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Abstract: Using Bayesian Monte Carlo methods, we augment a stochastic distance function measure of 

bank efficiency and productivity growth with indicators of capitalization, return and risk. Our novel 

Multiple Indicator-Multiple Cause (MIMIC) style model generates more precise estimates of policy 

relevant parameters such as returns to scale, technical inefficiency, and productivity growth. We find 

considerable variation in the performance of EU-15 banks over the period 2008-2015. For the vast 

majority of banks, productivity growth – the sum of efficiency and technical changes - is negative, 

implying that the industry would benefit from innovation. We show that greater technical efficiency is 

associated with higher profitability, higher capital, a lower probability of default and lower return 

volatility.  
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1. Introduction 

 In this paper, we propose a novel model for assessing the underlying performance of European 

banks over the period 2008-2015. Our approach combines the multiple indicator-multiple cause (MIMIC) 

approach of Jöreskog and Goldberger (1975) with the stochastic frontier approach employed in most of 

the bank efficiency literature. Specifically, the latent one sided technical inefficiency random error in our 

stochastic frontier distance function is reflected in multiple risk, return and capitalization “indicators”, as 

well as being driven by a range of “causes”. The inclusion of multiple indicators of technical inefficiency 

in a stochastic frontier framework is new, and combines structural and non-structural approaches to 

measuring bank efficiency, e.g. Hughes and Mester (2019). The model is easily implemented using 

Bayesian methods, fits far better than the basic stochastic frontier distance function, and generates much 

narrower density intervals for important parameters of interest including the technical inefficiency and 

productivity growth of European banks. Allocative as well as technical efficiency may be examined by 

replacing the stochastic distance frontier with stochastic cost, revenue or profit frontiers.  

 Chaudhuri, Kumbhakar and Sundaram (2016) used a MIMIC model to examine the technical 

efficiency of Indian firms. In their model, latent technical inefficiency is driven by “causes” like age, size, 

advertising expenses and the debt-to-equity ratio, and is reflected in indicators such as the return on 

equity and assets (ROE, ROA) and Tobin’s Q. Chaudhuri et al. compare the estimates of technical 

efficiency from the MIMIC model and a stochastic frontier model, where the inputs are the same as the 

causal variables, and conclude that the MIMIC and stochastic frontier approaches are complementary. 

Our technical innovation is to show how the MIMIC and stochastic frontier approaches may be combined, 

and the resulting model estimated using Markov Chain Monte Carlo (MCMC) methods. We do so by 

augmenting the posterior likelihood with the latent one-sided technical inefficiency random error in the 

spirit of Albert and Chib (1993) and Greenberg and Chib (2020). 

 In our model, the indicators of technical inefficiency are the return on assets and equity (ROA 

and ROE) profitability measures, capitalization, and the Z-score and volatility risk measures. Standard 

stochastic frontier analyses tend to ignore the endogenous risk-return tradeoff emphasized by Hughes and 

Mester (2013, 2019) and Delis et al. (2017), inter alios. Capitalization, the ratio of equity to total assets, 

attracts the attention of practitioners, analysts and regulators. Although the effect of changes in  

capitalization on performance depends on the theory of the banking firm, under the signaling hypothesis, 

capitalization and performance are positively related. The Z-score has also been frequently used in the 

empirical literature to reflect a bank's probability of insolvency (Demirgüç-Kunt and Huizinga, 
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2010, Köhler, 2015, Laeven and Levine, 2009). This metric is defined as the number of standard 

deviations that a bank's return on assets must fall below the mean for the bank to become insolvent. A 

higher Z-score indicates that a bank is farther from default. The Z-score is considered a better measure of 

bank risk than the non-performing loan ratio because it captures other factors besides credit risk, and non-

performing loans are traditionally backward looking and highly pro-cyclical. Baselga-Pascual et al. 

(2015) note that that profitability, capitalization, and efficiency are inversely and significantly related to 

European bank risk as measured by the Z-score.2  

 We use our model to study the technical inefficiency and productivity growth of EU-15 banks 

over the period 2008-2015. Many European banks - especially banks in “peripheral” countries such as 

Greece, Ireland, Italy, Portugal and Spain - are still under-capitalized and saddled with large portfolios of 

non-performing loans following the Global Financial Crisis and subsequent European sovereign debt 

crisis (Goddard, Molyneux and Wilson, 2019). The crises showed how exposed banks were to global 

shocks in such an integrated and interconnected market as the EU. Growing competition in the 1990s and 

early 2000s reduced their market power and charter values, and incentivized some banks, particularly the 

less efficient ones, to take on greater risks via financial liberalization. Looking ahead, the more efficient 

and productive European banks will be better placed to weather future crises.  

 The paper is organized as follows. Section 2 surveys the somewhat patchy and inconclusive 

literature on the technical efficiency and productivity growth of European banks, particularly focusing on 

developments since the Global Financial Crisis. Our MIMIC-style model for measuring bank technical 

efficiency and productivity growth is set out in Section 3. The posterior distribution of the model, and the 

Monte Carlo method of inference, are outlined in Section 4. The data are described in Section 5, and the 

empirical results are presented and discussed in Section 6. Some further model checks are provided in 

Section 7. Finally, Section 8 is a summary and conclusion. 

2. The Efficiency of European Banks: A Literature Survey 

 Many studies look at the trends in, and the convergence of, the efficiency and productivity of 

European Banks.3 The creation of the European Union’s Single Market for financial services on January 

                                                            
2 Koutsomanoli-Filippaki and Mamatzakis (2009) explore the dynamic interactions between the risk and efficiency, 

of European banks. Although they the effects of distance to default shocks on inefficiency are negative and 

substantial, there is some evidence of a reverse causation.  
3 Numerous papers focus on a narrower aspect of European bank efficiency such as one country or one type of bank. 

For example, Avisoa (2016), Barros et al. (2010), Kontolaimou and Tskouras (2010) and Kuc (2017) study 

cooperative banks. Lozano-Vivas (1998), Khumbhakar et al. (2001), Tortosa-Austina et al. (2008) and Epure et al. 

(2011) study Spanish savings banks. Kumbhakar and Lozano-Vivas (2005) look at the impact of deregulation on the 

productivity of Spanish banks. Ali and Gstach (2000) study the impact of deregulation during 1990-1997 on 

Austrian banks. Battesse et al. (2000) examine the impact of derulation in the mid-1980s and the subsequent banking 
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1, 1993 was expected to foster cross-border completion, increase financial integration, and boost the 

efficiency of European banks. Altunbaᶊ et al. (2001), Lozano-Vivas et al. (2002), Maudos et al. (2002) 

and Bos and Schmiedel (2007) are examples of papers documenting significant dispersion in the 

efficiency of European banks around the time of the introduction of the Single Market. Altunbaᶊ et al. 

(2001) document the wide variation in efficiency across banks, and highlight the scope for additional cost 

savings through reducing managerial and other inefficiencies. They suggest that large banks benefit the 

most from technical progress, despite not having a scale economy advantage. Maudos et al. (2002) also 

highlight the variation in bank efficiency in 10 European Union (EU) countries in the mid -1990s, noting 

the much greater variation in profit efficiency than cost efficiency.4  

 The initial impact of the Single Market was limited to increased consolidation of banks at the 

local level (Berger et al., 2003). Casu and Molyneux (2003) detect a small improvement in European 

bank efficiency since the Single Market program, but little evidence of convergence. However, using 

bank data for ten EU countries between 1994 and 2005, Weill (2009) finds evidence of convergence in 

cost efficiency, supporting the view that the EU single market program generated greater financial 

integration. Casu and Giradone (2010) report that bank efficieceny generally improved as a result.  

 The evidence for the newer EU members is mixed. On the one hand, Kasman and Yildirim (2006) 

find considerable heterogeneity in cost and profit inefficiency of new EU member banks from Central and 

Eastern Europe, and little evidence of performance improvements over time. On the other hand, 

Mamatzakis et al. (2008) find evidence of convergence in the cost efficiency, but not in the profit 

efficiency, of new EU member state banks over the period 1998 to 2003. Brissimis et al. (2008) also 

explore the nexus between banking sector reform and the performance of banks in newly acceded EU 

countries over the period 1994 to 2005. They report that banking sector reform and greater competition  

raised bank efficiency, although the effect of reform on total factor productivity growth was significant 

                                                            
crisis on the efficiency and productivity growth of Swedish banks. Pasioras and Kosmidou (2007) examine the 

profitability of foreign and domestic commercial banks. Lensink et al. (2008) and Giradone et al. (2009) focus on 

difference in the efficiency related to foreign ownership and ownership structure, respectively. Canhoto and 

Dermine (2003) and Boucinha et al. (2013) study Portuguese banks, Rossi et al. (2005) banks in Central and Eastern 

Europe, and Staikouras et al. (2008) banks in South Eastern Europe. Altunbaş and Marqués (2008) show that 

European bank mergers between 1984 and 1995 tended to improve performance. Bolt and Humphrey (2010) 

develop a bank competition efficiency frontier, while Chortareas et al. (2013) study the link between financial 

freedom and bank efficiency. Galema and Koetter (2016) find that European banks supervised by the Single 

Supervisory Mechanism, i.e. at the supranational level, were less efficient than banks supervised by the relevant 

national regulatory authority. A number of earlier European studies are cited in Berger and Humphrey (1997). 
4 More recent papers such as Komtolaimou et al. (2012), Kontolaimou (2014) and Korytowski (2018) suggest that 

significant differences in European bank efficiency persist. 
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only toward the end of the reform process. These and other pre-Global Financial Crisis (GFC) 

developments in European banking are reviewed by Goddard and Molyneux (2007), who highlight the 

increased integration of European banking markets, and discuss the possible implications for (greater) 

systemic risk, (less effective) supervision, competition, bank strategies and technological change and 

efficiency.   

 European banks - especially banks in peripheral countries such as Greece, Ireland, Portugal and 

Spain - were severely affected by the Global Financial Crisis and related Eurozone sovereign debt crisis. 

Many European banks are still under-capitalized and saddled with large portfolios of non-performing 

loans. Fiordelisi et al. (2011) suggest that European banks with lagging pre-Crisis efficiency levels 

subsequently experienced higher risks and lower capital levels, which is consistent with a moral hazard 

explanation. Looking ahead, more efficient and productive European banks are much better placed to 

weather the legacy of the GFC and sovereign debt crisis, and future crises such as the current Covid-19 

crisis.  

 Many studies of European bank efficiency suggest that GFC and Eurozone sovereign debt crisis  

had a negative impact on efficiency. Matousek et al. (2015) report an overall decline in EU 15 and 

Eurozone bank efficiency and convergence following the financial crises. Lee and Huang (2017) find that 

the pre-crisis, gradual upward trend in bank efficiency was replaced by a downward trend during the 2007 

to 2010 crisis, arguing that managerial inability was the primary source of the inefficiencies. 

Asimakopoulos et al. (2018) suggest that the crisis reversed the trend of gradual converged in the 

efficiency of core and periphery banks, while noting that the impact of the crisis was more benign for core 

banks. Korytowski (2018) also reports a significant deterioration in bank efficiency during the crises. Two 

exceptions to the general view that the GFC and sovereign debt crisis had an adverse impact on efficiency 

are Andrieᶊ and Căpraru (2014) and Andrieᶊ and Ursu (2016). The former suggest that average cost and 

profit efficiency of EU 27 were relatively constant over the period 2004 to 2012. By contrast, the latter 

argue the financial crisis had a significant and positive effect on both cost and profit efficiency.  

3. Measuring Bank Efficiency and Productivity Growth with Multiple Indicators 

 In this paper, we augment a stochastic distance function measure of bank efficiency and 

productivity growth with multiple indicators of efficiency. Our multiple indicator approach is similar to, 

but more direct than, the multiple indicator-multiple cause (MIMIC) model of efficiency used by 

Chaudhuri et al. (2015) since technical efficiency is a scalar. Our approach is general, and augments the  

many cost, revenue and profit-based stochastic frontier models of bank efficiency in the literature. 

Augmenting stochastic frontier models with multiple indicators of efficiency takes account of additional, 
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relevant information. In addition, it generates more precise estimates of policy relevant parameters such 

as returns to scale, technical inefficiency, and productivity growth.  

(a) The Distance Function 

 As banks produce multiple outputs using multiple inputs, we start from a general distance or 

transformation function  𝐷(𝑋, 𝑌) = 1 , where 𝑋 is a vector of inputs and 𝑌 a vector of outputs. More 

formally, the output distance function is defined as 𝐷(𝑋, 𝑌) = min
𝜃

{𝜃 > 0, such that 𝑌 𝜃⁄  can be produced 

given 𝑋}, i.e. the distance function is the maximum expansion of output that can be produced with given 

inputs. 𝐷(𝑋, 𝑌) is homogeneous of degree one in outputs. Moreover, 𝐷(𝑋, 𝑌) ≤ 1, and equals unity if and 

only if the input-output combination is efficient. Additionally, the distance function  is convex in outputs 

and concave in inputs. For example, see Kumbhakar and Lovell (2000, chapter 2).  

 Since the distance function is homogeneous of degree one in outputs, we can write  𝑌1 =

𝐷(𝑋, 𝑌(−1) 𝑌1⁄ ), where 𝑌(−1) is the 𝑌 vector excluding 𝑌1. Taking logs of all variables we have 𝑦1 =

𝑓(𝑥 , 𝑦(−1)
† ; 𝛽), where 𝑦1 =  𝑙𝑛𝑌1, 𝑦(−1)

† = 𝑙𝑛𝑌(−1) − 𝑙𝑛𝑌1, 𝑥 = 𝑙𝑛𝑋, and 𝛽 is a parameter vector. 5 The 

function 𝑓 is in the form of a “production function”: it is non-decreasing in inputs and non-increasing in 

outputs, and characterizes the production technology. To economize on notation, it is convenient to 

redefine 𝑦 = 𝑦1, and add  𝑦(−1)
†

 and a time trend to the 𝑥 vector, with the understanding that 𝑥 now 

contains endogenous variables. The time trend captures technological change.  

(b) The Stochastic Frontier Distance Function 

 Our distance function model for bank 𝑖 at time 𝑡 is standard:  

(1)   𝑦𝑖𝑡 = 𝑓(𝑥𝑖𝑡; 𝛽) + 𝑣𝑖𝑡 − 𝑢𝑖𝑡 = 𝛽0 + 𝛽1
′𝑥𝑖𝑡 +

1

2
𝑥𝑖𝑡

′ 𝐵𝑥𝑖𝑡 + 𝑣𝑖𝑡 − 𝑢𝑖𝑡  , 

where 𝑓( ) is a Translog function with parameter vector 𝛽′ = (𝛽0, 𝛽1
′ , 𝑣𝑒𝑐ℎ(𝐵)′), 𝑣𝑖𝑡 is a regular 

symmetric, mean zero random error term, and 𝑢𝑖𝑡 ≥ 0 is a non-negative error component that represents 

technical inefficiency. In our application, we have two inputs – loans and other earned assets (OEA) – and 

three inputs – labor, physical capital and deposits or funds. We denote log loans as y, so 𝑥 consists of the 

log of the (OEA/loans), the logs of the three inputs - labor, physical capital, and deposits - and a time 

trend. The data are described in more detail in the next Section.  

(2)  𝑢𝑖𝑡~𝑁+(𝛾′𝑧𝑖𝑡 , 𝜎𝑢
2) ≥ 0 

                                                            
5 Suppose, for example, there are two inputs and outputs, and 𝑌 and 𝑋 are related via a SOMETHING MISSING 

HERE 
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In line with the literature, we assume that 𝑣𝑖𝑡  is a mean zero, normally distributed random error term, and 

technical inefficiency 𝑢𝑖𝑡~𝑁+(𝛾′𝑧𝑖𝑡 , 𝜎𝑢
2) ≥ 0 is a truncated normal error component. We allow technical 

inefficiency to depend on a vector 𝑧𝑖𝑡 “causes” of inefficiency, with associated coefficient vector  𝛾. Our 

𝑧 variables are the bank's age, a time trend, and input and output prices.6  

 To address endogeneity issues, we assume there is a vector of predetermined variables 𝑤, and a 

linear reduced form for 𝑥:  

(3)  𝑥𝑖𝑡 = Π 𝑤𝑖𝑡 + 𝑒𝑖𝑡,  

The reduced form allows for the endogeneity of the outputs as well as inputs, so it is very general in 

nature. We use a reduced form because the distance function is a representation of technology and, 

without additional behavioral assumptions, does not presume which variables are endogenous or 

predetermined. We allow the random error terms in the distance function and reduced form to be 

correlated. 

(4)  (𝑣𝑖𝑡 , 𝑒𝑖𝑡
′ )′~ 𝑁(0, 𝛴).  

The 𝑤 variables in the reduced form (3) consist of current and lagged values of all input prices, lagged 

values of all inputs and outputs, their squares and interactions, dummy variables for all commercial, 

cooperative, savings, investment, and real-estate banks and their interactions with all the other variables.  

(c) Indicators of Inefficiency - MIMIC Equations 

 The MIMIC-like system of equations assumes the presence of multiple indicators of technical 

inefficiency: 

(5)  𝑤𝑖𝑡 = 𝜆𝑢𝑖𝑡 + 𝜀𝑖𝑡 

(6)  𝜀𝑖𝑡~𝑁(0, Θ𝜀),  

where 𝑤 is the vector of inefficiency indicators and 𝜆 is the vector of factor loadings on the unobserved 

technical inefficiency. As in Chaudhuri et al. (2017), we include the return on assets (ROA) and return on 

equity (ROE) in our indicator vector  𝑤, but we augment them with the bank-specific Z-score, the ratio of 

equity to assets and the log volatility of ROA.  

 The idea is to jointly estimate the translog distance function, the reduced form and the MIMIC 

equations, i.e. equations (1) to (6), using the Bayesian methods of inference set out in the next Section. 

                                                            
6 Note that it is possible to include the vector of “inputs” 𝑥 in 𝑧, so that inefficiency 𝑢 is not assumed independent of 

the inputs and non-loan outputs. We leave this extension to further research. 

 



8 
 

We refer to this as the full MIMIC-style model. We also consider three special cases of this model.   The 

distance function on its own is Model I. This model ignores the endogeneity of the input and other output 

variables in the distance function. Model II - the distance function and the reduced form - addresses the 

endogeneity issue by including a reduced form for x. However, we argue that it ignores salient signals of 

technical efficiency. Model III, which consists of the MIMIC equations (5) and (6) on their own, is quite 

limited. It can generate estimates of technical inefficiency, but not estimates of returns to scale or 

productivity growth.  

4. Econometric Model 

 In this Section, we set out the posterior distribution of our MIMIC-model model and show how to 

estimate it using Markov Chain Monte Carlo methods. Consider a sample of panel data  𝑌 =

{𝑦𝑖𝑡 , 𝑥𝑖𝑡 , 𝑧𝑖𝑡 , 𝑤𝑖𝑡 , 𝑧0,𝑖𝑡}  for 𝑖 = 1, . . . , 𝑁 banks, and 𝑡 = 1, . . . , 𝑇 time periods. Our model consists of the 

Translog distance function  𝑦𝑖𝑡 = 𝑓(𝑥𝑖𝑡; 𝛽) + 𝑣𝑖𝑡 − 𝑢𝑖𝑡 , the reduced form  𝑥𝑖𝑡 =  𝛱𝑧𝑖𝑡 + 𝑒𝑖𝑡, and MIMIC 

equations 𝑤𝑖𝑡 = 𝜆𝑢𝑖𝑡 + 𝜀𝑖𝑡, with random error terms  𝑢𝑖𝑡|𝑧0,𝑖𝑡~𝑁+(𝛾′𝑧0,𝑖𝑡 , 𝜎𝑢
2),  (

𝑣𝑖𝑡

𝑒𝑖𝑡
) ~𝑁(0, Σ) ≡

𝑁 ((
0
0

) , (
𝜎𝑣

2 𝜎𝑣𝑒

𝜎𝑒𝑣 Σ𝑒𝑒
))  and 𝜀𝑖𝑡~ 𝑁(0, Θ𝜀) where all of the random error terms are independent of each 

other. The density function for a single observation is:  

(7) 𝑓(𝑦𝑖𝑡 , 𝑥𝑖𝑡 , 𝑤𝑖𝑡|𝑧𝑖𝑡 , 𝑧𝑜,𝑖𝑡; 𝜃)  = 

∫ (2𝜋)−(𝐾+1) 2⁄ |𝛴|−1 2⁄ exp {(
𝑦𝑖𝑡 − 𝑓(𝑥𝑖𝑡; 𝛽) + 𝑢𝑖𝑡

𝑥𝑖𝑡 − Π𝑧𝑖𝑡
)

′

Σ−1 (
𝑦𝑖𝑡 − 𝑓(𝑥𝑖𝑡; 𝛽) + 𝑢𝑖𝑡

𝑥𝑖𝑡 − Π𝑧𝑖𝑡
)}

∞

0

×  (2𝜋𝜎𝑢
2)−1 2⁄ exp {−

1

2𝜎𝑢
2 (𝑢𝑖𝑡 − 𝛾′𝑧𝑜,𝑖𝑡)2}  Φ (

1

𝜎𝑢
(𝑢𝑖𝑡 − 𝛾′𝑧𝑜,𝑖𝑡))

−1
 

× (2𝜋)−𝑃 2⁄ |Θ𝜀|−1exp {−
1

2
(𝑤𝑖𝑡 − 𝜆𝑢𝑖𝑡)′Θ𝜀

−1(𝑤𝑖𝑡 − 𝜆𝑢𝑖𝑡)} 𝑑𝑢𝑖𝑡  

where 𝜃′ = 𝑣𝑒𝑐ℎ(Σ)′(𝛽′, 𝛾′, 𝑣𝑒𝑐(𝛱)′, 𝑣𝑒𝑐ℎ(Θ𝜀)′, 𝜎𝑢) is the combined parameter vector, K is the 

dimension of Σ, and P is the number of indicators. By Bayes's theorem, the posterior distribution  

𝑝(𝜃|𝑌) ∝ 𝐿(𝜃; 𝑌) × 𝑝(𝜃), where 𝐿(𝜃; 𝑌) =  ∏ ∏ 𝑓(𝑦𝑖𝑡 , 𝑥𝑖𝑡 , 𝑤𝑖𝑡| 𝑧𝑖𝑡 , 𝑧𝑜,𝑖𝑡  ; 𝜃)𝑇
𝑡=1

𝑁
𝑖=1  is the likelihood 

function and  𝑝(𝜃) is the prior . Unfortunately, the integral with respect to  𝑢𝑖𝑡 in the likelihood is not 

available in closed form because of the presence of the normal distribution function Φ(⋅) in the density of 

𝑦𝑖𝑡 . 

 To overcome the difficulty with the integral, we consider the augmented posterior density 

𝑝(𝜃, {𝑢𝑖𝑡}|𝑌), which is proportional to: 
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(8) |𝛴|−𝑁𝑇
2  exp {−1

2
∑ ∑ (

𝑦𝑖𝑡 − 𝑓(𝑥𝑖𝑡; 𝛽) + 𝑢𝑖𝑡

𝑥𝑖𝑡 − Π𝑧𝑖𝑡
)

′

Σ−1 (
𝑦𝑖𝑡 − 𝑓(𝑥𝑖𝑡; 𝛽) + 𝑢𝑖𝑡

𝑥𝑖𝑡 − Π𝑧𝑖𝑡
)𝑖𝑡 } 

× 𝜎𝑢
−𝑇𝑁 exp {−

1

2𝜎𝑢
2 ∑ ∑ (𝑢𝑖𝑡 − 𝛾′𝑧𝑜,𝑖𝑡)2

𝑖𝑡
} ∏ ∏ Φ (

1

𝜎𝑢
(𝑢𝑖𝑡 − 𝛾′𝑧𝑜,𝑖𝑡))

−1

𝑖𝑡
 

× |Θ𝜀|−𝑁𝑇
2 exp {−

1

2
∑ ∑ (𝑤𝑖𝑡 − 𝜆𝑢𝑖𝑡)′Θ𝜀

−1(𝑤𝑖𝑡 − 𝜆𝑢𝑖𝑡)
𝑖𝑡

} 𝑝(𝜃) 

Before proceeding, it is useful to derive the posterior conditional distribution of technical inefficiency:  

(9) 𝑝(𝑢𝑖𝑡|𝜃, 𝑌) ∝ exp{− 1

2𝜎̃2(𝑢𝑖𝑡 − 𝑢̃𝑖𝑡)2}Φ ( 1

𝜎𝑢
(𝑢𝑖𝑡 − 𝛾′𝑧𝑜,𝑖𝑡))

−1

 

where  𝑢̃𝑖𝑡 = 𝜎̃2(𝜎𝑣𝑣  𝑟𝑖𝑡 +
1

𝜎𝑢
𝛾′𝑧0,𝑖𝑡+𝜆′ Θ𝜀

−1𝑤𝑖𝑡), 𝑟𝑖𝑡 = 𝑦𝑖𝑡 − 𝑓(𝑥𝑖𝑡; 𝛽) +
𝜎𝑒𝑣

𝜎𝑣𝑣 (𝑥𝑖𝑡 − Π𝑧𝑖𝑡), 𝜎̃2 = (𝜎𝑣𝑣 +

𝜎𝑢
−2+𝜆′ Σ𝜀

−1𝜆)−1  and Σ−1 = (
𝜎𝑣

2 𝜎𝑣𝑒

𝜎𝑒𝑣 Σ𝑒𝑒
)

−1

= (
𝜎𝑣𝑣 𝜎𝑣𝑒

𝜎𝑒𝑣 Σ𝑒𝑒 ).  

 Next we specify our priors, which we make as flat as possible relative to the likelihood. First, we 

assume Θ𝜀 is diagonal, so Θ𝜀 = 𝑑𝑖𝑎𝑔(Θ𝜀,1 … Θ𝜀,𝑃) where P is the number of MIMIC indicators. For the 

distance function parameters, our prior for the parameter vector 𝛽 is 𝛽~ 𝑁(0, ℎ𝛽
2  𝐼). For the parameters of 

the 𝐾 × 𝑀 reduced form matrix Π, we assume that 𝑣𝑒𝑐(Π )~𝑁(0, ℎΠ
2  𝐼). Our priors for the other 

parameters are standard: 𝛾~ 𝑁(0, ℎ𝛾
2𝐼),  𝑝(Σ) ∝ |Σ|−(𝑁Σ+𝐾+1) 2⁄ exp(−1

2
 𝑡𝑟𝐴Σ Σ−1), 𝑝(𝜎𝑢) ∝

𝜎𝑢
−(𝑁𝑢+1)

𝑒𝑥𝑝(− 1

2𝜎𝑢
2  𝑞 ) and 𝑝(Θ𝜀) ∝ |Θ𝜀|−(𝑁ε+𝐾+1) 2⁄ 𝑒𝑥𝑝(−1

2
 𝑡𝑟𝐴εΘ𝜀

−1). In the case of the MIMIC factor 

loadings, we use the prior 𝜆 ~ 𝑁(0, 𝐼). Finally, we set  ℎ𝛽 = ℎΠ  = ℎ𝛾 = 104, 𝑁Σ = 𝑁𝑢 =  𝑁ε = 1, 𝑞 =

 10−4 and 𝐴Σ = 𝐴ε = 10−4𝐼. 

 We use a Markov chain Monte Carlo (MCMC) scheme to evaluate the augmented joint posterior 

in (A2). The MCMC cycles through random number generation from the following conditional posterior 

distributions: 

(i)  Draw 𝛽 from the conditional posterior distribution  𝛽|𝛾, Π, Σ𝜀 , Σ, 𝜎𝑢, {𝑢𝑖𝑡}, 𝑌. 

(ii)  Draw 𝛾 from  𝛾|𝛽, Π, Θ𝜀 , Σ, 𝜎𝑢, {𝑢𝑖𝑡}, 𝑌. 

(iii)  Draw Π from   Π|𝛽, 𝛾, Θ𝜀 , Σ, 𝜎𝑢, {𝑢𝑖𝑡}, 𝑌. 

(iv)  Draw Σ𝜀 from   Θ𝜀|𝛽, 𝛾, Π, Σ, 𝜎𝑢, {𝑢𝑖𝑡}, 𝑌. 

(v)  Draw Σ from  Σ|𝛽, 𝛾, Π, Θ𝜀 , 𝜎𝑢, {𝑢𝑖𝑡}, 𝑌. 

(vi)   Draw 𝜎𝑢 from  𝜎𝑢|𝛽, 𝛾, Π, Θ𝜀 , Σ, {𝑢𝑖𝑡}, 𝑌.  

(vii) Draw 𝑢𝑖𝑡  from  𝑢𝑖𝑡|𝛽, 𝛾, Π, Θ𝜀 , Σ, 𝜎𝑢, 𝑌. 
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Steps (i), (iii), (iv) and (v) involve standard distributions, so random drawings can be realized easily. For 

(ii), (vi) and (vii) the parameters also appear in the normal distribution function Φ(⋅). Apart from this 

term, only standard distributions are involved so we use a simple Metropolis-Hastings independence 

algorithm to provide drawings from the posterior conditional distributions. For example, in step (ii) 

suppose we have a current draw 𝛾(𝑠−1). We draw a candidate from the “standard” part of the conditional 

posterior  𝛾∗~𝑁𝑄(𝛾̂, 𝑉𝛾) , where  𝛾̂ =  ℎ𝛾
2 ( ℎ𝛾

2𝑍𝑜
′ 𝑍𝑜 + 𝜎𝑢

2 𝐼)−1𝑍𝑜
′ 𝑢, 𝑉𝛾 =  ℎ𝛾

2 𝜎𝑢
2( ℎ𝛾

2𝑍𝑜
′ 𝑍𝑜 + 𝜎𝑢

2 𝐼)−1, 𝑢 is 

the 𝑁𝑇 × 1 vector consisting of all the 𝑢𝑖𝑡 's,  and 𝑍𝑜 is the 𝑁𝑇 × 𝑄 matrix consisting of the 𝑧𝑜,𝑖𝑡 's. We 

then accept the candidate 𝛾∗ with probability: 

min
𝑖,𝑗

{1, Φ((𝑢𝑖𝑡 − 𝑧𝑜.𝑖𝑡
′ 𝛾∗) 𝜎𝑢⁄ )−1 Φ((𝑢𝑖𝑡 − 𝑧𝑜.𝑖𝑡

′ 𝛾(𝑠−1)) 𝜎𝑢⁄ )
−1

⁄ }, 

otherwise we set  𝛾(𝑠) = 𝛾(𝑠−1). A similar construction is used to draw 𝜎𝑢 in step (vi). The candidate is 

drawn from ((𝑢 − 𝑍𝑜𝛾)′(𝑢 − 𝑍𝑜𝛾) + 𝑞) 𝜎𝑢
2⁄ ∼ 𝜒2(𝑁𝑇 + 𝑁𝑢). For step (vii) we draw a 

candidate𝑢𝑖𝑡
∗ ~𝑁+(𝑢̃𝑖𝑡 , 𝜎𝑢

2). Given the current draw 𝑢𝑖𝑡
(𝑠−1)

, the candidate draw  𝑢𝑖𝑡
∗  is accepted with 

probability:  

min
𝑖,𝑗

{1, Φ((𝑢𝑖𝑡
∗ − 𝑧𝑜.𝑖𝑡

′ 𝛾) 𝜎𝑢⁄ )−1 Φ((𝑢𝑖𝑡
(𝑠−1)

− 𝑧𝑜.𝑖𝑡
′ 𝛾(𝑠−1)) 𝜎𝑢⁄ )−1⁄ },  

otherwise we set 𝑢𝑖𝑡
(𝑠)

= 𝑢𝑖𝑡
(𝑠−1)

. 

5. Data 

 Our annual dataset includes commercial, cooperative and savings banks in the EU-15 countries 

that are listed in the Bankscope database over the period 2008–2015, a period which includes the GFC 

and Eurozone sovereign debt crisis. The 15 countries are Austria, Belgium, Denmark, Finland, France, 

Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain, Sweden and the United 

Kingdom. We restrict our analysis to credit institutions that report positive equity capital. After reviewing 

the data for reporting errors and other inconsistencies, we obtain an unbalanced panel dataset of 18,813 

observations, which includes 2,861 different banks.  

 For the estimation of bank efficiency, we employ the Sealey and Lindley (1977) intermediation 

approach for the definition of bank inputs and outputs. Sealey and Lindley assume that banks collect 

funds, and use labor and physical capital to transform the funds into loans and other earning assets. In 

particular, we specify three inputs - labor, physical capital and financial capital - and two outputs - loans 

and other earning assets (government securities, bonds, equity investments, CDs, T-bills, equity 

investment etc.). The corresponding input prices are calculated as follows. The price of labor equals the 

ratio of personnel expenses to total assets; the price of physical capital equals the ratio of other 

administrative expenses to fixed assets, and the price of deposits (financial capital) equals total interest 
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expenses divided by total interest bearing borrowed funds. The Z score distance-to-default measure of risk 

taking for bank i at time t is calculated as  𝑍𝑖𝑡 = (𝑅𝑂𝐴𝑖𝑡 + 𝐸𝑞𝑢𝑖𝑡𝑦𝑖𝑡  /𝐴𝑠𝑠𝑒𝑡𝑠𝑖𝑡) / 𝜎𝑖𝑡  , where 𝜎𝑖𝑡 it is the 

three year standard deviation of 𝑅𝑂𝐴𝑖𝑡. 

-- Table 1 – 

 Table 1 provides some descriptive statistics for our main variables. The statistics are presented 

for each country and for the overall EU-15 sample. We observe considerable variation across countries in 

relation to costs, revenues, as well as bank inputs and outputs. In particular, Spain and Sweden have the 

lowest average cost-to-assets ratio (at 3.5%), while Denmark stands at the other end of the spectrum (at 

5%). In addition, Denmark has the highest revenue-to-assets ratio (at 6.6%), while Finland and Ireland 

have the lowest. In the vast majority of EU-15 countries, loans comprise the largest share of the banks’ 

balance sheets - the exceptions being Luxembourg, Belgium and the UK. The price of labor ranges from 

0.6% in Ireland to 1.8% in Denmark. Moreover, there is considerable variation with respect to the price of 

physical capital, which ranges from 48.7% in Spain to 286.8% in Luxembourg, while the price of deposits 

ranges from 1.6% in Sweden to 4.3% in the Netherlands. In addition, banks’ average equity-to-assets ratio 

ranges from 6.5% in Germany and Ireland to 14.2% in Sweden.  

6. Empirical Results 

 In this section we present and discuss the results from the full MIMIC model, as well as the three 

nested models - Models I, II and III. Model I is the distance function, with an allowance for technical 

inefficiency, and may be used to generate estimates of returns to scale, technical change and productivity 

growth. Model II improves on Model I by adding the reduced form to account for endogeneity of the RHS 

variables in the distance function. Model III, which consists of the MIMIC indicator equations with an 

allowance for technical inefficiency, is not nested within Models I and II, and is silent about many 

important aspects of bank efficiency such as returns to scale, technical change and productivity growth. 

 We run our Markov Chain Monte Carlo (MCMC) procedure for 150,000 iterations, discarding the 

first 50,000 to mitigate possible start-up effects. Convergence is assessed by drawing 10 different sets of 

starting values from the prior, and running the MCMC again. For each set of starting points, we retain 

50,000 iterations after discarding the first 10,000 iterations. The resulting posterior means and standard 

deviations are almost identical to those reported in the Tables.  

-- Table 2 -- 

(a) Full Sample Results 



12 
 

 In Table 2 we report the posterior means and standard deviations for the basic elasticities and 

parameters of interest of the distance function from the full MIMIC model, as well as for larger and 

smaller banks and banks in the “Core” and “Periphery” EU-15.7 The change in efficiency is defined as 

𝐸𝐶𝑖𝑡 = 𝑟𝑖𝑡 − 𝑟𝑖𝑡−1 , where 𝑟𝑖𝑡 = 𝑒−𝑢𝑖𝑡   and 𝑢̃𝑖𝑡 is our measure of technical inefficiency. Technical change 

is 𝑇𝐶𝑖𝑡 =  𝜕𝑓(𝑥𝑖𝑡; 𝛽) 𝜕𝑡⁄ , and productivity growth is the sum of the change in technical efficiency and 

productivity growth, 𝑃𝐺𝑖𝑡 = 𝐸𝐶𝑖𝑡 + 𝑇𝐶𝑖𝑡. In Figure 1 we show the “All Bank” marginal posterior 

densities with respect to all three input elasticities (labor, capital and deposits), as well as the elasticity 

with respect to other earned assets (OEA), the second output. The marginal posterior density of returns to 

scale (RTS) is shown in Figure 2, and in Figure 3 we plot the “All Bank” marginal posterior densities of 

technical inefficiency, technical change, efficiency change and productivity growth.  

 The posterior means of the bank specific inputs - capital, labor and deposits - are all positive in 

Table 2, confirming that an increase in inputs increases bank lending. Looking at the “All Bank” results 

in in the first column, the magnitude of the elasticity of bank loans with respect to deposits is the largest 

at 0.412, whereas the labor and capital elasticities are 0.344 and 0.232 respectively. The marginal 

posterior densities of the labor, capital and deposit input elasticities as well as the other earned assets 

(OEA) output elasticity for “All Banks” are shown in Figure 1. The large positive deposit and negative 

OEA elasticities are in line with existing results in the literature (e.g., Chaffai et al., 2001; Casu et al., 

2004; Koutsomanoli et al., 2009; Delis et al., 2011). As expected, Figure 1 shows that the marginal 

posterior densities from the full MIMIC model are much tighter than the densities from Models I and II. 

-- Figures 1 and 2 -- 

 The three input elasticities - labor 0.344, capital 0.232 and deposits 0.4110 – in the “All Bank” 

column of Table 2 suggest that returns to scale are close to unity, and indeed our estimations show 

constant returns to scale. Figure 2 shows that the marginal posterior density of the returns to scale 

parameter is tightly centered on one. The average technical inefficiency of the EU-15 banks is quite 

substantial, since the   posterior mean is 0.148. The posterior density of technical inefficiency 𝑢̃𝑖𝑡 is 

slightly bimodel with a long right hand side tail (Figure 3, top left panel).8 

-- Figure 3 -- 

                                                            
7 Larger banks are those with total assets above the median (TAUTOLOGY). EU “Periphery” banks are banks in 

Greece, Ireland, Italy, Portugal and Spain. 
8  
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his is the first study to reveal the whole density function of productivity growth for EU-15 banks over this 

period, clearly showing that productivity growth was negative for most banks in the sample.2 We estimate 

that average productivity growth was -0.0168 (-1.68%) per annum for “All Banks”. Note that the 

estimates of both components of productivity growth - technical change and efficiency change - are 

negative at -0.0093 and -0.0075 respectively. The posterior densities of the “All Bank” change in 

efficiency, technical change and productivity growth are also shown in Figure 3.   

 Technical change (top right panel of Figure 3) clearly has a detrimental effect on productivity 

growth since, in the full MIMIC model, it is essentially negative across the whole spectrum of the density 

function. The density of efficiency change (bottom left panel) is almost symmetrical, with positive 

efficiency change values for about one third of the banks. The density of productivity growth (bottom 

right panel) is bimodal, and skewed to the left towards negative values. Technical change clearly has a 

detrimental effect on productivity growth since, in the full MIMIC model, it is essentially negative across 

the whole spectrum of the density function. It is striking that, for the vast majority EU-15 banks in our 

sample, the evidence is that technological regress drove down productivity growth. The policy 

implication is that the EU banking industry would benefit in terms of productivity and efficiency from 

innovation.  

(b) Subsample Results – Large and Small Banks, Periphery and Other Banks 

 We now consider the estimated parameters of interest for larger and smaller banks, and for banks 

in Greece, Ireland, Italy, Portugal and Spain (the “Periphery”) versus the rest of the EU-15. The full 

MIMIC model was estimated separately on each subsample, i.e. allowing for full parameter 

heterogeneity, so the results for the different sub-samples should not be compared with the “All Bank” 

results. Estimated returns to scale are close to one, except for smaller banks where returns are increasing. 

Larger banks and banks in the rest of the EU-15 rely more on other earned assets. In line with 

expectations, smaller banks and banks in Greece, Ireland, Italy, Spain and Portugal tend to be more 

inefficient. The productivity growth estimates suggest that productivity regress is greater in smaller banks 

than in larger banks. On average, the components of productivity growth are positive for banks in the rest 

of the EU-15 and negative for banks in Greece, Ireland, Italy, Spain and Portugal. 

-- Table 3 -- 

(c) Loadings on Technical Inefficiency Indicators 

 We now present some additional results for our modified MIMIC model. In the top panel of the 

Table 3, we present the posterior means and standard deviations of the technical inefficiency loadings for 
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our five indicators of efficiency - ROA, ROE, the equity-to-total assets ratio, the Z-score measure of 

distance to default, and the log of the volatility of ROA. Results are presented for the five major bank 

specializations in our sample, i.e. commercial, cooperative, savings, investment and real estate banks. 

Although the estimated loadings vary by bank specialization, all of the factor loadings, apart from that on 

volatility, are negative in line with our priors. The loadings suggest that, in our sample of EU-15 banks, 

greater technical efficiency is associated with higher profitability, lower leverage, a lower probability of 

default and lower return volatility.  

(d) Drivers of Inefficiency 

 We turn to the observable drivers of technical inefficiency in the lower panel of Table 3. Rather 

than reporting the posterior means and standard deviations of the γ parameters in our technical 

inefficiency equation, 𝑢𝑖𝑡~𝑁+(𝛾′𝑧𝑖𝑡 , 𝜎𝑢
2), we report a subset of the estimated marginal effects 

𝜕ln (𝑢𝑖𝑡|𝑧𝑖𝑡 , 𝛾, 𝜎𝑢
2) 𝜕𝑧𝑖𝑡⁄  averaged across the sample. In line with the model and our priors, the marginal 

inefficiency effects for the three input prices (labor, physical capital and deposits) are positive, whereas 

the marginal effects for the two output prices are negative. The bank age and technology trend marginal 

inefficiency effects are negative. The results shed new light on previous research (e.g. Chaffai et al., 

2001; Casu et al., 2004; Koutsomanoli et al., 2009; Delis et al., 2011), suggesting that diversifying by 

producing other earning assets and gaining experience, as well as investing in new technology, may 

enhance banking technical efficiency. 

7. Further Model Checks 

 We estimated the full MIMIC model and three nested models. Although we presented some 

results from the nested models I, II and II in the Figures, we focused on the full MIMIC model results. 

Since the nested and full MIMIC model results are materially different from each other, we believe a 

formal comparison of the “fit” of the different models is warranted. We check the fit of the models using 

Bayes factors and predictive densities. In addition, we check the sensitivity of our results to the omission 

of some of the MIMIM indicators. 

(a) Bayes Factors for Nested Models 

 Given any two models, the Bayes factor in favor of model 1 and against model 2 is 𝐵𝐹1:2 =

𝑀1(𝑌) 𝑀2(𝑌)⁄ , where 𝑀1(𝑌) and 𝑀2(𝑌) are the marginal likelihoods of the two models with data 𝑌. The 

marginal likelihood of a model with the d-dimensional parameter vector 𝜃, likelihood 𝐿(𝜃; 𝑌) and prior 

𝑝(𝜃) is 𝑀(𝑌) = ∫ 𝐿(𝜃; 𝑌) 𝑝(𝜃)𝑑𝜃. Rearranging the marginal likelihood identity 𝑝(𝜃|𝑌) =

𝐿(𝜃; 𝑌)𝑝(𝜃)𝑀(𝑌), we see that 𝑀(𝑌) =  𝐿(𝜃; 𝑌) 𝑝(𝜃) 𝑝(𝜃|𝑌)⁄ . This expression holds identically for all 𝜃 
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in the relevant parameter space (Chib, 1995), and is readily approximated. The denominator is 

approximately multivariate normal, which is always true in large samples. The mean of the normal 

distribution, 𝜃̅, can be obtained as the posterior mean of 𝑆 MCMC draws, and the same is true for the 

posterior covariance matrix, 𝑉̅ = 1

𝑆
∑ (𝜃(𝑠) − 𝜃̅) (𝜃(𝑠) − 𝜃̅)′𝑆

𝑠=1  . Hence, the approximation to the log of 

the marginal likelihood may be computed as (Perrakis et al., 2015): 

𝑙𝑛𝑀(𝑌) ≈ 𝑙𝑛𝐿(𝜃̅; 𝑌) + 𝑙𝑛𝑝(𝜃̅) +
𝑑

2
𝑙𝑛(2𝜋) +

1

2
𝑙𝑛|𝑉̅| 

 Using this approximation to the marginal likelihood, we compare our Full MIMIC model with 

Models I, II and III on different sub-samples of the data. The different sub-samples are generated by 

randomly omitting a block consisting of 20 observations. We do this for 1,000 different sub-samples, and 

the densities of the Bayes factors are presented in Figure 4, which clearly shows that all of the Bayes 

factors favor the full MIMIC model.9 A Bayes factor  𝐵𝐹1:2 > 1 is evidence in favor of model 1 relative 

to model 2. However, the strength of evidence differs by the magnitude of the Bayes factor. According to 

Kass and Raftery (1995), Bayes factors between 20 and 150 indicate “strong” evidence and Bayes factor 

is excess of 150 indicate “very strong” evidence. By this categorisation, we clearly have “very strong” 

evidence in favor of the full MIMIC model. 

-- Figure 4 -- 

   

(b) Predictive Densities 

 Thedependent variables can be predicted and compared to their actual values over different sub-

samples. Different models clearly imply different predictive densities, 𝑝(𝑦𝑜|𝑌(𝑚) ), where 𝑌(𝑚) is a sub-

sample of the data used for inference and 𝑦𝑜are the data to be predicted. The superscript “o” stands for 

outcome. To compare different models we use the log predictive score (𝐿𝑃𝑆) of a given model, which is 

defined as follows (Geweke and Amisano, 2011):  

𝐿𝑃𝑆 =  𝑙𝑛 𝑝(𝑦𝑜|𝑌(𝑚)) = 𝑙𝑛 ∫ 𝑝(𝑦𝑜 , 𝜃|𝑌(𝑚))𝑑𝜃 = ∫ 𝑝(𝑦𝑜|𝜃, 𝑌(𝑚))𝑝(𝜃|𝑌(𝑚))𝑑𝜃  

 Clearly, we should select the model with the highest LPS. Given a set of MCMC draws, 

{𝜃(𝑠), 𝑠 = 1, . . , 𝑆 } from 𝑝(𝜃|𝑌(𝑚)), then 𝐿𝑃𝑆 ≈ ln ( 1

𝑠
∑ 𝑝(𝑦𝑜|𝜃(𝑠), 𝑌(𝑚)))𝑠  where 𝑝(𝑦𝑜|𝜃(𝑠), 𝑌(𝑚)) is a 

product of densities under the assumption that 𝑦𝑜has components that are stochastically independent. 

When 𝑝(𝑦𝑜|𝜃(𝑠), 𝑌(𝑚)) = ∏ 𝑝(𝑦𝑗
𝑜|𝜃(𝑠), 𝑌(𝑚))

𝐽
𝑗=1 , with 𝐽 = 20 in our case, each density can be closely 

                                                            
9 ??????? 
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approximated using a kernel density estimator based on the draws 𝑦𝑗
𝑜,(𝑠)

~𝑦𝑗
𝑜|𝜃(𝑠), 𝑌(𝑚) for 𝑠 = 1, . . , 𝑆. 

This approximation can always be improved upon, as it depends on the number of draws 𝑆, rather than the 

sample size or the size of the sub-sample.  

-- Figure 5 – 

 For model comparisons, we consider the difference in the log predictive densities: ∆𝐿𝑃𝑆 =

𝐿𝑃𝑆1 − 𝐿𝑃𝑆2 where 𝐿𝑃𝑆1 and 𝐿𝑃𝑆2 are the log predictive scores of the two models, 1 and 2, under 

consideration. The density of ∆𝐿𝑃𝑆 arising from the different sub-samples is shown in Figure 5. The 

difference of 𝐿𝑃𝑆 is largest relative to model III, which is expected as this model includes only indicator 

variables., The full MIMIC model has an 𝐿𝑃𝑆 that differs on average from models I and II by 

approximately 𝑒𝑥𝑝(5.5) = 245. To summarize, in terms of Bayes factors and predictive densities, our 

novel MIMIC model dominates the nested stochastic frontier models (models I and II) and the standard 

MIMIC model (Model III). 

-- Table 4 – 

(c) Sensitivity of Parameter Estimates to Choice of Indicators 

 To examine the sensitivity of our results to the choice of five MIMIC indicators, we re-ran our 

models omitting one of the indicators in turn and retaining the best models in terms of Bayes factors. The 

results in Table 4 are reported as percentage differences from the baseline specification in Table 2. 

Generally, we find some sensitivity to the exclusion of an indicator, particularly when we omit the Z-

score or volatility indicators. If the Z-score is omitted, the posterior mean suggests that returns to scale are 

decreasing on average, and technical inefficiency is about one tenth lower. Overall, the estimates of 

productivity growth, efficiency and technical change, are robust to dropping one of the indicators. This is 

reassuring, since there are good a priori reasons to expect the estimates of technical inefficiency and 

productivity growth to be relatively invariant to the exclusion of key indicators of latent “performance”. 

-- Figure 6 – 

 Another interesting question is whether we should omit any of the 30 combination of the five 

indicators variables. We take the full model as the benchmark, and compute Bayes factors for the 30 

different models relative to the benchmark. The resulting Bayes factors are plotted in Figure 6, where the 

factors are arranged in increasing order. Clearly, all models behave worse compared to the benchmark, 

full MIMIC model, and the highest Bayes factor in favor of them is 10-4 approximately. 
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8. Summary and Conclusions 

 In this paper, we develop a new multiple-indicator multiple-cause style model of bank technical 

efficiency and productivity growth by augmenting a stochastic distance function with additional 

performance indicators, including measures of profitability, capital, risk and volatility. The model 

combines structural and non-structural approaches to measuring efficiency, and takes account of the 

endogenous risk-return tradeoff. Our novel MIMIC-style model may be estimated using standard 

Bayesian MCMC methods. It may be used with cost, revenue and profit stochastic frontier models, so 

both allocative and technical efficiency can be examined. It also generates more precise estimates of 

policy-relevant parameters, including returns to scale, technical inefficiency and productivity growth 

 We use the model to study the underlying bank performance of European banks. We find 

considerable variation in the performance of EU-15 banks over the period 2008-2015. For the vast 

majority of banks, productivity growth - the sum of efficiency and technical changes - is negative, 

implying that the banking industry would benefit from innovation. We show that greater technical 

efficiency is associated with higher profitability, lower leverage, a lower probability of default and lower 

return volatility. In line with expectations, smaller banks and banks in the “Periphery” (Greece, Ireland, 

Italy, Spain and Portugal) tend to be more inefficient. The productivity growth estimates suggest that 

productivity regress is greater in smaller banks than in larger banks. Finally, the change in efficiency and 

technical progress components of productivity growth are on average negative for banks in the Periphery 

and positive for banks in the rest of the EU-15. 
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Table 1: Means and standard deviations of the main variables, 2008-2015 

Country 
Costs / 

Assets 

(%) 

Revenue / 

Assets 

(%) 

Loans / 

Assets 

(%) 

OEA / 

Assets 

(%) 

Equity / 

Assets 

(%) 

Price of 

Labor 

(%) 

Price of 

Deposits 

(%) 

Price of 

Capital 

(%) 

N 

Austria  4.00 

(0.90) 

5.00 

(1.20) 

56.90 

(15.30) 

39.00 

(15.10) 

7.60 

(3.00) 

1.20 

(0.40) 

2.40 

(1.20) 

88.00 

(114.40) 

1,278 

Belgium  4.50 

(1.50) 

5.20 

(1.80) 

47.50 

(19.70) 

48.10 

(19.10) 

7.00 

(5.70) 

1.00 

(0.70) 

3.50 

(2.00) 

196.20 

(222.30) 

87 

Denmark  5.00 

(1.00) 

6.60 

(1.20) 

61.80 

(11.10) 

31.30 

(11.80) 

13.10 

(4.80) 

1.80 

(0.60) 

2.30 

(1.10) 

154.40 

(162.70) 

464 

Finland  3.80 

(1.50) 

4.60 

(1.60) 

63.60 

(21.40) 

30.70 

(18.60) 

7.70 

(2.40) 

0.80 

(0.60) 

3.50 

(2.30) 

243.00 

(208.90) 

39 

France  4.50 

(1.10) 

5.60 

(1.30) 

64.20 

(18.60) 

30.70 

(18.40) 

8.90 

(4.50) 

1.20 

(0.60) 

3.00 

(1.40) 

164.40 

(138.10) 

931 

Germany  4.50 

(0.70) 

5.50 

(0.70) 

57.90 

(12.80) 

37.50 

(12.80) 

6.50 

(2.00) 

1.40 

(0.40) 

2.50 

(0.60) 

86.40 

(85.00) 

10,693 

Greece  4.90 

(1.20) 

6.20 

(1.30) 

68.90 

(10.60) 

23.10 

(10.50) 

7.90 

(4.50) 

1.30 

(0.50) 

3.20 

(1.40) 

109.90 

(90.00) 

96 

Ireland  3.70 

(1.10) 

4.60 

(1.40) 

67.30 

(8.90) 

29.50 

(8.50) 

6.50 

(5.50) 

0.60 

(0.30) 

3.70 

(1.50) 

208.90 

(183.10) 

37 

Italy  4.10 

(0.80) 

5.30 

(1.10) 

68.40 

(13.30) 

26.70 

(13.00) 

11.30 

(4.00) 

1.40 

(0.30) 

3.00 

(1.60) 

105.20 

(115.30) 

3,390 

Luxembourg  4.10 

(1.70) 

5.30 

(2.30) 

33.80 

(18.40) 

61.70 

(18.20) 

6.70 

(5.30) 

0.90 

(0.70) 

3.00 

(1.70) 

286.80 

(255.60) 

167 

Netherlands  4.70 

(1.70) 

5.70 

(2.10) 

57.60 

(21.00) 

34.20 

(18.50) 

7.50 

(3.70) 

0.90 

(0.50) 

4.30 

(2.10) 

157.80 

(163.30) 

87 

Portugal  4.60 

(1.30) 

5.40 

(1.40) 

60.00 

(20.30) 

33.10 

(20.70) 

8.80 

(6.80) 

1.10 

(0.60) 

3.70 

(1.90) 

193.50 

(207.70) 

105 

Spain  3.50 

(0.90) 

4.60 

(1.00) 

71.70 

(12.20) 

23.10 

(12.00) 

8.90 

(3.80) 

0.90 

(0.40) 

2.50 

(1.20) 

48.70 

(63.70) 

709 

Sweden  3.50 

(0.80) 

5.10 

(0.90) 

74.90 

(11.10) 

22.40 

(10.90) 

14.20 

(4.90) 

1.20 

(0.30) 

1.60 

(1.00) 

200.20 

(156.50) 

439 

UK  4.00 

(1.60) 

5.20 

(2.10) 

47.20 

(18.50) 

47.00 

(19.70) 

9.40 

(6.50) 

0.90 

(0.50) 

3.10 

(1.80) 

247.40 

(209.80) 

291 

EU-15 4.30 

(0.90) 

5.40 

(1.00) 

60.70 

(14.90) 

34.60 

(14.80) 

8.00 

(3.90) 

1.30 

(0.40) 

2.60 

(1.10) 

103.10 

(115.20) 

18,831 

Notes: The table presents the means and standard deviations of the main variables used in our 

analysis. Assets = total assets, loans = net loans, capital = physical capital, OEA = other earned 

assets, and N = number of observations. Source: Bankscope database and author’s calculations.  
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Table 2: Posterior means and standard deviations of parameters of interest in MIMIC 

model 

Parameters of  

Interest 

All 

Banks 

Larger 

Banks 

Smaller 

Banks 

European 

“Periphery” 

Rest of 

EU-15 

 Elasticities  

Physical 

Capital 

0.232 

(0.022) 

0.221 

(0.072) 

0.305 

(0.081) 

0.303 

(0.035) 

0.496 

(0.023) 

Labor 0.344 

(0.037) 

0.317 

(0.044) 

0.221 

(0.015) 

0.412 

(0.022) 

0.613 

(0.028) 

Deposits 0.412 

(0.045) 

0.503 

(0.032) 

0.645 

(0.050) 

0.255 

(0.019) 

0.470 

(0.016) 

Other Earned 

Assets 

-0.781 

(0.038) 

-0.425 

(0.027) 

-0.120 

(0.032) 

-0.322 

(0.027) 

-0.517 

(0.033) 

Returns to Scale   1.013 

(0.045) 

1.041 

(0.032) 

1.171 

(0.016) 

0.970 

(0.012) 

0.985 

(0.017) 

Technical Inefficiency 0.148 

(0.014) 

0.251 

(0.133) 

0.310 

(0.089) 

0.282 

(0.133) 

0.133 

(0.089) 

Technical Change -0.0093 

(0.004) 

-0.005 

(0.003) 

-0.011 

(0.002) 

-0.012 

(0.0032) 

0.010 

(0.0025) 

Efficiency Change -0.0075 

(0.008) 

-0.025 

(0.012) 

-0.036 

(0.008) 

-0.025 

(0.012) 

0.017 

(0.0044) 

Productivity Growth -0.0168 

(0.012) 

-0.030 

(0.012) 

-0.047 

(0.022) 

-0.037 

(0.010) 

0.017 

(0.006) 

Notes: Full MCMC model estimates using 50,000 iterations. Large banks are those with total 

assets above the median. The EU “Periphery” consist of Greece, Ireland, Italy, Portugal and 

Spain.  
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Table 3: Posterior means and standard deviations for factor loadings, and marginal 

efficiency effects in MIMIC model 

 

Commercial 

Banks 

Cooperative 

Banks 

Savings 

Banks 

Investment 

Banks 

Real 

Estate 

Banks 

 MIMIC Equation Loadings 

Return on Assets 

(ROA) 
-0.045 
(0.012) 

-0.033 
(0.017) 

-0.041 
(0.015) 

-0.717 
(0.014) 

-0.072 
(0.015) 

Return on Equity 

(ROE) 
-0.017 
(0.0081) 

-0.081 
(0.035) 

-0.023 
(0.0044) 

-0.551 
(0.013) 

-0.044 
(0.008) 

Equity-to-Assets 

 
-0.013 
(0.008) 

-0.028 
(0.005) 

-0.035 
(0.007) 

-0.047 
(0.012) 

-0.065 
(0.017) 

Z-Score  -0.057 
(0.013) 

-0.032 
(0.014) 

-0.048 
(0.012) 

-0.044 
(0.007) 

-0.122 
(0.016) 

Log ROA Volatility 0.012 
(0.003) 

0.037 
(0.005) 

0.025 
(0.005) 

0.081 
(0.012) 

0.044 
(0.007) 

 Marginal Efficiency Effects 

Ln Price of Labor 0.032 
(0.007) 

0.015 
(0.009) 

0.044 
(0.011) 

0.055 
(0.011) 

0.061 
(0.013) 

Ln Price of Capital 0.081 
(0.012) 

0.032 
(0.018) 

0.093 
(0.005) 

0.121 
(0.013) 

0.224 
(0.013) 

Ln Price of Deposits 0.075 
(0.017) 

0.041 
(0.012) 

0.095 
(0.007) 

0.144 
(0.022) 

0.188 
(0.021) 

Ln Price of Loans -0.315 
(0.027) 

-0.222 
(0.015) 

-0.446 
(0.013) 

-0.527 
(0.013) 

-0.672 
(0.013) 

Ln Price of OEA -0.415 
(0.009) 

-0.188 
(0.013) 

-0.322 
(0.010) 

-0.884 
(0.014) 

-0.710 
(0.015) 

Bank Age -0.024 
(0.003) 

-0.031 
(0.012) 

-0.045 
(0.011) 

-0.052 
(0.014) 

-0.033 
(0.005) 

Time Trend -0.0014 
(0.0015) 

-0.0011 
(0.0011) 

0.0017 
(0.0012) 

-0.0012 
(0.0011) 

-0.0011 
(0.0010) 

Notes: OEA = other earned assets. The MIMIC factor loadings 𝜆 in equation (5) are shown in the 

top panel. The Z score equals (𝑅𝑂𝐴 +
𝐸𝑞𝑢𝑖𝑡𝑦

𝐴𝑠𝑠𝑒𝑡𝑠
) 𝜎𝑅𝑂𝐴⁄ . The marginal efficiency effects are calculated as 

𝜕𝑙𝑛𝐸𝑢𝑖𝑡 𝜕𝑧𝑞𝑡⁄ , where 𝑧𝑞 is the log of the price of labor, physical capital etc. The table entries are 

the posterior means and standard deviations (in parentheses) in the full MCMC model using 

50,000 iterations. 
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Table 4: The effect of dropping an indicator on key parameters of interest 

 

Parameters of 

Interest 

Full 

MIMIC 

Model 

 Omitted Indicator 

ROA ROE 
Equity/  

Asset 
Z-Score 

ROA 

Volatility 
 

 Percentage Difference Relative to Full MIMIC Model 

Returns to Scale 1.013 +1.2% 

(2.1) 

+1.5% 

(1.3) 

-18.8% 

(2.3) 

-17.1% 

(1.5) 

-10.1% 

(3.5) 

Technical Inefficiency 0.148 +1.7% 

(0.5) 

+1.2% 

(0.2) 

-10.3% 

(4.4) 

-17.5% 

(4.4) 

+8.5% 

(1.2) 

Efficiency Change -0.0093 +1.2% 

(7.0) 

+2.2% 

(4.3) 

-1.5% 

(0.7) 

-3.3% 

(1.3) 

-2.2% 

(0.6) 

Technical Change -0.0075 +3.5% 

(0.1) 

+2.2% 

(0.1) 

-1.1% 

(0.3) 

-1.5% 

(0.4) 

5.2% 

(0.1) 

Productivity Growth -0.0168 +4.7% 

(5.3) 

+4.4% 

(3.9) 

-2.6% 

(0.6) 

-3.8% 

(1.0) 

+3.0% 

(0.5) 

Notes: The table entries are the posterior means and standard deviations (in parentheses) of the 

percentage differences in the parameters of interest when the specified indicator is dropped from 

the full MIMIC model. The calculations are based on 50,000 MCMC iterations. 
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Figure 1: The posterior densities of the labor, capital and deposits (input) and other earned 

assets (output) elasticities in models I, II and the full MIMIC model  
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Figure 2: The posterior densities of returns to scale in models I, II and the full MIMIC 

model 
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Figure 3: The posterior distributions of technical efficiency, efficiency change, technical 

change and productivity growth 
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Figure 4: Bayes factors in favor of full MIMIC model 

 

Notes: Technical efficiency = 𝑢̃𝑖𝑡 . Productivity growth equals the sum of efficiency change and 

technical change, 𝑃𝐺𝑖𝑡 = 𝐸𝐶𝑖𝑡 + 𝑇𝐶𝑖𝑡. The change in efficiency 𝐸𝐶𝑖𝑡 =△ 𝑟̃𝑖𝑡, where 𝑟̃𝑖𝑡 =
exp (𝑢̃𝑖𝑡), and technical change 𝑇𝐶𝑖𝑡 = 𝜕𝑓(𝑥𝑖𝑡; 𝛽) 𝜕𝑡⁄ .  

 

Figure 5: Densities of △ 𝑳𝑷𝑺, the log predictive scores of models I, II and III relative to the 

full MIMIC model 
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Figure 6: Bayes factors for models with fewer than five MIMIC indicators 

 

 

 

 

 

 

 

 

 


