider N = 4SU(N) SYM in the planar limit the situation changes slightly as

we can compute exact quantities using integrability and, thanks to the large number of

supersymmetries, the weak coupling expansions of various physical quantities, for example

the cusp anomalous dimension [43] and the dressing phase [44], have indeed finite radius

of convergence. However not everything is lost from the resurgence point of view since

it now happens that the strong coupling expansions of these two observables give rise to

asymptotic series; see [43] and [45] respectively. The full resurgence machinery can be

then applied to the strong coupling side of planar N = 4 SYM to obtain the complete

transseries for the cusp anomaly [46, 47] and the dressing phase [48] leading to important

implications for weak/strong coupling interpolation with the stringy AdS5 × S5 side,

although the semi-classical origin of the non-perturbative effects predicted in [48] is still

somewhat mysterious.

The strong coupling side of planar N = 4SU(N) SYM can also be studied within the

context of the AdS/CFT correspondence. In particular it was realised in [49] that the

hydrodynamic gradient series for the strongly coupled N = 4 super Yang-Mills plasma is

only an asymptotic expansion leading to the works [50, 51, 52] dealing with resurgence

and resummation issues in the fluid context of AdS5/CFT4.

There are however cases for which we only have access to a convergent weak coupling
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expansion but we do nonetheless expect non-perturbative physics to be present and for

which we do not know an easy way to tackle the strong coupling side with the hope to be

able to apply resurgence there. Perhaps the most emblematic example of this sort can be

found in supersymmetric quantum mechanics [53] where we can construct simple models for

which the ground state energy is zero to all orders in perturbation theory but we do expect

non-perturbative physics to play a role. It would seem that in these cases perturbative

and non-perturbative data cannot possibly have anything in common with one another,

contrary to what is usually advertised in the resurgence program. The authors of [54, 55]

started precisely from this puzzle and considered two very simple supersymmetric quantum

mechanical models: the double Sine-Gordon (DSG) and the tilted double well (TDW). The

DSG ground state energy has a trivial perturbative expansion and a normalizable ground

state, i.e. susy is preserved and E0 = 0 exactly, however the system has real instantons

that somehow do not give rise to the expected exponentially suppressed contributions. For

the TDW the ground state energy in perturbation theory still vanishes but the model does

not have a supersymmetric ground state and its energy should be lifted non-perturbatively

although the model does not possess real non-perturbative saddles.

The solutions to both puzzles come from a particular realisation of resurgence theory that

the authors of [55] named Cheshire Cat resurgence because very much like the magical

Wonderland creature, the lingering grin of resurgence can be still seen from perturbation

theory even when its entire body has completely disappeared. The solution is as elegant

as simple; we just need to break slightly supersymmetry by declaring that the fermion

number in each superselection sector is not an integer anymore but a complex parameter

ζ. Once the fermion number is an arbitrary parameter the perturbative expansion of the

ground state energy in both systems becomes immediately asymptotic; the body of the

cat has appeared once more.

In the deformed DSG case we can apply standard resurgent calculus and obtain a complete

transseries expression for the ground state energy that contains not just the perturbative

series but also contributions from real as well as complex saddle points [56, 57]. As we

send the deformation parameter ζ → 0 the perturbative series truncates, the contribution
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coming from the real and complex bions cancel one another because of a hidden topological

angle [58], and the ground state energy is exactly zero thanks to the topological quantum

interference3 between different saddle contributions [60]. The role of complex saddles is

crucial for this cancellation and their contribution can be really obtained from a semi-

classical calculation [61, 62]. However these results have not been yet compared against the

predictions coming from resurgent analysis of [63], in which the exact same deformed DSG

model is obtained from dimensionally reducing the two dimensional SU(2) η-deformed

principal chiral model and for which the complex bions can be promoted to soliton solutions

in the complexified QFT.

A similar story holds for the deformed TDW case: when the deformation parameter ζ

is non zero the perturbative expansion is asymptotic and we can use resurgent analysis

to construct from the perturbative data the contribution of the complex bions to the

ground state energy. As we send ζ → 0 the perturbative expansion reduces to zero,

while the complex bions remain, as there are no real bions to cancel them, producing

non-perturbative contributions to the ground state energy, i.e. supersymmetry is indeed

broken. Even if the perturbative expansion truncates both in DSG and TDW we can still

use Cheshire Cat resurgence to extract non-perturbative physics from perturbative data.

The question is can we generalise this Cheshire Cat resurgence method to be used in susy

QFTs where the perturbative series also seems to be oblivious to the non-perturbative

data? We study this in relation to 2-d N = (2, 2) theories on a sphere [32, 33], 3-d N = 2

theories on a squashed sphere [31], and make comments on how it might be generalised

to 4-d N = 2 theories on a sphere [27].

There are two further questions we would like to tackle in this thesis. As discussed already,

in [19, 20] the authors noted the existence of the resurgence triangle. In our analysis of

3-d N = 2 theories we will see that this structure seems to have disappeared. We will

ask how this structure might be recovered, and develop a deformation for doing this in

chapter 4.

3In [59] the authors presented a realisation of the same effect in a very nice and simple example
involving Bessel functions. We thank Gerald Dunne for discussions on this point.
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Finally, in [64, 65, 66], the authors managed to develop a method for calculating data in all

columns of the resurgence triangle from data in a single column, called the Dunne-Ünsal

relation. In chapter 5 we will use properties of these susy theories to develop similar

relations for these theories.

2.2 A review of resurgence and Picard-Lefschetz

decomposition methods

We now review the Resurgence and Picard-Lefschetz decomposition methods. In this

section we will give an overview of the procedures, and in the next section we will give

a zero-dimensional example that illustrates these methods, and also the Cheshire Cat

principle. For other excellent expositions of these methods (save the Cheshire Cat method)

the reader may like to consult [67, 68, 21, 69]. See also [23, 24] for more on Picard-Lefschetz

theory.

2.2.1 Resurgence

Let us consider a familiar scenario in physics. We are trying to calculate some observable

that depends on some coupling constant, O(g), and we have managed to calculate a series

expansion4 for it;

O(g) =
∞∑
n=0

cng
n . (2.2.1)

Now let us assume that cn goes as Γ(n+ ∆), i.e. the series has zero radius of convergence.

In order to get a finite answer we need to use a resummation procedure, and the one we

turn to is Borel resummation5.
4In this review we will do everything in the weak coupling regime, i.e. small g. In situations where we

have a strong coupling expansion in inverse g, a simple generalization of this is easily found by sending
g → 1/g in all the equations in this section.

5Of course there are many different resummation procedures we could use. The reason for using Borel
resummantion is that it turns out, as we will see, to give us a way of computing non-perturbative data
from perturbative data. This is not the case with other resummation methods.
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First we define the directional Laplace transform

Sθ[Φ](g) =
eiθ∞∫
0

dx e−x/gΦ(x) . (2.2.2)

It is important to note that

g−∆S0[xn−1+∆](g) = Γ(n+ ∆)gn . (2.2.3)

Using this, we now see the following

O(g) =
∞∑
n=0

cng
n

= g−∆
∞∑
n=0

cn
S0[xn−1+∆](g)

Γ(n+ ∆)

“ = ” g−∆S0

[ ∞∑
n=0

cn
xn−1+∆

Γ(n+ ∆)

]
(g)

= g−∆S0
[
Φ(0)

]
(g) . (2.2.4)

There are two things to note here. First, in the last line, we have defined the Borel

resummed observable to be

Φ(0)(x) =
∞∑
n=0

cn
xn−1+∆

Γ(n+ ∆) . (2.2.5)

In Φ(0)(x) we have divided out by the factorial divergence, rendering it to have finite

radius of convergence. In principle, we can now perform the sum returning a function,

and then do the inverse Laplace transform of this function to get back to our observable.

The second thing to note is that the step taken across the “ = ” is obviously not allowed

mathematically. We cannot swap an integral and a sum when the series is asymptotic.

For the purposes of this review, we will not take steps towards making a more rigorous

argument (for such steps the reader may like to consult [13]). For now we define

ζ0(g) = g−∆S0
[
Φ(0)

]
(g) , (2.2.6)

which is considered to be the perturbative answer after Borel resummation.

We now have a finite answer for O(g). We typically find, however, that ζ0(g) is not unique,
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due to the presence of poles and branch cuts on the real x axis of Φ(0). Thus the contour

for the Laplace transform is forced into the complex x plane, and the way this is done

introduces some ambiguity. From now on we refer to the complex x plane as the Borel

plane. Put another way, S0
[
Φ(0)

]
(g) is in fact not well defined, but we need to consider

it as a limit as θ → 0, and we will get different answers as we do this from above or below

0.6 We expect our theory to be real for real g, and smooth as we cross Im(g) = 0 for the

real part of g positive. Thus we need some way of removing these ambiguities.

We can already see that the locations of the branch points/poles in the Borel plane are

tightly related to the coefficients of the asymptotic perturbation expansion. For example,

consider the perturbation series

∞∑
n=0

(−1)nΓ(n+ 1)gn+1 . (2.2.7)

This resums to

Φ(0)(x) = 1
1 + x

. (2.2.8)

Meanwhile the perturbation series

∞∑
n=0

Γ(n+ 1)gn+1 , (2.2.9)

resums to

Φ(0)(x) = 1
1 − x

. (2.2.10)

This illustrates a general feature of asymptotic perturbative series, that series with coef-

ficients of alternating sign will resum to a functions with poles or branch points on the

negative real axis. Meanwhile series with coefficients all positive will resum to functions

with poles or branch cuts on the positive real axis. When there are no poles or singularities

on the positive real axis of the Borel plane, the series is called Borel summable.

6Because of the presence of presence of poles and branch cuts on the real axis, we are forced to
complexify x. This in turn forces us to consider other non-analytic parts of the Borel plane. The upshot
is that all non-analyticities in the Borel plane will correspond to non-perturbative contributions to the
theory. Thus we are forced to consider complex contributions with complex action.
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These ambiguities mean that the directional Laplace transformation Sθ of Φ(0)(x) will

jump as we vary θ. These jumps are encoded by the Stokes automorphism Sθ, which is

defined by the equation

Sθ+ = Sθ− ◦ Sθ

= Sθ− ◦ (Id + Discθ) . (2.2.11)

Here Discθ is the discontinuity of the Laplace transformation in the θ direction, and θ+ and

θ− denote taking the limit as the direction goes to θ from above and below respectively.

Let us consider an example where we have one branch cut, with Branch point on the

real positive axis in the Borel plane, at x = S1. We now have the non-trivial Stokes

automorphism given by

Sθ+

[
Φ(0)

]
(g) = Sθ−

[
Φ(0)

]
(g) +

∞+iε∫
S1

−
∞−iε∫
S1

 dx e−x/gΦ(0)(x)

= Sθ−

[
Φ(0)

]
(g) +

∞∫
S1

dx e−x/gDisc0(Φ(0))(x)

= Sθ−

[
Φ(0)

]
(g) + e−S1/g

∞∫
0

dx e−x/gDisc0(Φ(0))(x+ S1) . (2.2.12)

Here we have defined Disc0(Φ(0))(x) = Φ(0)(x + iε) − Φ(0)(x − iε), defined initially only

along the cut, and in the final line we have simply made a change of variables. Let us take

the function Disc0(Φ(0))(x) and use it as a seed defining a function on the whole complex

x plane, and let us call the function Φ(1)(x− S1). Equation (2.2.12) then becomes

Sθ+

[
Φ(0)

]
(g) = Sθ−

[
Φ(0)

]
(g) + e−S1/g

∞∫
0

dx e−x/gΦ(1)(x) . (2.2.13)

Here we hit the heart of resurgence. Φ(0)(x) is not an analytic function in the Borel plane,

and so ζ0(g) is not a uniquely defined function of g. But consider the following transseries:

Φ(0)(x) + σ1e
−S1/gΦ(1)(x) . (2.2.14)

This does not have discontinuities in θ upon directional Laplace transformation, so long

as σ1 jumps appropriately. σ1 is called a Stokes constant, and it is dependant on θ. For



2.2. A review of resurgence and Picard-Lefschetz decomposition 19

general θ they are constant, but along Stokes directions where Φ(0)(x) has a discontinuity,

σ1 jumps. For example, in the above example, as θ passes from just below 0, 0−, to just

above 0, 0+, σ1 → σ1 + 1.

Now in the theories we will be discussing in this thesis there will be multiple sources of

non-analyticity in the Borel plane for Φ(0)(x). Thus we will end up with more complicated

transseries with infinite numbers of exponentially suppressed contributions, all being

multiplied by their own Stokes constants. This will just be a simple generalisation of

the above procedure. Each branch cut will be used as the seed for another function of

x, and will encode the contribution coming from some non-perturbative background with

classical action Si, and will contribute to the transseries as σie−Si/gΦ(i)(x).

Thus, by demanding that there are no discontinuities in the complete resummed transseries,

we can determine the full transseries with all the non-perturbative data from just the

perturbative part of the transseries. This is the punchline of resurgence; we have used the

asymptoticity of (2.2.1) to determine all the non-perturbative contributions.

The final thing to review here is how the perturbative series for the perturbative sector

relates to the perturbative series for the non-perturbative sectors. These relations are

encoded by what are know as the large-order relations. In order to to see this we now

use a Cauchy-like argument to relate the branch cuts in the Borel plane encoding the

non-perturbative effects to the perturbative expansion near the origin. Recall Cauchy’s

integral equation

f(z0) = 1
2πi

∮
Γ
dz

f(z)
z − z0

. (2.2.15)

Here Γ is a closed anti-clockwise curve encircling the point z0, and f(z) is an analytic

function. For simplicity let us again assume that our function Φ(0)(x) only has one branch

cut on the positive real axis. Again, the following procedure can be generalised to other

cases in obvious ways.

Let us define the function

Ô(g) = S−arg(g)
[
Φ(0)

]
(g) . (2.2.16)
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Now this function has a branch cut along the ray arg(g) = 0. Now taking Cauchy’s

integral equation, and widening the path so that it loops around at infinity, then from

infinity to the origin just under the cut and then back out to infinity just over the cut

(see Figure 1 of [9] for an illustration of such a contour), we find

Ô(g) = 1
2πi

∞∫
0

dw
Disc0(Ô)(w)

w − g
. (2.2.17)

Here Disc0(Ô)(w) is defined as Ô(w + iε) − Ô(w − iε), again only along the positive real

axis, but then analytically continued to be a function for the entire w plane. We now

expand

Ô(g) =
∞∑
n=0

Ông
n ,

1
w − g

=
∞∑
n=0

gnw−n−1 . (2.2.18)

Plugging these into (2.2.17) and equating powers of g we thus find

Ôn ∼ 1
2πi

∞∫
0

dw w−n−1Disc0(Ô)(w) . (2.2.19)

Note this is an asymptotic expression, due to us swapping the sum and the integral on the

RHS when we substituted (2.2.19) into (2.2.18). The final steps are to swap Disc0(Ô)(w)

for e−S1/wS0
[
Φ(1)

]
, where the g in the definition of Sθ is swapped for w, and set arg(g) = 0.

Now for arg(g) = 0 we have Ôn = cn. Moreover S0
[
Φ(1)

]
can be expanded out to give a

perturbation series around the non-perturbative background;

S0
[
Φ(1)

]
(w) =

∞∑
n=0

c(1)
n wn . (2.2.20)

We thus conclude that

cn ∼
∞∑
m=0

1
2πi

∞∫
0

dw e−S1/wc(1)
m wm−n−1

∼
∞∑
m=0

1
2πic

(1)
m Γ(n−m)Sm−n

1 . (2.2.21)

We thus see that for large n, cn is dominated by c
(1)
0 , and so on7. Thus we can use the

7The reader may be worried that Γ(n − m) is actually infinite for large enough m. The reason for this
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large order coefficients of the perturbative expansion to read off the low order coefficients

of the non-perturbative data.

The final thing to comment on in this section is the emergence of the resurgence triangle.

Our resurgence calculations are in the form of an analysis in the perturbation series in g.

Let us consider a theory with topological θ angle. Now we have an additional parameter

in our theory, and non-perturbative contributions will typically come with a topological

charge. Of course, an analysis of a perturbation series in g can’t tell us any information

about θ dependency, and thus about contributions with different topological charge. We

thus see that resurgence will only tell us about non-perturbative contributions from non-

perturbative effects with equal topological charge, recovering the structure of Figure 2.1.

From a single element of a particular column we can use a resurgence analysis to calculate

all the other data in that column. However, we cannot use resurgence to tell us about the

data in any of the other columns.

2.2.2 The Picard-Lefschetz Method

Let us now suppose that we had our observable to calculate in the form of a path integral

given by

O(g) =
∫

[Dφ]e−S[φ]/g , (2.2.22)

where φ is short-hand for the fields in the theory, and S[φ] is the effective action for the

theory. We now describe the Picard-Lefschetz decomposition method for solving this path

integral. This method can be thought of as a generalization of the method of steepest

decent decomposition for finite dimensional integrals.

The first step is to holomorphize the fields,

φ → φ̂ = φR + iφI , S[φ] → S[φ̂] = SR + iSI . (2.2.23)

Here SR is a real Morse function; that is a real valued function whose critical points are

divergence is that the expression is asymptotic, and no longer valid for such large m.
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non-degenerate8. SI is the imaginary part of the holomorphic action. In doing this we have

doubled the dimension of the field step, but we will be integrating over half dimensional

cycles withing this holomorphic field space.

The next step is to find all the finite action critical points of the holomorphic action; that

is the finite action solutions of

δS[φ̂]
δφ̂

= 0 . (2.2.24)

Put another way, these are the solutions of the Euler-Lagrange equations of motion whose

action is finite. We label the ith critical point by φ̂cri .

The third step is to find the steepest decent and ascent cycles cycles from these critical

points. These cycles are half dimensional cycles which are solutions to the complex Morse

flow equations, given by

dφ̂

dτ
= ±δS[φ̂]

δφ̂
, lim

τ→−∞
φ̂(τ) = φ̂cri . (2.2.25)

Here τ is a “time” parameter parametrising the flow. The solution with the + sign attached

to the ith critical point is called the unstable manifold, or the downward manifold, or the

steepest decent manifold, or as we shall call it here, the Ji cycle. The solution with the −

sign is called the stable/upward/steepest ascent manifold, or as we shall call it here, the

Ki cycle.

An important thing to notice about these solutions is that the imaginary part of the action,

SI , is constant along the J and K cycles. Let us see this for the J cycles:

dSI
dτ

= 1
2

dSI [φ̂]
dτ

− dS̄I [φ̂]
dτ


= 1

2

dφ̂
dτ

δSI [φ̂]
δφ̂

− dφ̂

dτ

δSI [φ̂]
δφ̂


= 1

2

dφ̂
dτ

dφ̂

dτ
− dφ̂

dτ

dφ̂

dτ


8The use of Morse functions in physics has a rich history. Initiated by Witten in [70], where a proof

of the Morse inequalities was given using supersymmetric quantum mechanics, they have found many
applications in supersymmetric QFT, leading to deep connections between QFT and pure mathematics.
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= 0 . (2.2.26)

The calculation for the K cycles is very similar. This fact will be important later when

we come to discuss the emergence of the resurgence triangle.

A further important point about these solutions is the value of the real part of the action

is monotonically increasing as we move along the J cycles associated to a particular critical

point. This is a simple variation of the above calculation:

dSR
dτ

= 1
2

dSI [φ̂]
dτ

+ dS̄I [φ̂]
dτ


= 1

2

dφ̂
dτ

δSI [φ̂]
δφ̂

+ dφ̂

dτ

δSI [φ̂]
δφ̂


= 1

2

dφ̂
dτ

dφ̂

dτ
+ dφ̂

dτ

dφ̂

dτ


=

∣∣∣∣∣∣dφ̂dτ
∣∣∣∣∣∣
2

. (2.2.27)

This will be important in just a moment when we consider the convergence of the integrals

we decompose (2.2.22) into.

The final step is to decompose the path integral into a sum over integrals over the J cycles.

We call the original contour Γ. For this to be a good contour, it must start and end in,

or on the boundary of, good regions. These are regions where the integrand of the path

integral goes to 0 at infinity. In bad regions the integrand diverges at infinity. Because of

(2.2.27), the J cycles will always end in good regions (assuming we are not on a Stokes wall;

more on this in a moment). If Γ is good and we are not on a Stokes wall, we decompose

Γ as

Γ =
∑
i

niJi . (2.2.28)

Here Ji are the various J cycles, which are attached to the ith critical points. ni are known

as the intersection numbers. They are defined as

ni = (Ki,Γ) . (2.2.29)
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This is the number of times (counted with sign) the K cycle from the same critical point

associated with Ji intersects the original contour. We now write the partition function as

O(g) =
∫

Γ
[Dφ]e−S[φ]/g

=
∑
i

ni

∫
Ji

[Dφ]e−S[φ]/g . (2.2.30)

Importantly we have already seen that the real part of the action is monotonically increas-

ing as we move along the J cycles. We see therefore that e−S[φ]/g will become exponentially

suppressed as we move along the integration cycles and the integrals in (2.2.30) will con-

verge. This is the Picard-Lefschetz decomposition. We have taken our path integral, and

written it as a sum of integrals that we know absolutely converge.

How does this relate to the resurgence framework we have looked at in the previous section?

The answer stems from the fact that there is an ambiguity in how the Picard-Lefschetz

decomposition can be performed. Whilst the real part of the action is monotonically

increasing as we move along the J cycles, it is not necessarily true that it will go all the

way to infinity. In particular the J cycle may end on another saddle point, rather than

going out all the way to infinity. In this case our decomposition breaks down; not all the

J cycles end in the good regions, and so Γ can’t be written as a sum of J cycles.

When does this ambiguity occur? Recall that the imaginary part of the action is constant

as we move along the J cycles. Thus, if the action at two distinct saddles has the same

imaginary part, it is possible (in principle, but not guaranteed) for a J cycle to connect

them. Conversely, if the imaginary parts of two saddles are not equal then it is not possible

for them to be connected by a J cycle. Now if two saddles are connected by a J cycle,

typically a small adjustment of the argument of g, thinking of g as complex now, will

change this. Thus, as we vary the argument of g, the J cycle will pass along one side of

the saddle, then at a special value for the argument it will connect the saddles, and the

beyond that it will pass along the other side of the saddle.

Thus, as we vary the argument of g, we pass through special values of the argument where

the J cycles from particular saddles will jump across other saddles, and the intersection

numbers will jump. This is another example of Stokes phenomena which we saw in the
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discussion surrounding (2.2.14). The jump in the intersection numbers can be described

by a monodromy matrix. Suppose that we have a saddle labeled i, and its contribution

to the path integral coming with the intersection number ni, and a further saddle labeled

j with associated intersection number nj. Let us also suppose that at arg(g) = θ0 there

is a J cycle associated to the i saddle that connects these two saddles. Then as θ passes

from just less that θ0, θ0− , to just above θ0, θ0+ , we haveni
nj

 →

 ni

nj + ni

 =

1 0

1 1


ni
nj

 . (2.2.31)

The matrix here is called the monodromy matrix. It describes how the intersection numbers

jump as we pass through critical arguments of g.

It is these Stokes phenomena that allow us to make the connection with resurgence

theory. In the previous section we saw that at particular directions of directional Laplace

transformation, we hit branch cuts or poles, leading to a jump in the Stokes constants. Here

we see similar jumps in the intersection numbers as we vary the argument of g. For finite

dimensional integrals, the J cycle integrals of Picard-Lefschetz theory, and the directional

Laplace transformation of a resurgence analysis, are indeed equivalent[13, 71, 72]. It

remains an open problem to see if this carries over to the infinite dimensional case, where

various aspects of both resurgence and Picard-Lefschetz theory are still poorly understood

(e.g. the fact that couplings run, or that there can be infinite numbers of intersections

between cycles).

Some important things emerge from this decomposition of the path integral. Firstly

we see the appearance of the transseries. Each integral in (2.2.30) can be calculated

perturbatively for small g, and the answer we will get is of the form

O(g) =
∑
i

nie
−S(φcr

i )/g
∞∑
n=0

c(i)
n g

n . (2.2.32)

This is of course just the usual form of a transseries. However the Picard-Lefschetz method

of deriving this transseries has given us an interpretation of the Stokes coefficients. Here

they are the intersection numbers of the Ki cycle associated to a critical point, and the
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original cycle.

The structure we want to discuss once again, that emerges from the Picard-Lefschetz

decomposition of the path-integral, is the resurgence triangle. Let us consider the applica-

tion of Picard-Lefschetz theory to a theory with a topological θ angle. Saddle points with

different topology will have different topological charge, and thus the action of the such

saddles will have a different imaginary part. Thus the J cycles will never link them, and

so we never observe Stokes phenomena between saddles with different topological charge.

Thus, we can split the saddles into different topological sectors, and again observe the

structure pictured in Figure 2.1. Within these columns we expect to see Stokes phenomena,

but not between saddles in different columns.

2.3 A 0-Dimensional Toy Example

In this section we will now put these tools together that we have explained in the previ-

ous section, and consider a simple example directly related to (2.2.1). In the next two

subsections we look at two different ways of solving the 1-dimensional integral

Z(ξ) =
∞∫

−∞

dx e−iξx+(N+∆) log Γ(−ix) . (2.3.1)

Throughout N will be a positive integer, and ∆ some real number greater than −N .

Though Z depends on N and ∆ we will suppress this and simply write it as Z(ξ) so

as not to clutter equations. The coupling has changed from g to 1
ξ

to match notation

later on in this thesis, where the coupling will the the Fayet-Iliopoulos constant. We will

be interested in the large ξ expansion of this integral, and its resummation. (2.3.1) can

be considered to be a very simple toy model of the 2-d and 3-d models that we will be

considering later, that captures many of the interesting points of those models.

Before we start our analysis there are three important things to note about this integral.

The first is that Z(ξ) is real. This is easy to see by taking the complex conjugate and

making the substitution x → −x.
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Secondly we note that this integrand has branch cuts (or poles if ∆ is an integer). We

take the contour of integration to go above the branch point at the origin, and arrange the

branch cuts so they go vertically down the imaginary x axis. The exponent has infinite

negative real part for x = reiθ, −π < θ < 0, r → ∞, which means contributions from the

integrand are infinitely suppressed around infinity in the lower half plane. Combining this

with Cauchy’s integral theorem means that we can rewrite the contour of integration as

coming from −ε − i∞ up and around the origin, and back to +ε − i∞, where ε is some

infinitesimal positive real number.

Thirdly note that when ∆ is an integer, as mentioned above, the branch cuts become poles

and the integral can easily be calculated from the residues of the poles. As an example,

consider the case when N = 1 and ∆ = 0. In this case a simple residue calculation renders

Z(ξ)|N=1,∆=0 = 2π
∞∑
n=0

(−1)n
n! e−nξ . (2.3.2)

Note that this is a sum over exponentially suppressed terms, a transseries, but that there

is no asymptotic series associated to each term. N = 1, ∆ = 0 is a Cheshire Cat point.

We will comment more on this in the next subsection.

2.3.1 Resurgence and Cheshire Cat points

In this subsection we will look at this zero dimensional example in full detail, in order

to get a grip on the resurgence method, and to see a simple example of Cheshire Cat

resurgence. Let us take (2.3.1) and try and solving it using resurgence.

We first need to get it in the form of a perturbation series. Closing the contour as described

above and substituting x → −ix one finds

Z(ξ) = −i

∞+iε∫
0

−
∞−iε∫
0

 dx e−ξx+(N+∆) log Γ(−x) . (2.3.3)

We now use

log Γ(−x± iε) = log Γ(1 − x± iε) − log(x) ∓ iπ , (2.3.4)
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to shift the log Γ(−x) function to log Γ(1 − x). This shift gives us a factor of e±(N+∆)πi

for the integral above or below the cut. We then Taylor expand e(N+∆) log Γ(1−x) as

e(N+∆) log Γ(1−x) =
∞∑
n=0

anx
n . (2.3.5)

Here an are the coefficients of the Taylor expansion. The first few of these coefficients are

given by

a0 = 1 (2.3.6)

a1 = (N + ∆)γ

a2 = 1
2

(1
6π

2(N + ∆) + γ2(N + ∆)2
)

.

Here γ is the Euler-Mascheroni constant. Swapping the sum and the integral, we are thus

left with

Z(ξ)“ = ”
∞∑
n=0

−i

e(N+∆)πi
∞+iε∫
0

− e−(N+∆)πi
∞−iε∫
0

 dx e−ξxanx
n−N−∆ . (2.3.7)

We now take the ε → 0 limit and perform the integrals 9. We thus find the perturbative

expansion for (2.3.1) is given by

Z(ξ)“ = ”ζ0(ξ) = 2 sin(π(N + ∆))ξN+∆−1
∞∑
n=0

anξ
−nΓ(n+ 1 −N − ∆) . (2.3.8)

The coefficients in the expansion in (2.3.8) are clearly increasing factorially, and the

series has zero radius of convergence, with a particular exception. If ∆ is an integer

sin(π(N + ∆)) = 0. However we also see that Γ(n + 1 − N − ∆) is infinite for the first

N + ∆ terms. When this limit is taken we are left with a truncating series containing just

N + ∆ terms. For example, in the N = 1 and ∆ → 0 case we are just left with one term,

the first term of (2.3.2).

We here see our theory has some special points, when ∆ is an integer, where the perturba-

tion series is rendered non-asymptotic. These points are known as Cheshire Cat points. If

9In expanding the exponential and swapping the sum and the integral we have lost the branch cut
structure of the integrands. This step in necessary in getting a perturbative expansion. Resurgence takes
a perturbative expansion and reverses this procedure to uncover the branch cut structure of the Borel
plane.
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we started out wanting to do a resurgent analysis at one of these points we would not be

able to proceed, as there is no asymptotic series to analyse. However a tiny deformation

away from this point, setting ∆ to be non-integer, renders the series asymptotic, and

the full resurgence framework can be utilized. In the QFTs we will be studying in this

thesis, the theories sit at precisely these kinds of Cheshire Cat points. In order to uncover

the resurgence structure of the theory, we will need to deform the theory. As we will

see shortly, once such a deformation is done, and a resurgence analysis performed, the

results we find will be dependent on the deformation. We will then be able to return the

deformation to 0, and keep all the non-perturbative data we have calculated.

Let us now leave ∆ non-integer, and use resurgence to calculate the full non-perturbative

transseries. The first step we take is to Borel resum this series. Dividing each term by

the factorial contribution, and using (2.3.8), we find

ζ0(ξ) = 2 sin(π(N + ∆))
∞∫

0

dx e−ξx+(N+∆) log Γ(1−x)x−(N+∆) . (2.3.9)

We have ζ0(ξ) as the Laplace transformation of a function that has branch cuts starting

from the positive integers on the real axis and going out to infinity.

The next step is to use the branch cut structure of the Borel plane to to calculate the

non-perturbative data for this integral. In order to do this we need to calculate the

discontinuity from taking the Laplace transform contour to go either side of each of these

cuts. The formula for the discontinuity across the cuts for the log Γ function is

log Γ(−x+ iε) − log Γ(−x− iε) = −2πi(bxc + 1) . (2.3.10)

Here bxc is the floor of x. The discontinuity we are after is given by

Disc0(ζ0)(ξ) = 2 sin(π(N + ∆))
∞+iε∫

1

−
∞−iε∫
1

 dx e−ξx+(N+∆) log Γ(1−x)x−(N+∆) .

(2.3.11)

Note that the discontinuity is completely imaginary; it is easy to see that complex conjug-

ation simply gives a factor of −1. In order to get all the non-perturbative data separated
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into contributions coming from each background, we need to separate this discontinuity in

to the discontinuity coming from each of the cuts. To do this we rewrite the integrals as
∞∫

1

dx =
∞∑
n=1

∫ n+1

n
dx . (2.3.12)

Doing this, and making use of (2.3.10), we find

Disc0(ζ0)(ξ) = 2 sin(π(N + ∆))
∞∑
n=1

n+1∫
n

dx e−ξx+(N+∆) log Γ(1−x−iε)

x−(N+∆)(1 − e−2πin(N+∆)) . (2.3.13)

We now need to get these integrals into the form of Laplace transforms. In order to do

this we note that
n+1∫
n

dx =
∞∫
n

dx−
∞∫

n+1

dx . (2.3.14)

We use this to rewrite our integrals, and then we will need to make changes to variables

to set the lower limit on all of the integrals to be 0, for which we will need to make use of

(2.3.4).

Putting this all together, we find

Disc0(ζ0)(ξ) = 2 sin(π(N + ∆))
∞∑
n=1

e−nξ
∞∫

0

dx e−ξx+(N+∆) log Γ(1−x−iε) (2.3.15)

(x(x+ 1)...(x+ n))−(N+∆)

(e−πi(n−2)(N+∆) − e−πin(N+∆)) .

We are now in a position to construct the transseries. Let’s start by looking at the n = 1

part. The contribution to the discontinuity from the n = 1 part is given by

2 sin(π(N + ∆))e−ξ
∞∫

0

dxe−ξx+(N+∆) log Γ(1−x−iε) (2.3.16)

(x(x+ 1))−(N+∆)(eπi(N+∆) − e−πi(N+∆))

= 4i sin2(π(N + ∆))e−ξ
∞∫

0

dxe−ξx+(N+∆) log Γ(1−x−iε)(x(x+ 1))−(N+∆) .

Now recall that the integral we started with is real, so we want our resummation to be
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real. This contribution to the discontinuity from the n = 1 sector is completely imaginary

(up to further exponentially suppressed terms which we’ll deal with in a moment), and we

need it to be canceled by the first non-perturbative contribution to the transseries, which

fixes the imaginary part of the transseries parameter; the imaginary part of the transseries

parameter times the first non-perturbative contribution must be half the discontinuity

from the perturbative sector, with sign picked appropriate to the direction of Laplace

transform, such that the resummation is real. We thus have that our transseries to this

order is given by

Z(ξ) = 2 sin(π(N + ∆))
∞±iε∫
0

dx e−ξx+(N+∆) log Γ(1−x)x−(N+∆)

+(σR1 ∓ i sin(π(N + ∆)))2 sin(π(N + ∆))e−ξ
∞±iε∫
0

dx e−ξx+(N+∆) log Γ(1−x)

(x(x+ 1))−(N+∆)

+O(e−2ξ) . (2.3.17)

Here σR1 is some undetermined real constant. Resurgence will not typically fix the real

part of the Stokes parameters, as we we are just requiring that the imaginary discontinuity

be canceled. However in this case we are not working with an asymptotic series given out

of the blue but one that is the solution to an integral, namely (2.3.1). In cases such as

these, where the series is the solution to some known integral or differential equation say,

we often can fix the real part of the Stokes parameter. In this case we have

σR1 = cos(π(N + ∆)) . (2.3.18)

This follows from splitting the contributions to (2.3.1) into contributions from each branch

cut, when the contour is closed as described below (2.3.1).

To find the n = 2 contribution to the transseries, we need to not only consider the

discontinuity from ζ0(ξ), but we need to consider the discontinuity from the n = 1, ζ1(ξ),

contribution as well. Specifically, in (2.3.17), there is a discontinuity in both integrals,

which the n = 2 non-perturbative contribution must cancel. Note that the jump in the

n = 2 sector will depend on the value of σR1 , and so we find σ2 depends on σ1. We see
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that the Stokes parameters are highly intertwined.10.

The calculation to find the n = 2, 3, ... contributions is very similar to the above calculation.

Once we have found the real parts of the Stokes parameters by comparing with (2.3.1),

we find.

Z(ξ) =
∞∑
n=0

e∓nπi(N+∆)2 sin(π(N + ∆))
∞±iε∫
0

dx e−ξx+(N+∆) log Γ(1−x) (2.3.19)

(x(x+ 1)...(x+ n))−(N+∆) .

The result of our efforts is that, using resurgence, we have managed to take the asymptotic

series (2.3.8) and calculate the full non-perturbative transseries (2.3.19). The final thing

to note is that, having done this, we can set ∆ back to an integer, and keep all the non-

perturbative data we have calculated.11 This is Cheshire Cat resurgence. For special values

of ∆ it appeared that the perturbative series knew nothing about the non-perturbative

contributions. However, upon even a slight deviation from these points, a full resurgence

analysis can be performed, and the data calculated kept in the limit where we go back to

one of the Cheshire Cat points.

2.3.2 Picard-Lefschetz Decomposition of the Path Integral

In this section we now want to shift our attention to the Picard-Lefschetz decomposition

of the path integral, and in the same line of thought as the previous subsection we will

consider the zero dimensional example (2.3.1). Now this has effective action

S[x] = iξx− (N + ∆) log Γ(−ix) . (2.3.20)

This effective action has singularities when x = 0,−i,−2i, ... , and branch cuts starting

from these points that we take to flow out to negative imaginary infinity.

10In this case in fact it turns out once we find the real parts of the Stokes parameters by comparing
with (2.3.1) we only have a one-parameter family of solutions; σi = (σ1)i. Such transseries are referred
to as a one-parameter transseries. For more on these see [73]

11Using (2.3.5) and expanding the integrals in (2.3.19) we will again get an asymptotic series in each
non-perturbative sector. In the limit ∆ goes to an integer we again find sin(π(N + ∆)) goes to 0, and
an infinite part from the Γ(n + 1 − N − ∆) coefficients, rendering a truncating series in each sector with
N + ∆ terms.
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The first step is to holomorphize the fields. We thus send x → z = x+ iy. The “equations

of motion” are then given by

∂S[z]
∂z

= 0 = iξ + i(N + ∆)ψ(0)(−iz) . (2.3.21)

Likewise the equations for the J and K cycles are given by

dz(τ)
dτ

= ±
(
−iξ − i(N + ∆)ψ(0)(iz̄)

)
,

lim
τ→−∞

z(τ) = zcrit . (2.3.22)

These equations are quite difficult to solve analytically. However numerically it is very

easy. We can find the locations of the saddles perturbatively as well. For example, there

is a saddle just above z = 0, and it is quickly found that

zcr = i(N + ∆)
ξ

+ O
(

1
ξ2

)
. (2.3.23)

Let us look at some plots of the solutions.

We will consider, for simplicity, the case with N = 1 and ∆ = 0. In figure 2.2 we see the

plots of the flows for ξ = 10. There are poles at z = 0,−i,−2i,−3i, ..., and saddle points

just above each of these. The J cycles associated to each saddle flow to the sides and out

to negative imaginary infinity. The K cycles flow vertically in the z plane from the saddles

till they hit one of the poles.

Now the original contour of integration was the real axis, passing just above the pole at

the origin. The only K cycle that intersects this is the K cycle from the perturbative

saddle, that is the saddle just above the pole at the origin. This K cycle connects the

saddle to the pole at the origin. Thus here we see that the integral can be written as

Z(ξ) =
∫

J0
dx e−iξx+(N+∆) log Γ(−ix) . (2.3.24)

Here J0 is the J cycle associated to the perturbative saddle. We will not actually perform

this integral as it won’t prove particularly instructive. We see here (2.3.1) is written in the

form of a transseries, but here the only non-zero Stokes parameter is n0, the parameter

associated to the perturbative saddle.
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(a) Flows from the first three saddles.
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(b) Closer view of the flows from the
perturbative saddle.

Figure 2.2: Morse flow for (2.3.1) with N = 1, ∆ = 0, and ξ = 10. The black line shows the
original integral contour; that is the real axis, passing infinitesimally above the
pole at the origin. The green circles are saddles and the red crosses are poles.
From each saddle the J cycles (in green) go off to the sides and eventually off
to ∞. The K cycles (in red) flow up and down from the saddles to the nearest
pole. Only the K cycle from the perturbative saddle hits the original integral
contour.

Let us now consider what happens when we vary the argument of ξ. This is shown in

figure 2.3.

We see that at approximately θ ≈ 0.32 Stokes phenomenon occurs, and the intersection

numbers all jump. n0, the intersection number for the perturbative saddle remains the

same. The intersection numbers for all the other saddles jump:

ni|θ<0.32,ξ=10 = 0 → ni|θ>0.32,ξ=10 = 1 . (2.3.25)

Viewing this in terms of the monodromies we discussed earlier is that n1 → n1 + n0, and

then simultaneously n2 → n2 + n1, and so on. Thus for θ > 0.32 we wee that (2.3.1) may

be written as

Z(ξ) =
∞∑
i=0

∫
Ji

dx e−iξx+(N+∆) log Γ(−ix) . (2.3.26)

Here again Ji is the J cycle attached to the ith non-perturbative saddle. We see that the

integral is in the form of a transseries, now with non-zero Stokes parameters for all of the

non-perturbative contributions.
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2.3.3 Drawing the strings together

In this section we have seen an example of how (2.3.1) can be solved with a resurgence

analysis and a Picard-Lefschetz analysis. Here we want to summarise what has happened,

and see more precisely how these two analyses are related.

We saw that using a resurgence analysis of the perturbative series we were able to determine

the non-perturbative contributions, and sum them up in a transseries. We were also able

to determine the jumps of the Stokes parameters completely. We weren’t able to fix the

real parts of the Stokes parameters with resurgence alone. However in this example we saw

that the parameters highly intertwined, and in this case we were left with a one-parameter

transseries. Starting with a perturbative series produced from nowhere, this would be the

end of the road, but as we had our transseries as the solution to an integral, we were able

to fix the real parts of the transseries parameters as well.

Now as we varied the argument of ξ we observed Stokes phenomenon. In this case the

Stokes phenomenon occurred as arg(ξ) passed through 0, and the transseries parameters

jumped between e±nπi(N+∆) as we crossed arg(ξ) = 0. How do we relate this jump to the

jump in intersection numbers we observed in Picard-Lefschetz analysis? We will answer

this in just a moment.

In our Picard-Lefschetz analysis we were able to take the original integral and decompose

it into integrals over J cycles starting from saddles, and sum them together in a transseries.

We also observed Stokes phenomena as we varied the argument of ξ. As we passed through

critical values of the argument the intersection numbers jumped, and we had to include a

different combination of the integrals in the transseries.

Now to see how these two analyses are related we need to think about the ξ → ∞ limit

of the Picard-Lefschetz decomposition. In this case the saddles move infinitesimally close

to the singularities they are associated to. The J cycles associated to each saddle pass

around the associated pole, infinitely close on either side to the associated pole, and flow

straight to −ie−arg(ξ)∞.

Now here there is again Stokes phenomenon as we pass through arg(ξ) = 0, as we saw in
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the resurgence analysis. For arg(ξ) = 0+ J0 passes just to the left of all the other saddles,

J1 just to the left of the saddles below it, and so on. The Ki cycles pass vertically upwards,

just to the right of all the saddles above them, and all pass through the real axis. Thus

we sum over all the cycles, as in (2.3.26). For arg(ξ) = 0− everything is the same, but

swapping left and right in the discussion. It may look like no Stokes phenomenon has

occurred, but this is not so.

Because of the branch cut structure of the effective action, we should not think about

there being a single saddle associated to each pole, but in fact lots, all living on different

Riemann sheets. As arg(ξ) passes through 0, the intersection number of a saddles we were

including (except the perturbative saddle) go from 1 to 0, but the intersection number

for the saddles associated to the same poles on the neighbouring sheet go from 0 to 1.

From combining (2.3.10) and (2.3.20) we see the action, evaluated at the same saddle on

neighbouring Riemann sheets, differs by 2πin(N + ∆).

Thus we see that the jumping Stokes parameters in our resurgence analysis are explained

in our Picard-Lefschetz analysis by jumping intersections numbers of saddles, taking into

account which Riemann sheet the saddle is on. Note that to relate the two analyses we

needed to consider the ξ → ∞ limit of our Picard-Lefschetz decomposition, the same limit

that we had to consider when calculating the perturbative series which we used to perform

the resurgence analysis.
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(a) Flows from the first two saddles
for ξ = 10e0.2i.
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(b) Flows from the first two saddles
for ξ = 10e0.32i.
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(c) Flows from the first two saddles
for ξ = 10e0.4i.

Figure 2.3: Morse flow for (2.3.1) with N = 1, ∆ = 0, and ξ = 10eiθ, for various values of θ.
The black line shows the original integral contour; that is the real axis, passing
infinitesimally above the pole at the origin. The green circles are saddles and
the red crosses are poles. The J cycles are shown in green and the K cycles in
red. In figure 2.3a the only K cycle that passes through the original contour
is the cycle connecting the perturbative saddle to the pole at the origin. As
θ is increased, in figure 2.3b a Stokes crossing occurs. The J cycle from the
perturbative saddle coincides with the K cycle from the first non-perturbative
saddle, and likewise with subsequent saddles. Here the contour decomposition
breaks down. As θ is increased further we move to the situation in figure 2.3c,
where now the K cycles from all the saddles flow down to the nearest pole,
and up through the real axis to positive imaginary infinity. (Only the K cycles
from the first 3 saddles are included.)





Chapter 3

Cheshire Cat Resurgence in 2

Dimensions

This chapter is based on the work [1], done in collaboration with Daniele Dorigoni.

3.1 Introduction

In this chapter we apply the Cheshire Cat method, following the idea developed in [55], to

a two-dimensional quantum field theory. We consider the CPN−1 model, whose resurgent

properties have been studied in [19, 20] (see also the recent [74] for connections with

4-d physics), written as a two-dimensional gauged linear sigma model (GLSM) with

N = (2, 2) supersymmetry. The S2 partition function of this model can be computed

exactly via localization [32, 33] and its weak coupling expansion can be decomposed

as an infinite sum over topological sectors. Each topological sector corresponds to a

column in the resurgence triangle [19] and can be written as a perturbative piece plus

an infinite tower of non-perturbative terms corresponding to instanton-anti-instanton

events, each one of them multiplied by its own perturbative series of fluctuations around

it. Due to the supersymmetric nature of the observable under investigation every one

of these perturbative series truncates after a finite number of terms, so it would seem

that the resurgence program does not allow us to reconstruct the whole column in the
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resurgence triangle, i.e. the non-perturbative instanton-anti-instanton corrections, from

the perturbative expansion in a given topological sector. Following the works of [54, 55]

we deform the localized theory by introducing an unbalance, ∆ = Nf − Nb, between

the number of fermions and bosons present in the theory and immediately we see the

full transseries, the body of the Cheshire Cat resurgence, popping out. Whenever ∆

is an integer all the perturbative expansions truncate, suggesting that our deformation

corresponds to the insertion of some supersymmetric operator; this is very similar to the

case ζ integer and quasi-exact solvability considered in [54, 55]. However as soon as ∆ is

kept generic the perturbative expansion becomes asymptotic and we can fully reconstruct

the non-perturbative physics out of it. Only at the very end we remove the deformation by

considering ∆ → 0 and reconstruct the full supersymmetric result from the perturbative

data providing a nice example of Cheshire Cat resurgence in a supersymmetric quantum

field theory.

We further show that a similar structure can be obtained from a more supersymmetric

deformation of the model that amounts to an analytic continuation in the number of

chiral multiplets1 from N ∈ N (the same N of CPN−1) to a real (or complex) number r.

Unlike what happens when we introduce ∆, formally in the presence of this deformation

the observable under consideration remains supersymmetric. However as soon as r is kept

generic, i.e. non-integer, the perturbative expansion becomes asymptotic. We can apply

resurgent analysis to reconstruct non-perturbative information from the perturbative data

eventually sending r → N ∈ N to recover the original supersymmetric results.

This chapter is organised as follows. We first introduce in Section 3.2 a few generalities

about the supersymmetric formulation of the CPN−1 as a gauged linear sigma model

(GLSM) and subsequently use localization to compute the partition function of the model

when put on S2. As a check in Section 3.3 we show that the partition function does indeed

reproduce the correct twisted chiral ring structure and comment on its connection with

the topological-anti-topological partition function. Due to the supersymmetric nature of

the observable under consideration we find a perturbative expansion which is far from

1We thank Stefano Cremonesi for the origin of this idea.
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asymptotic: the perturbative coefficients actually truncate after finitely many orders. For

this reason, in Section 3.4 we deform the theory by introducing an unbalance between the

number of bosons and fermions present in the model thus effectively breaking supersym-

metry. The deformation considered has a dramatic effect: the perturbative coefficients are

not finite in number anymore and perturbation theory becomes an asymptotic expansion.

In Section 3.5 we apply the full machinery of resurgent analysis to the deformed model,

where we also show how the intricate set of resurgent relations between the perturbative

and non-perturbative sectors survives as we send the deformation parameter to zero. In

Section 3.6 we show that a similar structure can be obtained also when considering a

more supersymmetric (at least formally) deformation studying the CPr−1 model defined

via analytic continuation from N → r ∈ R. We finally draw some conclusions from this

chapter in Section 3.7.

3.2 Supersymmetric CPN−1 as a GLSM

It is useful to briefly review the gauged linear sigma model formulation of the CPN−1

theory with N = (2, 2) supersymmetry; we refer to [75] for all the details.

2-dimensional N = (2, 2) theories have 4 real supercharges, Q± and Q̄±. Fields are called

chiral if they commute with Q̄±, and anti-chiral if they commute with Q±. We also have

twisted chiral fields which commute with Q̄+ and Q−.

In 2-d the U(1) gauge multiplet is given by a twisted chiral superfield Σ containing a

complex scalar σ(x), as its lowest component, and a U(1) gauge potential Aµ(x), plus

of course fermions. The theory also contains N chiral superfields Φi, i = 1, ..., N , each

charged +1 under the gauge group whose lowest components are the complex scalars φi(x).

The parameters of the theory are the gauge coupling e, which has the dimension of a mass,

a dimensionless Fayet-Iliopoulos (FI) term ξ, and a vacuum angle θ, that can be combined

in the complex coupling τ = iξ + θ
2π .
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The action for these theories is given by

S =
∫
d2x (LYM + Lmat + LFI + Lθ) . (3.2.1)

In superfield notation (see for example [76] if this is not familiar; here we follow the

conventions of [75]), with vector superfield V , chiral superfields Φi, and the field strength

twisted chiral superfield Σ, these Lagrangians are given by

LYM = −1
4e2

∫
d4θ Σ̄Σ ,

Lmat =
∑
i

∫
d4θ Φ̄ie

2V Φi ,

LFI + Lθ = iτ

2
√

2

∫
dθ+dθ̄− Σ + h.c. . (3.2.2)

Here h.c. is short for hermitian conjugate. One can add other terms to the Lagrangian, in

particular a more general twisted superpotential, but we will not be concerned with these

theories in this thesis. It is also possible to add additional twisted mass terms by coupling

the theory to a background vector multiplet, and giving a VEV to the background field’s

scalar components. However we also won’t be concerned with these in this thesis.

The theory contains vortices, which are solutions to the vortex or antivortex equations:

D + σ

r
= −i(φφ† − χ) = ±iF12 , D∓ = 0 . (3.2.3)

Here D is the auxiliary field in the vector multiplet, χ is some free parameter, and

upper/lower of the ± and ∓ are for vortices/antivortices respectively. These are saddle

points of the classical action.

The D-term conditions for having a supersymmetric vacuum fix σ(x) = 0 and force the

complex scalars φi(x) to satisfy
N∑
i=1

|φi(x)|2 = ξ . (3.2.4)

At energies much smaller than the gauge coupling e the gauge potential is essentially

frozen and becomes non-dynamical. We must then identify field configurations

φi(x) ∼ eiαφi(x) , ∀ i = 1, ..., N. (3.2.5)
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The two conditions (3.2.4-3.2.5) are precisely the conditions specifying the sigma model

with target space CPN−1, so in the infrared the N = (2, 2) gauged linear sigma model

becomes the CPN−1 with coupling constant

g2
CPN−1 = 1

ξ
. (3.2.6)

At this scale the vortices transmute into the usual instanton solutions of the CPN−1

model[75]. In all that follows we will express everything in terms of the FI term ξ, so that

the weak coupling expansion of the CPN−1 model will correspond to the regime ξ � 1,

while the strong coupling expansion will be ξ ∼ 02.

3.2.1 Supersymmetric partition function on S2

In [32, 33] the authors studied the Euclidean path integral of two-dimensional N = (2, 2)

theories with vector and chiral multiplets, placed on a round sphere S2. In the S2 theory

the authors constructed a supercharge Q whose square is a bosonic symmetry and used

localization techniques to show that the path integral only receives contribution from

classical configurations that are fixed points of Q and from small quadratic fluctuations

around them, i.e. one-loop determinants. This set of fixed points is generically discrete or

with finite dimension so the path integral reduces dramatically to a sum over topological

sectors of ordinary integrals over the Cartan subalgebra of the gauge group dressed by

one-loop determinants3. We refer to the original works [32, 33] for all the details in

the computations and to [78] for a recent review on supersymmetric localization in two

dimensions.
2From our analysis we will be also able to consider ξ → −∞, however this regime does not directly

relate to the geometric CPN−1 phase. The reason is that as soon as ξ < 0 the D-term equation (3.2.4)
cannot be solved anymore and one needs to use the mirror Landau-Ginzburg theory, see [75, 77]

3The localisation calculation can in fact be performed in multiple ways, each using a different Q exact
deformation. For Higgs branch localisation the scalar components of the chiral multiplets become massive,
and the path integral localises to a sum over vortex and antivortex contributions. For Coulomb branch
localisation the path integral localises onto configurations with constant quantized magnetic flux F12 which
must be summed over, and with constant σ which needs to be integrated over. We will be concerned with
the expression for the partition function arising from Coulomb branch localisation. By performing the σ
integral we can recover an expression for the partition function as a sum over contributions from different
non-perturbative backgrounds, which we will see shortly.
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We can specialise the work of these authors to the case of a U(1) gauge theory with a

FI parameter ξ4, a θ-term, and with Nf = N chiral multiplet with charge +1 and no

multiplets with charge −1. In absence of twisted masses the localized partition function

can be then written as:

ZCPN−1 =
∑
B∈Z

e−iθB
∫ +∞

−∞

dσ

2πe
−4πiξ σ

(
Γ(−iσ −B/2)

Γ(1 + iσ −B/2)

)N
, (3.2.7)

where the full path integral is reduced to a sum over topological sectors with quantized

magnetic flux B times an ordinary integral over the lowest component of the twisted chiral

field Σ constrained to take the constant value σ(x) = σ over which we integrate. The

first term in the integrand corresponds to the classical action evaluated on shell while the

second term in parenthesis comes precisely from the one-loop determinants. Note that

when the gamma functions are moved into the exponent, this partition function takes a

very similar form to that of the 0-d toy model we considered in section 2.3.

The gamma function in the numerator has poles at locations σ = σk = −i(k −B/2) with

k ∈ N. However for B ≥ 0 and k < B the integrand is regular because the pole from the

numerator is cancelled by the pole from the gamma function in the denominator. For this

reason the poles of the integrand are at locations σ = σk = −i(k + |B|/2), and the zeroes

are at σ = σ(0)
n = +i(n+ 1 + |B|/2), in particular for B = 0 the integrand has a pole at

σ = 0 that has to be included (see [32, 33]) and the integration contour is understood as

circling around the pole at the origin in the upper-half complex σ plane, see Figure 3.1.

To evaluate the integral we notice that we can close the contour of integration in the

lower-half complex σ plane since for |σ| → ∞ with Imσ < 0 the one-loop determinant

provides a converging factor, so that we can then rewrite the integral as a sum of residues

at the N th order pole locations σ = σk = −i(k+ |B|/2). The residue of an N th order pole

can be computed as

2πiResz=z0f(z) = 2πi
Γ(N)

dN−1

dαN−1

[
f(z0 + α)αN

]
α=0

(3.2.8)

4Note that the FI parameter runs, and needs to be regularized. There is a natural scale here given by
1/r where r is the radius of the sphere. The partition function is then found as a function of ξ which is
the value of the FI parameter at the scale 1/r (see [32, 33] for details).
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Figure 3.1: Location of the poles (negative imaginary axis) and of the zeroes (positive
imaginary axis) of the one-loop determinant. The contour of integration is
deformed in the upper-half plane to avoid the pole at σ = 0 present in the
B = 0 case.

and replacing α → iα we can write the partition function as

ZCPN−1 = 1
(N − 1)!

∑
B∈Z

∞∑
k=max(0,B)

dN−1

dαN−1

[
αN

Γ(−k + α)N
Γ(1 + k −B − α)N e

−4πξ(k−B/2−α)e−iθB
]
α=0

.

(3.2.9)

We can rewrite the above formula introducing the parameter t = e2πi τ = e−2πξ+i θ written

in terms of the complex coupling τ = iξ + θ
2π and after simple manipulations with sums

indices we get:

ZCPN−1 = 1
(N − 1)!

∞∑
n=0

∞∑
m=0

dN−1

dαN−1

( (−1)nπα/ sin(πα)
Γ(1 + n− α)Γ(1 +m− α)

)N
tn−α t̄m−α


α=0

,

(3.2.10)

where we also made use of the formula Γ(z)Γ(1 − z) = π
sin(πz) . We can introduce the

regularised generalised hypergeometric function

1F̃N(a; b1, b2, ... , bN |z) = 1
Γ(b1)Γ(b2) · · · Γ(bN)

∞∑
n=0

(a)n
(b1)n (b2)n · · · (bN)n

zn

n! (3.2.11)

where (a)n denotes the Pochhammer symbol, and our partition function can be written

in the compact form:

ZCPN−1 = 1
(N − 1)!

dN−1

dαN−1

( πα

sin(πα)

)N
(tt̄)−α

1F̃N(1; 1 − α, ... , 1 − α|(−1)N t)

1F̃N(1; 1 − α, ... , 1 − α| t̄)
]
α=0

. (3.2.12)



46 Chapter 3. Cheshire Cat Resurgence in 2 Dimensions

It is useful to rewrite the above equation as a sum over instanton sectors each one

weighted by the instanton counting parameter exp(−2πξ|B| + iθB) where B ∈ Z denotes

the instanton number, or equivalently the magnetic flux as above. To this end we can go

back to equation (3.2.9) and by isolating the instanton counting parameter we obtain

ZCPN−1 =
∑
B∈Z

e−2πξ|B|+iθB ζB(N, ξ) , (3.2.13)

where the Fourier mode ζB(N, ξ) takes the form

ζB(N, ξ) = (−1)NB θ(B)

(N − 1)!

∞∑
k=0

e−4πξ k d
N−1

dαN−1

( (−1)k πα/ sin(πα)
Γ(1 + k − α)Γ(1 + k + |B| − α)

)N
e4πξα


α=0

,

(3.2.14)

with θ(B) the Heaviside function.

The equations (3.2.13)-(3.2.14) are very suggestive: the supersymmetric localized partition

function for the CPN−1 model on S2 takes the form of an infinite series over instantons

sectors, each one of them denoted by an integer B ∈ Z and weighted by the instanton

counting parameter exp(−2πξ|B|+iθB). Each B-instanton sector produces a contribution

ζB(N, ξ), function only of the Fayet-Iliopoulos term ξ, i.e. the coupling constant, and not

of the θ angle. Every Fourier mode ζB(N, ξ) gives rise to a purely perturbative piece, i.e.

the k = 0 term in (3.2.14), plus an infinite sum over exponentially suppressed terms of the

form e−4πξ k with k ∈ N?, corresponding to instantons-anti-instantons events, each one of

them multiplied by a perturbative expansion. Fixing the instanton number B corresponds

to fixing the column in the resurgence triangle diagram of [19] so that ζB(N, ξ) can be

interpreted as the transseries containing the perturbative part plus all the instantons-anti-

instantons corrections, together with their own perturbative series, on top of a B-instanton

event.

At this stage we would like to apply resurgent analysis within each instanton sector,

i.e. studying separately each transseries ζB(N, ξ) (3.2.14) seen as some suitably defined

analytic function in some wedge of the complex ξ-plane. However it is simple to see that the

coefficient of each e−4πξ k term in the infinite sum (3.2.14) is actually a polynomial of degree

N − 1 in ξ meaning that both the perturbative expansion around a B-instanton event and
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the perturbative expansions around k instantons-anti-instantons on top of the B-instanton

event are all entire functions of ξ. For a generic observable in a generic field theory we

would expect all of these perturbative expansions to be asymptotic series rather than finite

degree polynomials. The reason for this truncation is clearly the supersymmetric nature

of the quantity under consideration. Being an observable protected by supersymmetry

we expect only the first few orders in perturbation theory not to vanish. The same goes

for the perturbative expansion on top of non-trivial but still supersymmetric saddles. We

are then left with the question: in these lucky situation where the perturbative expansion

truncates after a finite number of terms can resurgent analysis tell us anything at all about

the non-perturbative completion of the physical observable? At first sight this would seem

unlikely, how can an entire function tell you anything about non-perturbative terms?

However we will shortly see that Cheshire Cat resurgence is at play here: when we focus

on this supersymmetric quantity the cat seems to have disappeared but its footprints can

still be seen!

3.2.2 The CP1 case

Instead of working with general N in this Section we specialise equation (3.2.12) to the

case N = 2 so that we can give shorter and less cluttered equations, the discussions

however can be repeated for the general case. To compute the partition function on S2

for the CP1 model we simply take (3.2.12) and substitute N = 2:

ZCP1 = d

dα

( πα

sin(πα)

)2

(tt̄)−α
1F̃2(1; 1 − α, 1 − α|t) 1F̃2(1; 1 − α, 1 − α|t̄)


α=0

.

(3.2.15)

When the derivative with respect to α does not act on the hypergeometric function we

obtain terms of the form 1F̃2(1; 1, 1|t) = I0(2
√
t), where I0 denotes the modified Bessel

function of 0-th order, whilst when the derivative acts on the hypergeometric parameters,

we obtain terms of the form

d

db1
1F2(a; b1, b2|z) = ψ(b1)1F2(a; b1, b2|z) −

∞∑
k=0

(a)k ψ(k + b1)
(b1)k(b2)k

zk

k! , (3.2.16)
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where ψ(x) denotes the digamma function and −ψ(1) = γ gives the Euler-Mascheroni

constant. So we obtain

ZCP1 = − log(tt̄)0F1(1|t)0F1(1|t̄) − 2 0F1(1|t̄) d
db

0F̃1(b|t)|b=1 − 2 0F1(1|t) d
db

0F̃1(b|t̄)|b=1 ,

and changing variable b = 1 + a we can write

0F̃1(1 + a|z) = 1
(
√
z)a Ia(2

√
z) ,

that together with the relation

d

da
Ia(z)|a=0 = −K0(z)

brings us to the final form

ZCP1 = 2
(
I0(2

√
t)K0(2

√
t̄) +K0(2

√
t)I0(2

√
t̄)
)
. (3.2.17)

It is also useful to specialise the Fourier mode decomposition (3.2.13) to the CP1 case

ZCP1 =
∑
B∈Z

e−2πξ|B|+iθBζB(2, ξ) , (3.2.18)

with

ζB(2, ξ) =
∞∑
k=0

e−4πξ k(4πξ)2
[

1
[k! (k + |B|)!]2 (4πξ)−1 + 2ψ(k + 1) + 2ψ(k + |B| + 1)

[k! (k + |B|)!]2 (4πξ)−2
]

= 4πξ − 2γ + 2ψ(|B| + 1)
|B|!2 + 4πξ + 2(1 − γ)) + 2ψ(|B| + 1)

[(|B| + 1)!]2 × e−4πξ + O(e−8πξ) .

(3.2.19)

Since in what follows we will mostly consider the B = 0 sector we can specialise the above

equation even further obtaining the very simple expression

ζ0(2, ξ) =
∞∑
k=0

e−4πξ k(4πξ)2
[

1
(k!)4 (4πξ)−1 + 4Hk − 4γ

(k!)4 (4πξ)−2
]
, (3.2.20)

where Hk = ψ(1 + k) + γ denotes the kth harmonic number. Equation (3.2.20) can be

written in terms of Meijer G function and it is neither asymptotic in the weak coupling

regime ξ → ∞ nor in the strong coupling one ξ → 0.
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As mentioned above each topological sector can be written as a purely perturbative

expansion, given by a very simple degree 1 polynomial in ξ, plus an infinite tower of

instanton-anti-instanton events, weighted by e−4πξ, each one of them accompanied by a

simple perturbative expansion given by a different degree 1 polynomial in ξ. Due to the

supersymmetric nature of the observable under consideration perturbation theory is not

asymptotic at all, it actually truncates after finitely many terms so that there is no need

to apply Borel resummation and the perturbative expansion appears to be completely

oblivious of the non-perturbative sectors. We will see later on that this is precisely an

example of Cheshire Cat resurgence at play in quantum field theory.

3.3 Chiral ring structure

Having obtained the partition function for CP1 (3.2.17) and more generically for CPN−1

(3.2.12) we can compute the chiral ring for these models, see [77]5. For CPN−1 the ring

is generated by one element Σ that at the classical level satisfies ΣN = 0, but receives

instantons corrections and it gets modified to

ΣN = ΛN
CPN−1 , (3.3.1)

where ΛCPN−1 = µe−2πξ/N+iθ/N = µ t1/N . The top component of Σ is related to the action

itself via:

S = log t
∫
d2x d2θΣ + h.c. = 2πi τ

∫
d2x d2θΣ + h.c. (3.3.2)

so we can generate the full chiral ring by considering6

〈ΣnΣ̄m〉 = 1
ZCPN−1

(t∂t)n(t̄∂t̄)mZCPN−1 = 1
(2πi)n(−2πi)m∂

n
τ ∂

m
τ̄ logZCPN−1 . (3.3.3)

5The chiral ring is defined as the Q̄ cohomology; that is the equivalence class of operators O given by

{O : Q̄α̇O = 0}
{O = Q̄α̇O′}

,

where O′ is some other operator.
6By slight abuse of notation from this point onward we denote insertions of the top component of Σ

with Σ itself.
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3.3.1 Chiral ring for CP1

Let us start with N = 2 and use (3.2.17) to compute 〈Σ〉 obtaining:

〈Σ〉 = t

ZCP1
∂tZCP1 = 2

√
t
(
I1(2

√
t)K0(2

√
t̄) −K1(2

√
t)I0(2

√
t̄)
)
/ZCP1 . (3.3.4)

We can easily compute 〈Σ2〉 = 1/ZCP1 t ∂t(t ∂tZCP1) and making use of the relations for

the modified Bessel:

I ′
ν(z) = Iν−1(z) − ν

z
Iν(z) ,

K ′
ν(z) = −Kν−1(z) − ν

z
Kν(z) , (3.3.5)

we obtain

〈Σ2〉 = t = Λ2
CP1 , (3.3.6)

as expected from the chiral ring structure (3.3.1). The S2 localized partition function

and its derivatives with respect to the the (anti-)holomorphic coupling give rise to a

representation of the chiral ring in terms of modified Bessel functions.

It was shown in [34] that in the superconformal case, where the sigma model target

space is a Calabi-Yau manifold rather than CPN−1, the supersymmetric localized partition

function on the round two-sphere matched precisely the exact Kähler potential on the

quantum Kähler moduli space of the Calabi-Yau emerging in the infrared. This means that

in the superconformal case the localized partition function coincides with the seemingly

unrelated topological-anti-topological construction of Cecotti and Vafa [79].

The model we are considering is however an asymptotically free theory rather than a

superconformal one and it is not clear how to relate the two-sphere localized calculations

to the CP1 topological-anti-topological results obtained in [77]. To this end, we first

complete the chiral ring (3.3.6) (similarly for Σ̄) and study correlators with multiple Σ, Σ̄

insertions obtaining the functions:

〈Σ〉 = t

ZCP1
∂tZCP1 = 2

√
t
(
I1(2

√
t)K0(2

√
t̄) −K1(2

√
t)I0(2

√
t̄)
)
/ZCP1 , (3.3.7)

〈Σ̄〉 = t̄

ZCP1
∂t̄ZCP1 = 2

√
t̄
(
K0(2

√
t)I1(2

√
t̄) − I0(2

√
t)K1(2

√
t̄)
)
/ZCP1 , (3.3.8)
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〈Σ̄Σ〉 = tt̄

ZCP1
∂t∂t̄ZCP1 = −2

√
t t̄
(
I1(2

√
t)K1(2

√
t̄) +K1(2

√
t)I1(2

√
t̄)
)
/ZCP1 . (3.3.9)

With these functions we can construct the hermitian metric

g =

〈1〉 〈Σ̄〉

〈Σ〉 〈Σ̄Σ〉

 , (3.3.10)

and note that it is manifestly not diagonal unlike the metric considered in [77]. The reason

is that on S2, compared to R2, we have operators mixing with lower dimensional ones7,

see [80], in particular Σ and Σ̄ mix with the identity. The determinant of the matrix

g removes this mixing and produces the only relevant correlator for CP1 given by the

connected correlator 〈ΣΣ̄〉C = 〈ΣΣ̄〉 − 〈Σ〉〈Σ̄〉. This determinant can be easily computed

using the relation

Iν+1(z)Kν(z) + Iν(z)Kν+1(z) = 1
z

(3.3.11)

arriving at det g = −1/Z2
CP1 , so the only function we need to consider for the tt̄-equations

of [77] is precisely ZCP1 .

It is now a matter of calculation to show that our result does not quite solve the topological-

anti-topological equation of [77] but rather satisfies a simple modification of it

tt̄ ∂t∂t̄ logZCP1 = 0 × tt̄ Z2
CP1 − 1

Z2
CP1

, (3.3.12)

or using the same notation as [77] we can define q0 = −q1 = logZCP1 + 1
4 log |t|2 and using

the variable z = 2
√
t (our t corresponds to their β) we can rewrite (3.3.12) as

∂z∂z̄q0 = 0 × e2q0 − e−2q0 . (3.3.13)

Had the coefficient of the first term on the right-hand side in (3.3.12-3.3.13) been 1 instead

of 0 we would have found precisely the Toda equation of [77], however we do not know

why we obtain this modification. It is possible that because of UV divergences one has to

regulate insertions of the composite operator ΣΣ̄ to correctly reproduce the topological-

anti-topological results from supersymmetric localization, or it could also happen that the

7We thank Vasilis Niarchos for discussions on this point.
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localization calculation in the non-superconformal case is computing something genuinely

different from [77]. These are very interesting questions deserving more studies however

they fall outside of (and will not affect) the main message of this thesis.

3.3.2 Chiral ring for CPN−1

Starting from equation (3.2.12) we want to show that the chiral ring structure 〈ΣN〉 =

ΛN
CPN−1 can be obtained from the supersymmetric localized partition function. To this end

we need to show that the equation

1
ZCPN−1

(t ∂t)NZCPN−1 = 〈ΣN〉 = t (3.3.14)

holds. Instead of working with (3.2.12) we can use the power series expansion (3.2.10) and

when we act with the operator (t ∂t)N on ZCPN−1 we can commute the derivatives with the

series and the only term we have to consider is tn−α for which we obtain the simple action

(t ∂t)N
tn−α

Γ(1 + n− α)N = (n− α)N
Γ(1 + n− α)N t

n−α = tn−α

Γ(n− α)N . (3.3.15)

We can thus shift n → n+ 1 and obtain

(t ∂t)NZCPN−1 =tZCPN−1+

+ 1
(N − 1)!

∞∑
m=0

dN−1

dαN−1

( πα/ sin(πα)
Γ(−α)Γ(1 +m− α)

)N
t−α t̄m−α


α=0

,

(3.3.16)

where the second term comes from the n = 0 contribution in (3.2.12) after we use (3.3.15).

This second term vanishes because the 1/Γ(−α)N term has an N th order zero when α → 0

and at most N − 1 derivatives with respect to α can act upon it. Hence we obtain the

expected chiral ring structure

〈ΣN〉 = 1
ZCPN−1

(t ∂t)NZCPN−1 = t = ΛN
CPN−1 . (3.3.17)

It would be interesting to construct general correlation functions of the form 〈ΣnΣ̄m〉 to

see if we can find a solution to some modification of the affine Toda equations presented
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in [77], similar to what we obtained for CP1 in equation (3.3.13), however this is beyond

the purpose of the present thesis.

The reader should now be convinced that the S2 partition function does indeed capture

various physical properties of the supersymmetric CPN−1 model. However due to super-

symmetry, the weak coupling expansion does not give rise to any asymptotic series but it

does nonetheless contain infinitely many non-perturbative corrections, seemingly defying

the resurgence program whose task is to reconstruct non-perturbative information out of

perturbative data. In the next Section we will see how to get around these superficial

negative results by breaking supersymmetry in a controlled way.

3.4 Away from the supersymmetric point

Since each instanton sector in (3.2.14) gives rise, due to supersymmetry, to a convergent

rather than an asymptotic expansion it would appear that resurgent analysis cannot be

applied in the model at hand. However motivated by the works [54, 55] we decided to

modify slightly the localized path integral by unbalancing the number of bosons and

fermions in the one-loop determinants so that supersymmetry is broken but in a very

tamed manner.

To obtain via supersymmetric localization the partition function presented in (3.2.7), after

having found the localized critical points one has to compute the one-loop determinant

for the quadratic fluctuations around these BPS configurations. For the CPN−1 model the

one-loop determinant for the vector multiplet is just 1 while it becomes non-trivial for the

chiral multiplet. For a single chiral multiplet the matter one-loop determinant is given by

Zmatter = detOψ

detOφ

, (3.4.1)

where φ and ψ denote respectively the complex scalar and the Dirac fermion in the

multiplet and the one-loop determinants are given by (see [32, 33])

detOφ =
∞∏

j= |B|
2

(j − iσ)2j+1(j + 1 + iσ)2j+1 , (3.4.2)
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detOψ = (−1)Bθ(B)
∞∏

k= |B|
2

(k − iσ)2k(k + 1 + iσ)2k+2 . (3.4.3)

As discussed in Section 3.2, the GLSM realisation of the CPN−1 model contains N chiral

multiplets so that the matter one-loop determinant contribution to the partition function

amounts to ZN
matter. However at this point, in a similar way to the works [54, 55], we want

to introduce a small unbalance between the bosonic and fermionic contributions to the

matter one-loop determinant by declaring that after having localized on the susy critical

points we have Nf = N fermions but only Nb = N − ∆ bosons so that

Z̃matter(σ) = (detOψ)Nf

(detOφ)Nb
= ZN

matter (detOφ)∆ , (3.4.4)

and when ∆ = Nf −Nb vanishes we go back to the undeformed, supersymmetric case.

By using (3.4.2-3.4.3) we can rewrite Z̃matter as

Z̃matter(σ) = (−1)N Bθ(B)
∞∏
j=0

(
j + b

j + a

)N−∆(2iσ+1)

· (j + a)2∆(j+a) · (j + b)2∆(j+b) , (3.4.5)

where we defined a = |B|/2 − iσ and b = 1 + iσ + |B|/2.

We can use zeta-function regularisation to define these infinite products, see details in

Appendix A.1, and using equations (A.1.7)-(A.1.12) we obtain a regularised version of the

modified matter one-loop determinant

Z̃matter(σ) =
[
(−1)Bθ(B) Γ(−iσ + |B|/2)

Γ(1 + iσ + |B|/2)

]N
e−2∆

(
2ζ′(−1)+ζ′(0)(|B|+1)+|B|2/4+iσ−σ2

)
× exp

[
∆(2iσ + 1)

(
log Γ(1 + iσ + |B|/2) − log Γ(−iσ + |B|/2)

)]
× exp

[
−2∆

(
ψ(−2)(1 + iσ + |B|/2) + ψ(−2)(−iσ + |B|/2

)]
. (3.4.6)

One can recognise that the above one-loop determinants are very similar to the effective

actions for bosonic and fermionic fields on the hyperbolic manifold H2 used as building

blocks to study the strong-coupling expansions for the Wilson loop minimal surfaces in

AdS5 × S5 (see e.g. [81]). The very same effective actions have been studied in [82] using

generalised dyadic identities for the polygamma function to obtain inverse factorial series

expansion. It would be interesting to understand how to apply the results of [82] to the
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Figure 3.2: The contour of integration C comes from −i∞ − ε, circles around the branch
cut and then goes back to −i∞ + ε.

current problem.

Using the properties of the gamma function, see [32], one can rewrite the first parenthesis

in the above expression to put it back into the form Γ(−iσ−B/2)/Γ(1 + iσ−B/2) which

appears in the undeformed one-loop determinant as in (3.2.7). All the remaining terms

have the form e∆(...) clearly tending to 1 as ∆ → 0.

It is crucial for what follows to analyse the analytic properties of Z̃matter as a function

of σ. In the undeformed case, see Figure 3.1 and the discussion below equation (3.2.7),

we had poles for σ = −i(k + |B|/2) and zeroes for σ = +i(1 + n+ |B|/2) with k, n ∈ N.

However due to the presence of log Γ and ψ(−2) instead of poles and zeroes we have two

branch cuts running along the positive and negative imaginary axis. The functions log Γ(z)

and ψ(−2)(z) are analytic throughout the complex z-plane, except for a single branch cut

discontinuity along the negative real axis8. The discontinuities of log Γ and ψ(−2) can be

easily computed

log Γ(−x+ iε) − log Γ(−x− iε) = −2πi (bxc + 1) , (3.4.7)

ψ(−2)(−x+ iε) − ψ(−2)(−x− iε) = πi(bxc + 1)(2x− bxc) , (3.4.8)

for x ≥ 0, where bxc denotes the floor of x.

8In here we use a specific determination of log Γ , what Mathematica calls LogGamma[z]. The function
log (Γ(z)) has a more complex branch cut structure.
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We are now in position to study our deformed localized path integral taking the form

Z(N,∆) =
∑
B∈Z

e−iθB
∫

C

dσ

2πe
−4πiξ σZ̃matter(σ) , (3.4.9)

where C is a suitably defined contour in the complex σ plane. In the supersymmetric

case C is given by the real line that we subsequently close in the lower-half complex plane

collecting the residues from all the poles of the integrand. If we repeat for the case at hand

and push the contour of integration in the lower-half complex plane, due to the presence

of the branch cut, we end up with a contour C along the negative imaginary axis, coming

from σ = −i∞ − ε, circling around the origin of the branch cut at σ = −i|B|/2 and the

continuing back to infinity in the direction σ = −i∞ + ε as depicted in Figure 3.2, we will

comment later on the analytic properties of these branch cuts.

Note that for any ∆ 6= 0 this is just a formal definition9 since the integrand in (3.4.9)

behaves as Z̃matter(σ) ∼ exp[−2∆ cos(2θ)R2 logR] when |σ| = R → ∞, with θ = argσ and

closing the contour in the lower-half plane will produce a different analytic continuation.

However if we insist on taking the contour C to be the one presented in Figure 3.2 and

consider the integral (3.4.9) only as a formal object, we will see that as we send ∆ → 0

everything will be well-defined10.

Once the contour is fixed we can make the change of variable σ = −iy and rewrite (3.4.9)

as

Z(N,∆) =
∑
B∈Z

e−iθB
∫ ∞

0

dy

2πie
−4πξ y

(
Z̃matter(−iy + ε) − Z̃matter(−iy − ε)

)
. (3.4.10)

The integral in the above expression is nothing but the Laplace transform of the discon-

tinuity of Z̃matter along the negative imaginary axis. This discontinuity starts at y = |B|/2,

so after shifting y = x+ |B|/2 we obtain a Fourier mode expansion of the same form as

9If one does not want to work with formal objects we can add a quartic twisted superpotential allowing
us to close the contour on the imaginary axis. Now everything becomes well defined and convergent so we
can check numerically that all the formal equations derived using resurgent analysis are indeed correct,
and only at the very end we send this auxiliary quartic coupling to zero.

10This situation is similar to the case [83] of bad N = 4 theories in 3-d where it can be shown that
the localized matrix integral over the “original” contour of integration diverges but can be regularised by
modifying the contour in the complex (fields) space. It is only with this deformed contour of integration
that one obtains a well defined integral that can be understood in terms of infrared physics [84]. We
thank Stefano Cremonesi for discussions on this point.
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the original one (3.2.13)

Z(N,∆) =
∑
B∈Z

e−2πξ|B|−iθB ζ̃B(N, ξ,∆) , (3.4.11)

and in each topological sector we can make use of the discontinuities equations (3.4.7-3.4.8)

to obtain

ζ̃B(N, ξ,∆) =
∞∑
k=0

∫ k+1

k

dx

2πie
−4πξ xZ̃matter(−ix− i|B|/2 − ε)

[
e−2πi∆(k+1)(k+|B|+1) − 1

]
=

∞∑
k=0

∫ k+1

k

dx

2πie
−4πξ xZ̃matter(−ix− i|B|/2 + ε)

[
1 − e+2πi∆(k+1)(k+|B|+1)

]
.

(3.4.12)

We can rewrite each integral as
∫ k+1
k =

∫∞
k −

∫∞
k+1 and then shift integration variables so

that every integral becomes between [0,∞), arriving at

ζ̃B(N, ξ,∆) =
∞∑
k=0

e−4πξ k
∫ ∞

0

dx

2πie
−4πξ x

[
(−1)Bθ(B) Γ(−x− k)

Γ(1 + x+ k + |B|)

]N
f(x,∆)

× exp
[
−∆(2x+ 2k + |B| + 1) log Γ(−x− k + iε) − 2∆ψ(−2)(−x− k + iε)

]
× exp

[
∆(2x+ 2k + |B| + 1) log Γ(x+ k + |B| + 1) − 2∆ψ(−2)(x+ k + |B| + 1)

]
×
[
e−2πi∆(k+1)(k+|B|+1) − e−2πi∆k(k+|B|)

]
, (3.4.13)

where f(x,∆) is an entire function of x that goes to 1 as ∆ → 0 given by f(x,∆) =

exp[−2∆(x2 + x+ c)] with c an x independent constant. Note that a similar equation can

be straightforwardly derived for ε → −ε.

This equation will be the starting point of our resurgent analysis of the deformed theory:

the B instanton sector contribution ζ̃B(N, ξ,∆) has been written as the sum over instanton-

anti-instanton events, weighted by e−4πξ k, each one of them multiplied by the Laplace

transform of a function with branch cuts in the directions argx = 0, coming from the

first exponential in the integrand, and argx = π, coming from the second exponential

in the integrand, these being the only two Stokes directions. As we will shortly see, a

weak-coupling expansion of the Laplace integral in (3.4.13) will give rise to asymptotic

series in ξ−1 with ∆ dependent coefficients. Furthermore since f(x,∆) is an entire function

of x it will not change the asymptotic nature of the perturbative expansion, so for this
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function we can safely set ∆ = 0 and replace f(x,∆) → f(x, 0) = 1 without modifying

the resurgence structure11.

We can rewrite (3.4.13)

ζ̃B(N, ξ,∆) = (−1)NB θ(B)
∞∑
k=0

e−4πξ k e±iπk(k+|B|)∆ S±
[
Φ(k)
B

]
(ξ,∆) (3.4.14)

where S± denote the lateral Laplace transforms

S±
[
Φ(k)
B

]
(ξ,∆) =

∫ ∞±iε

0
dx e−4πξ x x−N+∆(2k+1+|B|) Φ(k)

B (x,∆) , (3.4.15)

obtained as the limiting case approaching a Stokes line of the directional Borel resummation

Sθ
[
Φ(k)
B

]
(ξ,∆) =

∫ ∞ eiθ

0
dx e−4πξ x x−N+∆(2k+1+|B|) Φ(k)

B (x,∆) . (3.4.16)

The Borel transform Φ(k)
B (x,∆) appearing in the above equation can be rewritten from

(3.4.13 ) as

Φ(k)
B (x,∆) = −sin[π∆(2k + |B| + 1)]

π

[
(−1)k+1 πx/ sin(πx)

Γ(1 + x+ k)Γ(1 + x+ k + |B|)

]N

× exp
[
−∆(2x+ 2k + |B| + 1)(log Γ(1 − x) − log ((x+ 1)k) − 2∆ ( ψ(−2)(1 − x)+

− ψ(−2)(k + 1) − (k + 1)(x+ k) + k log k +
k∑
j=1

[(x+ j) log(x+ j) + (k − j) log(k − j)] )
]

× exp
[
∆(2x+ 2k + |B| + 1) log Γ(x+ k + |B| + 1) − 2∆ψ(−2)(x+ k + |B| + 1)

]
,

(3.4.17)

after repeated use of the formulas

log Γ(−x± iε) = log Γ(1 − x± iε) − log x∓ iπ , (3.4.18)

ψ(−2)(−x± iε) = ψ(−2)(1 − x± iε) − ψ(−2)(1) + x[log x− 1] ± iπx , (3.4.19)

valid for x ≥ 0. For example the purely perturbative contribution k = 0 in the trivial

11If we expand for z large the Laplace transform of the product of two functions
∫∞

0 e−x zf(x)g(x) =∑∞
n=0 n!cnz−n−1 we have that the coefficients cn are given by the convolution sum cn =

∑n
k=0 an−kbk

where f(x) =
∑∞

n=0 anxn and g(x) =
∑∞

n=0 bnxn. This convolution amounts to a change in the definition
of coupling constant, i.e. z−1 → w−1 = F (z−1), and this change of variable is analytic in the neighbour-
hood of z = ∞ when the function f(x) is entire, so that the resurgence properties remain the same. See
[67] for more details on this. The most intuitive way of seeing that f(x, ∆) does not effect the resurgence
properties is to note that it does not effect the location of the branch cuts in the Borel plane.
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topological sector B = 0 can be obtain from the directional Laplace transform of

Φ(0)
0 (x,∆) = −(−1)N sin(π∆)

π

[
πx/ sin(πx)
Γ(1 + x)2

]N
exp

[
2∆(x+ ψ(−2)(1))

]
× (3.4.20)

exp
[
∆(2x+ 1) (log Γ(1 + x) − log Γ(1 − x)) − 2∆

(
ψ(−2)(1 + x) + ψ(−2)(1 − x)

)]
.

It is now clear from (3.4.17) or (3.4.20) that we cannot naively take the limit ∆ → 0 since

the overall factor sin[π∆(2k + |B| + 1)] coming from the discontinuity (3.4.12) vanishes.

However, as we will shortly see, precisely in this limit this factor multiplies an asymptotic

series in inverse powers of ξ with singular coefficients.

From equation (3.4.16) we can understand the branch structure introduced by our de-

formed one-loop determinant (3.4.6) that was schematically depicted in Figure 3.2. In

the directional Borel resummation (3.4.16) we have split the branches into two separate

structures. First we notice the x∆(2k+1+|B|) term that for generic ∆ introduces a cut

starting from the origin x = 0. This non-analytic term will serve as a regulator and it

will be crucial to properly recover the supersymmetric result from the deformed theory.

Secondly the modified Borel transforms, i.e the functions Φ(k)
B (x,∆), have branch cuts

starting at x = +1 running to x → +∞ and at x = −1 − |B| running to x → −∞, so

that their only singular directions, i.e. their Stokes lines, are argx = 0 and argx = π. We

will shortly see the consequences of these facts.

3.5 Cheshire Cat Resurgence

The first thing we can check from our expansion (3.4.14) is that we reproduce the unde-

formed case (3.2.14) or (3.2.19) in the case of CP1, i.e. N = 2. The key point is that our

Borel transform (3.4.17) for x ∼ 0 behaves as

Φ(k)
B (x,∆) ∼ −sin[(2k + 1 + |B|)π∆]

π

( ∞∑
n=0

c
(k)
B,n(∆)xn

)
, (3.5.1)



60 Chapter 3. Cheshire Cat Resurgence in 2 Dimensions

where the coefficients c(k)
B,n(∆) can be easily obtained from (3.4.17). For ∆ = 0 these

coefficients are simply the Taylor coefficients of the function
[

(−1)k+1 πx/ sin(πx)
Γ(1+x+k)Γ(1+x+k+|B|)

]N
:

c
(k)
B,0(0) =

(
(−1)k+1

k!(k + |B|)!

)N
,

c
(k)
B,1(0) = −N [ψ(k + 1) + ψ(k + |B| + 1)] c(k)

B,0(0) . (3.5.2)

So if we consider a weak coupling expansion, i.e. ξ → ∞, of the lateral Borel resummation

(3.4.15) we obtain the power series

S±
[
Φ(k)
B

]
(ξ,∆) ∼ −(4πξ)N−∆̃

∞∑
n=0

c
(k)
B,n(∆)Γ(n+ 1 + ∆̃ −N) sin(π∆̃)

π
(4πξ)−n−1 ,

(3.5.3)

where ∆̃ = (2k+ |B| + 1)∆. If we plug this expansion in (3.4.14) we obtain the transseries

representation

ζ̃B(N, ξ,∆) = (−1)NB θ(B)
∞∑
k=0

e−4πξ k e±iπk(k+|B|)∆(4πξ)N−∆̃

 ∞∑
n=0

C
(k)
B,n(∆)

(4πξ)n+1

 , (3.5.4)

where the perturbative coefficients C(k)
B,n(∆) in the k instanton-anti-instanton background

on top of the B-instanton topological sector are given by

C
(k)
B,n(∆) = −c(k)

B,n(∆)Γ(n+ 1 + ∆̃ −N) sin(π∆̃)
π

. (3.5.5)

These coefficients, as well as the c(k)
B,n(∆), are all real numbers whenever ∆ ∈ R. The reason

for this lies in how we rewrote the integrand (3.4.17) of the directional Laplace transform

(3.4.15). In the transseries (3.4.14) we have factorised out the complex phase from the

integrand, so that the function (3.4.17) appearing in the lateral Laplace transform (3.4.15)

is manifestly real for x ∈ [0, 1) and ξ,∆ ∈ R. However there is still a branch cut starting

at x = 1 and that is why in (3.4.14) we need to take lateral Borel resummations where

the factor e±iπk(k+|B|)∆ coming from the discontinuity is just the transseries parameter12.

Once we have the expression (3.5.5) we note that for generic ∆ the factor Γ(n+1+∆̃−N)

12The sign ± of the phase is correlated with the direction of the lateral Laplace resummation as in
(3.4.14). In here we use the same symbol to denote the formal transseries and its appropriate directional
Borel-Ecalle resummation.



3.5. Cheshire Cat Resurgence 61

gives a factorial growth of the perturbative coefficients thus making the above expression

(3.5.4) a purely formal object, i.e. a transseries representation. However as we send ∆ → 0

we see that the sin(π∆̃) → 0 but Γ(n+1+∆̃−N) develops a pole for every n = 0, ..., N−1,

thus effectively truncating the expansion (3.5.3) to a degree N − 1 polynomial in ξ as

already seen previously in the undeformed equation (3.2.14). For example if we take the

∆ → 0 limit for the CP1 case sin(π∆̃) Γ(n+ 1 + ∆̃ − 2) gives a finite non-zero contribution

for n = 0 and n = 1 while vanishing for n ≥ 2 so the transseries expansion (3.5.4)

effectively reduces to

ζ̃B(2, ξ, 0) =
∞∑
k=0

e−4πξ k(4πξ)2
(
c

(k)
B,0(0) (4πξ)−1 − c

(k)
B,1(0) (4πξ)−2

)
=

∞∑
k=0

e−4πξ k 4πξ + 2ψ(k + 1) + 2ψ(k + |B| + 1)
[k! (k + |B|)!]2 = ζB(2, ξ) , (3.5.6)

where we used the explicit form for the coefficients (3.5.2) to obtain precisely the same

expression (3.2.19). One can easily check for different values of N that the limit of

the transseries (3.5.4) when ∆ → 0 reproduces the same topological sector contribution

ζB(N, ξ) written in equation (3.2.14) obtained from localization.

If we start from the very beginning with ∆ = 0, as we did in the supersymmetric case

(3.2.7) leading to (3.2.14), we do not generate a transseries and there is no direct way

to exploit resurgent analysis to extract non-perturbative information out of the purely

perturbative, asymptotic power series. As a matter of fact there is not even an asymptotic

power series to begin with since perturbation theory truncates after a finite number of

loops due to the supersymmetric nature of the physical quantity under consideration.

However, as soon as we break slightly supersymmetry by introducing this ∆-deformation

we immediately generate an infinite perturbative expansion, and in fact the full transseries,

out of thin hair. As the Cheshire Cat says [85]:

“You may have noticed that I’m not all there myself.” .

Once we realise that for generic ∆ we do indeed have a transseries we know from resurgent

analysis that obviously the splitting of perturbative and non-perturbative part in (3.5.4)

give rise to ambiguities as the directional Borel integral (3.4.16) is ill-defined for θ = 0



62 Chapter 3. Cheshire Cat Resurgence in 2 Dimensions

since argx = 0 (and argx = π) is a Stokes direction for Φ(0)
0 (x). The branch cut begins

at x = 1 and depending on how we dodge it, either from above or from below, we will

generate non-perturbative “ambiguities” that are exactly compensated for by the non-

perturbative terms in (3.5.4). We will promptly show that the resummation of the full

transseries (3.5.4) gives rise to an unambiguous result.

3.5.1 Cancellation of ambiguities

As just mentioned if instead of working with the full transseries (3.4.14)-(3.5.4) we were only

to focus on the purely perturbative piece, i.e. the k = 0 term, in a given topological sector

B, according to which resummation we decided to pick S+
[
Φ(0)
B

]
(ξ,∆) or S−

[
Φ(0)
B

]
(ξ,∆)

we would find two different analytic continuations of the formal asymptotic expansion

(3.5.3). Furthermore, even if the formal power series (3.5.3) is manifestly real for ξ and

∆ real, neither of the analytic continuation S±
[
Φ(0)
B

]
(ξ,∆) is, the difference between the

two is purely imaginary and usually called an “ambiguity” in the resummation procedure.

The presence of these “ambiguities” is due to the fact that we decided to split the full

transseries (3.4.14) into perturbative and non-perturbative part. We can now show that

if we consider the Borel-Ecalle resummation of the complete transseries (3.4.14)-(3.5.4),

the ambiguities (S+ − S−)
[
Φ(k)
B

]
(ξ,∆) in each non-perturbative sector together with the

jump in the transseries parameter e±iπk(k+|B|) precisely conspire to cancel out and give an

unambiguous and real answer when ξ and ∆ are real.

To this end let us start with the ambiguity in the resummation of the purely perturbative

piece in the trivial topological sector B = 0:

(S+ − S−)
[
Φ(0)

0

]
=
∫ ∞

0
dx e−wxx−N+∆

(
Φ(0)

0 (x+ iε,∆) − Φ(0)
0 (x− iε,∆)

)
=
∫ ∞

0
dx e−wxx−N+∆Φ(0)

0 (x+ iε,∆)
(
1 − e2πi∆bxc(bxc+2)

)
=
∫ 2

1
dx e−wxx−N+∆Φ(0)

0 (x+ iε,∆)
(
1 − e6πi∆

)
+

+
∫ 3

2
dx e−wxx−N+∆Φ(0)

0 (x+ iε,∆)
(
1 − e16πi∆

)
+ O(e−3w) ,

where we used the discontinuity equations (3.4.7-3.4.8) and defined w = 4πξ. In each of the
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above integrals we can shift the integration variables to make manifest the exponentially

suppressed factor, furthermore we also extend the integration all the way to infinity making

sure that we are consistent with the order of the instanton counting parameter e−w at

which we are working with. Proceeding as just outlined and using the connection formulas

(3.4.18-3.4.19) we can rewrite the above equation as

(S+ − S−)
[
Φ(0)

0

]
= −2i sin(π∆) e−w

∫ ∞

0
dx e−wxx−N+3∆Φ(1)

0 (x+ iε,∆)+ (3.5.7)

− 2i sin(π∆)e3iπ∆ e−2w
∫ ∞

0
dx e−wxx−N+5∆Φ(2)

0 (x+ iε,∆) + O(e−3w)

= −2i sin(π∆)e−wS+
[
Φ(1)

0

]
− 2i sin(π∆)e3iπ∆ e−2wS+

[
Φ(2)

0

]
+ O(e−3w) .

We were able to relate the difference between the two lateral resummations of the perturb-

ative series to the resummation of the non-perturbative sectors, this relation is usually

called Stokes automorphism (for more details see [15, 16]). Note that the “ambiguity” in

the resummation of the perturbative series is purely non-perturbative, i.e. it starts with

e−w plus higher instantons sectors. This ambiguity does not look manifestly imaginary,

however this is only due to the fact that the right-hand side is written in terms of the

lateral resummation S+
[
Φ(k)

0

]
of higher instanton sectors which is not a real quantity due

to the branch cut running on the real axis for each Φ(k)
0 (x). We will obtain a manifest

purely imaginary expression later on.

In a similar manner we can study what happens to the first non-perturbative sector, k = 1,

in the transseries (3.4.14) and repeating a similar calculation we find:

e−w
(
eiπ∆S+ − e−iπ∆S−

) [
Φ(1)

0

]
=

= +2i sin(π∆)e−wS+
[
Φ(1)

0

]
− 2i sin(3π∆)e−iπ∆e−2wS+

[
Φ(2)

0

]
+ O(e−3w) . (3.5.8)

Note that, unlike (3.5.7), the difference in lateral resummation of the k = 1 sector contains

a term (the first one in the above expression) exactly of the same non-perturbative order

e−w. The reason for this is that we are not quite computing the ambiguity (S+ − S−)
[
Φ(1)

0

]
but rather the joint combination of the jump in resummation together with the jump in

the transseries parameter e±iπ∆.
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Finally, to order O(e−3w) in the instanton counting parameter, we need to compute the

“ambiguity” in the k = 2 non-perturbative sector of the transseries (3.4.14) given by

e−2w
(
e4iπ∆S+ − e−4iπ∆S−

) [
Φ(2)

0

]
= +2i sin(4π∆)e−2wS+

[
Φ(2)

0

]
+ O(e−3w) . (3.5.9)

Putting together the three pieces (3.5.7),(3.5.8), and (3.5.9) we obtain what expected

(S+ − S−)
[
Φ(0)

0

]
+ e−w

(
eiπ∆S+ − e−iπ∆S−

) [
Φ(1)

0

]
+ e−2w

(
e4iπ∆S+ − e−4iπ∆S−

) [
Φ(2)

0

]
= O(e−3w) ,

namely the difference in lateral resummation together with the correct jump in the trans-

series parameter combine and cancel out, giving a unique and unambiguous Borel-Ecalle

resummation of the transseries (3.4.14).

From equations (3.5.7),(3.5.8), and (3.5.9) we can also rewrite the transseries (3.4.14) in

a form which is manifestly real for real ξ and ∆ and absolutely unambiguous

ζ̃0(N, ξ,∆) =S0
[
Re

(
Φ(0)

0

)]
(ξ,∆) + cos(π∆)e−4πξ S0

[
Re

(
Φ(1)

0

)]
(ξ,∆)+

+ cos(π∆) cos(3π∆)e−8πξ S0
[
Re

(
Φ(2)

0

)]
(ξ,∆) + O

(
e−12πξ

)
. (3.5.10)

Note that we do not need to take any lateral resummation now as the real part of the

Borel transform Re
(
Φ(0)

0

)
does not have a branch cut along the positive real axis allowing

us to safely perform the directional Borel transform S0 (3.4.16) without any ambiguity.

We can repeat this analysis for generic topological sector B obtaining a manifestly real

and unambiguous resummation for the transseries (3.4.14)

ζ̃B(N, ξ,∆) =S0
[
Re

(
Φ(0)
B

)]
(ξ,∆) + cos[(|B| + 1)π∆]e−4πξ S0

[
Re

(
Φ(1)
B

)]
(ξ,∆)+

+ cos[(|B| + 1)π∆] cos[(|B| + 3)π∆]e−8πξ S0
[
Re

(
Φ(2)
B

)]
(ξ,∆) + O

(
e−12πξ

)
.

(3.5.11)

3.5.2 Large orders relations

Now that we understand how the ambiguities in the resummation procedure cancel out

when we consider the full transseries, we can try and use the purely perturbative data to



3.5. Cheshire Cat Resurgence 65

retrieve some non-perturbative information, following the procedure laid out in section

2.2.1. To proceed we consider ∆ generic and use the transseries expansion (3.5.4) to

extract the purely perturbative sector, now asymptotic, and only at the very end we will

send ∆ → 0 to learn something about the supersymmetric case. For simplicity let us focus

on the perturbative part, k = 0, of the B = 0 topological sector in (3.5.4):

ζ̃pert(N, ξ,∆) =
∫ ∞

0
dx e−4πξ x x−N+∆ Φ(0)

0 (x,∆) ∼ (4πξ)N−∆
∞∑
n=0

C
(0)
0,n(∆)

(4πξ)n+1 , (3.5.12)

where the Borel transform obtained in (3.4.20) is

Φ(0)
0 (x,∆) = − (−1)N sin(π∆)

π

[
πx/ sin(πx)
Γ(1 + x)2

]N
exp

[
2∆(x+ ψ(−2)(1))

]
×

exp
[
∆(2x+ 1) (log Γ(1 + x) − log Γ(1 − x)) − 2∆

(
ψ(−2)(1 + x) + ψ(−2)(1 − x)

)]
,

and the perturbative coefficients (3.5.5)

C
(0)
0,n(∆) = −c(0)

0,n(∆)Γ(n+ 1 + ∆ −N) sin(π∆)
π

(3.5.13)

can be obtained from (3.5.1) and grow factorially with n for ∆ generic.

Let us consider the particular determination of the resummation of the purely perturbative

series (3.5.12), that we denote with the same symbol, where we anti-correlate arg ξ = θ

with the argument of the integration variable x as:

(4πξ)−N+∆ζ̃pert(N, ξ,∆) =
∫ ∞ e−iθ

0
dx e−4πξ x (4πξ x)−N+∆ Φ(0)

0 (x,∆) . (3.5.14)

Note that this is not the correct physical quantity but rather it is the best we could do if

we only had access to perturbation theory.

From the explicit expression (3.4.20) for Φ(0)
0 (x,∆) we know that the integrand of the above

equation has two branch cuts along the Stokes directions argx = 0 starting at x = +1, and

argx = π starting at x = −1, thus forcing the determination for ζ̃pert(N, ξ,∆) to have

branch cuts along arg ξ = 0 and arg ξ = π. Using a standard Cauchy-like contour argument

(see [9, 86], and Section 2.2.1) we can relate the perturbative coefficients C(0)
0,n(∆) in the

expansion (3.5.12), or more generically the one appearing in (3.5.4), to the discontinuities
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in the θ = 0 and θ = π direction of the determination (3.5.14):

C
(0)
0,n(∆) ∼ − 1

2πi

∫ ∞

0
dwDisc0(w)wn − 1

2πi

∫ ∞eiπ

0
dwDiscπ(w)wn . (3.5.15)

The discontinuities across the cuts of (3.5.14) can be easily computed using the discon-

tinuity equations (3.4.7-3.4.8) for the log Γ and ψ(−2); in particular Disc0(w) vanishes for

0 < w < 1 while Discπ(w) vanishes for −1 < w < 0. For example if we focus on

Disc0(w) =
∫ ∞

0
dx e−wx(w x)−N+∆

(
Φ(0)

0 (x− iε,∆) − Φ(0)
0 (x+ iε,∆)

)
, (3.5.16)

we can use multiple times (3.4.7-3.4.8) proceeding as we did in Section 3.5.1, and rewrite

this expression as

Disc0(w) =2i sin(π∆) e−ww−2∆
∫ ∞

0
dx e−wx(w x)−N+3∆ Re

(
Φ(1)

0 (x,∆)
)

(3.5.17)

+ 2i sin(π∆) cos(3π∆) e−2ww−4∆
∫ ∞

0
dx e−wx(w x)−N+5∆ Re

(
Φ(2)

0 (x,∆)
)

+ O
(
e−3w

)
.

One can also derive an expression for Discπ(w) and subsequently use equation (3.5.15) to

obtain the asymptotic expansion valid at large n � 1 of the perturbative coefficients

C
(0)
0,n(∆) ∼ − 1

2π 2 sin(π∆) Γ(n− 2∆)
(+1)n−2∆

C(1)
0,0(∆) +

C
(1)
0,1(∆)

n− 2∆ − 1 + O(n−2)
+

− 1
2π 2 sin(π∆) Γ(n− 4)

(−1)n
(
C

(−1)
0,0 (∆) + O(n−1)

)
+ (3.5.18)

− 1
2π 2 sin(π∆) cos(3π∆) Γ(n− 4∆)

2n−4∆

C(2)
0,0(∆) +

2C(2)
0,1(∆)

n− 4∆ − 1 + O(n−2)
+ ... .

From the large order perturbative coefficients coefficient C(0)
0,n we can disentangle the C(k)

0,n

which are precisely the perturbative coefficients at order n in the kth non-perturbative

sector given in equation (3.5.5) and appearing in the transseries expansion (3.5.4). From

perturbative data we can reconstruct non-perturbative physics. The second term in the

asymptotic expansion would correspond to the k = −1 instanton-anti-instanton sector, i.e.

something weighted by e+4π ξ, and the first perturbative coefficient in this sector is given
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by

C
(−1)
0,0 (∆) = sin(π∆)

π
(2π)−∆ Γ(3 + ∆) . (3.5.19)

However we do not particularly care about these sectors as we specialised our transseries

(3.5.4) to the wedge of the complex ξ plane Re ξ > 0 and terms of the form e+4π ξ are

unphysical here. The large order perturbative coefficients do nonetheless know about

these terms because if we were to analytically continue to the wedge Re ξ < 0 terms of

the form e+4π ξ would become exponentially suppressed and the most general transseries

would contain both terms of the form e±4π k ξ. In particular, to be consistent, we should

have written in (3.5.18) a term going as Γ(n−α)/(−2)n however, as we will shortly see, in

the supersymmetric limit ∆ → 0 the k < 0 sectors will disappear completely as expected

from the discussion in Section 3.2, while the footprints of the non-perturbative k ≥ 1

sectors will still be present. The dots at the end of equation (3.5.18) represent all higher

instanton sectors going as Γ(n− αk)/(±k)n for some constant αk, possibly ∆ dependent.

We wrote equation (3.5.18) in a way that makes the Stokes constants for each non-

perturbative sector manifest. For example for the k = 1 sector the Stokes constant is

given by A
(0)
1 = 2 sin(π∆) = 2 Im eiπ∆, i.e. the Stokes constant is exactly equal to the

jump of the transseries parameter in the k = 1 instanton sector in equation (3.5.4) as

expected since the Borel-Ecalle resummation of the transseries (3.4.14) should give the

same result if we resum for arg ξ = +ε or arg ξ = −ε. The Stokes constant for the k = 2

sector is however A(0)
2 = 2 sin(π∆) cos(3π∆) and does not equal the jump of 2 Im e4iπ∆ in

the transseries parameter for the k = 2 sector in (3.5.4). The reason is that the jump in

the two instanton sector is compensated partly from the term e−2w in the discontinuity in

the k = 0 sector in (3.5.17) but also from a term e−w in the discontinuity for the k = 1

sector, see (3.5.8). It is only the sum of these two pieces that reproduces the jump of

2 Im e4iπ∆ in the transseries parameter for the k = 2 sector. To show that this is indeed

the case we can first easily repeat the large order analysis for the perturbative coefficients

C
(1)
0,n in the k = 1 non-perturbative sector obtaining

C
(1)
0,n(∆) ∼ − 1

2π2 sin(3π∆)Γ(n+ 2∆)
(−1)n

C(0)
0,0(∆) +

(−1)C(0)
0,1(∆)

n+ 2∆ − 1 + O(n−2)
+
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− 1
2π2 sin(3π∆) Γ(n)

(+1)n

C(2)
0,0(∆) +

C
(2)
0,1(∆)
n− 1 + O(n−2)

+ ... , (3.5.20)

where the dots represent higher non-perturbative contributions as above. The k = 1 sector

“sees” the perturbative sector with a relative action of −1 hence the alternating factor

(−1)n in the first term multiplying exactly the purely perturbative coefficients C(0)
0,n with

Stokes constant A(1)
−1 = 2 sin(3π∆). The relative action between the k = 1 sector and

the k = 2 sector is instead equal to +1 hence the second term in the above equation

does not have an alternating factor and multiplies the perturbative coefficients C(2)
0,n of

the k = 2 sector with Stokes constant A(1)
1 = 2 sin(3π∆). We can now see that the jump

2 Im e4iπ∆ of the k = 2 transseries parameter in (3.5.4) is exactly controlled by the Stokes

constant A(0)
2 = 2 sin(π∆) cos(3π∆) of the perturbative sector plus the Stokes constant

A
(1)
1 = 2 sin(3π∆) of the k = 1 sector multiplied by the real part Re eiπ∆ of the transseries

parameter13 for the k = 1 sector

2 Im e4iπ∆ = A
(0)
2 +A

(1)
1 Re eiπ∆ = 2 sin(π∆) cos(3π∆)+2 sin(3π∆) cos(π∆) = 2 sin(4π∆) .

The large order coefficients (3.5.18-3.5.20) are a genuine factorial asymptotic expansion

for generic ∆. As a numerical check we can fix ∆ to some value and read from the large

order perturbative coefficients (3.5.18) the low order non-perturbative sector coefficients.

A curious incident happens whenever we pick a rational ∆ = p/q for some coprime

integers p, q ∈ Z. From equation (3.5.1) we see that in all the instanton sectors where

(2k+ |B|+1) = 0 (mod q) due to the sin((2k+ |B|+1)π∆) factor we have a truncation and

the perturbative coefficients C(k)
B,n in those non-perturbative sectors are not asymptotic but

rather finite in number. In all the sectors for which (2k+ |B|+1) 6= 0 (mod q), in particular

the purely perturbative one, the coefficients remain asymptotic and this truncation seems

of accidental nature. However as we will comment later on in Section 3.5.3 whenever

∆ ∈ Z we have that this truncation happens in all sectors giving rise to some “exact”

13In (3.4.14) one considers the jump of the k = 1 sector eiπ∆ S+[Φ(1)
0 ] − e−iπ∆ S−

[
Φ(1)

0

]
and the only

term in this expression contributing to the k = 2 sector is given by Re
(
eiπ∆) × (S+ − S−)[Φ(1)

0 ] ∼
2i Re

(
eiπ∆)A

(1)
1 e−8π ξ. See the thorough discussion in Section 3.5.1 and in particular equation (3.5.8).
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observable, as in the case ∆ = 0 discussed in detail above. As a nice example of this

accidental truncation we can pick the large order expansion (3.5.18) and specialise it to

the case ∆ = 1/3. Fixing for concreteness N = 2, i.e. CP1, and for the particular value

∆ = 1/3, we have that the k = 1 sector truncates dramatically

C
(1)
0,0(1/3) = 3

√
e4

2π ,

C
(1)
0,n(1/3) = 0 , n ≥ 1 ,

note that for larger N these coefficients would truncate after N − 1 orders. Using (3.5.18)

we obtain the asymptotic form of the perturbative coefficients

C
(0),as
0,n (1/3) = −sin(π/3)

π
Γ(n− 2/3)C(1)

0,0(1/3) (3.5.21)

using (3.5.19) for ∆ = 1/3, so according to (3.5.18) for n � 1 the difference between the

perturbative coefficients and (3.5.21) will tell us about the first sub-leading correction:−π
(
C

(0)
0,n(1/3) − C

(0),as
0,n (1/3)

)
sin(π/3)Γ(n− 2/3)

 ∼ (−1)n
n10/3 C

(−1)
0,0 (1/3) + O(n−13/3)

∼ (−1)n
n10/3

sin(π/3)
π

(2π)−1/3 Γ(10/3) .

In Figure 3.3 we plot the difference between the perturbative coefficients C(0)
0,n(1/3) com-

puted via (3.5.5) and their asymptotic form C
(0),as
0,n (1/3) just presented in (3.5.21):

dn =
−π

(
C

(0)
0,n(1/3) − C

(0),as
0,n (1/3)

)
sin(π/3)Γ(n− 2/3)

 (−1)nn10/3 (3.5.22)

∼ sin(π/3)
π

(2π)−1/3 Γ(10/3) + O(n−1) . (3.5.23)

For a generic value of ∆ we can read the non-perturbative coefficients from the large order

perturbative ones.

We want to understand now what happens to the asymptotic forms (3.5.18-3.5.20) when

∆ → 0, i.e. when we reach the supersymmetric point. As we already saw below equation

(3.5.5), when we send ∆ → 0 in every non-perturbative sector only the first two perturbat-

ive coefficients C(k)
0,0 (0) and C(k)

0,1 (0) survive, while all the others vanish. It would seem that
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5 10 15 20 25 30
n

-4

-2
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Figure 3.3: Difference dn between the perturbative coefficients C(0)
0,n(1/3) and their asymp-

totic form C
(0),as
0,n (1/3). The blue line is given by the equation y =

C
(−1)
0,0 (1/3) = sin(π/3)

π
(2π)−1/3 Γ(10/3) ' 0.415.

there is no way to reconstruct from the perturbative coefficients some non-perturbative

physics and vice versa because the asymptotic forms (3.5.18-3.5.20) do not hold; the series

are not asymptotic but they drastically truncate. However the footprints of the Cheshire

Cat resurgence are still there! If we consider the asymptotic form (3.5.18) but rather

study the coefficients −c(0)
0,n(∆) using (3.5.13) we have

c
(0)
0,n(∆) =

−π C(0)
0,n(∆)

sin(π∆) Γ(n+ 1 + ∆ −N)

∼ Γ(n− 2∆)
Γ(n+ 1 + ∆ −N) (+1)n−2∆

C(1)
0,0(∆) +

C
(1)
0,1(∆)

n− 2∆ − 1 + O(n−2)
+

+ Γ(n− 4)
Γ(n+ 1 + ∆ −N) (−1)n

(
C

(−1)
0,0 (∆) + O(n−1)

)
+

+ cos(3π∆) Γ(n− 4∆)
Γ(n+ 1 + ∆ −N) 2n−4∆

C(2)
0,0(∆) +

2C(2)
0,1(∆)

n− 4∆ − 1 + O(n−2)
 .

(3.5.24)

We can now safely send ∆ → 0 and the coefficients c(0)
0,n(0) will not truncate. As we set

∆ = 0 in the right-hand side the first thing to notice is that the contributions of the

form Γ(n − αk)/(−k)n, corresponding to the presence of exponentially enhanced terms

e+4πk ξ in the transseries, all disappear since all the coefficients C(−k)
0,n (0) = 0 when k > 0,
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see equation (3.5.19). This is expected since in the supersymmetric case ∆ = 0 these

terms were not present in (3.2.19). Furthermore on physical grounds we do not expect

terms exponentially enhanced to appear in the expansion of any physical quantity. On

the other hand for k ∈ N we know that the perturbative coefficients C(k)
0,n(0) in the CPN−1

model are non-vanishing only for n ≤ N − 1. For concreteness in the CP1 case in each

non-perturbative sector only the first two perturbative terms are non-vanishing as we

already saw in equation (3.2.19), and the asymptotic expansion (3.5.24) reduces to

c
(0)
0,n(0) ∼ (n− 1)

1n

C(1)
0,0(0) +

C
(1)
0,1(0)
n− 1

+ (n− 1)
2n

C(2)
0,0(0) +

2C(2)
0,1(0)

n− 1

+ O(n 3−n) ,

(3.5.25)

where the non-perturbative coefficients C(k)
0,0 (0), and C

(k)
0,1 (0) can be obtained from (3.5.5)

and (3.5.2) and reproduce precisely the coefficients in the supersymmetric expansion

(3.2.20)

C
(k)
0,0 (0) = 1

(k!)4 , C
(k)
0,1 (0) = 4Hk − 4γ

(k!)4 . (3.5.26)

Note that equation (3.5.25) is actually not an asymptotic expansion and could have been

derived in the supersymmetric case by considering the undeformed integrand of (3.2.7),

writing the coefficient c(0)
0,n(0) as a Cauchy integral around the origin and then closing

the contour so to get the contribution from all the other poles, i.e. the non-perturbative

sectors. This is of course possible because the partition function (3.2.7) does contain all

the information, perturbative and non-perturbative. However had we been given only

the perturbative coefficients in the supersymmetric case it would have been impossible to

reconstruct the non-perturbative data without the aid of Cheshire Cat resurgence.

As a numerical check we can define the asymptotic approximation

c
(0),as
0,n (0) = (n− 1)

(+1)n
(

1 + 4 − 4γ
n− 1

)
+ (n− 1)

(+2)n
1
16 , (3.5.27)

where we made explicit use of (3.5.26). From the difference between the perturbative

coefficients c(0)
0,n, that we can easily generate from (3.4.20) and (3.5.1), and the asymptotic
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Figure 3.4: Difference dn between the perturbative coefficients c(0)
0,n(0) and their asymptotic

form c
(0),as
0,n (0). The blue line is given by the equation y = 2C(2)

0,1(0) = 1
4(3 −

4γ) ' 0.461.

form (3.5.27) we can extract non-perturbative information out of perturbative data

dn =
(
c

(0)
0,n(0) − c

(0),as
0,n (0)

)
2n ∼ 2C(2)

0,1(0) + O ((2/3)n) ∼ 1
4(3 − 4γ) . (3.5.28)

In Figure 3.4 we show how this difference dn tends to 2C(2)
0,1(0) allowing us to reconstruct

the perturbative coefficients of the non-perturbative sectors. Surprisingly enough it is

still possible to extract non-perturbative data from perturbation theory even when the

perturbative expansion truncates: the Cheshire Cat’s grin still lingers on even when his

body has completely disappeared.

We can repeat this story also for the large order form of the non-perturbative sectors

coefficients. We can consider the k = 1 sector and rewrite equation (3.5.20) using (3.5.5)

c
(1)
0,n(0) =

−π C(1)
0,n(∆)

sin(3π∆) Γ(n+ 1 + 3∆ −N)

∼ Γ(n+ 2∆)
Γ(n+ 1 + 3∆ −N) (−1)n

C(0)
0,0(∆) +

(−1)C(0)
0,1(∆)

n+ 2∆ − 1 + O(n−2)
+

+ Γ(n)
Γ(n+ 1 + 3∆ −N) (+1)n

C(2)
0,0(∆) +

C
(2)
0,1(∆)
n− 1 + O(n−2)

+ ... . (3.5.29)

For concreteness we fix once more N = 2, i.e. CP1, so that when we take the limit ∆ → 0

we have only two non-vanishing perturbative coefficients in each sector and in this limit
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Figure 3.5: Difference dn between the perturbative coefficients c(1)
0,n(0) and their asymptotic

form c
(1),as
0,n (0). The blue line is given by the equation y = −C(0)

0,1(0) = 4γ '
2.308.

the above equation becomes

c
(1)
0,n(0) ∼ (n− 1)

(−1)n

C(0)
0,0(0) −

C
(0)
0,1(0)
n− 1

+ (n− 1)
1n

C(2)
0,0(0) +

C
(2)
0,1(0)
n− 1

+ O(n 2−n) .

Since the k = 1 sector “sees” the perturbative sector with a relative action of −1, while

the k = 2 sector with a relative action of +1, we have two competing saddles here and

find an oscillating behaviour. We can define the asymptotic approximation

c
(1),as
0,n (0) = (n− 1)

(−1)n + (n− 1)
(+1)n

(
1
16 − 3 − 4γ

8(n− 1)

)
, (3.5.30)

where we made explicit use of (3.5.26). If we consider the difference between the perturb-

ative coefficients in the k = 1 non-perturbative sector, easily obtained from (3.4.17-3.5.1),

and the asymptotic approximation just defined we have

dn =
(
c

(1)
0,n(0) − c

(1),as
0,n (0)

)
(−1)n ∼ −C(0)

0,1(0) + O(2−n) ∼ 4γ , (3.5.31)

and in Figure 3.5 we see how we can reconstruct the purely perturbative coefficients out

of the perturbative data in a given non-perturbative sector even when all the perturbative

expansions truncate to a finite number of terms.
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3.5.3 Other solvable observables

So far we have considered in detail only the limit ∆ → 0 for which the body of the Cheshire

Cat disappears and we find once more the convergent supersymmetric result. However from

equation (3.5.5) we can see that more generically we just need ∆ to approach an integer

and all the topological sectors perturbative expansions will truncate after a finite number

of terms. For example in the perturbative sector k = 0, B = 0, we read from (3.5.5) that

whenever ∆ → n ∈ N the perturbative coefficients truncate after N−n−1 orders, so fewer

orders than the ∆ → 0 case. From (3.5.5) we see that in higher topological number sectors

we obtain even fewer perturbative coefficients. It is suggestive to go back to our modified

one-loop determinant (3.4.4) and reinterpret this truncation when ∆ = Nf −Nb → n ∈ N

as perhaps the insertion of some supersymmetric fermionic operator.

Similarly when ∆ approaches a negative integer, −∆ = m ∈ N, the perturbative coeffi-

cients in the k = 0, B = 0, truncate after N +m− 1 orders hence we find more coefficients

than the ∆ = 0 case. Contrary to before we can see from (3.5.5) that in higher and higher

topological number sectors we obtain more and more perturbative coefficients. Again

this increase in perturbative coefficients can be seen from the modified one-loop determ-

inant (3.4.4) interpreting the limit −∆ = Nb − Nf → m ∈ N as the insertion of some

supersymmetric bosonic operator.

It would be tempting to interpret these results as the genuine modification of the original

path integral with an unequal (but integer) number of bosons and fermions. However

we should stress once more that our modification to the one-loop determinant (3.4.4)

effectively takes place only after having heavily exploited the supersymmetry of the model

to localize the path integral. It is nonetheless striking to notice the similarity of our

truncation of the perturbative coefficients when ∆ → n ∈ Z with the quasi-solvability

discussed in [55]. As mentioned in the Introduction the authors of [55] consider an analytic

continuation in the number of fermions ζ and they found that in the double Sine-Gordon

quantum mechanics the lowest ζ states are algebraically solvable when ζ ∈ N and the

exact energies of these levels can be exactly computed and are algebraic functions of the
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coupling constant.

3.6 Resurgence from analytic continuation in N

An alternative way to obtain Cheshire Cat resurgence for the CPN−1 model is to turn off

the supersymmetry breaking deformation ∆ and instead consider an analytic continuation

in the number of chiral multiplets from N ∈ N to r ∈ R (or C) thus studying the

undeformed partition function (3.2.7) but for a CPr−1 model (one can also consider both

deformations at once). Unlike the previously discussed case ∆ 6= 0, this deformation is of

a more supersymmetric nature and the supersymmetry algebra is still formally unchanged

and satisfied. Nonetheless for generic r ∈ R we will show that perturbation theory is

asymptotic and truncates precisely when r → N ∈ N.

When N is replaced by r ∈ R the poles and zeroes of the original partition function

become branch cuts for the undeformed one-loop determinant and for r > 0 (or Re r > 0)

we can write the partition function as we did in (3.4.9)

Z(r) =
∑
B∈Z

e−iθB
∫

C

dσ

2πe
−4πiξ σZ̃matter(σ) , (3.6.1)

where the deformed one-loop determinant can be obtained from (3.4.6) after having set

∆ = 0

Z̃matter(σ) = eiπBθ(B) rexp [r (log Γ(−iσ + |B|/2) − log Γ(1 + iσ + |B|/2))] , (3.6.2)

which reproduces the original supersymmetric result whenever r = N ∈ N. As previously

discussed the contour of integration C comes from σ → −i∞ − ε, circles around the origin

and then goes back to σ → −i∞ + ε, for r < 0 (or Re r < 0) we simply close the contour

around the positive imaginary axis.

At this point we can repeat the same procedure we followed in Section 3.4, realising that

the discontinuity in (3.6.2) now comes only from the log Γ function and, after using the
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discontinuity property (3.4.7), we obtain

Z(r) =
∑
B∈Z

e−2πξ|B|−iθB ζ̃B(r, ξ) , (3.6.3)

where each Fourier mode can be written as

ζ̃B(r, ξ) =
∞∑
k=0

∫ k+1

k

dx

2πie
−4πξ xZ̃matter(−ix− i|B|/2 − ε)

[
e2πikr − 1

]
=

∞∑
k=0

∫ k+1

k

dx

2πie
−4πξ xZ̃matter(−ix− i|B|/2 + ε)

[
1 − e−2πikr

]
. (3.6.4)

Similarly to what we did before we rewrite
∫ k+1
k =

∫∞
k −

∫∞
k+1 and shift variables so that

every integral becomes between [0,∞) arriving at the transseries expansion

ζ̃B(r, ξ) = eiπBθ(B) r
∞∑
k=0

e−4πξ k e∓iπkr S̃±
[
Φ̃(k)
B

]
(ξ, r) , (3.6.5)

where S̃± denote the modified lateral Laplace transforms

S̃±
[
Φ̃(k)
B

]
(ξ, r) =

∫ ∞±iε

0
dx e−4πξ x x−r Φ̃(k)

B (x, r) , (3.6.6)

and, after repeated use of the connection formula (3.4.18), the Borel transform Φ̃(k)
B (x, r)

is given by

Φ̃(k)
B (x, r) = sin(πr)

π
exp

r
log Γ(1 − x) − log Γ(x+ k + |B| + 1) −

k∑
j=1

log(x+ j)
 .

(3.6.7)

Comparing these equations to (3.4.14)-(3.4.15)-(3.4.17) obtained in Section 3.4, we see

that the role played by the deformation parameter ∆ is now taken by r. If we expand the

Borel transform for x ∼ 0 we get

Φ̃(k)
B (x, r) ∼ sin(πr)

π

( ∞∑
n=0

c̃
(k)
B,n(r)xn

)
. (3.6.8)

We see that in the limit r → N ∈ N we obtain precisely the same coefficients (3.5.2)

previously found in the limit ∆ → 014.

14In the r → 0 limit, the localised partition function becomes a delta function of ξ. However we cannot
see this in (3.6.8). The reason is that the way we have closed the contour (see discussion around (3.2.8)) to
find (3.6.6) is no longer valid in the ξ → 0 limit, so we need to revert to the original contour of integration
to see how the delta function is generated.
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So if we consider a weak coupling expansion, i.e. ξ → ∞, of the lateral Borel resummation

(3.6.6) we obtain the power series

S̃±
[
Φ̃(k)
B

]
(ξ, r) ∼ (4πξ)r

∞∑
n=0

c̃
(k)
B,n(r)Γ(n+ 1 − r) sin(πr)

π
(4πξ)−n−1 . (3.6.9)

If we plug this expansion in (3.6.5) we obtain the transseries representation

ζ̃B(r, ξ) = eiπBθ(B) r
∞∑
k=0

e−4πξ k e∓iπkr(4πξ)r
 ∞∑
n=0

C̃
(k)
B,n(r)

(4πξ)n+1

 , (3.6.10)

where the perturbative coefficients C̃(k)
B,n(r) in the k instanton-anti-instanton background

on top of the B-instanton topological sector are given by

C̃
(k)
B,n(r) = c̃

(k)
B,n(r)Γ(n+ 1 − r) sin(πr)

π
, (3.6.11)

and the sign of the transseries parameter e∓iπkr is correlated with the direction of the

Lateral resummation as in (3.6.5).

These coefficients (3.6.11) are, for generic r ∈ R, factorially diverging and the above

expression (3.6.10) is a purely formal object, i.e. a transseries representation. However

as we send r → N ∈ N we see that the sin(πr) → 0 but Γ(n + 1 − r) develops a

pole for every n = 0, ..., N − 1, thus effectively truncating the expansion (3.6.9) to a

degree N − 1 polynomial in ξ reproducing the undeformed equation (3.2.14) for CPN−1,

in an identical fashion to the limit ∆ → 0 for deformed case (3.5.3). Although formally

still supersymmetric, the CPr−1 model with r ∈ R produces asymptotic perturbative

expansions, truncating only in the limit r → N ∈ N.

3.6.1 Cancellation of ambiguities

Using the formulas just derived we can repeat also in the present CPr−1, r ∈ R, case the

same analysis carried out in Section 3.5 for the ∆ deformed model. In particular we can

show that the ambiguities in resummation cancel out in (3.6.5) and that the discontinuity

for the resummation of the purely perturbative sector contains all the non-perturbative

data. To this end we can analyse the difference in lateral resummations, i.e. the Stokes
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automorphism,

(S̃+ − S̃−)
[
Φ̃(k)
B

]
=
∫ ∞

0
dx e−wxx−r

(
Φ̃(k)
B (x+ iε, r) − Φ̃(k)

B (x− iε, r)
)

= 2i sin(πr)
∞∑
n=1

e−nwe∓iπ(n−1)rS̃±
[
Φ̃(k+n)
B

]
(3.6.12)

where we made intensive use of the discontinuity property (3.4.7) and connection formula

(3.4.18) for the log Γ function and denoted 4πξ = w.

We can now prove that all the ambiguities cancel out in (3.6.5) by considering the difference

between the two lateral resummations together with the jump in the transseries parameter:

∞∑
k=0

e−kw
(
e−iπkrS̃+ − eiπkrS̃−

) [
Φ̃(k)
B

]
=

∞∑
k=0

−2i sin(πkr)e−kwS̃+
[
Φ̃(k)
B

]
+

∞∑
k=0

eiπkre−kw(S̃+ − S̃−)
[
Φ̃(k)
B

]
=

∞∑
k=0

−2i sin(πkr)e−kwS̃+
[
Φ̃(k)
B

]
+

∞∑
k=0

∞∑
n=1

2i sin(πr)e−(k+n)weiπ(k−n+1)rS̃+
[
Φ̃(k+n)
B

]
=

∞∑
k=0

−2i sin(πkr)e−kwS̃+
[
Φ̃(k)
B

]
+

∞∑
m=1

2i sin(πr)e−mwS̃+
[
Φ̃(m)
B

] ∞∑
k=0

∞∑
n=1

δk+n,me
iπ(k−n+1)r

=
∞∑
k=0

−2i sin(πkr)e−kwS̃+
[
Φ̃(k)
B

]
+

∞∑
m=1

2i sin(πr)sin(πmr)
sin(πr) e−mwS̃+

[
Φ̃(m)
B

]
= 0 ,

where we made use of the Stokes automorphism (3.6.12).

Similarly to Section 3.5, see equation (3.5.14), we can also define the analytic continuation

obtained from the purely perturbative coefficients

(4πξ)−rζ̃pert(r, ξ) =
∫ ∞ e−iθ

0
dx e−4πξ x (4πξ x)−r Φ̃(0)

0 (x, r) , (3.6.13)

with θ = arg ξ. From equation (3.6.7) we deduce that this function has two branch cuts

along the complex directions arg ξ = 0 and π, and it is a matter of simple calculations to

show that its discontinuity across the real positive axis is given by

Disc0(w) =
∫ ∞

0
dx e−wx(w x)−r

(
Φ̃(0)

0 (x− iε, r) − Φ̃(0)
0 (x+ iε, r)

)
= −2i sin(πr) e−w

∫ ∞

0
dx e−wx(w x)−r Re

(
Φ̃(1)

0 (x, r)
)

− i sin(2πr) e−2w
∫ ∞

0
dx e−wx(w x)−r Re

(
Φ̃(2)

0 (x, r)
)

+ O
(
e−3w

)
, (3.6.14)
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similar to what we obtained in the ∆ deformed case (3.5.17). An analog equation can be

obtained for the discontinuity across the negative real axis.

From the discontinuity we can read the Stokes constants and as expected the Stokes

constant Ã(0)
1 = −2 sin(πr) is exactly equal to the jump 2 Im e−iπr of the transseries

parameter in the k = 1 instanton sector in equation (3.6.5). Furthermore, similarly to

the ∆ deformed case, the Stokes constant Ã(0)
2 = − sin(2πr) for the k = 2 sector does not

equal the jump 2 Im e−2iπr in the transseries parameter for the k = 2 sector in (3.6.10).

The reason is of course that the jump in the two instanton sector is compensated partly

from the term e−2w in the discontinuity for the k = 0 sector in (3.6.14) but also from

a term e−w in the discontinuity for the k = 1 sector that can be similarly computed

and produces a Stokes constant Ã(1)
1 = −2 sin(πr). The jump 2 Im e−2iπr of the k = 2

transseries parameter in (3.6.10) is exactly controlled by the Stokes constant Ã(0)
2 of the

perturbative sector plus the Stokes constant Ã(1)
1 of the k = 1 sector multiplied by the

real part Re e−iπr of the transseries parameter for the k = 1 sector

2 Im e−2iπr = Ã
(0)
2 + Ã

(1)
1 Re e−iπr = − sin(2πr) − 2 sin(πr) cos(πr) = −2 sin(2πr) .

From the above discussion it is a simple exercise to obtain the large order behaviour

of the perturbative coefficients, as we did in Section 3.5.2, allowing us to reconstruct

non-perturbative physics out of perturbative data. However since these relations are very

similar to the ones obtained in Section 3.5.2 we will not present them here.

The key message is that as soon as the number of chiral multiplets r ∈ R is kept generic,

although the supersymmetry algebra is still formally respected, we have that all the

perturbative series appearing in (3.6.10) are just asymptotic expansions. At this point

we can make use of resurgent analysis to extract from the purely perturbative data non-

perturbative information and only at the very end send the parameter r → N ∈ N

obtaining precisely the CPN−1 model result.
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3.7 Summary of chapter 3 and open problems

In this chapter we have considered the S2 partition function of the supersymmetric CPN−1

computed using localization and checked that we can reconstruct the expected chiral ring

structure. The weak coupling expansion of this observable can be decomposed according

to the resurgence triangle [19] and in each topological sector we find a perturbative series

that truncates after finitely many orders making it seemingly impossible to exploit the

resurgence machinery to reconstruct non-perturbative physics out of perturbative data.

To this end we introduce, after having localized the path integral, a non-supersymmetric

deformation that amounts to an unequal number of bosons and fermions. With this

deformation in place we can reconstruct the full transseries representation of the deformed

partition function and check that perturbation theory does indeed become asymptotic.

This is an example of Cheshire Cat resurgence. We can use resurgent analysis to reconstruct

from perturbative data the entire non-perturbative sectors previously completely hidden.

Once we remove the deformation parameter we go back to the original undeformed case

but we can still see the presence of resurgence at work.

Similarly we also consider a supersymmetry preserving deformation where we modify

the number of chiral fields from N → r ∈ R and study the CPr−1 model via analytic

continuation. Although formally we still retain supersymmetry we immediately generate

asymptotic transseries whenever r is kept generic. We show that also in this case from

the perturbative asymptotic series we can reconstruct the full transseries via resurgent

analysis and only at the very end we send r → N ∈ N to recover the CPN−1 result for

which in each topological sector all the perturbative series truncate after finitely many

orders.

This 2-dimensional example has shed some light on the role that resurgence plays in

quantum field theories with convergent perturbative expansions. As in quantum mech-

anical examples [54, 55] we can immediately see that a full transseries is hiding behind

the “deceptive” convergent supersymmetric result as soon as an appropriate deformation

is implemented. This ∆ deformation we introduce is not fully satisfactory as it is not
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a genuine path integral deformation but rather corresponds to a mismatch between the

number of bosons and fermions only after having localized the path integral. It would be

interesting to see if a similar result can be obtained from a bona fide deformation of the

original path integral and perhaps understand how it relates to the thimble decomposition

discussed in [87]. Whilst not fully satisfactory, we will now move on and try and implement

the same type of ∆ deformation in higher dimensional theories.





Chapter 4

Cheshire Cat Resurgence in 3

Dimensions

This chapter is based on the work [2], done in collaboration with Daniele Dorigoni.

4.1 Introduction

In this chapter we turn our interest to 3-d N = 2 gauge theories. As mentioned in Section

2.1 this class of theories is amenable to localisation on S3 [30] and, when a Chern-Simons

term is present, their partition functions can be directly written [38] in the form of a

resurgent transseries in terms of a small coupling g = 1/k � 1 given by the inverse of the

Chern-Simons level k.

In [39]1 the authors performed the complete resurgent analysis and thimble decomposition

for 3-d N = 2 Chern-Simons matter theories showing that, as one varies the argument

of the coupling g = 1/k, the thimble decomposition of the path-integral exhibits Stokes

phenomenon. As expected the ambiguities in resummation of the Borel transform are

directly related to the jump in thimbles attached to non-perturbative saddles. Furthermore

the analysis of these authors provided a nice interpretation of these non-perturbative effects

1We thank Tatsuhiro Misumi for making us aware of this interesting and relevant work.
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as contributions coming from new supersymmetric solutions [42] living in a complexification

of field space but not on the original path-integral contour.

In this chapter we continue the studies of [39] by considering abelian gauge theories

without a Chern-Simons term for which both asymptoticity and topological angle will

turn out to be absent. At first it looks like the resurgence structure found in [38, 39]

disappears completely, and although we have these complex non-perturbative saddles [42],

their classical actions will nonetheless be real, hence the Picard-Lefschetz decomposition

of [39] somehow becomes degenerate. The same holds even when considering a squashed

sphere [31] with squashing parameter b > 0. However, by complexifying the squashing

parameter b = eiθ we will be able to identify “would-be” different topological sectors, i.e.

we can distinguish from the thimble point of view the topologically trivial sector from a

vortex and an anti-vortex.

The complexification of the squashing parameter can be seen as the introduction of a

chemical potential for the U(1) rotation of the S2 where the vortices are living on when

we write the S3 as a Hopf fibration. It is also interesting to notice that since the building

blocks to compute the 3-d N = 2 partition functions are directly related [88, 31] to the

structure constants in 2-d Liouville with central charge c = 1+6(b+b−1)2 we have that the

complexification b = eiθ interpolates precisely between space-like and time-like Liouville.

However, regardless of the interpretation, the important point is that complexifying the

squashing parameter generates a topological angle which was hidden before, and this is

very reminiscent of the hidden topological angle studied in [58, 89, 56, 57, 54]. We can

thus introduce a Cheshire Cat deformation very similar to the previous chapter and restore

the asymptotic nature of the perturbative series around each saddle. This allows us to

use the full resurgence machinery to reconstruct from just one element in a column of the

resurgence triangle all other elements in the same column, i.e. in the same topological

sector. In the next chapter we will comment on how this topological decomposition,

combined with the known [90] vortex/anti-vortex factorisation of the partition function

which introduces an extra structure on top of resurgence, can be used calculate data from

one column of the resurgence triangle and relate it to different columns.
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The chapter is organised as follows. Firstly in Section 4.2 we will briefly give an overview

of N = 2 supersymmetric field theories on a squashed 3-sphere and present the localised

partition functions for different matter contents.

In Section 4.3 we will perform a Picard-Lefschetz decomposition of the localised path-

integral and show how a complexification of the squashing parameter b will give rise to

a hidden topological angle, allowing us to decompose the theory in a resurgence triangle

structure. We will also discuss the physical interpretation of this complexification and the

arising of Stokes phenomenon in the Picard-Lefschetz decomposition.

We continue in Section 4.4 with the analysis of the localised path integral using Cheshire

Cat resurgence methods. Similarly to the 2-d case we will see that for the original theory

there is no asymptotic, factorially growing perturbative series. However after introducing

a suitable deformation the asymptotic nature of perturbation theory is reinstated and

the resurgence framework can finally be applied. We also discuss how to connect the

non-perturbative data to the perturbative data, and at the very end smoothly continue all

of our results back to the undeformed original theory while retaining the non-perturbative

information acquired from perturbation theory.

Finally we draw some conclusions from this chapter in Section 4.6. Some useful identities

for the double sine function, which are used extensively in this chapter, are presented in

Appendix A.2.

4.2 N = 2 theories on squashed S3

It will be useful to recall some facts about N = 2 gauge theories on S3 and how to

calculate their partition functions from localisation methods. For a nice review of 3D

N = 2 theories see [91], and for all the details of the localisation calculation see [31] and

[92].

Three dimensional field theories with N = 2 supersymmetry have 4 real supercharges,

Qα and Q̄α̇ where α and α̇ run from 1 to 2. They can be seen as a reduction of 4-d
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N = 1 theories down to three dimensions. Fields are called chiral if they commute with

Q̄α̇ and anti-chiral if they commute with Qα. Vector multiplets contain a vector field, two

Weyl-fermions and a scalar, while chiral or anti-chiral matter multiplets are made of two

complex scalars, and two Weyl-fermions.

We will be interested in theories with an abelian vector multiplet and various chiral and/or

anti-chiral matter multiplets charged under the gauge symmetry; hence supersymmetric

Lagrangians will then contain a Yang-Mills part, a matter part, a Fayet-Iliopoulos term

(FI in what follows) with parameter ξ, and finally a Chern-Simons term (which we will

not be concerned with2):

S =
∫
d3x (LYM + Lmat + LFI) . (4.2.1)

In superfield notation (see for example [76] if this is not familiar, here we follow the

conventions of [91]), with vector superfield V , matter superfield Qf in representations Rf

of the gauge group, and chiral field strength superfield Wα, these Lagrangians are given

by

LYM = 1
e2

∫
d2θ W̄αWα ,

Lmat =
∑
f

∫
d4θ Q̄fe

VQf ,

LFI = ξ
∫
d4θ V . (4.2.2)

In the rest of this thesis we will express everything in terms of the FI parameter, and thus

the weak coupling expansion will correspond to large |ξ| � 1, and the strong coupling

expansion will have ξ ∼ 03.

The vortex solutions (3.2.3), which are finite actions solutions to the equations of motion

in the 2-dimensional case, get promoted to finite energy solutions of the equations of

motion in the 3-dimensional case. However for the theory on a squashed 3-sphere, our

2When the difference between the number of chiral and anti-chiral multiplets is odd one is forced to
include a bare Chern-Simons term to cancel the parity anomaly[93, 94]. Throughout this chapter we will
choose matter content such that we do not need to consider the Chern-Simons term.

3As in the 2-dimensional case the FI parameter runs and needs to be regularised. There is a natural
scale when the theory is put on a squashed 3-sphere, namely 1/r, and our partition functions are written
as a function of the FI parameter at this scale.
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manifold can be seen as an S1 fibration over S2. Hence the 3-d vortex action can be

understood as its energy timesed by the length of the S1 fiber.

We will be concerned with theories defined on a squashed 3-sphere which can be embedded

in 4-d via

b2

r2

(
x2

0 + x2
1

)
+ 1
b2r2

(
x2

2 + x2
3

)
= 1 , (4.2.3)

and will be denoted as S3
b where b is our squashing parameter, and r is the radius of the

sphere that we will set to 1 in appropriate units. Note that in here b is thought of as a

positive real number and b = 1 corresponds to the round sphere case.

The partition function can be computed following the procedure laid out in [27], and

performed in [31] and [92]4. In the case where we do not turn on any mass parameters,

the squashed S3 partition function can be written as

ZS3
b

=
∫
dx̂ e2πiξTr(x̂)Zvec(x̂)Zmatter(x̂) , (4.2.4)

where the integral is over the Cartan subalgebra of the gauge group. The parameter ξ is

the usual FI term, and the one-loop determinants are for the vector multiplet

Zvec(x̂) =
∏

α∈∆+

sinh(πbα(x̂)) sinh(πb−1α(x̂)) , (4.2.5)

while for the chiral/anti-chiral multiplets

Zmatter(x̂) =
∏
w∈R

sb

(
iQ

2 (1 − ∆) − w(x̂)
)

. (4.2.6)

Note here we have used ∆+ to denote the positive roots, w to denote the weights in

representation R of the matter multiplet, b is once again the squashing parameter and

Q = b+ 1/b, and ∆ is the R-charge of the scalar in the chiral multiplet. For abelian gauge

theories the vector multiplet one-loop determinant will simply be one.

4As in 2-dimensions there are multiple ways of performing the localisation calculation, each using
a different Q exact deformation. Once again we have Higgs branch localisation, where the scalars in
the matter multiplets become massive, and the field strength is 0 everywhere except for at the poles
where there are point like vortices. We also have Coulomb branch localisation, where the scalar in the
vector multiplet is localised to a constant which needs to be integrated over. We will be concerned with
expressions for the partition function that arise from Coulomb branch localisation.
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The matter one-loop determinants can be all written in terms of the double sine function

sb(x) presented here in terms of an infinite product

sb (x) =
∏

m,n≥0

(mb+ n/b+Q/2 − ix)
(mb+ n/b+Q/2 + ix) . (4.2.7)

This function is closely related to the hyperbolic gamma function [95, 96] and the multiple

sine function [97], and we present some of its properties in Appendix A.2. The only

property of sb(x) we want to stress here is that for generic b this function has simple

zeroes on the lattice Λ+ = −iQ/2 − ibZ≥0 − i/bZ≥0 and simple poles on the lattice

Λ− = +iQ/2 + ibZ≥0 + i/bZ≥0. In the physical squashing limit b ∈ R+ the poles and

zeroes of the one-loop determinant fall on the imaginary axis and correspond to the

appearance of bosonic and fermionic, respectively, massless states.

For the sake of simplicity in the present work we will only be concerned with U(1) gauge

theories, though all our conclusions should carry over to the non-abelian case quite simply.

For us therefore the vector multiplet one-loop determinant Zvec will always be equal to

1, and the partition function will depend on the FI parameter ξ, the squashing b, and

the number of chiral multiplets of charge +1, Nc, and the number of chiral multiplets of

charge −1 (i.e. anti-chiral multiplets), Na
5. For this class of theories we have

Z
(Nc,Na)
Sb

3
(ξ) =

∫
Γ
dx e2πiξx

Nc∏
i=1

sb(x+ iQ/2)
Na∏
i=1

sb(x− iQ/2)
, (4.2.8)

where the contour Γ runs along the real x axis and circles around the origin passing in the

lower complex x half-plane. Note that we chose the R-charge of the scalars to be ∆ = 0.

These integrals can be calculated by closing the contour in the upper half plane (assuming

ξ is real and positive) and picking up contributions from all the poles thus leaving a sum

over the residues of these poles. General results with non-zero vector and axial masses

can be found in [90].

We will shortly analyse the Picard-Lefschetz decomposition and the Cheshire Cat deform-

5In the present thesis we will also work with Nc − Na an even number as to avoid having to introduce
a bare Chern-Simons term to cancel the parity anomaly [93, 94].
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ation of these types of theories, and to this end it will be useful to better understand

the analytic properties of the integrands and their dependence on the matter content and

squashing parameter. For this reason we will now discuss some particular examples in

more detail.

4.2.1 Round sphere

We start off by considering the theory on the round S3, i.e. b = 1, with any matter content.

Using equations (4.2.7) and (4.2.8) we have that the partition function on the sphere is

given by

Z
(Nc,Na)
S3 (ξ) =

∫
Γ
dx e2πiξx

∞∏
m,n≥0

(
m+ n+ 2 − ix

m+ n+ ix

)Nc (m+ n+ 2 + ix

m+ n− ix

)Na

. (4.2.9)

We can now rearrange the product by defining L = m + n, and realising that for fixed

L ∈ N we have L+ 1 distinct pairs (m,n) such that L = m+ n, so we can write

Z
(Nc,Na)
S3 (ξ) =

∫
Γ
dx e2πiξx

∞∏
L=0

(
L+ 2 − ix

L+ ix

)Nc(L+1) (L+ 2 + ix

L− ix

)Na(L+1)
. (4.2.10)

One can evaluate this infinite products using zeta-regularisation (see Appendix A.1) or

alternatively for the non-chiral theory Nc = Na = N one can use equation (A.2.6) to

obtain

Z
(N,N)
S3 (ξ) =

∫
Γ
dx e2πiξx

(
1

2 sinh(πx)

)2N

= (−1)N
Γ(2N)

∞∑
n=0

e−2πnξ ξ
N−1∏
k=1

(ξ2 + k2)

= (−1)N
Γ(2N)

ξ

1 − e−2πξ

N−1∏
k=1

(ξ2 + k2) , (4.2.11)

which can be obtained as the limit b → 1 and vanishing vector and axial masses of the

general expression obtained in [90].

Note that the partition function has simple poles at ξ = ik for k ∈ Z; however for

k ∈ {±1, ...,±(N − 1)} these are cancelled by the simple zeroes coming from the product.

This can be understood from the mirror theory [91, 98] as due to the presence of a single

bosonic zero mode for the monopole operators for ξ = ik with k ∈ Z. However when
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k ∈ {±1, ...,±(N − 1)} the monopole operators acquire also a fermionic zero mode thus

giving a finite, non-zero, contribution6.

A particular case that will shortly be useful is when Nc = Na = 1 and the above expression

simplifies to

Z
(1,1)
S3 (ξ) =

∫
Γ
dx e2πiξx 1

4 sinh(πx)2 = − ξ

1 − e−2πξ . (4.2.12)

It is manifest both in the above equation as well as in the general case (4.2.11) that the

S3 partition function takes the form of a transseries for which the perturbative expansion

in each non-perturbative sector truncates because of supersymmetry after 2N − 1 orders,

where again N = Nc = Na.

4.2.2 Non-Chiral theory on squashed S3

In the case of the non-chiral theory, i.e. when Nc = Na, on the squashed 3-sphere we have

the identity given in equation (A.2.6), which enables us to write

sb (x+ iQ/2)
sb (x− iQ/2) = 1

4 sinh(πxb) sinh(πx/b) . (4.2.13)

Hence we can write the partition function for the non-chiral theory as

Z
(N,N)
S3

b
(ξ) =

∫
Γ
dx e2πixξ

(
1

4 sinh(πxb) sinh(πx/b)

)N
. (4.2.14)

For N = 1 it is fairly simple to compute the residues and obtain

Z
(1,1)
Sb

3
(ξ) = −ξ + 1

2

∞∑
n=1

(−1)n
[
e−2πnξb csc(nπb2)b+ e−2πnξ/b csc(nπ/b2)

b

]
, (4.2.15)

which reproduces (4.2.12) when we take the b → 1 limit. As is well known the reason for

these two different types of exponentially suppressed corrections comes from the fact that

vortices are finite action solutions in 2-d and finite energy solutions in 3-d. However since

our 3-d manifold can be seen as an S1 fibration over S2 we can understand the 3-d vortex

action as its energy timed by the length of the S1 fibre, hence precisely either 2πξn × b

6We thank Stefano Cremonesi for clarifications on this point.
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or 2πξn × b−1 depending on which S1 we are fibering. We note also that due to the

supersymmetric nature of the observable under consideration the perturbative expansion

in ξ � 1 around the vacuum, as well as all the non-perturbative sectors, does truncate

after finitely many orders.

4.2.3 Chiral theory on squashed S3

For Nc 6= Na on the squashed 3-sphere things are a bit harder and one has to introduce

the q-Pochhammer symbol, denoted by (a; q)∞, to obtain a regularised formula for sb(x)

given in equation (A.2.9). From this we can write the partition function as

Z
(Nc,Na)
S3

b
(ξ) =

∫
Γ

dx e2πixξ

e−iπ (x+iQ/2)2
2

(
e2πbx+2πib2 ; e2πib2

)
∞

(e2πx/b; e−2πi/b2)∞

Nc

(4.2.16)

e−iπ (x−iQ/2)2
2

(
e2πbx; e2πib2

)
∞

(e2πx/b−2πi/b2 ; e−2πi/b2)∞

−Na

αNc−Na ,

where again Q = b+ 1/b and we introduce the constant α = exp(−iπQ2−2
24 ). Note that the

q-Pochhammer (a; q)∞ has a natural boundary of analyticity at |q| = 1. We will shortly

see that our complexification of the squashing parameter b → eiθ will bring us to work

within the unit disk for q-Pochhammers. This expression will be useful when analysing

the Picard-Lefschetz decompositions.

4.3 Picard-Lefschetz decomposition and hidden

topological angle

We start our analysis of the Picard-Lefschetz decomposition of the localised path-integral

by considering first theories with a real squashing parameter b > 0, and subsequently

complexifying it. As it will become clear later on the combination Θ = −i(b− 1/b) will

play the role of hidden topological angle, and hence, by abuse of notation, in this Section

we will say that a give saddle belong to the N th topological sector if the imaginary part

of its action goes like NΘ; for example the perturbative saddle and the vortex-anti-vortex
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saddle both have N = 0 while the vortex and the anti-vortex have N = 1 and N = −1

respectively.

For concreteness let us consider a theory with 1 chiral and 1 anti-chiral multiplet on a

round S3, i.e. b = 1. The partition function is given by equation (4.2.12) and it is simple

to note that the integrand has double order poles at x = in for n ∈ Z. Let us now look at

this path integral from a Picard-Lefschetz point of view. To this end we exponentiate the

one-loop determinant and write the integrand in terms of an effective action

Z
(1,1)
S3 (ξ) =

∫
Γ
dx e2πixξ 1

4 sinh(πx)2 =
∫

Γ
dx e−S(1,1)

eff
(x) ,

S
(1,1)
eff (x) = −2πiξx+ 2 log(2 sinh(πx)) . (4.3.1)

Following the steps outlined in section 2.2.2 we now try and perform the Picard-Lefschetz

decomposition of the integration contour Γ using the Morse flow induced by S(1,1)
eff (x) for

the example above (4.3.1). Since the effective action is basically the logarithm of the

one-loop determinant we have that both zeroes and poles of the one-loop determinant

will produce singularities of the effective action. Since we are interested in the ξ � 1

expansion of the path integral we have that each one of the saddle points will live close to

each one of the singularities of the effective action (i.e. zeroes and poles of the one-loop

determinant) and steepest descent and ascent cycles can now terminate at singular points

of the effective action. This is shown in Figure 4.1. Note the similarities between this and

the 0-d toy model considered in section 2.3.2.

A very similar analysis was already carried out for 3-d N = 2 Chern-Simons matter

theories in [39], see in particular equation (II.21) and our (4.3.1). Notice however some

key differences with our results. In particular that when a Chern-Simons term is present

the J thimble attached to the perturbative vacuum, noted with Jpt in [39], passes through

the lattice of saddles and poles, see for example their Figure 3, while in our Figure 4.1-(a)

the perturbative thimble envelopes all the singularities and saddles.

In the extremely thorough analysis of [39] the authors noted that as the real mass parameter

is increased, or equivalently the argument of the coupling g = 1/k is varied, more and
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(a) The flow in the upper half plane.
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(b) Perturbative saddle and its nearest pole.

Figure 4.1: Morse flow for the theory with one chiral multiplet of charge +1 and one
chiral multiplet of charge −1, b = 1, ξ = 1. The green circles are saddle points
while the red crosses are poles of the effective action. From each saddle the
downward flows (the J cycles) go off to ∞ while the upward flows (K cycles)
flow vertically until they hit a pole.

more non-perturbative thimbles cross the perturbative one and Stokes phenomenon take

place, presented in their Figure 7 and 9. These jumps are directly correlated with the

jumps in the resummation of the asymptotic expansion for small g � 1.

At a first glance in our case none of these phenomena happen, the key difference being the

absence of a Chern-Simons term. As we have already shown in Section 4.2 the original

contour of integration, which can be straightforwardly deformed to the perturbative

thimble of Figure 4.1-(a), simply reduces the integral to a sum over residues hence not

giving rise to any asymptotic perturbative expansion.

The presence of a Chern-Simons term changes completely the asymptotic form of the

effective action for large Coulomb branch parameter |x| � 1 from the case at hand where

Seff (x) ∼ −2πiξeffx to Seff(x) ∼ −ix2/(4πg) with g = 1/k being the inverse Chern-

Simons level. As the level goes to zero, i.e. g → ∞, we have a discontinuous jump in the

asymptotic regions ReSeff (x) > 0, usually referred to as good regions [23]. As explained

in details in [23] the J thimbles are non-compact and their tails must lie in the good regions.

It is then the asymptotic behaviour of ReSeff (x) for |x| → ∞ that dictates the topology

of the thimbles. When a Chern-Simons level is present the good regions asymptote two

quadrants Re [−ix2/(4πg)] > 0 in the complex x-plane while in our case they asymptote a
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half plane Re [2πiξeffx] > 0. This is the reason why the perturbative thimble found in [39]

passes through the singular points and the perturbative expansion in small g = 1/k � 1

becomes asymptotic, as already found in [38], while for us the perturbative thimble circles

around the singularities and the perturbative expansion in ξ � 1, being just a residue

calculation, is truncating after finitely many orders7.

We will shortly see that Stokes phenomenon and an asymptotic perturbative expansion

are present also in our case although both very different in nature from the analysis of

[39]. We first focus on the thimble decomposition.

As just discussed, in the present case the following puzzle emerges. It is clear from

Figure 4.1-(b) that the only non-zero intersection number between the original contour of

integration Γ (which was running along the real line and circling around the origin in the

lower complex x half-plane) and the K thimbles is when we consider the upward manifold

associated to the perturbative saddle, i.e. xcr = −i/(πξ)+O(ξ−3). So in order to compute

the path integral from the Picard-Lefschetz decomposition we only need to include the

integral over the J cycle that is attached to the perturbative saddle and this contour picks

up contributions from all the poles in the upper half plane. Contrary to what usually

happens in 2-d and 4-d, this includes not only contributions from non-perturbative parts

in the same topological sector (vortex-anti-vortex, 2-vortex-2-anti-vortex etc.), but also

the contributions from all the other non-perturbative sectors (vortex, anti-vortex, 2-vortex,

etc.). For example the second order pole at x = i contains the contributions from the

vortex and anti-vortex parts; likewise the pole at x = 2i contains the contributions from

the 2-vortex, and the 2-antivortex parts, together with the vortex-anti-vortex, and so on.

We would like to have a decomposition that allows us to discern one topological sector

from another. One might try to move away from the round sphere case, i.e. b 6= 1, and

indeed if we consider the squashed sphere case we do see the poles splitting. This is

easiest seen by looking at the definition of sb(x) in equation (4.2.7). The poles are at

x = imb+ in/b for n,m ∈ Z so for b 6= 1 we find first order poles in general, each encoding

the contribution coming from a single non-perturbative background. However the Picard-

7We thank Masazumi Honda and Tatsuhiro Misumi for useful discussions on these points.
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Lefschetz decomposition still has the same problem: we only need to keep the one thimble

attached to the saddle corresponding to the perturbative background. Integrating over

this J cycle we will pick up all the poles for all the different non-perturbative backgrounds,

in every topological sector.

How do we get a decomposition of the localised path integral in terms of different thimbles,

each one associated to a would-be different topological sector hence giving us a manifest

resurgence triangle structure? The solution to this puzzle comes from considering a

complexified squashing parameter b ∈ C and |b| = 1, i.e. b = eiθ. We will provide a

physical interpretation for this complexification in Section 4.3.2 but for the moment let

us see what happens to the Picard-Lefschetz decomposition when we consider b = eiθ.

The first effect is that although the poles are still located at x = imb+ in/b they no longer

are confined to the positive imaginary axis but form a lattice and the only poles found on

the positive imaginary axis are those coming from what will form the trivial topological

sector.

To be concrete let us re-examine the case with one chiral and one anti-chiral multiplet.

The partition function (4.2.14) and effective action, now with general b, are given by

Z
(1,1)
S3

b
(ξ) =

∫
Γ
dxe2πixξ 1

4 sinh(πxb) sinh(πx/b) ,

S
(1,1)
eff (x) = −2πixξ + log (2 sinh(πxb)) + log (2 sinh(πx/b)) . (4.3.2)

The singularities are obviously at imb and in/b for m,n ∈ Z, and while in (4.3.1) these

were second order poles for the partition function we see that now the poles split up and

separately carry information about the vortices and the anti-vortices. We notice that in

this example there are no contributions from poles with both vortices and anti-vortices,

e.g. for example a pole at b + 1/b. This is very likely because fermion zero modes for

these saddles conspire to cancel all their contributions from the path integral. It would

be interesting to understand this from the mirror theory.

If we perform a Picard-Lefschetz decomposition as before we obtain Figure 4.2, where we

have chosen b = ei/2 and ξ = 1. For this choice of parameters we can easily see the splitting
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(b) Perturbative and 1-vortex saddles.

Figure 4.2: Morse flow for the theory with one chiral multiplet of charge +1 and one chiral
multiplet of charge −1, b = ei/2, ξ = 1. The green circles are saddles and the
red crosses are poles. From each saddle the downward flows (the J cycles) go
off to the sides and eventually off to ∞. The upward flows (K cycles) flow up
or down to the nearest pole. Only the K cycle from the perturbative saddle
hits the real axis.

of the poles into contributions from different topological sectors, and as we will shortly

discuss in Section 4.3.1, complexifying b will effectively introduce a hidden topological

angle so we can distinguish between all the sectors with different topological number; for

example the vortex sector from the anti-vortex sector. However it is clear from Figure 4.2

that with this choice of parameters we still only need to integrate over the J cycle from

the perturbative saddle as its K cycle is the only one having non-zero intersection number

with the original integration contour Γ, i.e. we still have not achieved a complete splitting

of the path-integral in thimbles for each topological sectors.

The reason for this lies in our choice of parameters b and ξ. Let us repeat the Picard-

Lefschetz decomposition but this time with b = ei, without changing ξ = 1, shown in

Figure 4.3. All the K cycles intersect the original contour of integration Γ, hence following

our discussion at the beginning of this Section we must include the contributions from

the J cycles coming from all the saddles. We moved from the decomposition in Figure

4.2 to the one in Figure 4.3 by making the argument of b larger. However we could have

obtained the same result by cranking up the FI parameter ξ.

As we increase the FI parameter, or alternatively the argument of b, more and more K
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(b) Perturbative saddle and 1-vortex saddles.

Figure 4.3: Morse flow for the theory with one chiral multiplet of charge +1 and one chiral
multiplet of charge −1, b = ei, ξ = 1. The green circles are saddles and the
red crosses are poles. From each saddle the downward flows (the J cycles) go
off to the sides and eventually off to ∞. The upward flows (K cycles) flow up
to the nearest pole and they all intersect the real axis.

cycles will eventually intersect the original contour Γ, and hence we have to include in

the path-integral more and more J cycles coming from new saddles. This discontinuous

transition is called Stokes phenomenon and its presence is tightly connected with the

physical interpretation of the complexification of the squashing parameter. We will expand

on this in Section 4.3.2. Note however that since we are interested in a weak coupling,

semi-classical expansion for the path-integral we are actually interested in the limit ξ → ∞.

For this reason, in this limit it is sufficient to include any non-zero complexification of

b = eiθ in order to split the path-integral into the sum of integrals over all of the J cycles

in each topological sector as in Figure 4.3.

Let us look at yet another more interesting example given by the theory with two chiral

multiplets. The partition function is now

Z
(2,0)
S3

b
(ξ) =

∫
Γ
dx e2πiξx (sb (x+ iQ/2))2

=
∫

Γ
dx e2πiξx−iπ(x+iQ/2)2−iπQ2−2

12


(
e2π(bx+ib2), e2πib2

)
∞

(e2πx/b, e−2πi/b2)∞

2

, (4.3.3)

giving us the effective action

S
(2,0)
eff (x) = −2πixξ + iπ

(
x+ iQ

2

)2
+ iπ

Q2 − 2
12 − 2 log

[(
e2π(bx+ib2), e2πib2)

∞

]
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+2 log
[(
e2πx/b, e−2πi/b2)

∞

]
. (4.3.4)

Note that the q-Pochhammer (a; q)∞ is only defined when the modulus of the second

argument is less than one. Thus for the above expression for Seff to make sense we must

have e2πib2 and e−2πi/b2 both with modulus less than one. Thus we will only consider the

case where b = eiθ for 0 < θ < π/2 (or alternatively −π < θ < −π/2). We will be easily

able to relate this to the case −π/2 < θ < 0 (respectively π/2 < θ < π) by the vortex ↔

anti-vortex symmetry, i.e. b → b−1.

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

(a) The flow in the upper half plane.
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(b) Perturbative saddle and its nearest pole.

Figure 4.4: Morse flow for the theory with two chirals of charge +1, b = ei/2, ξ = 12. The
green circles are saddles and the red crosses are poles. From each saddle the
downward flows (the J cycles) go off to the sides and eventually off to ∞. The
upward flows (K cycles) flow up to the nearest pole, and down to either the
nearest pole, or past the real axis if they are the lowest saddle in their given
topological sector.

We now perform the Picard-Lefschetz decomposition as above, which is shown in Figure

4.4. As it is manifest from Figure 4.4 when we decompose the path-integral we need

to include all of the J cycles coming from the lowest saddle point in each topological

sector. The main novelty in this example is that now we do have contributions coming

for all the non-perturbative solutions, i.e. we get contributions from m-vortex-n-anti-

vortex saddles for m,n ∈ N. We do not need to include all of their J cycles, we just

need the J thimble coming from the lowest (real part of the) action solution in each

topological sector. For example integrating over the J cycle from the perturbative saddle

will pick up the contributions from all the saddles in the trivial topological sector, i.e. all
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the k-vortex-k-anti-vortex saddles. We have just recovered the full resurgence triangle

structure.

4.3.1 Recovering the resurgence triangle

In this Section we kept on referring to the critical points of the effective action as different

topological sectors despite our 3-dimensional theory not having a topological theta angle

characterising the usual 4-d decomposition of the path-integral into different instantonic

sectors. The reason for our “abuse” of terminology lies in the complexification of the

squashing parameter and the subsequent appearance of what seems to be very similar to

a topological angle.

Let us go back to the general partition function (4.2.8) and look more closely at the poles

of the one-loop determinant. Here the poles lie at x = imb + in/b for m,n ∈ N and

the classical action term in the integrand, e2πiξx = e−Sc , evaluated at these locations is

e2πiξ(imb+in/b). When b = eiθ we can define

Q = b+ 1
b

= 2 cos θ , Θ = −i
(
b− 1

b

)
= 2 sin θ . (4.3.5)

Now we see that the classical action evaluated at each of the poles can suggestively be

rewritten as

Sc(m,n) = −2πiξ(imb+ in/b) = πξ[(m+ n)Q+ i(m− n)Θ]

= πξ (|N |Q+ iΘN) + 2πξQk , (4.3.6)

where N = m − n and k = min(m,n). In terms of these new variables (N, k) it is now

clear that Sc(m,n) corresponds to the k vortex-anti-vortex solution on top of the N -vortex

topological sector (anti-vortex sector if N < 0). The case N = 0, i.e. m = n, is then

related to the topologically trivial sector, directly connected to the usual perturbative

vacuum.

Importantly we notice that the classical actions of these solutions are now complex: the

imaginary part of the action is related to a hidden topological angle (HTA) Θ. When b
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is real Θ vanishes and we cannot decompose the path-integral into different topological

sectors but as soon as we complexify b, Θ becomes non-zero and the HTA allows us

to identify a column of non-perturbative contributions topological sector by topological

sector. This is reminiscent of the theories studied in [58, 89, 56, 57, 54].

Note however a key difference: for theories with a genuine topological angle the action of

non-perturbative objects, being that for example instantons in 4-d or vortices in 2-d, takes

the schematic form S = |N |/g+iΘN for some coupling constant g and topological number

N . In particular the real and imaginary part of the on-shell actions are not correlated,

i.e. the θ angle has nothing to do with the coupling constant. In the present case however

we have that both the real and imaginary part of the saddles action (4.3.6) depend from

the coupling ξ, this will have important repercussions on the resurgent structure of the

theory.

Forgetting this issue for the moment we can thus split the partition function into a sum

over topological sectors in a transseries:

Z
(Nc,Na)
S3

b
(ξ) =

∞∑
N=−∞

e−πξQ|N |−iπξΘNζN(ξ) , (4.3.7)

where ζN(ξ) contains the contributions from all the k vortex-anti-vortex saddles in the

N th topological sector.

The function ζN(ξ) precisely corresponds to the N th column of the resurgence triangle

presented in Figure 2.1

ζN(ξ) =
∞∑
k=0

e−2πξQkΦ(k)
N (ξ) , (4.3.8)

a sum of perturbative expansions, Φ(k)
N (ξ), on top of a k vortex-anti-vortex background

in the N th topological sector. In Section 4.4 we will show how one can use resurgent

theory to extract from just one of the Φ(k)
N (ξ) all the other Φ(k′)

N (ξ) belonging to the same

topological sector.
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(b) b = e0.87i, at Stokes line.
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(c) b = ei

Figure 4.5: Morse flow for the theory with one chiral multiplet of charge +1 and one chiral
multiplet of charge −1, for b = ei/2, b = e0.87i and b = ei all with ξ = 1. The
green circles are saddles and the red crosses are poles. As θ increases the
position of the saddles and the J and K cycles change. Figure (b) shows when
the Stokes crossing happens. At this point the J cycle from the perturbative
saddle connects with the K cycle from the vortex and anti-vortex. As θ
increases beyond this value, Figure (c), the K cycles from vortex/ anti-vortex
no longer flow to the perturbative pole, but cross through the real axis.

4.3.2 Complexified squashing and Stokes phenomenon

We would like to understand now the physical interpretation of this complexified squashing

parameter. In [99] (see also [100]) the authors studied the rigid limit of 3-d new minimal

supergravity to find all possible backgrounds (metric and auxiliary fields) admitting rigid

supercharges. In particular for theories with four supercharges and for which the three

dimensional manifold is an S1 fibration over S2 the metric takes the form

ds2 = h2(dψ + 2 sin2 θ

2dφ)2 + (dθ2 + sin2 θdφ2) , (4.3.9)

where (θ, φ) are the usual coordinates on S2, ψ is the angular coordinate parametrising

the S1 Hopf fibre over S2 and h ∈ R \ {0} that we can parametrise as h = (b + 1/b)/2.
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However to have rigid supersymmetry we must also turn on some background fields, in

particular a vector field V µ must be present and it takes the form

V µ∂µ = b− b−1

b+ b−1 ∂ψ , (4.3.10)

hence a never vanishing Killing vector associated to the U(1) isometry of the S1 fibre.

Note that this supersymmetric background has actually two branches. When b > 0 both

h and Vµ are real and this corresponds precisely to the squashed S3
b case discussed so far.

However we can also pick b = eiθ for some θ ∈ [0, 2π] (not to be confused with one of the

coordinates of the S2). The metric is still completely real however the Killing vector has

now become purely imaginary.

We can understand this complex squashing as turning on a chemical potential for the U(1)

rotation or equivalently, thanks to the non-trivial fibering (4.3.9), for the Jz rotation of S2.

The branch b > 0 corresponding to real squashing is continuously connected to the branch

b = eiθ corresponding to the introduction of an omega-deformation, effectively rotating

the S2 along its axis. When this chemical potential is turned on we have that vortices will

become weighted by (b − 1/b)/(b + 1/b) = iΘ/Q while anti-vortices will be weighted by

−(b− 1/b)/(b+ 1/b) = −iΘ/Q exactly as shown in equation (4.3.6). For real b we cannot

distinguish between different topological sectors via Picard-Lefschetz decomposition, but

the moment we include a phase in b the topological sectors split and we can distinguish

between them in our Picard-Lefschetz decomposition.

Furthermore we can also understand the reason for the appearance of Stokes phenomenon

as we vary the argument of b at fixed FI ξ, or similarly modifying the value of the FI

parameter for fixed, non-zero argument of b. The reason is that the FI parameter is

regulating the size of the vortices; for infinite FI parameter the vortices are point-like

objects perfectly localised at the north and south poles of the S2. On the other hand for

finite FI parameter vortices have a size and they are not perfectly localised at the poles,

and have some overlap at the equator.

There is now some play off between the FI parameter and the phase of b. If the value of

ξ is not large enough we cannot immediately distinguish between topological sectors via
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Picard-Lefschetz decomposition the moment we switch on a phase for b. For a given phase

of b, the FI parameter needs to be sufficiently large, i.e. the vortices need to be sufficiently

localised at the north and south poles, before we can distinguish between sectors. For

small argument of b the imaginary part of the action at the perturbative saddle of the

effective action (the saddle just below the pole at the origin) is small but non-zero, and it

will generically be different from the imaginary part of the action at the non-perturbative

saddles of the effective action. As the argument of b (or the FI) increases, so does the

imaginary part of the action of the saddles in the non-perturbative sectors. At some

point the imaginary part of the classical action of the perturbative saddle will equal the

vortex and the anti-vortex one and it will be possible to construct a thimble joining these

different saddles, i.e. we will be at a Stokes line, see Figure 4.5 - (b). At this point the J

cycle from the perturbative saddle hits the vortex and anti-vortex saddles. Increasing b

even more and we will cross this Stokes line, the J cycle jumps over the saddle from the

vortex saddle, and in our decomposition we now have to include the J cycles from the

vortex and the anti-vortex as well, 4.5 - (c).

It should be in principle possible to derive our analysis as the limit of vanishing Chern-

Simons level, i.e. strong coupling g = 1/k → ∞, and vanishing real masses of the thimble

decomposition carried out in [39]. However it is very likely that this is a singular limit since

the tails of the thimbles, i.e. the relative homology of good regions (ReSeff (x) > 0) in the

complex x-plane, change discontinuously for g > 0 and g = 0. It would also be interesting

to analyse more in details the monodromy structure of these thimbles for intermediate

values of ξ and understand the connection between these Stokes jumps and the analysis

carried out in [101].

Furthermore it was observed in [88] that the building blocks (4.2.7) to compute the 3-d

N = 2 partition functions on a round sphere, i.e. b = 1, are directly related to the

structure constants in 2-d Liouville with central charge c = 25. Roughly speaking our

3-d theory is realised on the domain wall of two S-dual N = 4, 4-d gauge theories which

are in turn related to 2-d Liouville via AGT correspondence. Subsequently in [31] this

correspondence was generalised to the 3-d squashed sphere case, i.e. b > 1, and the
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structure constants of Liouville with central charge c = 1 + 6Q2 = 1 + 6(b+ b−1)2.

Our complexification of the squashing parameter would now allow us to interpolate continu-

ously between “standard” space-like Liouville, for which b ∈ R and c = 1+6(b+b−1)2 ≥ 25,

and time-like Liouville, for which b = ib̂ with b̂ ∈ R c = 1−6(b̂− b̂−1)2 ≤ 1. We just need to

use b = eiθ with θ ∈ [0, π/2] to connect b = 1 to b̂ = 1. It would be extremely interesting

to follow the analytic continuation of the integration contours of the path-integral for

Liouville along this path in the complex b plane following the works [25, 102].

4.4 Resurgence analysis

Now that we have understood how to decompose the localised path integral as a sum

over thimbles, each one of them associated to a different topological sector, we want to

analyse whether or not, in each topological sector, one can retrieve higher non-perturbative

corrections from the purely perturbative data by means of resurgent analysis. We will

shortly see that it will be necessary to introduce a Cheshire Cat deformation to make

this resurgent structure manifest. However we will first start our discussion with the

undeformed theory to clarify the necessity of this deformation.

4.4.1 Undeformed theory

Let us analyse more in detail, and thimble by thimble, the analytic structure of the localised

path-integral and for concreteness we will focus to the case of two chirals although it is

easy to repeat the analysis in theories with any other matter content. As argued in the

previous Section we can decompose the path integral into contours as shown in Figure

4.6.

Thus we can write the path integral as

Z
(2,0)
S3

b
(ξ) =

∫
Γ
dx e2πiξx (sb(x+ iQ/2))2

=
∑
n∈Z

∫
Γn

dx e2πiξx (sb(x+ iQ/2))2 , (4.4.1)
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Figure 4.6: Picard-Lefschetz decomposition of the original contour of integration Γ. Each
thimble identifies a different topological sector.

where ΓN is the contour associated to the N th topological sector, N ≤ 0 being the −N

vortex sector, while N > 0 being the N anti-vortex sector, as schematically depicted in

Figure 4.6.

The contour Γ−N , for N ≥ 0, runs vertically starting from +i∞ + Re(iNb) − ε circles

around the point iNb and goes back to +i∞ + Re(iNb) + ε. Similarly the contour ΓN ,

with N > 0, runs vertically starting from +i∞ + Re(iN/b) − ε circles around the point

iN/b and goes back to +i∞ + Re(iN/b) + ε. The first pole in each topological sector is

to be found at iNb or iN/b for the contour Γ−N or ΓN respectively. For each one of these

integrals we can shift the integration variable to move the first pole in its topological

sector to the origin, namely we rewrite the contours as Γ−N = iNb+Γ0 or ΓN = iN/b+Γ0,

for N ≥ 0. This shift in integration variable will bring out an explicit exponential of the

classical action factor as the weight of each topological sector. The partition function is

then

Z
(2,0)
S3

b
(ξ) =

∫
Γ0
dx e2πiξx (sb(x+ iQ/2))2

+
∑
N>0

e−2πξNb
∫

Γ0
dx e2πiξx (sb(x+ iNb+ iQ/2))2

+
∑
N>0

e−2πξN/b
∫

Γ0
dx e2πiξx (sb(x+ iN/b+ iQ/2))2

= ζ0(ξ, b) +
∑
N>0

e−2πξNbζN(ξ, b) +
∑
N<0

e2πξN/bζN(ξ, b)
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=
∞∑

N=−∞
e−πξQ|N |−iπξΘNζN(ξ, b) , (4.4.2)

where again Q = b+ 1/b while Θ = −i(b− 1/b). Upon complexification of the squashing

parameter we have that the Picard-Lefschetz decomposition of the path-integral can be

directly seen as a manifestation of the resurgence triangle precisely as presented in equation

(4.3.7) and the related discussion.

Now let us zoom in on the topologically trivial sector, i.e. N = 0, and analyse its

corresponding contour integral. We have

ζ0(ξ, b) =
∫

Γ0
dx e2πixξsb (x+ iQ/2)2

=
∫

Γ0
dx e2πixξ

∞∏
n,m≥0

((m+ 1)b+ (n+ 1)/b− ix)2

(mb+ n/b+ ix)2

=
∫

Γ0
dx e2πixξ

∞∏
m=0

((m+ 1)(b+ 1/b) − ix)2

(m(b+ 1/b) + ix)2 H0(x) , (4.4.3)

where we define H0(x) by

H0(x) =
∏
m 6=n

((m+ 1)b+ (n+ 1)/b− ix)2

(mb+ n/b+ ix)2 . (4.4.4)

H0(x) can be regularised using q-Pochhammers, but the important property is that it is

entire along the contour Γ0 as well as in the region define by its interior. On the other

hand, the remaining infinite product in the integral can be regularised (see Appendix A.1)

to give

ζ0(ξ, b) =
∫

Γ0
dx e2πixξ Γ

(
ix
Q

)2

Γ
(
1 − ix

Q

)2H0(x) . (4.4.5)

Note that if we were to replace H0(x) → 1 we would obtain precisely the contribution from

the topologically trivial sector to the partition function of the N = (2, 2) CP1 model on

S2 discussed in the previous chapter where the chiral fields have effective charge q = 1/Q.

Perhaps not surprisingly this function H0(x) is storing all the information regarding the

additional S1 and all the different topological sectors. Note also the similarities between

(4.4.5) and the 0-d toy model we considered in section 2.3, when the gamma functions are

moved into the exponent.
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This integral can be performed by summing over the residues of the poles on the positive

imaginary axis and the answer we get is of the form

ζ0(ξ, b) =
∞∑
k=0

e−2πξkQζ0,k(ξ, b) . (4.4.6)

We have denoted by ζN,k(ξ, b) the contribution from the k vortex-anti-vortex saddle on

top of the N th topological sector. For example we have

ζ0,0(ξ, b) = (2πQ)2ξH0(0)
(

1 + iH ′
0(0)

H0(0) (2πξ)−1 − 4γ
Q

(2πξ)−1
)
,

ζ0,1(ξ, b) = (2πQ)2ξH0(iQ)
(

1 − iH ′
0(iQ)

H0(iQ) (2πξ)−1 + 4(1 − γ)
Q

(2πξ)−1
)

. (4.4.7)

The values of the function H0 and its derivatives at these special points can be computed

making use of the functional relations (A.2.6) and the known residues for sb, for example

from (A.2.3) one can easily see that H0(0) = 1/(2πQ)2. The actual values will not play

any role in what follows so we will keep them in this implicit form.

Note importantly that these are the perturbative expansions around each of the classical

non-perturbative backgrounds, and they are not asymptotic series in ξ, but in fact they

truncate after finitely many orders. Thus at first sight it looks like we cannot apply

resurgence analysis to this theory.

We can of course repeat this analysis in all of the topological sectors. For the N th

topological sector we find

ζN(ξ, b) =
∫
Γ0

dx e2πixξ Γ
(
ix
Q

)2

Γ
(
1 − ix

Q
+ |N | + iN Θ

Q

)2HN(x+ i |N | Q2 −N
Θ
2 ) . (4.4.8)

Here we have defined HN(x) by

HN(x) =
∏

m 6=n+N

((m+ 1)b+ (n+ 1)/b− ix)2

(mb+ n/b+ ix)2 . (4.4.9)

Note that the reason for this splitting into ratio of gamma functions and HN(x) arises

quite naturally by using equations (4.3.5)-(4.3.6) to rewrite the one-loop determinant
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(4.2.7)

sb(x+ iQ/2) =
∏
B∈Z

∞∏
k=0

|B|Q+ iBΘ + 2(k + 1)Q− 2ix
|B|Q+ iBΘ + 2kQ+ 2ix (4.4.10)

=
∏
B∈Z

Γ
(
ix
Q

+ |B|
2 + iBΘ

2Q

)
Γ
(
1 − ix

Q
+ |B|

2 + iBΘ
2Q

) , (4.4.11)

where we defined B = m− n and k = min(m,n). In the given N th topological sector we

factorise out the ratio of gamma functions coming from the B = N term which will be

the only singular factor along the corresponding contour of integration; everything else is

collected in these auxiliary functions HN(x). Once more if we were to set HN(x) → 1 we

would obtain precisely the contribution coming from the topological sector with magnetic

flux B = N and θ angle directly related to our Θ for the two-dimensional supersymmetric

CP1 model discussed in the previous chapter.

Here as well we can regulate the function HN(x) using q-Pochhammers, but as it is entire

along the contour and in its interior we will not need its precise form. When we can

evaluate these integrals we get an expansion of the form

ζN(ξ, b) =
∞∑
k=0

e−2πξkQζN,k(ξ, b) , (4.4.12)

precisely as expected from our resurgence triangle discussion for equation (4.3.8). As seen

for the topologically trivial sector, when we write ζN,k(ξ, b) as a perturbative series in ξ

and we find that it truncates after finitely many orders. In the present case of two chirals

the truncation happens precisely after two orders, so we will need to deform the theory

before we are able to apply the resurgence framework to reconstruct non-perturbative

information from perturbative data.

4.4.2 Cheshire Cat deformation

To re-introduce the (general) asymptotic nature of every perturbative expansion we now

want to add a Cheshire cat deformation to the theory. Following what we did in the

previous chapter, we have two options to consider. One possibility is to analytically

deform the integrand of the localised partition function to mimic a non-supersymmetric
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unbalance between the number of bosonic and fermionic degrees of freedom. To do this

we note that the matter one-loop determinant for the chiral theory (Nc, 0) can easily be

written as

Zmatter =
(

detOψ

detOφ

)Nc

. (4.4.13)

Thus this supersymmetry breaking deformation would look something like

Z̃matter = (detOψ)Nf

(detOφ)Nb
= Zmatter (detOφ)∆ , (4.4.14)

where we have set Nb = Nc − ∆ and Nf = Nc. To proceed we would need to keep and

regulate the full one-loop determinant written as an infinite product over eigenvalues

with degeneracies, which can be found in [31], [92], without all the cancellations between

pairing of bosonic and fermionic modes that take place when ∆ = 0 producing the simpler

expression (4.2.7).

The second option, which turns out to be nicer, is to deform the number of chiral multiplets

to be non-integer, Nc → Nc + ∆. Everything we will discus in this thesis works perfectly

fine in both cases, but the expressions are much shorter for this latter deformation, and

just as illuminating. In this case we have

Z̃matter =
(

detOψ

detOφ

)Nc+∆

. (4.4.15)

Because both the fermionic and bosonic determinants are raised to the same power we

still have the same cancellations between the determinants, and so we can stick with the

one-loop determinant expressions we already have.

In this Section we will focus only on this second type of Cheshire Cat deformation where we

analytically continue in the number of chiral fields to non-integer values. In the previous

chapter we have already shown in a 2-d context how the introduction of an unbalance

between bosons and fermions, effectively breaking supersymmetry, produces very similar

results.

However a striking point we want to stress is how almost any conceivable deformation of

the theory will immediately make the perturbative expansions asymptotic, allowing us to
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use the full machinery of resurgent analysis. In many cases, supersymmetrically localised

theories are effectively sitting at very special points in the space of “physical functions”

where miraculous cancellations hide the resurgence structure. Whenever a Cheshire Cat

deformation is re-instated we can instantly see reappearing the complete resurgent body,

and when taking the vanishing limit of this deformation only its grin will remain.

For simplicity we will now work in the topologically trivial sector, but everything follows

through in the other sectors in exactly the same manner, one has just to replace H0(x)

by HN(x+ iNb) or HN(x− iN/b) and the ratio of gamma functions according to (4.4.8).

Now applying the deformation instead of equation (4.4.3) we get

ζ̃0(ξ, b,∆) =
∫
Γ0

dx e2πixξ Γ
(
ix
Q

)∆+2

Γ
(
1 − ix

Q

)∆+2H0(x) (4.4.16)

=
∫
Γ0

dx e2πixξH0(x)e(∆+2)
[
log Γ

(
ix
Q

)
−log Γ

(
1− ix

Q

)]
.

Note that in principle the deformation would also alter the function H0(x) → H0(x)1+∆/2.

However this turns out to be superfluous since the deformation of H0(x) will not add

anything new and to recover the resurgence structure it will be sufficient to just deform

the ratio of gamma functions. The only change we want to point out is that both the

poles and the zeroes of H0(x) will become branching points for H0(x)1+∆/2.

Now the contour Γ0 comes down from +i∞ − ε, circles the origin and goes back up to

+i∞ + ε. We make the change of variables x → ix so the integral is now along the

positive real axis and we note that the function log Γ(− x
Q

) has a branch cut precisely on

the contour of integration so we obtain the integral along the real axis of its discontinuity

ζ̃0(ξ, b,∆) = i

∞∫
0

dx e−2πξxH0(ix)e−(∆+2) log Γ
(

1+ x
Q

)
(4.4.17)

(
e(∆+2) log Γ

(
− x

Q
+iε
)

− e(∆+2) log Γ
(

− x
Q

−iε
))

. (4.4.18)

We can now use the discontinuity formula,

log Γ(−x+ iε) − log Γ(−x− iε) = −2πi (bxc + 1) , (4.4.19)
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where bxc denotes the floor of x, to write ζ̃0(ξ, b,∆) in the form

ζ̃0(ξ, b,∆) = i

∞∫
0

dx e−2πξxH0(ix)e−(∆+2) log Γ
(

1+ x
Q

)
+(∆+2) log Γ

(
− x

Q
±iε
)

(4.4.20)

e±πi(∆+2)
(

b x
Q

c+1
) (
e−πi(∆+2)

(
b x

Q
c+1
)

− e+πi(∆+2)
(

b x
Q

c+1
))

.

Next to make manifest the transseries nature of this integral we rewrite the domain of

integration as
∞∫

0

dx f(x) =
∞∑
k=0

(k+1)Q∫
kQ

dx f(x) ,

evaluate the floor function on each interval and then use the identity

∞∑
k=0

(k+1)Q∫
kQ

dx f(x) =
∞∑
k=0

 ∞∫
kQ

dx f(x) −
∞∫

(k+1)Q

dx f(x)

 . (4.4.21)

Finally we change variables to make all the integrals start from the origin. In this way we

can write

ζ̃0(ξ, b,∆) =
∞∑
k=0

e−2πξkQζ̃0,k(ξ, b,∆) . (4.4.22)

For the moment we specialise to ζ̃0,0(ξ, b,∆) which takes the form

ζ̃0,0(ξ, b,∆) = 2 sin(π∆)e±iπ∆
∞∫

0

dx e−2πξxH0(ix)e−(∆+2)
[
log Γ

(
1+ x

Q

)
−log Γ

(
− x

Q
±iε
)]
,

and by making use of the shift formula

log Γ(−x± iε) = log Γ(1 − x± iε) − log(x) ∓ iπ , (4.4.23)

we obtain

ζ̃0,0(ξ, b,∆) = 2 sin(π∆)
∞∫

0

dx e−2πξxH0(ix)
(
x

Q

)−(∆+2)

e−(∆+2)
[
log Γ

(
1+ x

Q

)
−log Γ

(
1− x

Q
±iε
)]

=
∞∫

0

dx e−2πξxx−(∆+2)Φ(0)
0 (x∓ iε) = S̃∓

[
Φ(0)

0

]
(ξ, b,∆) . (4.4.24)

In the last line we introduced the modified lateral Laplace transform whose explicit
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definition is given by

S̃∓ [Φ] (ξ) = lim
ε→0+

∞∓iε∫
0

dx e−2πξxx−(∆+2)Φ(x)

= lim
ε→0+

∞∫
0

dx e−2πξxx−(∆+2)Φ(x∓ iε) . (4.4.25)

The Borel transform of the purely perturbative part in the topologically trivial sector

Φ(0)
0 (x) can be read off from (4.4.24)

Φ(0)
0 (x) = 2 sin(π∆)H0(ix)Q∆+2 e−(∆+2)

[
log Γ

(
1+ x

Q

)
−log Γ

(
1− x

Q

)]
. (4.4.26)

Importantly this has finite radius of convergence around the origin and can be expanded

as a power series in x

Φ(0)
0 (x) = sin(π∆)

∞∑
m=0

c0,0,m(b,∆)xm . (4.4.27)

After commuting this series with the Laplace integral we finally obtain

ζ̃0,0(ξ, b,∆) = sin(π∆)(2πξ)∆+2
∞∑
m=0

c0,0,m(b,∆)
(2πξ)m+1 Γ(m− 1 − ∆) . (4.4.28)

It is simple to note that for generic, i.e. non-integer ∆ this series is asymptotic. Precisely

as anticipated after having performed this Cheshire Cat deformation the perturbative ex-

pansion is not truncating any longer and we are left with a factorially growing asymptotic

series. Furthermore when we take the limit ∆ → 0 we have sin(π∆) → 0 but simultan-

eously the Γ(m − 1 − ∆) develops poles for m = 0, 1, hence in this limit we reproduce

exactly the undeformed result ζ̃0,0(ξ, b,∆) ∆→0−→ ζ0,0(ξ, b) of equation (4.4.7).

We can also find the general expression for all ζ̃0,k(ξ, b,∆). Starting from equation (4.4.20),

rewriting the integral as we did before, and using the shift formula (4.4.23) we find

ζ̃0,k(ξ, b,∆) = 2 sin(π∆)e±iπk∆
∞∫

0

dx e−2πξxH0(ix+ ikQ)
k∏

n=0

(
x

Q
+ n

)−(∆+2)

e−(∆+2)
[
log Γ

(
1+k+ x

Q

)
−log Γ

(
1− x

Q
±iε
)]

= e±iπk∆
∞∫

0

dx e−2πξxx−(2+∆)Φ(k)
0 (x∓ iε)
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= e±iπk∆S̃∓
[
Φ(k)

0

]
(ξ, b,∆) , (4.4.29)

where once more we used the modified lateral Laplace transform (4.4.25) to integrate the

Borel transform Φ(k)
0 (x) of the kth vortex-anti-vortex non-perturbative sector that reads

Φ(k)
0 (x) =2 sin(π∆)H0(ix+ ikQ)Q∆+2

k∏
n=1

(
x

Q
+ n

)−(∆+2)

e−(∆+2)
[
log Γ

(
1+k+ x

Q

)
−log Γ

(
1− x

Q

)]
, (4.4.30)

reducing to (4.4.26) for k = 0.

Similarly to the purely perturbative series also in the non-perturbative sectors one can

expand the Borel transform as a convergent power series at the origin x = 0 and commute

the sum with the integral to obtain an asymptotic, factorially growing power series for

generic ∆. Taking the limit ∆ → 0 reproduces precisely the truncating perturbative series

(4.4.7) of the undeformed case.

Putting everything together we arrive at the complete transseries expression for (4.4.22)

ζ̃0(ξ, b,∆) =
∞∑
k=0

e−2πξkQe±iπk∆S̃∓
[
Φ(k)

0

]
(ξ, b,∆) , (4.4.31)

where the factor e±iπk∆ is called the transseries parameter. Note that a similar analysis

can be carried out in each topological sector.

The expression (4.4.31) for the full, perturbative and non-perturbative, set of contributions

to the topologically trivial sector tells us that we are working with what is called a one

parameter transseries. One might think that according to our choice of sign eiπk∆S̃− or

e−iπk∆S̃+ we would find two different results for real and positive ξ; however as was shown

in full details in [73] for the most general one parameter the jump in this transseries

parameter is precisely needed to cancel the ambiguity in the resummation (S̃+ − S̃−)[Φ(k)
0 ],

also called Stokes automorphism.

Our transseries (4.4.31) is completely real and unambiguous for real and positive ξ: one

can use the analysis8 of Section 3.6 or the more general expressions in [73] to show that the

8Note that in the present case the function H0 does not really play any role and it is just carried along
the way. The one-parameter nature of the transseries under consideration comes from the particular
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would-be ambiguity cancels order by order in the vortex-anti-vortex counting parameter

e−2πξkQ.

The imaginary part of the transseries parameter Ime±iπk∆ = ± sin(πk∆) is exactly (anti-

)correlated with the discontinuity (S̃+ − S̃−)[Φ(k)
0 ]. Hence (4.4.31) is the real solution

corresponding to what is called median resummation (see [103] and the general discussion

in [73]). Using the results of Section 6 of [1] we can also rewrite (4.4.31) in the manifestly

real and unambiguous form

ζ̃0(ξ, b,∆) =
∞∑
k=0

e−2πξkQ cosk(π∆) S̃0
[
Re

(
Φ(k)

0

)]
(ξ, b,∆)

= S̃0
[
Re

(
Φ(0)

0

)]
(ξ, b,∆) + e−2πξQ cos(π∆) S̃0

[
Re

(
Φ(1)

0

)]
(ξ, b,∆)

+e−4πξQ cos2(π∆) S̃0
[
Re

(
Φ(2)

0

)]
(ξ, b,∆) +O

(
e−6πξQ

)
, (4.4.32)

where S̃0 denotes the modified Laplace transform (4.4.25) where the integration contour is

the positive real axis which we can do now given the fact that Re
(
Φ(k)

0

)
(x) is completely

regular for x > 0.

As already stressed if we were to expand each Laplace integral as a power series we would

obtain a factorially divergent perturbative expansion in 1/ξ in each non-perturbative

sector, however when we take the limit ∆ → 0 all of these will truncate to finitely many

perturbative coefficients thus reproducing (4.4.7). We will now show that having made

the body of the Cheshire Cat visible by considering generic ∆ will allow us to reconstruct

the non-perturbative sectors from the asymptotic perturbative one and vice versa.

4.4.3 Non-perturbative data from perturbation theory

What we would like to do now is using the resurgence machinery to reconstruct the

deformed non-perturbative sectors (4.4.29) and eventually the undeformed contributions

(4.4.7) from the deformed resummed perturbative data (4.4.24) or equivalently from the

deformed asymptotic perturbative series (4.4.28).

combination of log Γ functions.
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A standard method is to start from the perturbative asymptotic power series (4.4.28) and

resum it by performing a directional Laplace integral of its Borel transform (4.4.26)

(2πξ)−(∆+2)ζ̃0,0(ξ, b,∆) =
∞∫

0

dy

2πξ e
−yy−(∆+2)Φ(0)

0

(
y

2πξ

)
(4.4.33)

=
∞e−iθ∫

0

dx e−2πξx(2πξx)−(∆+2)Φ(0)
0 (x) = Sθ[Φ(0)

0 ](ξ, b,∆) ,

where θ = arg ξ and Sθ denotes the modified directional Laplace transform, similar to

equation (4.4.25) (in here we added an additional factor (2πx)−(∆+2) for convenience).

The above equation does define a function on the complex variable ξ by anti-correlating its

argument with the direction of the Laplace transform. This function is defined everywhere

on the complex ξ plane save some cuts where there is a discontinuity in the directed

Laplace transform because of singularities of the integrand, i.e. the Stokes directions of

the Borel transform.

The well known dispersion like arguments [104, 86] discussed in Section 2.2.1 applied

to the function just constructed from the purely perturbative data, i.e. ζ̃0,0(ξ, b,∆),

would generically allow us to relate the asymptotic form of the perturbative coefficient

(4.4.28) to the discontinuities of this function, which in turn directly relates to all the non-

perturbative contributions (4.4.29) (and their associated perturbative expansions) coming

from the tower of k vortex-anti-vortex configurations in the same topological sector.

In the present case however we cannot straightforwardly use this standard method because

of presence of the function H0(ix) within the Borel transform (4.4.26). This function has

poles, or alternatively its Cheshire Cat deformation, H0(ix)1+∆/2, has branch cuts going

out horizontally to infinity in the positive real direction starting at x = mb and x = m/b

for m ∈ N∗ as one can read from the denominator of (4.4.4). For this reason in equation

(4.4.33) there are no straight rays emanating from the origin x = 0 in a direction θ with

− arg b ≤ θ ≤ arg b without intersecting any of the singular directions.

This suggests that we just need to find a different way from (4.4.33) to define a function of

the complex ξ variable with countably many branch cuts. One such way is as follows. We

define this function by gluing analytic functions defined in different wedges of the complex
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Figure 4.7: Contours of integration for the directed Laplace transformations: The red
crosses show the locations of the branch points corresponding to the different
non-perturbative contributions, and the blue lines the branch cuts associated
to them. The yellow contour 1 gives a contour of integration for the directed
Laplace transformations used to define an analytic function of ξ for −π/2 <
arg ξ < π/2. Contour 2 gives a contour of integration for the directed Laplace
transformations used to define an analytic function of ξ for the wedge π/2 <
arg ξ < π union with −π < arg ξ < −π/2.

ξ plane. First we consider the directional Laplace contour along the first integration

contour shown in Figure 4.7. This defines a function of ξ analytic for −π/2 < arg ξ < π/2.

Likewise we use the second path shown in Figure 4.7 to define a function of ξ in the wedge

π/2 < arg ξ < π union with −π < arg ξ < −π/2. The function thus obtained will have

branch cuts along the directions arg ξ = ±π/2 and its discontinuities will be related to the

discontinuity of the Borel transform along the directions arg x = 0 and arg x = π which in

turn are related to all the k vortex-anti-vortex non-perturbative sectors, but also infinitely

many other discontinuities associated with H0(ix)1+∆/2 with starting points either the

poles or the zeroes of (4.4.4).

This is somewhat unexpected from the resurgence point of view since these additional

branch cuts are associated with different topological sectors from the one we were focusing

on! In resurgence theory when we work in a given topological sector, say for example
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the trivial one, we complexify the coupling constant to understand the analytic proper-

ties of the resummed perturbative series and from this reconstruct the non-perturbative

contributions in the same topological sector. Said in other words the imaginary part of

the complexified coupling constant has nothing to do with the topological angle. Hence

on resurgent ground we generically expect the Borel transform of the purely perturbative

data to know “everything” about non-perturbative saddles in the same topological sector

and “nothing” about different topological sectors. This is of course if no other structure

is present as we will discuss in the next Session.

The present case is entirely different and the reason behind it lies in the unusual appearance

of the hidden topological angle and the path-integral decomposition in topological sectors

(4.3.7). The imaginary part of the action in the N th topological sector is given by ImS ∝

ξΘN ∝ (b − 1/b)ξ. Now it is clear that what we just said is not true anymore; if we

keep fixed Θ = −i(b − 1/b), complexify the coupling constant ξ and vary its imaginary

part we will inevitably vary the theta angle, i.e. the imaginary part of the action of each

topological sector. Hence in the case at hand we have some additional structure (see more

in the next Section), making so that the Borel transform of the purely perturbative data

knows also of different topological sectors.

We found however two different methods that can be applied to these standard dispersion

arguments to disentangle from the Borel transform the branches coming from the same

topological sector and the ones coming from other sectors. As a proof of principle we will

now present both but will not dwell too much on the consequences.

A first possibility is to impose that, as a genuine theta angle would do, indeed ImS =

πξΘN ∼ (b−1/b)ξ is independent from the complexification of ξ. If we assume the double

scaling limit ξ → ∞ and simultaneously b = eiϑ/ξ we have that ImS ∝ ϑ is independent

from ξ. In this regime when we complexify ξ we have that b is not of unit modulus

anymore; however the background geometry discussed in Section 4.3.2 still makes sense9.

The price to pay is that now the weak coupling expansion ξ → ∞ of (4.4.24) will not be as

9Recall for the background geometry to make sense we need h = (b + 1/b)/2 to be real. In this double
scaling limit we have h = 1 + O(1/ξ2), which is real in the ξ → ∞ limit.
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straightforward as when we computed the factorially growing perturbative series (4.4.28)

since in this double scaling limit b is no longer an independent parameter and the Borel

transform does depend from the coupling through b.

An alternative method is to define something similar to (4.4.33) but not holomorphic:

(2πξ)−(∆+2)ζ̃0,0(ξ, b,∆) = 2 sin(π∆)
∞∫

0

dy

2πξ e
−y
(
y

Q

)−(∆+2)

H0

(
iy

|ξ|

)

e−(∆+2)
(

log Γ
(

1+ y
2πξQ

)
−log Γ

(
1− y

2πξQ

))

= 2 sin(π∆)
∞e−iθ∫

0

dx e−2πξx
(

2πξx
Q

)−(∆+2)

H0(ixe+iθ)

e−(∆+2)
(

log Γ
(

1+ x
Q

)
−log Γ

(
1− x

Q

))
, (4.4.34)

where again θ = arg ξ and we anti-correlate the direction of the Laplace transform with

the argument of the complexified coupling constant. The difference is that as we rotate the

argument of ξ we simultaneously rotate the branches of the function H0(ix) so that they

never cross our contour of integration, or equivalently in the y variable as we rotate the

argument of ξ the only branches crossing the contour of integration are the ones coming

from the log Γ functions and not from H0(iy). Hence as a function of ξ we only have two

discontinuities now, one across the arg ξ = 0 direction which will persist the ∆ → 0 limit

and one across the arg ξ = π direction which will disappear in the ∆ → 0 limit.

With this definition we still have exactly the same perturbative asymptotic series (4.4.28)

since for ξ > 0 we trivially have that ξ = |ξ|. However when performing the Borel

transform we treat differently terms belonging to the same topological sector from terms

belonging to others in what effectively seems like an extremely ad-hoc prescription.

As mentioned before these discontinuities will be related to non-perturbative contributions

and with this, once again very a posteriori, prescription we can isolate only the non-

perturbative saddles in the same topological sector. It would be nice to provide some

numerical examples of large order relations similar to [104, 86], but unfortunately this

turns out to be quite non-trivial. The main issue we have with running some numerics

lies in evaluating the function H0(ix), at x = 0, Q, 2Q, ... and so on. Using the results
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outlined in Appendix A.2 this should be a doable task but we have decided to be content

with the analytic results derived and defer the numerics to future works.

4.5 Comments on Cheshire Cat resurgence in 4-d

So far in this thesis we have considered using Cheshire Cat deformations to perform a

resurgence analysis of theories in 2-d and 3-d. The obvious next question is can we do

the same in 4-d. This is the subject of current work which has not been completed. Here

though we will make some observations and comments on how this might be realised

in 4-d N = 2 and N = 4 theories. Although not fully satisfactory, lacking a path

integral explanation, the same type of deformations we have considered here can surely

be implemented in basically all the supersymmetric localized theories?

If we compute the S4 partition function of N = 4 SU(N) SYM via localization [27, 105],

since both the one-loop determinant and the instanton factor are trivial [105], the partition

function is simply given by a Gaussian matrix model so it would seem that resurgence

does not play any role. It would be very interesting to see if the deformation introduced

in the present thesis can be used to “deconstruct” this “1” in N = 4 similarly to what the

authors of [54] did to deconstruct the “0” of a vanishing ground state energy to uncover a

Cheshire cat resurgence structure.

For the case of N = 2 theories on S4 the situation is different. The resurgence analysis

for this class of theories with different matter content has been discussed in details in

[36] (see also the earlier [35]) and the authors showed that it is not however possible

to reconstruct in this way the instanton-anti-instanton sectors from perturbation theory.

The singularities of the Borel transform for the purely perturbative sector are not directly

related to instanton-anti-instanton configurations. It was subsequently realised [42] (at

least for the three dimensional case) that these singularities come from new finite action

complexified supersymmetric solutions.

The reason for this is subtle: although the Borel transform of the perturbative series

has poles, these are coming from the one-loop determinant of matter multiplets, i.e.
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hypermultiplets of N = 2, and the fields involved in these complexified supersymmetric

solutions come precisely from the matter sector. However we know that instantons are

present even in absence of hypermultiples. This suggests that the instanton-anti-instanton

poles are hidden by a Cheshire Cat structure inside the one-loop determinant of the N = 2

vector multiplet.

We have analysed the localised one-loop determinant for the vector and hyper multiplets,

but failed so far to find a suitable Cheshire Cat deformation that would allow us to carry

on the program outlined above. It does indeed seem that, unlike vortices in 2 and 3

dimension, the instantons are only sensitive to vector multiplet. The N → r deformation

that we have used in the 3-d and 2-d cases is not a strong enough deformation in the

4-d case. The next obvious steps to try deforming Nf − Nb = ∆, as we did in the 2-d

case. However for this calculation we will need access to the complete 1-loop determinants,

before cancellations have taken place between the bosonic and fermionic parts. This will

thus require a technical susy localisation analysis of the theory.

4.6 Summary of chapter 4 and open problems

In this chapter we have considered the partition function for abelian N = 2 supersymmetric

theories with different matter content living on a squashed S3. This problem was first

analysed in [39] for N = 2 Chern-Simons matter theories where the authors showed that

the presence of Stokes phenomenon in the thimble decomposition was directly related to

the ambiguities in resummation of the asymptotic perturbative expansion in the small

coupling g = 1/k, with k the Chern-Simons level.

In our work we have set to zero the Chern-Simons level and considered the perturbative

expansion in large FI parameter. Firstly we have analysed the Picard-Lefschetz decom-

position of the localised path-integral into steepest descent contours and we have shown

that if a suitable complexification of the squashing parameter b is introduced, a hidden

topological angle seems to appear and a steepest descent contour can be associated to

each topological sector.
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Physically this complexified squashing parameter can be seen as adding a chemical poten-

tial for rotation of the S2 so that vortices and anti-vortices rotate oppositely. The FI term

on the other hand regulates the size of the vortices localised at north and south poles,

thus we have a play off between these two parameters.

As we vary the complexified squashing b and the Fayet-Iliopoulos we observe the splitting

of saddle points into different topological sectors as well as Stokes phenomenon whenever

a saddle crosses the steepest descent cycle coming from another saddle. For large enough

FI parameter these saddles can be associated to point-like vortex (or anti-vortex) solutions

and the path-integral can be decomposed into a sum of contour integrals, one for each

topological sector.

Having split the path integral into a sum over topological sector we first perform a semi-

classical expansion ξ � 1 showing that, due to the supersymmetric nature of the observable

under consideration, every perturbative series truncates after finitely many orders. These

N = 2 theories provide another interesting example of a field theory that lies at a very

special point in theory space where lots of miraculous cancellations hide the resurgence

structure rendering the perturbative expansions in each of the non-perturbative sectors

as truncating series.

To use the resurgence machinery we then introduce a Cheshire Cat deformation by ana-

lytically continuing the number of chiral fields. As soon as the deformation parameter is

generic we immediately re-introduce the asymptotic nature of perturbation theory. Thus

we work at a generic point and using resurgent analysis reconstruct the vortex-anti-vortex

contributions from the deformed, factorially growing and purely perturbative data. Once

the deformation parameter is set back to its physical value we have that the asymptotic

tail of the perturbative series vanishes but the non-perturbative contributions still stand.

Finally we posed the question of how to extend this Cheshire Cat deformation combined

with Nekrasov partition function to the case of theories on S4, say the pure SU(2) N = 2

supersymmetric theory, where on the one hand we do expect infinitely many instanton-

anti-instanton contributions but on the other hand these are somehow completely hidden

from perturbation theory.





Chapter 5

Moving Sideways in the Resurgence

Triangle

5.1 Introduction

In chapters 3 and 4 we have been analysing supersymmetric theories in 2-d and 3-d using

a Cheshire Cat resurgence analysis. As explained in chapter 2, a resurgence analysis

can typically only tell us about non-perturbative contributions within a single column of

the resurgence triangle. As stressed there, the theta angle can be seen as introducing a

grading in the partition function, a sort of Fourier modes decomposition. Working within

a topological sector we can complexify the coupling constant and use resurgence theory

to understand its analytic properties1. To be able to move between different topological

sectors we need some additional structure that somehow links the theta angle to the

complexified coupling constant.

In this chapter we will remark on additional structures going beyond resurgence theory.

These additional structures are very common in supersymmetrically localised partition

functions in various dimensions, and they are very reminiscent of the quantum mechanical

Dunne-Ünsal relations [64, 65, 66], which allow us to move “horizontally” in the resur-

gence triangle, thus deriving data in different topological sectors just by analysing the

1Recall the theta angle and the imaginary part of the coupling must not be confused with one another.
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perturbative one. In [64, 65] the authors used global boundary conditions to determine

such relations for various potentials, including the double-well potential,the Sine-Gordon

potential, the Fokker-Planck Potential and the symmetric AHO Potential. In [66] this was

generalized to cubic and quartic anharmonic oscillators. Here we look at similar structures

that we find in 2-d, 3-d and 4-d supersymmetric theories.

5.2 Relation between different topological sectors

So far we have understood that the localised partition function can be written as a

transseries over different topological sectors (for which the imaginary part of the squashing

parameter plays the role of a hidden topological angle in the 3-d case). Each topological

sector can be furthermore written as a transseries capturing the perturbative series in the

given topological sector, plus the infinitely many non-perturbative contributions coming

from vortex-anti-vortex configurations on top of it. Upon Cheshire Cat deformation from

a given perturbative series we can reconstruct every element in the same topological sector,

i.e. from one element of the resurgent triangle of Figure 5.1 we can reconstruct all the

other elements in the same column. In this Section we wish to discuss the relation between

the topological sectors and additional structures allowing us to move “horizontally” in the

resurgence triangle.

In many supersymmetric QFTs we indeed have this type of additional structure which

allows us to use the data contained in the transseries in the trivial topological sector, e.g.

for the 3-d case (4.4.6), to calculate the data in different topological sectors.

In 2-dimensional N = (2, 2) supersymmetric field theories we have seen in Section 3.3.1 how

the tt? structure of Cecotti and Vafa [79] is modified but still imposes that the partition

function must satisfy a differential equation in the holomorphic coupling τ ∼ ξ + iθ.

This is precisely the extra structure needed. With resurgence theory we complexify ξ to

reconstruct for example the topologically trivial sector from perturbation theory and then

use the tt? differential equation to obtain the data for sectors with non-trivial θ dependence;

i.e. the data for the instanton and anti-instanton sectors are intimately tied up with the
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Figure 5.1: Resurgence theory allows us to move vertically along each rectangle. From
just one of the contributions in a topological sector, i.e. Φ(k)

B we can get all
the Φ(k′)

B with k′ 6= k.

instanton-anti-instanton contributions, and so on. From the n-instanton-n-anti-instanton

contribution we can use this additional structure to calculate the contributions from

different sectors in the resurgence triangle moving “horizontally” across the resurgence

triangle as shown in Figure 5.1.

Schematically, if we were to reconstruct from the perturbative data Φ(0)
0 say the first

instanton-anti-instanton contribution Φ(1)
0 we would then be able to retrieve all the data

in the red square of Figure 5.1. Similarly once we reconstruct the 2-instanton-2-anti-

instanton sector Φ(2)
0 out of perturbation theory we would have access to the entire blue

square of Figure 5.1.

This is very reminiscent of the Dunne-Ünsal relation in quantum mechanics [64, 65, 66].

There the same could be achieved; the data in the instanton-anti-instanton, or even just

in the purely perturbative series, can be related to the data in the instanton sector. In

that case the relationship was derived using boundary conditions on the non-perturbative

effects.

In the 3-d N = 2 case we have a very similar story. Here we have what is usually called
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vortex-anti-vortex factorisation discussed in [90]. Reminiscent of the 2-d case [32, 33],

these three dimensional theories, say for example with 2N chirals, have a partition function

that factorises schematically as

Z
(2N,0)
S3

b
(ξ) =

N∑
i=1

Z
(i)
cl ×

(
Z

(i)
1−loopZ

(i)
V

)
×
(
Z̄

(i)
1−loopZ̄

(i)
V

)
. (5.2.1)

Here Z(i)
cl = exp(−iπξeff µi) is the classical part of the action, with µi axial mass for the

ith chiral and ξeff the effective FI parameter, while Z(i)
V and its complex conjugate are the

abelian vortex and anti-vortex partition functions with 2N chirals, dressed by Z(i)
1−loop and

its conjugate.

As discussed in [90] the vortex partition function ZV can be better understood in the

degenerate b → 0 limit where the background geometry becomes R2 ×S1 and the partition

function counts finite-energy configurations on R2, i.e. vortices. Similarly in the 1/b → 0

limit the squashed sphere degenerates to a different R2 × S1 and the partition function

Z̄V counts anti-vortices.

From this factorised form it is now not surprising that the transseries in different topological

sectors are related to one another. Hence we have the following method to obtain all

the non-perturbative data in all the topological sectors from the perturbative data alone.

First we deform the theory with some Cheshire Cat deformation as to re-introduce all

the asymptotic tails in the various perturbative expansions. Next we use usual resurgence

methods on the deformed theory to calculate all the non-perturbative vortex-anti-vortex

contributions in the trivial topological sector. Then we send the deformation back to zero,

retrieving all the non-perturbative data in this sector for the undeformed theory. Finally

we use the factorisation formula (5.2.1) to compute the data for all the other topological

sectors from the non-perturbative data in the trivial topological sector.

It is interesting to push this idea to higher dimensions. In fact it was already noted in

[90] that this factorised form for the partition function (5.2.1) is very reminiscent of the

Nekrasov structure in 4-d. If we focus for example to 4-d N = 2 theories on S4 we have
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Pestun’s celebrated partition function [27]

ZS4(g, θ) =
∫
dµα e

− Scl(α)
g2 |Z1−loop(α)|2 |Zinst(α, τ)|2 , (5.2.2)

where g is the gauge coupling and θ the topological angle, while dµα is the measure over

the Cartan subalgebra of the gauge group and Zinst(α, τ) denotes Nekrasov [106, 107]

instanton partition function with τ = i
g2 + θ

2π .

The vortex partition function is now replaced by Nekrasov partition function, the 3-d FI

parameter translates into the 4-d coupling 1/g2, and the discrete sum of (5.2.1) becomes

an integral over the Cartan subalgebra of the gauge group.

As a concrete example let us consider pure N = 2 with gauge group SU(2) so that the

integral over the Cartan subalgebra reduces to an integral over α ∈ R. In this case

following [36] we can rewrite the path-integral in the topological sector form

Z
SU(2)
S4 (g, θ) =

∑
B∈Z

e
− 2π

g2 |B|+ iθ
2π
B
ζB(g) , (5.2.3)

where for B ≥ 0 we have

ζB(g) =
∑
N≥0

e
− 4π

g2N
∫ ∞

−∞
dα e

− Scl(α)
g2 |Z1−loop(α)|2 Z(B+N)

inst (iα)Z(N)
inst(−iα) , (5.2.4)

while for B < 0 we just need to take the complex conjugate of this. These two equations

should be compared with their 3-d counterparts (4.4.2) and (4.4.12). Note the function

Z
(k)
inst(iα) corresponds to the k-instanton Nekrasov partition function, e.g. Z(0)

inst(iα) = 1,

and can be explicitly found in [36] for k ≤ 8.

As for the three dimensional case, in this S4 example we have some extra structure. It is

clear from the argument outlined above that if we were able to compute with resurgence

methods from the purely perturbative expansion, i.e. B = 0, N = 0 above, all the

contributions from the instanton-anti-instanton sectors, i.e. B = 0, N > 0, we would

then be able to calculate all the perturbative and non-perturbative data in all the other

topological sectors.
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5.3 Summary of chapter 5 and open problems

In this chapter we have commented on the strange nature of the other topological sectors

which should be in principle completely disconnected from perturbation theory and the

trivial topological sector but in practice they are not. This suggests the existence of

additional structures, beyond the standard resurgence framework. We have seen such

structures are present in 2-d, 3-d and 4-d supersymmetric theories and allow us to use

non-perturbative data in the topologically trivial sector to obtain non-perturbative data

in other topological sectors. These structures are the tt∗ equations in 2-d, the vortex/anti-

vortex factorization in 3-d, and Nekrasov partition function in 4-d.

It would be extremely interesting to see if these kind of holomorphic/anti-holomorphic

structures, intertwining the complexified coupling constant with the theta angle, can

be extended to less supersymmetric theories as for example just pure Yang-Mills, thus

allowing us to extend resurgence to the whole triangle of Figure 5.1.



Chapter 6

Conclusions

The purpose of this thesis has been to explore the application of resurgence and Picard-

Lefschetz method to supersymmetric localisable quantum field theories. In particular we

have been interested in theories where the usual resurgence structures appear to be absent,

and to see if these structures are in fact present, and if so develop tools for uncovering

them.

The first question we have addressed is the lack of asymptotic series in localisable theories.

We have seen for N = (2, 2) theories on a 2-sphere, and for N = 2 theories on a 3-

sphere, that an asymptotic series is not present due to cancellations between the fermionic

and bosonic 1-loop determinants. Using a Cheshire Cat deformation, either changing

the number of fermions to be different from the number of bosons, or by setting the

number of particles to be non-integer, we can recover an asymptotic perturbative series.

In these deformed theories we can do a full resurgence analysis, including finding all the

non-perturbative data from the perturbative data. We can also return the deformation

smoothly back to zero, and keep all the data we have calculated. We have thus seen that

a full resurgence structure is present, and a resurgent analysis can be performed using the

Cheshire Cat method. These theories sit very special points where this is hidden, and a

Cheshire Cat deformation is required to uncover it.

Further to this, in 3 dimensional N = 2 theories, we have seen that the resurgence triangle

structure also appears at first site to have disappeared. Here we have seen that we can
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deform the squashing parameter for the 3-sphere, and we see the appearance of a hidden

topological angle. With the hidden topological angle present, the full resurgence triangle

reappears. This has been analysed using Picard-Lefschetz theory. Having recovered the

resurgence triangle, we can again use the Cheshire Cat method to uncover a full resurgence

structure, and perform a complete resurgence analysis.

In the introduction to this thesis we reviewed the reasons for the existence of the resurgence

triangle, and saw that we could only use resurgence to calculate non-perturbative data

within a single column of the triangle from an analysis of a particular entry in that column.

In the process of analysing theories in 2, 3 and 4 dimensions however, we have seen the

existence of non-perturbative relations which can be combined, in addition to a resurgence

analysis, to calculate data in different columns. Thus we have demonstrated how, in

these theories, one can calculate all the non-perturbative data in the theory from the

perturbative data alone.

Although not fully satisfactory, the same type of ∆ deformation can surely be implemented

in basically all the supersymmetric localized theories. The most obvious future direction

for building on the results of this thesis is to generalise the Cheshire Cat method to theories

in 4 dimensions. This will involve a careful analysis of the 1-loop determinants found

following a localisation calculation. A suitable deformation will then need to be found to

uncover the resurgence structure. For example if we compute the S4 partition function of

N = 4SU(N) SYM via localization [27, 105], since both the one-loop determinant and

the instanton factor are trivial [105], the partition function is simply given by a Gaussian

matrix model so it would seem that resurgence does not play any role. It would be

very interesting to see if the deformation introduced in the present paper can be used to

“deconstruct” this “1” in N = 4 similarly to what the authors of [54] did to deconstruct

the “0” of a vanishing ground state energy to uncover a Cheshire Cat resurgence structure.

Similarly, we would like to uncover a Cheshire Cat resurgence structure in N = 2 theories

on S4.

An interesting question would be to study the large-N expansion of the CPN−1 partition

function discussed in chapter 3. It is not clear how the resurgence properties discussed in
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[20, 19] would arise from localization in the large-N limit and what role the deformation

has to play. Furthermore once the large-N limit is computed we would like to understand,

perhaps using similar methods to the one introduced in [108], how to interpolate this

result with the finite N case discussed in the present paper. It would also be interesting

to understand how this large-N limit is attained whether from taking N over the natural

numbers or over the reals since for finite N the resurgence properties change dramatically

as shown in this paper.

A further direction along the line of investigating Cheshire Cat resurgence is to analyse

other theories that exhibit the phenomena. Whilst a number of other supersymmetric

theories have this property, one would also want to consider topological QFTs such as

2D Yang-Mills theory. Some recent studies [109, 110] have also revealed connections

between the Cheshire cat resurgence phenomena and number theory and modular forms.

In particular the authors observed the phenomena in modular graph functions which have

applications in higher derivative corrections to type IIB string theory, and Lambert series

and iterated Eisenstein integrals which have applications in string scattering amplitudes.

One final direction for future research leading from this thesis is the development of non-

perturbative structures that can be combined with resurgence to calculate non-perturbative

data with different topological charge. Here we have explored such structures in a number

of supersymmetric quantum field theories. It would be interesting to find ways of general-

izing this to non-supersymmetric theories. Such development would be very exciting, as it

would allow us to calculate all the non-perturbative data in a theory from the perturbative

data alone.
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Appendices

A.1 ζ-function regularisation

Infinite products of the form
∞∏
k=0

(k + a)f(k) (A.1.1)

arise naturally when computing one-loop determinants, with f(k) representing the degen-

eracy of the kth eigenvalue (k + a). A standard way to regularise these type of products

is to rewrite them in terms of the logarithm of the above expression using

∞∏
k=0

(k + a)f(k) = exp
( ∞∑
k=0

f(k) log(k + a)
)
. (A.1.2)

Let us specialise now to the case

∞∏
k=0

(k + a) = exp
( ∞∑
k=0

log(k + a)
)
, (A.1.3)

which can be formally written as

∞∏
k=0

(k + a) = exp (−∂sζ(s, a)|s=0) , (A.1.4)

where ζ(s, a) denotes the Hurwitz-zeta function which is defined for complex arguments s

with Re(s) > 1 and a with Re(a) > 0 via the series

ζ(s, a) =
∞∑
n=0

1
(n+ a)s , (A.1.5)
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and can be then extended to a meromorphic function defined for all s 6= 1. In particular

one can show (for a short proof see [111])

ζ ′(0, a) − ζ ′(0) = log Γ(a) , (A.1.6)

where ζ ′(0) = dζ(s)/ds|s=0 = − log
√

2π is the derivative of the Riemann-zeta at the origin.

We can then rewrite a regularised version of the infinite product

∞∏
k=0

(k + a)“ = ”
√

2π
Γ(a) . (A.1.7)

We need another regularised infinite product where the degeneracy f(k) grows linearly

with k, i.e. f(k) = k + a. We consider

∞∏
k=0

(k + a)k+a = exp
( ∞∑
k=0

(k + a) log(k + a)
)

= exp (−∂sζ(s, a)|s=−1) ; (A.1.8)

we need then a formula for ∂sζ(s, a)|s=−1, see [112, 113].

We can proceed by first writing the asymptotic form (see http://dlmf.nist.gov/25.11.44

or [114])

ζ ′(−1, a) = 1
12 − a2

4 + log a
(

1
12 − a

2 + a2

2

)
−

∞∑
k=1

B2k+2

(2k + 2)(2k + 1)2ka
−2k , (A.1.9)

with Bn the Bernoulli numbers. By taking the derivative with respect to a we obtain

∂

∂a
ζ ′(−1, a) = a− 1

2 + log Γ(a) + ζ ′(0) , (A.1.10)

which upon integration gives us the desired formula

ζ ′(−1, a) − ζ ′(−1) = 1
2a(a− 1) + aζ ′(0) + ψ(−2)(a) , (A.1.11)

where ζ ′(−1) = dζ(s)/ds|s=−1 = 1/12−logG andG denotes Glaisher constantG = 1.282...,

while ψ(−2)(a) =
∫
da log Γ(a) . We can then rewrite a regularised version of the infinite

product

∞∏
k=0

(k + a)k+a“ = ” exp
(

−ζ ′(−1) − 1
2a(a− 1) − aζ ′(0) − ψ(−2)(a)

)
. (A.1.12)

http://dlmf.nist.gov/25.11.44
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A.2 Double Sine Function Identities

We here state a number of useful formulae for the double sine function. The Appendices

of [90, 115] contain comprehensive lists of properties for this function; otherwise we refer

to [95, 97, 96].

We define the double sine function as

sb (x) =
∏

m,n≥0

(mb+ n/b+Q/2 − ix)
(mb+ n/b+Q/2 + ix) . (A.2.1)

Following [96] we can introduce the double gamma function Γ2 defined by the analytic

continuation

Γ2(z;ω1, ω2) = exp
∂s

 ∑
m,n≥0

(mω1 + nω2 + z)−s

∣∣∣∣∣∣
s=0

 , (A.2.2)

so that the formal infinite product (A.2.1) can be rewritten as

sb(x+iQ/2) = Γ2(ix; b, b−1)
Γ2(Q− ix; b, b−1) = Γh(ix; b, b−1) = S2(ix|b, b−1)−1 = G(−ib,−ib−1; ix−Q/2) ,

where Γh is van de Bult [96] hyperbolic gamma function, S2 is the double Sine function

of Kurokawa and Koyama [97] and G is Ruijsenaars hyperbolic gamma [95].

Obviously sb(0) = 1 and furthermore sb(x) has zeroes on the lattice Λ+ = −iQ/2 −

ibZ≥0 − i/bZ≥0 and poles on the lattice Λ− = +iQ/2 + ibZ≥0 + i/bZ≥0. Both the zeroes

and poles are simple provided that b2 is not rational. In particular the pole at x = iQ/2

is always simple and we have

sb(x) = i

2π(x− iQ/2) +O(1) , x → iQ/2 . (A.2.3)

From the known functional equations

sb(x+ ib/2)sb(−x+ ib/2) = 1
2 cosh(πbx) , (A.2.4)

sb(x+ iQ/2) = sb(x+ iQ/2 − ib)
2i sinh(πbx) , (A.2.5)
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one can derive the general expressions

sb(x+ iQ/2 + imb+ in/b)
sb(x+ iQ/2) = (−1)mn

n∏
k=1

2i sinh[πb(x+ ikb)]
m∏
l=1

2i sinh[π/b(x+ il/b)]
, (A.2.6)

sb(x− iQ/2 + imb+ in/b)
sb(x− iQ/2) = (−1)mn

n∏
k=1

2i sinh[πb(x− iQ+ ikb)]
m∏
l=1

2i sinh[π/b(x− iQ+ il/b)]
,

allowing us to obtain the residue at different poles from the residue at zero (A.2.3).

A useful infinite product identity for sb(x) is given by

sb(x) = e−iπ x2
2 −iπ b2+b−2

24

∞∏
k=0

(
1 + e2πbxe2πib2(k+1/2)

)
∞∏
k=0

(1 + e2πx/be−2πi(k+1/2)/b2)
, (A.2.7)

which can be regularised using q-Pochhammers symbols. Recall that the q-Pochhammer

(a; q)∞ is defined as

(a; q)∞ =
∞∏
k=0

(
1 − aqk

)
. (A.2.8)

Using this we can thus write

sb(x) = e−iπ x2
2 −iπ b2+b−2

24

(
−e2πbx+πib2 ; e2πib2

)
∞

(−e2πx/b−πi/b2 ; e−2πi/b2)∞
, (A.2.9)

valid for Im(b2) > 0 so that |e2πib2 | < 1 as well as |e−2πi/b2 | < 1 .
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