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Summary 
 
A sol-immobilization method is used to synthesise a series of highly active and stable AuxPd1-x/TiO2 catalysts 
(where, x = 0, 0.13, 0.25, 0.5, 0.75, 0.87 and 1) for wastewater remediation. The catalytic performance of the 
materials was evaluated for the catalytic reduction of 4-nitrophenol, a model waste water contaminant, using 
NaBH4 as the reducing agent under mild reaction conditions. Reaction parameters such as, substrate/metal and 
substrate/reducing agent molar ratios, reaction temperature and stirring rate were investigated. Structure-
activity correlations were studied using a number of complementary techniques including X-ray powder 
diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The 
sol-immobilization route provides very small Au-Pd alloyed-nanoparticles, with the highest catalytic 
performance shown by the Au0.5Pd0.5/TiO2 catalyst. 
 
 

Introduction 
 
The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) is a model reaction for evaluating catalytic 
activity of nanomaterials. Moreover, 4-NP is considered one of the most toxic water pollutants, therefore the 
successful transformation to another chemical product is highly interesting for both industry and academia [1-
5]. 4-NP is derived from many processes in industry, such as agro chemistry, pigments and pharmaceutical 
factories [6-9]. Due to its high toxicity, new methods to remove this compound from the environment are 
desirable, such as direct conversion of 4-NP with reductant in the presence of metal nanoparticles (NPs) to 
produce 4-aminophenol (4-AP) [10]. 
The 4-AP molecule is less toxic and is a useful chemical in many industrial applications, such as in drugs 
(analgesic and antipyretics) and corrosion inhibitors [8, 11]. Due to the simplicity of the reduction of 4-NP using 
sodium borohydride (NaBH4) as a reducing agent in excess, it has become a model reaction for catalytic studies. 
The reaction can be easily monitored using UV-Visible spectroscopy by observing the decrease in the absorption 
of the 4-nitrophenolate anion at 400 nm [12]. The conversion and rate constant of the reaction can be calculated. 
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In addition, there is only one product (4-AP) for this reaction and no by-products are formed [13, 14]. 
Furthermore, it can be catalysed by any immobilized or indeed free NPs in aqueous solution under mild reaction 
conditions [12, 15]. Although this reaction is thermodynamically favourable at ambient conditions, it is 
kinetically hindered without catalyst, since the reduction potential of 4-NP to 4-AP is (E°=0.76 V), while that of 
borate to borohydride (H3BO3/BH4-) is (E°= -1.33 V) [13, 16]. 
Gold nanoparticles, free or immobilized onto the desired support, have been investigated under mild conditions 
for the reduction of 4-NP [1-5]. Generally, the catalytic activity of gold nanoparticles depends significantly on 
several factors including; particle size [17, 18], metal loading [19] and shape of the nanoparticles used. It has 
been shown that when alloying gold with another metal, such as, palladium or platinum; the catalytic activity 
significantly improves, due to a synergistic effect between the two metals [15]. Thus, Au NPs are often combined 
with other metals to prepare bimetallic catalysts of high catalytic performance, traceable to changes in the 
interface electronic structure [20]. Examples of such bimetallic systems with excellent catalytic activity, 
reusability and stability are Ag-Au core-shell NPs, Ag-Au NP alloys and alloy-graphene hybrids [21-23]. 
Despite the excellent catalytic activities reported for the above-mentioned bimetallic systems, Pd based 
nanoparticles have undoubtedly exhibited the best overall catalytic performance for the hydrogenation of 4-NP 
[24]. Previous studies showed that Pd-based bimetallic NPs are more effective than Pt-Au bimetallic NPs [25-
29]. Alloying of Au-Pd results in modifying electronic and surface properties and in turn the adsorption and 
activation for substrates and thus yielding relatively faster reaction rate constants compared to Au-Pt alloys 
[25]. However, very limited studies are reported for the reduction of 4-NP over Au-Pd bimetallic systems [30-
32].  
Chen et al., [33] studied the catalytic activity of atomic ratios of Au and Pd in bimetallic NPs for the reduction 
of 4-NP by synthesising Au-Pd NPs supported on graphene nanosheets (GN). They reported that the activity of 
bimetallic Au-Pd/GN catalyst was higher than monometallic Au/GN and Pd/GN catalysts by factors of 8 and 
5, respectively, attributed to a synergistic effect between Au and Pd species. Moreover, Au-Pd with molar ratio 
(1:1) showed the highest activity. A Similar Au-Pd ratio was reported for the same reaction by Fang and co-
workers [31], who synthesized Au-Pd bimetallic nanoparticles deposited on ultrathin graphitic carbon nitride 
nanosheets. However, recent work by Srisombat et al. [34] has shown a different optimal atomic ratio for Au-
Pd bimetallic catalysts, where the highest catalytic activity was obtained with Au:Pd atomic ratio 1:4 [35]. They 
concluded that the catalytic activity strongly depends not only on chemical constituents of the catalyst, but also 
on the size of the Au-Pd nanoparticles.  
Sol-immobilisation method using PVA and NaBH4 as stabilising and reducing agents, respectively, is an 
effective method to prepare small metal nanoparticles with a narrow particle size distribution, compared with 
conventional techniques such as wet impregnation and deposition-precipitation. Rogers et al., [12] prepared 
monometallic 1 wt.% Pd/TiO2 by the sol-immobilisation method using PVA stabiliser and NaBH4 reductant for 
the hydrogenation of 4-NP to 4-AP and reported high activity compared with other catalysts prepared by 
different methods. For example, the turnover frequency (TOFs) for 1%Pd/TiO2 in their work was 247 h-1, while 
Sun et al., [36] reported TOF of 70 h-1 for a 5 wt. % Pd/C. 
This work is focused on optimizing the reaction parameters affecting the aqueous phase hydrogenation of 4-
nitrophenol using a range of supported gold-palladium nanoparticles on TiO2 (P25), where the Au-Pd atomic 
ratio is also varied. The catalysts have been prepared using the sol-immobilization method, and reaction 
parameters were optimized using a series of catalysts with different Au and Pd atomic ratio using sodium 
borohydride as a reducing agent under mild reaction conditions.  Experimental parameters, such as 
concentration of 4-nitrophenol, NaBH4 and catalyst, stirring rate and Au/Pd molar ratio) have been studied and 
optimised to achieve the best catalyst performance. The most active catalyst was also tested for the 
hydrogenation of 4-NP using different reducing agents (hydrogen donors), such as hydrous hydrazine and 
formic acid. The promising catalytic results obtained showed the high potential of using alternative "green" 
hydrogen donors for the effective hydrogenation of 4-nitrophenol to 4-aminophenol. 
 

Methods 
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Materials 
K2PdCl4 (Sigma-Aldrich, 99%), HAuCl4.3H2O (Alfa Aesar, 99.99%), 4-Nitrophenol, O2NC6H4OH (Sigma-
Aldrich, 99.99%), Poly vinyl alcohol (PVA, MW=10,000, Sigma-Aldrich, 99%), Sulphuric acid, H2SO4 (Fisher, 
95%), NaOH (Fisher, 99%) and TiO2 (P25, Degussa >99.5%). All chemicals were used as received. 
 

Catalyst preparation 

A series of AuxPd1-x/TiO2 catalysts (where; x = 0, 0.25, 0.5, 0.75, 0.87 and 1) were prepared using sol-
immobilization method [13]. The total nominal metal weight loadings were kept constant at a value of 1 wt. % 
for all catalysts. As an example, to prepare 1 wt. % of Au0.5Pd0.5/TiO2 catalyst, an aqueous solution of K2PdCl4 
(0.64 ml of 5.5 mg/ml stock) and HAuCl4.3H2O (0.53 ml of 12.25 mg/ml stock) were placed into a beaker 
containing 400 ml of deionized water under vigorous stirring. Subsequently, a required amount of polyvinyl 
alcohol (PVA, 1 wt. % in 10 ml of fresh stock) was added to maintain PVA/total metal (w/w) = 0.65. Solution 
of NaBH4 (0.1 M; NaBH4/total metal (mol/mol) = 5) was freshly prepared in deionized water and added 
dropwise to the reaction mixture over a one-minute period with stirring to form dark brown-black sols. After 
completing the co-reduction of Au and Pd species (30 minutes of stirring), the colloidal solution was 
immobilized on TiO2 (commercial P25) under vigorous stirring conditions. The required amount of TiO2 support 
was calculated to give a final total metal loading of 1 wt. %. The mixture was acidified to pH 1−2 by sulfuric 
acid before being stirred for 1 hour to accomplish full immobilization of the metal NPs. 
 
Table 1: List of prepared catalysts and total metal loadings (wt.%) and Au/Pd (mol/mol) extracted from MP-AES and 

EDS analyses. 

Catalysts 
Metal loadings (wt.%) Au/Pd (mol/mol) SBET 

(m2/g) MP-AES EDS MP-AES EDS 

Au/TiO2 0.99 0.96 100:0 100 :0 58 (±3) 

Au0.13Pd0.87 /TiO2 0.96 0.98 11:89 9:91 

57 (±4) 

Au0.25Pd0.75 /TiO2 0.97 0.99 27:73 20:80 

Au0.5Pd0.5 /TiO2 0.95 0.98 51:49 52:48 

Au0.75Pd0.25/TiO2 0.98 0.98 76:24 74:26 

Au0.87Pd0.13 /TiO2 0.97 0.97 84:16 86:14 

Pd/TiO2 0.94 0.98 0:100 0:100 55 (±1) 

 

Characterization 
X-ray diffraction (XRD) patterns were recorded using a PANalytical X-PertPro X-Ray diffractometer. A Cu Kα1 
X-ray radiation source run at 40 kV and 40 mA fitted with an X’Celerator detector was utilised. The diffraction 

patterns were recorded from 5 – 80 of 2θ with a step size of 0.017°. X-ray photoelectron spectroscopy (XPS) was 
carried out using a Kratos Axis Ultra DLD XPS system equipped with a monochromatic Al Kα X-ray source 
operating at 300 W. Data was collected with pass energies of 160 eV for survey spectra and of 40 eV for the high-
resolution scans. Samples were mounted using double-sided adhesive tape and binding energies were 
calibrated to C1s binding energy of carbon taken as 284.7 eV. Peaks were fitted as Gaussian Lorentzian curves 
GL(30) using CasaXPS software. Scanning Electron Microscopy (SEM) images were captured using Hitachi 
TM3030PLUS equipped with a Quantax70 energy-dispersive X-ray spectroscope (EDS). The powder samples 
were placed on the carbon tape which was attached to the sample holder. Transmission Electron Microscopy 
(TEM) images were taken using a FEI F200x (Talos) TEM operating at 200 kV. Samples were prepared by 
dispersing the catalyst powder in high purity ethanol using ultra-sonication then 50 µL of the suspension was 
dropped unto a holey carbon film supported by a 300-mesh copper TEM grid followed by the evaporation of 
the solvent. Mean particle size and particle size distribution was calculated by counting 300 particles using the 
ImageJ software. UV-Vis spectra were recorded in 1 cm2 quartz cuvette using in-situ AvaSoft UV-Vis 
Spectrometry and a Q-blue wireless temperature controller (Ava-light-DH-S-BAL combined Deuterium-
Halogen as light sources and Avantes ULS2048-USB2-UA-50 as a detector). All measurements were recorded in 
the range of 200 – 800 nm at room temperature. For each series of measurements, the absorption of distilled 
water is measured as the reference baseline and subtracted from each measurement. All the obtained UV-Vis 
spectra were manually normalized at 600 nm to zero. 
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Evaluation of catalytic performance 

Calibration 
The molar extinction coefficient was estimated by preparing a fresh solution of 4-NP with a concentration of 9.3 
× 10−3 M, which was subsequently diluted to make solutions with final concentrations between 1.256 × 10−4 M 
and 5 × 10−6 M. A 0.05M aqueous solution of NaBH4 was freshly prepared by adding 0.0474 g NaBH4 into a 25 
mL volumetric flask. 0.3 mL of this solution was added to the 1 cm2 cuvette. A fresh solution of NaBH4 was 

prepared prior to each reaction due to its rapid decomposition. The calibration curve was plotted and the molar 
extinction coefficient of 18,620 (M−1 cm−1) was given, which is close to the reported value, 18,000 (M−1 cm−1) [24, 
33]. 
 

Kinetic studies 
The catalytic performance of the synthesized catalysts was evaluated in the reduction of 4-NP by NaBH4 as a 
model reaction. The reaction was carried out in aqueous phase under mild conditions (T = 30°C, atmospheric 
pressure and stirring rate of 1000 rpm). To maintain a pseudo-first order reaction kinetics, a large excess of 
NaBH4 over 4-NP was used (optimized molar ratio of NaBH4/4-NP = 30). In a typical, in situ, testing, 0.3 ml of 
NaBH4 (3.6 x 10-2 M) was transferred into 1 cm2 quartz corvette containing the catalyst and solution of 4-NP (2.7 
ml, 1.35 × 10-4 M, 4-NP/metal molar ratio = 13). The total volume of the reaction mixture was 3 ml.  At different 
time interval, UV-Vis measurements were taken in the range of 200 – 800 nm using AvaSoft UV-Vis 
Spectrometry and the absorbance at 400 nm was recorded and then used as an indication of the decay in 4-NP 
concentration as a function of reaction time (up to 30 min). Apparent rate constants (Kapp, min-1) were calculated 
for each catalyst under investigation and used for the activity comparisons. 
 

Results and discussions 
 

XRD 
Fig. 1 shows the XRD patterns for Au/TiO2, Pd/TiO2 and AuxPd1-x/TiO2 catalysts as well as for bare TiO2 
support. All diffraction patterns are matching well with the diffraction pattern for commercial TiO2 (P25), which 
is a mixture of anatase (80-85 %) and rutile (20-15%) phases. The diffraction peaks at 27.5°, 36.2°, 54.5° and 69.2° 
correspond to the presence of the rutile phase (JCPDS No. 21-1276) [37], whereas diffraction peaks at 2θ=25.3°, 
48.0°, 53.8°, and 62.6° correspond to the presence of the anatase phase (JCPDS No. 21-1272) [37]. No evidence 
for any other phases upon the inclusion of Au and/or Pd nanoparticles are presented. The diffraction peaks for 
any metallic Au phases would be expected at 2θ = 38.2°, 44.4°, 64.6° and 77.5° for (111), (200), (220) and (311) 
planes, respectively (JCPDS No. 04-0784) [38].  Also, diffraction peaks of any metallic Pd phases would be 
expected to be at 2θ = 40.4°, 46.9°and  68.6°, which correspond to the Pd (111), (200) and (220) phases, 
respectively, (JCPDS No. 01-087-0645) [38]. The absence of any diffraction peaks for metallic Au and/or Pd 
phases suggests the confinement of these nanoparticles in small crystallite sizes which is below the detection 
limit of XRD instrument (<5 nm). These findings are expected for sol-immobilization route used for preparing 
very small supported nanoparticles [12, 39], which will be confirmed later by TEM results. Moreover, the high 
metal dispersion on the TiO2 support could also contribute to this observation, which is consistent with the data 
obtained by SEM-EDS (see Fig. S3, in ESI).  
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TEM analysis 
TEM images presented in Fig. 2 show the distribution of Au and Pd nanoparticles immobilized on TiO2 
exhibiting relatively good dispersion and narrow particle size range. No obvious sign of serious aggregation 
could be seen over any catalysts. Moreover, the shape of the particles is almost spherical to hemispherical for 
all catalysts. The inset graphs in Fig. 2 show the particle size distributions in the range of 1 - 6 nm, for 
monometallic Au/TiO2 and Pd/TiO2 catalysts. The mean particle size in diameter of the supported bimetallic 
AuxPd1-x nanoparticle samples are between 2.07 (±0.61-standrad deviation) – 3.20 (± 1.10-standard deviation) 

nm according to their projected surface areas. However, Au0.5Pd0.5/TiO2 catalyst presents the narrowest particle 
size range (1 – 4 nm) and the smallest mean particle size (~ 2 nm in diameter) with a uniform spherical shape 
compared with other Au and Pd combinations. These results are in good agreement with a recent study by 
Cattaneo et al., [39], who synthesised Au0.5Pd0.5/TiO2 with small mean particle size (2.1 nm) by using sol-
immobilisation method. The mean particle size of all catalysts is summarised in Table 2. As we can observe from 
Table 2, atomic ratio of Au:Pd = 1:1 is the optimum for obtaining small mean metal particle size. 
 

Fig. 1: XRD patterns for; a) bare TiO2, b) Au/TiO2, c) Pd/TiO2 and d) Au0.5Pd0.5/TiO2 materials. No 

diffractions were found for Au (solid lines) or Pd (dashed lines) over all materials. 
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XPS analysis 

XPS analysis is employed to look further insight metal speciation, oxidation states and surface compositions of 
supported AuxPd1-x nanoparticles. The XPS profile of TiO2 support (Fig. S4) is also presented and results show 
that deposition of metal nanoparticles did not alter Ti4+ oxidation state of the support, which are in agreement 
with previous reported data [40]. XPS core level spectra of Au(4f) and Pd(3d) are presented in Fig. 3a and 3b, 
respectively. Their corresponding refined data are summarized in Table 2. Fig. 3a shows the XPS core level 
spectra of all catalysts at Au(4f) region, which can be identified by the two peaks of Au 4f7/2 and Au 4f5/2 [41]. 
The binding energy (BE) of Au 4f7/2 peak is located in the range of 83.5 - 83.1 eV and thus suggesting the presence 

Fig. 2: TEM images (top) and metal particle size-distributions (bottom) obtained for a) Au/TiO2, b) 

Pd/TiO2, c) Au0.87Pd0.13/TiO2, d) Au0.5Pd0.5/TiO2, e) Au0.25Pd0.75/TiO2 and f) Au0.13Pd0.87/TiO2 catalysts. 
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of Au in a metallic state over all catalysts [39, 42]. This is expected for the sol-immobilization route being used 
for the preparation [43, 44] due to the role of capping agent (PVA) for protecting and stabilizing the formed 
metal nanoparticles. 
The BE of Au 4f7/2 (83.5 eV), monometallic Au/TiO2 catalyst, is lower than that of bulk gold metal (84.0 eV) [39]. 
This slight decrease in binding energy can be attributed to particle size effects and presence of negative charged 
gold nanoparticles (Auδ−) [45-47]. A decrease of BE in the range of −0.2 to −1.2 eV, is mainly attributed due to 
the formation of Au nanoparticles with nanoparticle size below 3nm [48]. In addition, the electron transfer from 
support to Au particles and hence strong metal-support interaction (SMSI) can be a reason for the observed 
reduction in BE at Au 4f7/2 peak [49]. The XPS core level spectra at Au(4f) region suggest the formation of very 
small- and/or alloyed-nanoparticles. 
Upon the inclusion of Pd atoms and thus formation of AuxPd1-x/TiO2 catalysts, more shift in BE was observed. 
As it can be seen in Table 2, Au0.87Pd0.13/TiO2 catalyst with the lowest Pd contents exhibited a shift of 0.63 eV in 
BE compared to bulk Au (4f) spectra. The most pronounced shift was ~ 0.9 eV with the highest Pd contents 
catalyst (Au0.13Pd0.87 /TiO2). These results suggest the formation of very small sizes of alloyed nanoparticles and 
thus strong interaction between Au and Pd atoms [38, 39, 50]. 
To better understanding the structure-activity correlations at the surface of catalysts, XPS core level spectra at 

Pd(3d) region were also measured over all catalysts (see Fig. 3b). Refined data are also presented in Table 2. 
Two peaks can be assigned for Pd(3d) region; Pd 3d5/2, and Pd 3d3/2 [51]. Palladium in metallic state (Pd0) is the 
predominant component for all bimetallic combinations, while a mixture of metallic (Pd0 at 334.99 eV) and 
oxidic (PdII at 337 eV) with ratio (PdII/Pd0) of 20 % are found in monometallic Pd/TiO2 catalyst (Fig. 3 and Table 
2). Similar findings were reported by Rogers et al., [12] for Pd/TiO2 prepared by sol-immobilization method.  

Fig. 3: XPS core level spectra at a) Au(4f) and b) Pd(3d) regions obtained for monometallic Au/TiO2 and 

Pd/TiO2, catalysts together with different bimetallic AuxPd1-x/TiO2 catalysts. 
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Table 2: BE (eV) and their shifts (in parentheses) for Au 4f7/2 and Pd 3d5/2 regions obtained for mono- and 
bimetallic Au and Pd catalysts. Mean particle sizes (nm) with standard deviation (in parentheses) extracted from 
TEM analysis are also presented. 

Catalyst 
BE in eV (chemical shifts)  

Mean size in nm (st-dev) 
PdII/Pd0 

Fractions Au4f7/2 Pd3d5/2 

Au/TiO2 83.5 (0.5) - 2.60 (0.88) -- 

Au0.87Pd0.13 /TiO2 83.37 (0.63) 334.56 (0.84) 2.57 (0.71) 0 

Au0.75Pd0.25/TiO2 83.35 (0.65) 334.64 (0.76) 3.20 (1.10) 0 

Au0.5Pd0.5 /TiO2 83.31 (0.69) 334.69 (0.71) 2.07 (0.61) 0 

Au0.25Pd0.75 /TiO2 83.22 (0.78) 334.77 (0.63) 2.85 (0.72) 0 

Au0.13Pd0.87 /TiO2 83.1 (0.9) 334.89 (0.51) 2.64 (0.82) 0 

Pd/TiO2 - 334.99 (0.41) 2.62 (0.92) 0.2 

 

Catalytic activity of AuxPd1-x/TiO2 catalysts 
It was reported that the addition of Pd to Au enhances the activity and selectivity in several reactions [33, 39]. 
In general, bimetallic catalysts are found to be more active than their monometallic counterparts therefore there 
is growing interest in studying and understanding this subject [15, 39]. The enhanced activity can be related to 
many factors including the electronic and geometric effects. The former increases the binding of adsorbates to 
metal surfaces, while the later belongs to restructuring and rearrangements of active components on the 
support. Therefore, we believe that the bimetallic combinations of Au and Pd on the surface of support influence 
reaction rates and kinetic pathways of a given reaction. So far, sol-immobilization method was used to prepare 
a series of AuxPd1-x/TiO2 catalysts (where; x = 0, 0.13, 0.25, 0.5, 0.75, 0.87 and 1) for the reduction of 4-NP by 
NaBH4. 
The reduction of 4-NP by NaBH4 was chosen as a model reaction to examine the catalytic activity and 
performance optimization of AuxPd1-x/TiO2 catalysts (where; x= 0, 0.13, 0.25, 0.5, 0.75, 0.8 and 1). However, and 
before starting the screening tests, the reaction parameters such as; (i) 4-NP/metal molar ratio, (ii) /NaBH4/4-
NP molar ratio, (iii) NaOH concentration and (iv) stirring rate, were first optimized over monometallic 1wt.% 
Au/TiO2 catalyst (see ESI for more details). Accordingly, the following reaction conditions were chosen after 
optimisation and used throughout this work for evaluating the activity of the synthesised catalysts; 4-NP/metal 
molar ratio= 13, NaBH4 /4-NP molar ratio = 30, T = 30 °C and stirring rate = 1000 rpm. 

Fig. 4: Representative example for XPS core level spectra fitting of Pd(3d) for Pd/TiO2 catalyst. 



9 
 

 
 
 

Phil. Trans. R. Soc. A. 
 
 
 

Fig. 5 shows a typical activity measurement over 1 wt.% Au/TiO2 catalyst. Blank 4-NP solution showed 
absorption band at ~ 317 nm. After the addition of fresh solution of NaBH4, the absorption peak was shifted to 
400 nm (Fig. 5a) due to the formation of nitrophenolate anion accompanied by a colour change from light to 
dark yellow (Fig. 5 b). This peak was remained unaltered over time (examined for ~ 24 h), which suggests that 
the reaction does not proceed without a catalyst [52-54]. Subsequently, the reduction of 4-NP by NaBH4 over 
the prepared catalysts (1wt. % Au/TiO2 as an example) was then monitored by measuring the changes in the 
absorbance at 400 nm as a function of time and emerging of a new peak at ~ 300 nm for the product formation, 
4-AP (see Fig. 5c).  
 

Kinetic studies 
In these experiments, the concentration of NaBH4 is significant much higher than that of 4-NP (4-NP/NaBH4 = 
30) so it could be considered that the reaction rate could be nearly independent of the NaBH4 concentration. 
Thus, a pseudo-first order reaction kinetics could be applied to evaluate the apparent rate constant (Kapp) for the 
hydrogenation of 4-nitrophenol [31, 55]. For the reduction of 4-NP, the ratio of its concentration at time = t (Ct) 

to the initial value at t = 0 (C0) could be directly calculated by the ratio of their corresponding absorbance; At/A0 
(where; A = absorbance at 400 nm), So far the kinetic equation for the reduction of 4-NP could then be written 
as; 

dCt/dt = Kapp Ct  or ln(Ct/C0) = ln(At/A0) = Kapp t 
The plot between ln(At/A0) as y-axis and time as x-axis can provide us the value of Kapp, as shown in Fig. 6a 
over 1wt.% Au/TiO2 catalyst as a representative example. 

Fig. 5: Typical activity testing: a) UV-Vis spectrum with no catalyst before and after addition of NaBH4, 

b) 4-NP colour changes before and after reduction and c) UV-Vis spectra during reduction of 4-NP by 

NaBH4 and formation of 4-AP over 1wt.% Au/TiO2 catalyst. 
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The catalytic performance of all catalysts was evaluated for the reduction of 4-NP by NaBH4 under the same 
optimized mild reaction conditions and the corresponding Kapp values were obtained and used for activities’ 

comparisons in agreement with the experimental procedure reported in literature [12]. For simplicity, the Kapp 
values (in min-1) were plotted as a function of Pd mole fractions. As a result, a volcano like-shape curve is 
obtained, as shown in Fig. 6b.  
As can be seen, the activity increased significantly from 0.14 (for Au/TiO2) to 0.22 min-1when the Pd content 
was increased from 0 to 0.13 (Au0.87Pd0.13/TiO2 catalyst). Further increase of  Pd content was accompanied with 
a significant increase in the Kapp until reached a maximum value of 0.38 min-1 with Au:Pd atomic ratio of 1:1 
(Au0.5Pd0.5/TiO2 catalyst). Further increase of Pd content led to a progressive decrease of the Kapp from 0.38 min-

1 to 0.2 min-1. It is evident that a volcano type catalytic behaviour with supported Au-Pd nanoparticles for the 
catalytic reduction of 4-nitrophenol to 4-aminophenol using NaBH4 as the reducing agent.  
The enhanced catalytic activity of Au0.5Pd0.5/TiO2 catalyst can be linked to several factors such as Au-Pd NPs 
size, synergistic effect and/or it could be related to the structure of alloyed-nanoparticles that can be formed at 
this specific composition as it has been shown in previous reported studies [56]. According to the TEM results, 
Au-Pd NPs prepared with molar ratio of 1:1 produced, the smallest particles (~2 nm) with the narrowest particle 
size distribution from 2 to 4 nm compared with other metal molar ratios. However, statistically, the difference 
in particle size between bimetallic catalysts is not that significant to allow us to draw a conclusion (the mean 
particle size was between 2.07 (±0.61) – 3.20 (±1.10) nm. Another factor that can help us to understand the 
structure-activity correlations is the electron transfer between bimetallic Au-Pd systems at different molar ratio. 
XPS data showed that the level of interaction between both metals increases with increasing Pd molar ratio to a 
certain degree, since the binding energy of Au and Pd decrease. However, it was not able to explain the low 
activity of Au0.13Pd0.87 /TiO2, which has the highest Pd molar ratio of all catalysts. 
To further investigating the structure-activity correlations of Au-Pd nanoparticles, a characterization by high-
angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and EDS mappings were 
conducted on the surface of Au0.13 Pd0.87 /TiO2, Au0.5Pd0.5 /TiO2 and Au0.87Pd0.13/TiO2 catalysts (see Fig. S8 in 
ESI). The results clearly show the presence of random Au-Pd alloyed NPs on the surface along with the presence 
of single Au and Pd NPs of all bimetallic catalysts with the highest alloy population (52%) observed for 
Au0.5Pd0.5/TiO2 catalysts. In the case of Au0.13Pd0.87 /TiO2 and Au0.87Pd0.13/TiO2 catalysts, the population of Au-
Pd alloyed NPs was 25% and 10%, respectively. Thus, the higher population of Au-Pd alloyed NPs could be 
considered as an explanation of such highest activity observed for Au0.5Pd0.5/TiO2 catalyst in respect to the other 
stoichiometric atomic ratios. 
Reusability tests were conducted on the most active catalyst (Au0.5Pd0.5/TiO2). As shown in Fig. S9, a good 
stability was maintained and conversion (%) over four cycles was dropped only from 80 to 75 %. No leaching 
was detected for Au and Pd nanoparticles in the reaction medium using MP-AES. TEM images on used 

Fig. 6: a) ln(At/A0) as a function of time (minutes) for the reduction of 4-NP by NaBH4 over 1wt.% Au/TiO2, 

as a representative example, b) Kapp (min-1) as a function of Pd mole fraction over different AuxPd1-x/TiO2 

catalysts. Reaction condition: 4-NP/metal molar ratio= 13, NaBH4/4-NP molar ratio = 30, T = 30 °C and 

stirring rate = 1000 rpm. 
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Au0.5Pd0.5/TiO2 catalyst (Fig. S10) showed good dispersion of supported Au-Pd nanoparticles throughout the 
four cycles without any significant agglomeration. However, very tiny changes in the mean particle size could 
be noticed (2.07 ± 0.61 to 2.2 ± 0.73 nm). Nevertheless, the average diameter of Au-Pd nanoparticles is still very 
small without showing significant agglomeration. Furthermore, XPS analysis on the used catalyst revealed that 
the surface atomic ratio of both Au and Pd nanoparticles are in metallic state (Au:Pd = 53:47) with no significant 
changes when compared to the fresh catalysts (Au:Pd = 46:54). This suggests the high stability of the prepared 
nanoparticles using the sol-immobilization route. 
 

Conclusions 
 
The sol-immobilization method was successfully used to immobilize a series of 1wt % of AuxPd1-x nanoparticles 
(where x = 0, 0.13, 0.25, 0.5, 0.75, 0.87 and 1) onto TiO2, (P25-commercial support), as the chosen support. The 
catalytic performance of the prepared supported nanoparticles in the catalytic reduction of 4-NP to 4-AP under 
mild reaction conditions was evaluated focusing on the structural optimisation of Au-Pd supported bimetallic 
nanoparticles by varying Au:Pd atomic ratio. The catalytic results showed that monometallic Pd nanoparticles 
are more active than Au under the same reaction conditions (Kapp = 0.2 and 0.14 min-1 for monometallic Pd and 
Au, respectively). However, the inclusion of Pd atoms into Au nanoparticles and thus formation of Au-Pd alloy 
nanoparticles significantly enhanced the catalytic performance compared with the monometallic Au and Pd 
catalysts, with the highest activity observed for the synthesised Au0.5Pd0.5/TiO2 catalyst (Kapp = 0.38 min-1). TEM 
and STEM results clearly showed the formation of random alloy Au-Pd nanoparticles in all the bimetallic 
catalysts, with the smallest narrowest size ranges observed for Au0.5Pd0.5/TiO2 catalyst, which might be 
responsible for the highest activity. These results suggest that incorporation of small additives of Au atoms to 
Pd atoms can significantly enhance the catalytic activity and stability when compared with the monometallic 
counterparts, in the case of the hydrogenation of 4-NP to 4-AP.  
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Tables 

 
Table 1: List of prepared catalysts and total metal loadings (wt.%) and Au/Pd (mol/mol) extracted from MP-AES and 

EDS analyses. 

Catalysts 
Metal loadings (wt.%) Au/Pd (mol/mol) SBET 

(m2/g) MP-AES EDS MP-AES EDS 

Au/TiO2 0.99 0.96 100:0 100 :0 58 (±3) 

Au0.13Pd0.87 /TiO2 0.96 0.98 11:89 9:91 

57 (±4) 

Au0.25Pd0.75 /TiO2 0.97 0.99 27:73 20:80 

Au0.5Pd0.5 /TiO2 0.95 0.98 51:49 52:48 

Au0.75Pd0.25/TiO2 0.98 0.98 76:24 74:26 

Au0.87Pd0.13 /TiO2 0.97 0.97 84:16 86:14 

Pd/TiO2 0.94 0.98 0:100 0:100 55 (±1) 

 
 
 

 

 

 

 

 

 

 

 

Table 2: BE (eV) and their shifts (in parentheses) for Au 4f7/2 and Pd 3d5/2 regions obtained for mono- and bimetallic Au 

and Pd catalysts. Mean particle sizes (nm) with standard deviation (in parentheses) extracted from TEM analysis are also 

presented. 

Catalyst 
BE in eV (chemical shifts)  

Mean size in nm (st-dev) 
Au4f7/2 Pd3d5/2 

Au/TiO2 83.5 (0.5) - 2.60 (0.88) 

Au0.87Pd0.13 /TiO2 83.37 (0.63) 334.56 (0.84) 2.57 (0.71) 
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Au0.75Pd0.25/TiO2 83.35 (0.65) 334.64 (0.76) 3.20 (1.10) 

Au0.5Pd0.5 /TiO2 83.31 (0.69) 334.69 (0.71) 2.07 (0.61) 

Au0.25Pd0.75 /TiO2 83.22 (0.78) 334.77 (0.63) 2.85 (0.72) 

Au0.13Pd0.87 /TiO2 83.1 (0.9) 334.89 (0.51) 2.64 (0.82) 

Pd/TiO2 - 334.99 (0.41) 2.62 (0.92) 

 
Figure and table captions 

 
Table 1: List of prepared catalysts and total metal loadings (wt.%) and Au/Pd (mol/mol) extracted from MP-AES and 

EDS analyses. 

 

Table 2: BE (eV) and their shifts (in parentheses) for Au 4f7/2 and Pd 3d5/2 regions obtained for mono- and bimetallic Au 

and Pd catalysts. Mean particle sizes (nm) with standard deviation (in parentheses) extracted from TEM analysis are also 

presented. 

 

Fig. 1: XRD patterns for; a) bare TiO2, b) Au/TiO2, c) Pd/TiO2 and d) Au0.5Pd0.5/TiO2 materials. No diffractions were 

found for Au (solid lines) or Pd (dashed lines) over all materials. 

 

Fig. 2: TEM images and metal particle size-distributions (inset) obtained for a) Au/TiO2, b) Pd/TiO2, c) Au0.87Pd0.13/TiO2, 

d) Au0.5Pd0.5/TiO2, e) Au0.25Pd0.75/TiO2 and f) Au0.13Pd0.87/TiO2 catalysts. 

Fig. 3: XPS core level spectra at a) Au(4f) and b) Pd(3d) regions obtained for monometallic Au/TiO2 and Pd/TiO2, catalysts 

together with different bimetallic AuxPd1-x/TiO2 catalysts. 

Fig. 4: Representative example for XPS core level spectra fitting of Pd(3d) for Pd/TiO2 catalyst. 

 
Fig. 5: Typical activity testing: a) UV-Vis spectrum with no catalyst before and after addition of NaBH4, b) 4-NP colour 

changes before and after reduction and c) UV-Vis spectra during reduction of 4-NP by NaBH4 and formation of 4-AP over 

1wt.% Au/TiO2 catalyst. 

Fig. 6: a) ln(At/A0) as a function of time (minutes) for the reduction of 4-NP by NaBH4 over 1wt.% Au/TiO2, as a 

representative example, b) Kapp (min-1) as a function of Pd mole fraction over different AuxPd1-x/TiO2 catalysts. Reaction 

condition: 4-NP/metal molar ratio= 13, NaBH4/4-NP molar ratio = 30, T = 30 °C and stirring rate = 1000 rpm. 

Figures 

For final submissions, figures should be uploaded as separate, high resolution, figure files.  


