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 2 

Key Points 17 

 RET cell surface expression and activity is enriched in HSCs. 18 

 Activation of RET by GDNF/GFR1 improves LT-HSC outgrowth in vitro and transplantation in vivo. 19 

 20 

Abstract 21 

 22 

Expansion of Human Hematopoietic Stem Cells (HSCs) is a rapidly advancing field showing great promise for 23 

clinical applications. Recent evidence has implicated the nervous system and glial family ligands (GFLs) as 24 

potential drivers of hematopoietic survival and self-renewal in the bone marrow niche, but how to apply this to 25 

HSC maintenance and expansion is yet to be explored. We demonstrate a role for the GFL receptor, RET, at the 26 

cell surface of HSCs, in mediating sustained cellular growth, resistance to stress and improved cell survival 27 

throughout in vitro expansion. HSCs treated with the key RET ligand/co-receptor complex, GDNF/GFR1, 28 

show improved progenitor function at primary transplantation and improved long-term HSC function at 29 

secondary transplantation. Finally, we demonstrate that RET drives a multi-faceted intracellular signalling 30 

pathway, including key signalling intermediates AKT, ERK1/2, NFB and p53, responsible for a wide range of 31 

cellular and genetic responses which improve cell growth and survival under culture conditions. 32 

 33 

Introduction 34 

 35 

Hematopoietic stem cells (HSCs) are highly potent stem cells of the blood system, known to reside in the bone 36 

marrow of adults and umbilical cord blood (UCB) during pregnancy. Whilst bone marrow biopsy is invasive 37 

and harsh, collection of UCB represents a less invasive, clinically important source of HSCs and progenitors 38 

(HSPCs) for treatment of a wide range of malignant and non-malignant disorders. UCB has a lower incidence of 39 

graft versus host disease, with less stringent donor cross-matching required compared to classical donor sources, 40 

increasing its value for both hematological and non-hematological malignancies1. Despite increasing UCB 41 

banking, limited progenitor cell dose2, delay of engraftment and immune reconstitution3 and the cost of double 42 

UCB transplantation in adults4, underline a need to improve expansion and potency of these cells for the 43 

purposes of transplantation. 44 

To address these limitations, critical advances have been made in both identification and successful outgrowth 45 

of HSCs from bone marrow and UCB sources5–11.  Despite these advances, further expansion of HSCs is 46 

required to address clinical issues associated with delayed engraftment/immune reconstitution, and relative 47 

paucity of HSCs produced at the end of current culture protocols. 48 

In recent years, there has been increasing evidence that the nervous system may be important for 49 

communication with, and influence over, the hematopoietic system. Central to this theory, the receptor tyrosine 50 

kinase, RET, has been demonstrated to be expressed in murine HSCs, playing an important role in their survival 51 

in vivo, and potentiating outgrowth in vitro when activated by glial derived neurotrophic factor (GDNF) family 52 

ligands and co-receptors, mediating Bcl2 expression12. These findings indicate that neuronal signals are 53 

critically important for HSC efficacy, and may play a role in mitigating the stress response exerted on HSCs 54 

during in vitro expansion. 55 
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 3 

Here, we investigated the role of RET at the cell surface of UCB-derived HSCs and the effect of the RET 56 

ligand/co-receptor complex, GDNF/GFR1, on outgrowth, initial in vivo potency, and long-term stem cell 57 

potential of UCB-derived HSPCs. We monitored key changes in protein signalling cascades, to understand the 58 

intracellular state governed by RET, and provide a mechanism by which activation of RET can be a positive 59 

addition to current culture methods for clinical purposes. 60 

 61 

Methods 62 

 63 

Primary Human Samples 64 

Umbilical Cord Blood (UCB) was obtained from full term donors after informed consent at the Royal London 65 

Hospital (London, U.K.). Mononuclear cells were isolated by density centrifugation using Ficoll-Paque (GE 66 

Healthcare). Cells were depleted for lineage markers using an EasySep Human Progenitor Cell Enrichment Kit 67 

(Stem Cell Technologies) according to the manufacturer's instructions. Lineage depleted cells were stained with 68 

antibodies listed in the Key Resources Table and sorted using a BD FACS Aria Fusion. 69 

 70 

In Vitro Culture Conditions 71 

Human CD34+CD38- cells were cultured in StemSpan SFEMII (Stem Cell Technologies) supplemented with 72 

Human SCF (150ng/ml), Human FLT3 ligand (150ng/ml) and Human TPO (20ng/ml; Peprotech) and when 73 

indicated GDNF/GFR1 (100ng/ml, GDNF & GFR1 mixed 1:1; R&D systems), SR1 (750nM; Stem Cell 74 

Technologies), UM171 (35nM; Stem Cell Technologies), or PZ1 (10nM, Sigma-Aldrich). Cells were incubated 75 

in a tissue culture incubator at 37°C, 5% CO2 for seven days. For all culture experiments, independent pools of 76 

umbilical cord blood were used for treatments vs control. 77 

 78 

Xenotransplantation Assays 79 

Primary or cultured CD34+CD38- HSPCs were injected in 8-10 weeks old unconditioned Female NBSGW mice 80 

intravenously (I.V.). Injected mice were euthanised after 12 weeks, in both primary and secondary 81 

transplantations, by cervical dislocation and 6 rear bones and spleen were collected. Bone marrow was flushed 82 

by centrifugation, spleens were crushed and passed through a 100M strainer, and resulting cells were incubated 83 

in red blood cell lysis buffer (155mM NH4Cl, 12mM NaHCO3, 0.1mM EDTA) for 5 minutes at room 84 

temperature. Remaining cells were stained with antibodies listed in the Key Resources Table and sorted and 85 

analysed using a BD FACS Aria Fusion. Secondary transplantations were conducted as per primary 86 

transplantations using Human CD45 positive cells sorted from primary mice as donors. 87 

 88 

See further methods description in supplementary information 89 

 90 

Results 91 

 92 

The receptor tyrosine kinase, RET, is more active in CD34+CD38- HSPCs than CD34+CD38+ HPCs 93 

In Human UCB, the CD34+CD38- compartment (HSPCs) contains HSCs able to engraft long-term 94 

in immunodeficient mouse models. In comparison, the CD34+CD38+ compartment (HPCs) contains more 95 
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 4 

differentiated progenitor cells, and has no long-term HSC function in immunodeficient mice. We used PamGene 96 

kinome array technology to identify kinase activity differences, between the HSPC and HPC compartments 97 

(Supp. Fig. 1A). 98 

Cell extracts from HSPCs and HPCs phosphorylated a range of peptides (Supp. Fig. 1B), and could be clearly 99 

separated by cell cycle phosphorylations (e.g. RBpS807/S811, Supp. Fig. 1C) and classical hematopoietic signalling 100 

molecules (e.g. AKT1pY326, PRKDCpS2624/S2626; Supp. Fig. 1D-E). Upstream kinase analysis of the 101 

phosphorylations by HSPC extracts provides a functional annotation, assigning phosphorylation kinetics to 102 

kinase activities. This revealed an enrichment for well described kinases such as JAK1/2 and FLT1/3/4 in the 103 

HSPC compartment (Figure 1A). 104 

Differential phosphorylation events (Supp. Fig. 1A) and kinase activities (Figure 1A) between HSPCs and 105 

HPCs showed strong enrichment in anti-apoptosis signalling, both by PI3K/AKT (FDR = 3.74E-13, 18 proteins) 106 

and MAPK/JAK/STAT (FDR = 1.896E-11, 15 proteins), erythropoietin signalling (FDR = 1.167E-10, 13 107 

proteins) and inflammatory pathways including; IL-2 signalling (FDR = 4.045E-07, 9 proteins), TREM1 108 

signalling (FDR = 4.726E-07, 10 proteins) and IFN-gamma signalling (FDR = 4.726E-07, 9 proteins; Figure 109 

1B). 110 

Interestingly, the receptor tyrosine kinase, RET, was specifically enriched in the HSPC fraction, with a mean 111 

final score of 2.3 based on 17 peptide phosphorylations (Figure 1A). RET is a transmembrane receptor tyrosine 112 

kinase, with well-defined ligand/co-receptor interactions, and publicly available datasets indicate that within the 113 

HSPC compartment, the RET gene is expressed at significantly higher levels in HSCs than more differentiated 114 

progenitor cells (Supp. Fig. 1F). RET signalling, at the cell surface, shows a diverse array of responses in 115 

different cell types, and considering the well-defined ligand/co-receptor activation interaction13, evidence of 116 

GFL support from the niche14, and bio-available stimulating factors in vitro15, provided an excellent candidate 117 

for further investigation. 118 

 119 

RET cell surface expression functionally enriches for stem cell activity in the HSPC compartment 120 

The RET protein must be at the cell surface for ligand/co-receptor-dependent transduction of signals across the 121 

membrane16. When probing for RET at the cell surface, immunophenotypic HSCs (CD34+CD38-CD45RA-122 

CD90+CD49f+) typically show higher RET cell surface expression than MPPs (Multipotent progenitors; 123 

CD34+CD38-CD45RA-CD90-CD49f-; Figure 1C & Supp. Fig. 1G-J; gating as per Notta et al. 201117). Multiple 124 

markers have been proposed to further purify HSCs within the CD34+CD38- compartment, and we sought to 125 

investigate the stem/progenitor cell frequency of cells expressing RET at the cell surface after 12 weeks in 126 

vivo. Selection of CD34+CD38- cells solely classified for cell surface expression of RET enriches for HSPC 127 

stem cell activity in an in vivo limiting dilution assay, with high RET HSPCs (REThi) showing a stem cell 128 

frequency of ~1 in 135 cells and RETlow HSPCs showing an almost 4-fold reduction in stem cell frequency of 129 

~1 in 531 cells (p = 0.026, Figure 1D&E, Supp. Fig. 2A). In addition, REThi HSPCs show much more classical 130 

lineage balance in immunodeficient mice, whereas RETlow HSPCs are more myeloid biased (Supp. Fig. 2B). 131 

 132 

Activation of RET by GDNF/GFR1 improves survival and expansion of HSPCs 133 

A key question in hematopoietic stem cell biology remains how to grow HSCs in vitro for both engineering and 134 

expansion purposes18. Currently, CD34+CD38- HSPCs can be grown in culture for 7 days with a minimal 135 
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 5 

cocktail of cytokines, including: SCF, FLT3L and TPO, retaining enough functional HSCs to 136 

engraft immunodeficient mice19. To understand the role of RET at the surface of HSPCs and whether this could 137 

be a target for HSC maintenance and expansion, we added its primary ligand/co-receptor combination, 138 

GDNF/GFR1 to the culture medium in addition to SCF/FLT3L/TPO and cultured 5,000 HSPCs for 7 days 139 

(Figure 2A). HSPCs expand up to 40-fold in minimal serum free, SCF/FLT3/TPO supplemented conditions 140 

over 7 days. The addition of GDNF/GFR1 significantly increased the number of HSPCs by 71-fold at day 7 141 

compared to input cells (Figure 2B). 142 

It has previously been reported that EPCR expression marks expanded CD34+ cord blood stem cells in culture20, 143 

and we used this marker in combination with CD90 to estimate the number of expanded HSCs in control and 144 

GDNF/GFR1 treated conditions. The frequency of immunophenotypic HSCs within the cultures 145 

(CD34+CD90+EPCR+) was significantly enriched by GDNF/GFR1 treatment at both day 3 (Figure 2C) and 146 

day 7 (Figure 2D & Supp. Fig. 3A-C).  147 

 148 

GDNF/GFR1 cultured HSPCs have improved long-term in vivo engraftment 149 

The gold standard for Human HSC functionality under laboratory conditions is engraftment in immunodeficient 150 

mouse models to reveal stem/progenitor (primary engraftment for 12 weeks) and long-term self-renewing HSC 151 

(secondary engraftment for 12 weeks) function. The observed increase in cell numbers in the GDNF/GFR1 152 

cultures at day 7 may correlate with outgrowth of functional stem cells in this system, or may be due to another 153 

factor such as increased progenitor cell proliferation21. To test the stem cell potency of cultured HSPCs in the 154 

presence of GDNF/GFR1, we retrieved all cells from culture replicates at day 7 and transplanted them into 155 

immunodeficient mice harbouring the cKitW41 mutation (1well:1mouse; NBSGW). Bone marrow and splenic 156 

engraftment was significantly higher after GDNF/GFR1 treatment compared to control. The enhanced 157 

engraftment resulting from RET activation was comparable to the previously published combination of 158 

SR1/UM171, and the combination of SR1/UM171/GDNF/GFR1 further improved engraftment (Figure 2E, 159 

Supp. Fig. 3D-F). These data indicate that activation of RET can improve progenitor activity for colonising 160 

primary recipients as a single addition to classical SCF/FTL3L/TPO cytokines, similar to that of SR1/UM171. 161 

Analysis of the immunophenotypic HSC compartment within the HuCD45+ cells from the bone marrow of 162 

primary recipient mice revealed a significant enrichment in all treatment cases (GDNF/GFR1, SR1/UM171 163 

and SR1/UM171/GDNF/GFR1) compared to controls (Figure 2F). Together, these data indicate improved 164 

expansion of stem/progenitor cells treated with GDNF/GFR1, and expansion in vivo of phenotypic long-term 165 

HSCs. 166 

To test the long-term self-renewal HSC function and frequency of GDNF/GFR1 treated cells, we engrafted 167 

HuCD45+ cells obtained from the bone marrow of primary mice into secondary recipients in a limiting dilution 168 

fashion. Primary cells from GDNF/GFR1, SR1/UM171 and SR1/UM171/GDNF/GFR1 treatments, engrafted 169 

secondary mice significantly better than controls at the highest dose tested (Figure 2G; Supp. Fig. 3G-I; 2x105 170 

hCD45+ injected). The estimation of stem cell frequency by ELDA (Extreme Limiting Dilution Analysis) 171 

indicated that control cells have very low long-term stem cell frequency (~1 in 1,500,000). GDNF/GFR1 172 

treatment significantly improved long-term stem cell frequency by more than 75-fold (~1 in 20,000). This was 173 

also improved in the SR1/UM171 treated cells (~1 in 41,000), and the combination of 174 
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 6 

SR1/UM171/GDNF/GFR1 treatment was similar to GDNF/GFR1 treatment alone with a moderate 175 

improvement (~1 in 13,000; Figure 2H, Supp. Fig. 3H&J), indicating that GDNF/GFR1 provides significant 176 

improvement in LT-HSC production. Considering initial cell expansion, total engraftment in primary mice, 177 

percentage of total bone marrow represented by rear leg long bones (~20%) and long-term stem cell frequency 178 

in secondary recipients, GDNF/GFR1 treatment increases HSC outgrowth over the experimental course 179 

compared to control conditions by approximately 148-fold (~742 versus ~5 stem cells produced, respectively), 180 

compared to SR1/UM171 by approximately 1.3-fold (~565 stem cells produced) and is further improved by the 181 

triple combination (~1,275 stem cells produced, Supp. Fig. 3K).  182 

 183 

RET activation induces a dynamic change in the kinome of HSPCs 184 

To understand the specific changes governed by RET activation in HSPCs, we investigated functional changes 185 

in the kinome after GDNF/GFR1 treatment using PamGene kinase profiling. We compared functional changes 186 

in both Serine/Threonine (Figure 3A) and Tyrosine (Figure 3B) kinases in HSPCs at days 0, 1 and 3 post 187 

GDNF/GFR1 treatment. As GDNF/GFR1 is rapidly used and turned over in vitro, day 1 changes represent 188 

the acute early events, and day 3 changes represent longer-reaching changes in the kinome of treated HSPCs. 189 

At the early time point after GDNF/GFR1 treatment (day 1), significant phosphorylations on chip (Figure 3C) 190 

were predominantly representative of Tyrosine kinase activity (Figure 3D, Supp. Fig. 4A). At the late time point 191 

after GDNF/GFR1 treatment (day 3), significant phosphorylations on chip (Figure 3E) were predominantly 192 

representative of Serine/Threonine kinase activity (Figure 3F, Supp. Fig. 4B). 193 

The early changes at day 1 were enriched in process networks for anti-apoptotic PI3K/AKT signalling (p=1.8e-194 

7), anti-inflammatory IL2 signalling (p=1.9e-6), anti-apoptotic MAPK/JAK/STAT signalling (p=5.3e-5) and 195 

Notch signalling (p=1.4e-4; Figure 4A).  At day 3 changes were enriched for the same process networks seen at 196 

day 1 (Figure 4A), indicating that fundamental pathways are sustained beyond the immediate GDNF/GFR1 197 

downstream signalling, converging on anti-apoptosis and anti-inflammation. 198 

Differential phosphorylation events exclusively at the early time point (day 1; Figure 4B-C) include: cell cycle 199 

components CDK2pY15 and RBpT356 (indicative of an exit from mitosis and progression through the G1/S 200 

boundary; Figure 4D&E), interleukin signalling components (e.g. JAK3pY980/981, Supp. Fig. 5B) and the p53 201 

anti-apoptotic phosphorylations at p53pT18 and p53pS315 (Figure 4F&G). These phosphorylation events indicate 202 

that cells treated with GDNF/GFR1 at early time points are more positively cycling, have an earlier anti-203 

inflammatory response and increased anti-apoptotic activity. 204 

In normoxic cultures, anti-inflammatory and anti-apoptotic signalling are important for HSC maintenance, 205 

expansion and survival, and phosphorylation networks in day 3 GDNF/GFR1 treated cells represent a 206 

convergence on these key pathways (Figure 4J). For example, the phosphorylation of BADpS99, which is hyper-207 

phosphorylated when cells are under stress and are resisting apoptosis22, is reduced under GDNF/GFR1 208 

treatment (Figure 4K). Upstream, FOXO3, the transcription factor responsible for expression of another pro-209 

apoptotic factor, BIM, also shows reduced phosphorylation at S30/T32 in GDNF/GFR1 treated cells, 210 

indicating there is a block in expression of pro-apoptotic genes such as BIM (Figure 4L). In addition, RB 211 

phosphorylation switches, and there is a significant reduction in RBpS807/811, resulting in less potential for BAX 212 

binding and further indication that anti-apoptotic functions are no longer required (Figure 4M). This switch in 213 

phosphorylation events between early and late time points coincides with the emergence of kinase activity by 214 
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 7 

IKK complex members (IKK, IKK and IKK; Figure 3F & Supp. Fig. 4B), a pathway known to 215 

be downstream of RET induced AKT/ERK activity23. These pathways indicate that a mechanism of protection 216 

by GDNF/GFR1 treatment at later time points is due to protection against apoptosis through RET-induced 217 

AKT/ERK activity and downstream via NFB signalling. 218 

Next, we sought to understand how GDNF/GFR1 treatment mitigates changes from input cells over time 219 

compared to controls. Whilst there is clear concordance between phosphorylation changes from input cells to 220 

day 1 controls and GDNF/GFR1 treatment (R = 0.56, p < 2.2e-16; Supp. Fig. 4C), and from input cells to day 221 

3 controls and GDNF/GFR1 treatment (R = 0.75, p < 2.2e-16; Supp. Fig. 4D), there are key peptide changes 222 

seen exclusively in control cells or in GDNF/GFR1 treated cells at each time point (Supp. Fig. 4E). The most 223 

highly changed phosphorylation site in day 1 control cultures compared to input cells is, DSPpS2849, which 224 

remains unchanged throughout all other conditions (Supp. Fig. 5A). The DSPpS2849 phospho-site is dependent on 225 

GSK3ß and PKACA activity, which are important kinases involved in normal and malignant hematopoiesis, and 226 

phosphorylation at this site reduces desmoplakin-mediated adhesion to extracellular matrices (Supp. Fig. 5A)24.  227 

At day 3, control cells uniquely lack: ADDBpS697/S701, phospho-sites associated with induction of cell growth, 228 

notably a site that is better maintained throughout by GDNF/GFR1 supplementation (Supp. Fig. 5D). 229 

Conversely, at day 1 culture with GDNF/GFR1, the p53pS315 phospho-site is significantly increased (Figure 230 

4G), a site known to be phosphorylated by CDK1 and important for anti-apoptotic functions. In addition to 231 

improved survival phosphorylation events at day 1, by day 3, GDNF/GFR1 treated cultures also display major 232 

reductions when compared to controls in phosphorylation of IF4EpS209/T210 (Supp. Fig. 5E) and RBpS807/S811, 233 

indicative of cell cycle alterations and anti-apoptotic functions (Figure 4M). 234 

These profiles indicate that overlapping and independent phosphorylation changes between control and 235 

GDNF/GFR1 treated cultures lead to diverse pathway activation. These signalling alterations are likely to be 236 

responsible for the differences in functional output of HSPCs. 237 

 238 

GDNF/GFR1 treatment sustains an integrated cell survival and proliferation program in cultured HSPCs 239 

Despite the wide-scale dynamic changes in the kinome, key regulatory phosphorylation cascades surrounding an 240 

NFB/p53/BCL2 cell survival and proliferation program were consistently affected at early and late time points. 241 

We sought to utilise mass cytometry to investigate the dynamics of these phosphorylation steps and protein 242 

abundance in CD34+ cells after initial isolation, at early (day 3) and late (day 7) expansion time points (Figure 243 

5A&B). RET is hyper-phosphorylated after GDNF/GFR1 treatment at day 3 compared to controls and reduces 244 

over time as GDNF/GFR1 depletion occurs. In contrast, total RET abundance increased early and continued to 245 

increase at day 7 (Figure 5A&B). 246 

Many of the key factors identified throughout our kinome analysis are downstream of RET, mediated by one of 247 

two key signalling cascade partners, AKT and ERK. Interestingly, both AKTpS473 and ERK1/2pT202/Y204 mirror 248 

RET phosphorylation, and are activated early. ERK phosphorylation was sustained over time, whereas AKT 249 

increased further at day 7 (Figure 5A&B). 250 

Downstream of AKT/ERK activity, we observed increased p53pS392, which induces interaction with NFB, and 251 

in addition we observed increased NFB transcriptional activity (Figure 5A-C & Supp. Fig. 6A&B). This 252 
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 8 

NFB/p53 axis is an important regulator of the cell survival and growth characteristics we observed in our in 253 

vitro cultures.  254 

When assessing the downstream genetic targets of these key proteins, we observed significant down-regulation 255 

of the FOXO3, pro-apoptotic target, BIM, and significant up-regulation of anti-apoptotic NFB target genes 256 

BCL2 and TP53, but not consistent changes in NFB pro-inflammatory target genes TNF-alpha and IL1-beta 257 

(Figure 5C, Supp. Fig. 6A&B). To further confirm that the changes we see are caused acutely by 258 

phosphorylation cascades downstream of GDNF/GFR1 treatment, and not secondary to transcriptomic 259 

adaptions, we monitored RNA levels of key components of this pathway, altered at the protein level, including; 260 

FOXO3A, RELA, ELK1 and IKBKB (Figure 5D). Indeed, FOXO3A, ELK1 and IKBKB remain similar to controls 261 

until the late time point (day 7), at which, FOXO3A and IKBKB are upregulated (ELK1 remained constant 262 

throughout), presumably as feedback in response to their inactivity at the protein level. In contrast, RELA is 263 

initially downregulated early (day 1) and increases over time. Therefore, activation of RET induced changes at 264 

the protein phosphorylation and total abundance levels are the predominant effectors of the response observed, 265 

with input from transcriptional changes contributing a smaller part of the downstream effectors mediating the 266 

phenotypic response. 267 

These data provide a two-pronged mechanism, by which RET activation induces the activity of AKT and ERK 268 

as key signalling hubs to drive a cell survival and proliferation program in HSPCs in vitro. The 269 

NFB/p53/BCL2 axis provides a stable platform for HSPCs to survive and expand in culture before 270 

transplantation in vivo (Figure 5E). 271 

 272 

HSCs have a specific response mechanism to GDNF/GFR1 in culture 273 

Protein changes responsive to GDNF/GFR1 treatment, monitored in CD34+ cells during culture, were 274 

consistent within the immunophenotypic HSC compartment of cultured cells (CD34+CD38-CD45RA-CD90+), 275 

but less responsive in the MPP compartment (CD34+CD38-CD45RA-CD90-), indicating a specific response 276 

mechanism in HSCs (Supp. Fig. 7A&B). In addition, at day 0 HSCs have higher total RET than MPPs (but not 277 

bulk CD34+CD38-), and HSCs show the strongest RETpY905 signal of all compartments (data not shown), 278 

indicating that RET signalling is already primed in HSCs pre-culture. 279 

In comparison to control cultures, HSCs show a strong response at day 3 to GDNF/GFR1 by increases in 280 

RETpY905, AKTpS473 and ERK1/2pT202/Y204 (Figure 6A&B). In addition, NFB
pS529 and p53pS392 are upregulated at 281 

day 3 by GDNF/GFR1 treatment, indicating the cell survival and oxidative stress response network discovered 282 

in bulk HSPCs (Figure 5A&B) is similarly stimulated in HSCs (Figure 6A&B). Interestingly, GDNF/GFR1 283 

treatment also suppresses the abundance of the differentiation pioneer factor, PU.1, at later stages (day 7) whilst 284 

inducing GATA1 expression at early stages (day 3; Figure 6A&B). The changes induced at day 3 by 285 

GDNF/GFR1, are generally spikes in signalling, lost upon the exhaustion of ligand/co-receptor. Only 4 286 

proteins remain more abundant in GDNF/GFRa1 treated culture (STAT5pY694, ERK1/2pT202/Y204, S6pS235/S236, 287 

cREL and Ki67), indicating that the spike in activity early is enough to induce a survival and expansion program 288 

in HSCs in culture (Figure 6A&B, Supp. Fig. 7A&B). 289 

In agreement with our earlier findings of anti-apoptotic and anti-inflammatory signatures (Figure 4A), HSCs 290 

show a specific spike in p53pS392 at day 3, but no upregulation of NFkBpS529 (Figure 6A&B). In vitro this leads to 291 

a reduction in intracellular reactive oxygen species (ROS) for both bulk CD34+ cells, and specifically HSCs 292 
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 9 

(Figure 6C&D, Supp. Fig. 8 C&D). When inhibiting RET signalling, with the pan-RET/VEGFR2 inhibitor PZ1 293 

(Supp. Fig. 8A), the reduction in intracellular ROS is abolished, and the number of CD34+ cells, and more 294 

importantly HSCs, in culture is lost (Figure 6E, Supp. Fig. 8E), with CD34+ cells showing a significant increase 295 

in apoptosis in response to PZ1 at day 7 (Supp. Fig. 8B). Together, these data indicate that the tailored response 296 

in HSCs is critically dependent on RET signalling maintaining fundamental stress response pathways during in 297 

vitro outgrowth.  298 

 299 

Discussion 300 

 301 

The use of UCB for hematopoietic stem cell transplantation is a rapidly increasing treatment option for both 302 

hematological and non-hematological malignancies, as well as new gene therapy and regenerative medicine 303 

approaches. The current outcomes from cord blood transplantation are limited primarily by low stem cell dose 304 

and delayed hematopoietic recovery4. Early strategies to grow HSCs in vitro induce a large amount of 305 

differentiation in culture19, but recent improvements in expansion of HSCs, such as those conferred by SR1, 306 

UM17125,26 and here, GDNF/GFR1, in vitro, provide a positive platform for improvement of UCB-derived 307 

HSCs in vivo.  308 

Our finding of higher RET activity in HSPCs derived from UCB may be due to cell-intrinsic mechanisms/ 309 

autocrine signalling loops or from specific niche components. Indeed, there is evidence of enervation of the 310 

HSC bone marrow niche, and recent high dimensional analysis of niche components reveal expression of GFLs 311 

from COL2.3+ osteoblasts14. Therefore, the provision of GDNF/GFR1 may be a key component, already 312 

provided by the bone marrow niche, for HSCs to maintain their potential in vitro. Regardless of the source of 313 

activation, the increased phosphorylation of RET in phenotypic HSCs from UCB indicates an active RET 314 

signalling pathway in vivo, specifically tailored to HSCs. 315 

We provide a mechanism by which RET can govern an anti-apoptotic and anti-inflammatory program, due to 316 

diverging and exclusive contributions to the same goal, to improve survival and expansion of HSCs for 317 

regenerative and engineering purposes. A key issue when expanding HSCs in vitro is the need to grow them in 318 

normoxic conditions for maximum expansion. The induction of oxidative stress under these conditions can lead 319 

to a loss in stem cell activity27,28. The stimulation of RET signalling can reduce the accumulation of ROS in 320 

HSCs and maintain their potency, whilst providing further signals to expand in vitro.  Interestingly, the basic 321 

complement of cytokines used to grow HSPCs in culture (SCF/FLT3L/TPO) is known to activate ERK/AKT 322 

signalling29. Our findings that this is strongly enhanced by the activation of RET indicates that there is both 323 

capacity to increase these signalling cascades (strength and time of response), and improve the diversity of the 324 

response (in our case the IB arm, Figure 5E), ultimately leading to improvement in HSC function over the 325 

experimental course. The addition of UM171 to SCF/FLT3L/TPO when culturing HSPCs has also been shown 326 

to re-tune NFB pro- and anti-inflammatory activity, through EPCR, ultimately reducing the ROS burden in 327 

HSCs in vitro30. Although it is unknown what the direct target of UM171 is, it is possible that association with 328 

EPCR function may activate AKT/ERK signalling and even stimulate RET activity to some extent. Yet, the 329 

reduction of estimated stem cells produced by SR1/UM171 compared to GDNF/GFR1 (Supp. Fig. 3H) 330 
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 10 

indicates that classical stimulation of RET activity (by GFLs) has a stronger effect than UM171 if this is the 331 

case. 332 

In addition to potential improvements in patient outcome, improved outgrowth of UCB-derived HSCs can begin 333 

to address the issue of double cord blood transplantation and associated costs, increasing the practicality of 334 

using UCB banks in frontline treatment4. These benefits could potentially provide an immediate improvement to 335 

clinical outcomes, but also, with the rapidly increasing promise of gene therapy, improvements in survival 336 

during expansion may provide a critical edge to genetic engineering protocols for future therapies. 337 

 338 
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 422 

Figure Legends 423 

 424 

Figure 1. RET is functionally active in CD34
+
CD38

-
 HSPCs and cell surface expression enriches for HSC 425 

function. A. Kinase activity alterations between CD34+CD38- HSPCs (green) and CD34+CD38+ HPCs (lilac). 426 

B. Process network enrichment for significantly altered kinases and phosphorylation events from A. C. z-427 

normalized geometric mean fluorescence intensity of cell surface RET within the indicated populations. 428 

Significance was tested using a paired Student’s t-test for individual cord blood donors tested (N=9). D. Plot 429 

depicting frequencies and confidence interval for REThi(red) and RETlow(grey) CD34+CD38- cell in vivo 430 

engraftment at limiting dilution after 12 weeks (N=3 mice per dose tested). E. Table of 1/stem cell frequency 431 

numerical data calculated from the in vivo LDA presented in D, including: estimated stem cell frequency, upper 432 

and lower intervals of estimation, Chi-squared test and estimated p-value. 433 

 434 

Figure 2. GDNF/GFR1 treatment stimulates growth of transplantable HSCs. A. Experimental design for 435 

GDNF/GFR1 supplemented outgrowth of HSCs and transplantation ability. 1oTP and 2oTP represents the first 436 

and second transplantation respectively. B. Live cell count of in vitro cultured HSPCs (N=5). Proportion of 437 

expanded HSCs (CD34+CD90+EPCR+) at day 3 (C) and day 7 (D) during in vitro culture (N=5). E. Percentage 438 

of Human CD45 positive cells of total CD45 positive bone marrow cells in primary transplantation mice (Ctrl 439 

N=12, GDNF/GFR1 N=10, SR1/UM171 N=7, SR1/UM171/GDNF/GFR1 N=6). F. Percentage of 440 

immunophenotypic HSCs (CD34+CD38-CD45RA-CD90+CD49f+) retained in Human CD45 bone marrow cells 441 

in primary transplantation mice. G. Percentage of Human CD45 positive cells of total CD45 positive bone 442 

marrow cells in secondary transplantation mice (2x105 hCD45 cells transplanted shown, N=5 for all conditions). 443 

H. Boxplot indicating 1/Stem Cell Frequency of secondary transplanted Human CD45 positive cells. Estimates 444 

with upper and lower intervals are shown (N=5 for top dose, N=3 for all other doses). For all graphs, A 445 

Student’s t-test was used to calculated significant differences (* = p < 0.05 vs Ctrl, ** = p < 0.005 vs Ctrl). 446 

 447 

Figure 3. Activation of RET by GDNF/GFR1 alters kinome dynamics during HSPC outgrowth. 448 

Heatmaps depicting A. Serine/Threonine and B. Tyrosine containing row z-normalized peptide 449 
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phosphorylations supervised by day and treatment. Rows are clustered by correlation. C. Fold change 450 

differential phosphorylation of GDNF/GFR1 treated CD34+CD38- cells compared to control after 1 day of 451 

culture. D. Upstream kinases calculated as responsible for phosphorylations in C. E. Fold change differential 452 

phosphorylation of GDNF/GFR1 treated CD34+CD38- cells compared to control after 3 days of culture. F. 453 

Upstream kinases calculated as responsible for phosphorylations in G. C-F: Red dots indicate significantly 454 

upregulated peptides or kinases, Blue dots represent significantly downregulated peptides or kinases in response 455 

to GDNF/GFR1 treatment.  456 

 457 

 458 

Figure 4. GDNF/GFR1 treatment induces anti-apoptotic and anti-inflammatory processes in cultured 459 

HSPCs. A. Enriched process networks from significantly changed peptides in GDNF/GFR1 versus control 460 

cultures after 1 day (left, light red) or 3 days (right, dark red). B. Venn diagram depicting overlap of 461 

significantly altered peptides between day 1 (light red) and day 3 (dark red) from GDNF/GFR1 versus control 462 

cultures. C. String protein network for differential phosphorylation events at day 1. Lines indicate reported 463 

interactions. D-I. Key differential phosphorylations induced by GDNF/GFR1 treatment at day 1, represented 464 

as relative phosphorylation. A Student’s t-test was used to measure significant differences. Day 0 CD34+CD38- 465 

input cells (white), control (black) and GDNF/GFR1 (red) treatments at days 1 and 3 are presented. J. String 466 

protein network for differential phosphorylation events at day 3. Lines indicate reported interactions. K-M. Key 467 

differential phosphorylations induced by GDNF/GFR1 treatment at day 3, represented as relative 468 

phosphorylation. A Student’s t-test was used to measure significant differences. Day 0 CD34+CD38- input cells 469 

(white), control (black) and GDNF/GFR1 (red) treatments at days 1 and 3 are presented. 470 

 471 

Figure 5. RET activation by GDNF/GFR1 sustains an NFB/p53/BCL2 anti-apoptotic program in 472 

HSPCs during in vitro culture. A. Bar graphs depict median intensity of signal from histograms below 473 

showing the profiles of key protein changes in CD34+ cells at day 0 (blue), day 3 control (orange) day 3 474 

GDNF/GFR1 (green), day 7 control (red) and day 7 GDNF/GFR1 (purple, a.u. = arbitrary units). B z-475 

normalized heatmap of data in A, illustrating differences in CD34+CD38- cells at input, and CD34+ cells at day 3 476 

and day 7 culture with or without GDNF/GFR1 treatment assayed by mass cytometry, supervised by treatment 477 

condition. C. Fold change RNA expression of key NFB target genes in GDNF/GFR1 treated CD34+CD38- 478 

cells compared to controls at days 1, 3 and 7. Gene names are noted under bar labels. A Student’s t-test was 479 

used to calculate significant differences (* = p < 0.05, ** = p < 0.005, N=3 per condition and day tested). D. 480 

Fold change RNA expression of key genes altered at the protein level in GDNF/GFR1 treated CD34+CD38- 481 

cells compared to controls at days 1, 3 and 7. Gene names are noted under bar labels. A Student’s t-test was 482 

used to calculate significant differences (* = p < 0.05, ** = p < 0.005, N=3 per condition and day tested). E. 483 

Illustrated pathway identified through kinome, mass cytometry and RNA changes, defining activating (green) 484 

and inhibiting (red) phosphorylations, protein levels or RNA levels and proposed modes of action. 485 

 486 

Figure 6. HSCs exhibit specific responses to GDNF/GFR1 resulting in reduced accumulation of 487 

intracellular ROS. A. Bar graphs depict median intensity of signal from histograms below illustrating profiles 488 
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of key protein changes in HSCs at day 0 (blue), day 3 control (orange) day 3 GDNF/GFR1 (green), day 7 489 

control (red) and day 7 GDNF/GFR1 (purple, a.u. = arbitrary units). B z-normalized heatmap illustrating 490 

differences in HSC clusters at input, day 3 and day 7 culture with or without GDNF/GFR1 treatment assayed 491 

by mass cytometry, supervised by treatment condition. C. Mean fluorescence intensity of intracellular ROS in 492 

HSCs at day 7± GDNF/GFR1/PZ1 (* = p < 0.05, N=4). D. Histograms illustrating changes in intracellular 493 

ROS at day 7. E. Percentage of HSCs in cultured cells at day 7± GDNF/GFR1/PZ1 (* = p < 0.05, N=4). 494 D
ow

nloaded from
 https://ashpublications.org/blood/article-pdf/doi/10.1182/blood.2020006302/1747220/blood.2020006302.pdf by TH

E FR
AN

C
IS C

R
IC

K IN
STITU

TE user on 13 July 2020



C
D
34

+ C
D
38

-

C
D
34

+ C
D
38

- C
D
45

R
A
-

C
D
34

+ C
D
38

- C
D
45

R
A
- C

D
90

- C
D
49

f-

C
D
34

+ C
D
38

- C
D
45

R
A
- C

D
90

+ C
D
49

f+
-2

-1

0

1

2

z
-n

o
rm

a
lis

e
d
 R

E
T

 G
e
o
m

 M
F

I p = 0.008
p = 0.037

Figure 1

0 200 400 600 800 1000

0
.0

dose (number of cells)

lo
g
 f

ra
c
ti
o
n
 n

o
n
re

s
p
o
n
d
in

g

Group REThi
Group RETlow

1in135

1in531

Lower Estimate Upper

RETHi 308 135 59

RETLow 1193 531 236

Chisq 4.93194 on 1 DF

p-value: 0.02636

A B

C D

E

D
ow

nloaded from
 https://ashpublications.org/blood/article-pdf/doi/10.1182/blood.2020006302/1747220/blood.2020006302.pdf by TH

E FR
AN

C
IS C

R
IC

K IN
STITU

TE user on 13 July 2020



Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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