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Hybrid genetic algorithms based on bin packing strategy for the 

unrelated parallel workgroup scheduling problem 

In this paper we focus on an unrelated parallel workgroup scheduling problem 

where each workgroup is composed of a number of personnel with similar work 

skills which has eligibility and human resource constraints. The most difference 

from the general unrelated parallel machine scheduling with resource constraints 

is that one workgroup can process multiple jobs at a time as long as the resources 

are available, which means that a feasible scheduling scheme is impossible to get 

if we consider the processing sequence of jobs only in time dimension. We 

construct this problem as an integer programming model with the objective of 

minimizing makespan. As it is incapable to get the optimal solution in the 

acceptable time for the presented model by exact algorithm, meta-heuristic is 

considered to design. A pure genetic algorithm based on special coding design is 

proposed firstly. Then a hybrid genetic algorithm based on bin packing strategy is 

further developed by the consideration of transforming the single workgroup 

scheduling to a strip-packing problem. Finally, the proposed algorithms, together 

with exact approach, are tested at different size of instances. Results demonstrate 

that the proposed hybrid genetic algorithm shows the effective performance. 

Keywords: Unrelated parallel machine problem; Workgroup scheduling; Two-

dimensional bin packing problem; Heuristic strategy; Genetic algorithm 

1: Introduction 

The effective management for modern manufacturing enterprises is essentially the 

reorganization and relocation of the existing resources of enterprises especially in the 

face of turbulent requirements. A certain proportion of human labor is prevalent in most 

enterprises due to the requirements on high quality and even the main mode of 

production in some specific industry processes is still carried out manually. Therefore, it 

is particularly important to optimize the allocation of human resources. 

 In a practical production system, the employees with single technical ability still 

account for a large proportion. In addition, many jobs involve more than one worker 
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because of the complexity of their associated processes. These tasks require several 

personnel to work together as a workgroup, which is a group of personnel with 

complementary work skills for the tasks. Each workgroup has the ability to process one 

or more types of jobs independently. Therefore, assigning tasks often becomes a 

troublesome problem for managers not only to choose workgroup to process, but also to 

allocate workers under limited resource. 

 Consider such a scheduling problem if a set of jobs are processed by a number of 

unrelated parallel workgroups with fixed quantity of personnel in every group and each 

job has to choose one of the eligible groups to process with a determined processing time. 

Meanwhile, each job needs one or more personnel to process, which means it is possible 

that multiple jobs are processed simultaneously in one workgroup. However, these jobs 

can’t be processed infinitely at the same time because of the limited total number of 

personnel in each workgroup. This scheduling problem is common especially in complex 

equipment manufacturing areas, such as aerospace composites manufacturing and 

locomotive production, etc.  

 The classical unrelated parallel machine scheduling problem with additional 

resource (UPMR) refers to a set of jobs arranged to a number of parallel machines which 

require a number of units of a scare resource and there's a total amount of resources. This 

problem requires that no more than the total number of resources are used at any time.  

As for the problem we deal with in this paper, it’s similar to the UPMR problem when 

we regard workgroup as machine and the number of personnel for each workgroup is the 

human resource. We refer to such scheduling problem as the unrelated parallel 

workgroup scheduling problem with eligibility workgroup and resource constraints 

(denoted by UPWR).  
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The rest of the paper is organized as follows. In section 2, we review the 

relevant research work. In section 3, we define the problem and present the 

mathematical formulations. In section 4, we propose the two meta-heuristic algorithms 

to solve this problem. In section 5, the proposed algorithms are computationally tested 

and compared with existing models. Finally, we conclude the study and discuss for 

future research in section 6. 

2: Literature Review 

The classical parallel machine scheduling problem (PMSP) is a typical scheduling 

problem in textile industry, electronic manufacturing, mechanical processing, etc 

(Pinedo 2016).  In 1959, PMSPs were firstly proposed by McNaughton  (1959) and 

have attracted wide attention from scholars since then. Mathematically, even the two 

identical parallel machines were also demonstrated to be NP-hard (Lenstra, Rinnooy 

Kan, and Brucker 1977). According to the different types of parallel machines, PMSPs 

can be generally classified into identical  (Lann and Mosheiov 2003), uniform (Lee, 

Chuang, and Yeh 2012) and unrelated (Mokotoff and Chrétienne 2002). As the identical 

and uniform parallel machines can be regarded as special cases of unrelated parallel 

machines, the UPM problem is a general form of PMSP. 

In most of the UPM study, machine is the only resource to be considered. 

However, in a real-world production system, processing a job may needs another 

resource such as human labor, materlals, energy and so on (Slowinski 1980; Blazewicz 

et al. 1983; Ventura and Kim 2000).  After that, the research on UPMR problem mainly 

focuses on the following aspects: types of resources, objective functions and solution 

methods. The types of resources are renewable, non-renewable and doubly constrained 

(Edis, E.B., Oguz, C., and Ozkarahan, I. 2013). Chen, L., Ye, D., Zhang G. (2018) 

consider a problem of scheduling with renewable speed-up resources and give a 2-
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approximation algorithm. Due to the consideration of additional resources, problems 

based on different objective functions have also been studied. Edis, E.B., Oguz, C., and 

Ozkarahan, I. (2012) proposed integer and constraint programming models for 

minimizing the completion time of the last job. 

Solution approaches related to the UPMR problems are mainly included 

polynomial-time algorithms, exact approaches and approximation/heuristic approaches. 

Gyorgyi, Peter (2017) propose a polynomial time approximation scheme to solve the 

UPMR with non-renewable resource constraints. Fu, Y., Jiang, G., Tian, G., et al (2019) 

design a constructive heuristic approach and a hybrid nested partition method to fix the 

UPS where the resource needs to be allocated to machines in advance. Fanjul-Peyro, L., 

Perea, F., Ruiz, Rubén (2017) uses the ideas obtained from bin packing problem and 

propose matheuristic strategies. In addition, Akyol Ozer, E., Sarac, T. (2018) and 

Afzalirad, M. and Shafipour, M. (2018) also use meta-heuristic algorithm to solve the 

problem for large size of instances. More recently a lot of researches have begun to 

focus on the changes of time related to resources. Jin, J., Ji, P. (2017) consider that the 

resource-dependent ready times of jobs are continuous functions of their consumed 

resource. Wang, Z., Xiao, C., Lin, X., and Lu, Y. (2017) consider a single-machine 

scheduling problem with a deteriorating and resource-dependent maintenance activity.  

At present, most of the researches on personnel scheduling are transformed into 

machine scheduling problems. Considering the particularity of UPWR problem, newer 

methods need to be considered on the basis of traditional approaches.  

3: Problem definition and mathematical formulations 

This study describes an unrelated parallel workgroup scheduling problem with 

eligibility and resource constraints (UPWR), where there are a set of jobs to be allocated 

to a set of workgroups with determined processing time and number of processing 
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personnel. The workgroups are unrelated due to the different work skills of the staff. 

The difference in work skills results in the inability of personnel to move between 

workgroups, as well as the impossible processing once the manpower is insufficient. 

The goal is minimizing the makespan.  

3.1: Assumptions 

 All jobs are available at time zero, the processing time and number of personnel 

for each job, are fixed and known in advance. 

 All workgroups are always available for processing since time zero. 

 Each workgroup can process one or more jobs at a time within resource 

constraints. 

 Workgroup eligibility constraints: not all jobs can be processed on all 

workgroups. 

 Preemption is not allowed. 

3.2: Notations 

For convenience, following notations are introduced. 

(1) Indices 

1, 2,...,i m  Index for workgroups 

1,2,...,j n  Index for jobs 

max0,1,...,t T  Index for time 

(2) Problem Parameters 

ijp  Processing time of job j  on workgroup i  

ijeg  1 if workgroup i capable to process job j ; 0, otherwise 

ijr  Number of processing personnel of job j on workgroup i  

iR  Total number of human resources on workgroup i  

(3) Decision Variables 

ijtx  
1 if job j  is assigned to workgroup i and completes its processing at time t ; 

0, otherwise 
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maxC  makespan 

3.3: Mathematical formulation 

There, the UPWR is considered as a mixed integer programming model. It is formulated 

as below: 

 (Problem-UPWR) 

 
max Min C  (1) 

subject to 

 
max

max

1

   j
ij

Tm

ijt

i t p

x t C
 

    (2) 

 
max

1

=1   j
ij

Tm

ijt

i t p

x
 

  (3) 

 
max

   i,j
ij

T

ijt ij

t p

x eg


   (4) 

 
 

 min 1,

1 max ,

   i,t
ij

ij

t p Tn

ij ijs i

j s t p

r x R

 

 

     (5)

  0,1    , ,ijtx i j t   (6) 

There is one objective function of the UPWR, which aims to minimize the 

makespan (Eq. 1). Formulas (2) to (6) are constraints. Constraints (2) determine the 

makespan. Constraints (3) dictate that each job is assigned exactly one workgroup. 

Constraints (4) are workgroup eligibility constraints where a job is not allowed to be 

processed on an ineligible workgroup. Constraints (5) ensure that no more than iR units 
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of human resource are used at any time for each workgroup. Constraints (6) indicates 

that the decision variables ijtx are binary. 

In order to give a clearer illustration of the UPWR, an example is given to show 

the differences between this problem and the UPMR. 

Example 1.1. Consider the following instance of eight tasks ( 8n  ) needed to be 

processed. There are two available machines 1M , 2M  for the UPMR with total eight 

units resources ( max 8R  ) , while there are two available workgroups 1W , 2W with four 

units of personnel ( 1 2 4R R  )in each group for the UPWR. Let the processing time is 

denoted by ijp and the number of resource need is ijr  .The specific processing data are 

shown in Table 1. Some columns have null values in table 1, which means that the 

corresponding task can’t be processed by this machine or workgroup. 

Table 1. Processing data of example 1.1 

Job j  1 jp  2 jp  1 jr  2 jr  

1 3 NULL 2 NULL 

2 NULL 3 NULL 3 

3 3 2 2 2 

4 3 3 4 1 

5 3 2 3 4 

6 1 2 1 1 

7 NULL 1 NULL 1 

8 1 2 4 3 

Figure 1 shows the solutions to UPMR and UPWR. An optimal solution of the 

UPMR is shown in Fig.1a, where each machine is fully utilized and the optimal 

makespan max 8C  , but we can see the resources are not fully utilized. If these jobs are 

processed by workgroups, we obtain the solution given in Fig.1b with a shorter optimal 

makespan max 5C   and the utilization rates of personnel in the two workgroups are 95% 

and 100% respectively. As we can see, in UPWR problem, different jobs can be 

processed in one workgroup at the same time, for example, job 3 and 1, job 2 and 4. By 
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processing multiple tasks at the same time in one workgroup, the completion time is 

greatly shortened and the utilization of resources is effectively improved.  

 

Figure 1. Gantt diagrams representing the solutions to UPMR and UPWR 

Through the analysis of example1.1, the UPWR problem needs to consider not 

only the assignment of jobs to workgroups, but also the allocation of resources of each 

workgroup to jobs. Therefore, it requires another way of thinking so as to solve this 

problem. 

4: Solution method 

Solving the UPWR problem consists in determining the assignment of the jobs to the 

workgroups under workgroup eligibility constraints and the processing position of the 

jobs in the selected workgroup based on the constraints of human resources. In 

particular, it is possible for a workgroup to process multiple jobs at a time, which means 

that it is needed to confirm the processing sequence of jobs to a workgroup searching in 

a two-dimensional solution space. Different from the classical UPMR problem where 

the determination of order of jobs to a machine is only considered in time dimension, 

the UPWR is more complicated and difficult to solve.  
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As the addressed problem is NP-hard, applying exact approaches to solve the 

UPMR instances, especially for large-scale problems, may not get satisfactory solution 

within an acceptable time. Hence, we focus on developing meta-heuristic algorithms to 

solve it. Genetic algorithm (GA), proposed by Holland and John, H. (1973), is a well-

known approach to generate near-optimal solutions with flexible encoding scheme and 

genetic operators in a short computation time, which are widely used in various 

optimization problems (Rubén Ruiz, Concepción Maroto 2006, Ta, Q.C., Billaut, J.C., 

Bouquard, J.L. 2015). Besides, GA has been applied to solve the parallel machine 

scheduling problems.  

In this section, we first define a kind of mapping to map a set of processing 

sequences of jobs to a workgroup into a feasible scheduling scheme and propose a pure 

genetic algorithm with chromosome encoding of two-dimensional vector based on this 

mapping. In addition, considering the large solution space of the job processing 

sequence, we use the ideas obtained from bin-packing strategy to optimize the 

population initialization, crossover operator and mutation operator. 

4.1: Genetic algorithm (GA) 

4.1.1: Encoding and decoding operator 

For the UPMR problem, a set of processing sequences of jobs to a machine can 

represent a scheduling scheme on the corresponding machine. It is not feasible to 

represent a scheduling scheme directly by using the order of jobs as multiple jobs can be 

processed in a workgroup at one time. Hence, a two-dimensional vectors group coding 

method is adapted to construct chromosome and a mapping rule is designed to ensure 

the uniqueness of decoding operator. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 Let  
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s s s

 
   

 
denotes a chromosome where the length 

of it is equal to the total number of jobs n . For each gene 
j

j

j

i

i
g

s

 
  
  

 ( 1,2,...,j n ), ji

represents the selected workgroup of job j  and 
jis denotes the processing sequence of 

job j  in workgroup ji . 

 Without loss of generality, assume subset iJ consists of all the jobs assigned to 

the workgroup i . Let  iJ denote a feasible scheduling scheme of workgroup i under a 

given processing sequence (denoted by  iS J ) of job set iJ , where  represents a 

mapping relationship. Let set E denote a set of time index kt  ( max0,1,...,kt T ) . Such a 

mapping process is achieved by the following rule (donated by MAP-Rule) based on the 

MIP model. 

MAP-Rule 

Input: Processing sequence  iS J of job set iJ  in workgroup i  

Output: Scheduling scheme  iJ  

Initializes the set  = 0E , decision variable =0ijtx ; 

for iJ J  do 

    for t  in E do 

        Let  
1

iJiJ t p
x


  

        if  
 

1

1 max ,

 k , 1 ,   
ij

ij

k pn

iJ ij ijs i

j s k p

t t p r x R

 

 

       , then 

            add iJt p  into set E  

            sort E with ascending order 

        else  

            Let  
0

iJiJ t p
x


  

            delete t  from E  

            continue 

 

 We use a diagram to depict the process of encoding and decoding operator by 

taking the data of Example 1.1, which is shown in figure 2. The first string includes the 

assigned workgroup which can process the corresponding job while the second is the 
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processing sequence of each job in the corresponding workgroup. After adding other 

parameter data, we can decode this chromosome into the scheduling scheme based on 

MAP-Rule, which is shown in Fig.2. 

 

Figure 2. The diagram of encoding and decoding operator 

4.1.2: Population initialization 

The initial population is generated in a completely random way, the procedure is as 

follows: 

Step1: For each job j , ja  is chosen randomly in set jV , thus we obtain a n-

dimensional vector  1 2, ,..., na a a as the first string of chromosome; 

Step2: For each workgroup i , count the total number of jobs iN ; 

Step3: For each job j , the order of job j  in workgroup i is a natural number 

which is selected randomly and without repetition from  1, iN . Then, we get the second 

string. 

4.1.3: Crossover operator 

In view of the special nature of the chromosome encoding and the fact that each gene 

string represents a different meaning, we need a special design on the crossover 

operation. Here the two rows of chromosomes are crossed respectively, which is shown 

in figure 3. And the steps of crossover operator are given as follow.  
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Figure 3. The diagram of crossover operator 

  Step1: Randomly select the same location gene fragments of two parent 

individuals and cross the first-row gene information; 

Since the set of workgroups that each job can choose is predefined, the 

processing constraints are still satisfied after crossover. In order to make the next 

generation retain the parent information as much as possible, which is the processing 

sequence on each workgroup, the second line of gene string need to be modified with 

specific rules. 

Step2: For each workgroup i , make the minimum value in the list of processing 

sequence for the corresponding workgroup in the second line of the gene string as 1, the 

second minimum value as 2, and so on. If there are p  identical values corresponding to 

the new gene value q , then randomly select p  values without repetition from 

 , 1q q p   to be the p  gene values of the corresponding position after correction. 

4.1.4: Mutation operator 

Firstly, the gene in the first line of gene string is mutated in its optional workgroup set. 

Then, the second line of gene string is modified by cross-operation modification scheme. 

The diagram of mutation operator is shown in figure 4. 
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Figure 4. The diagram of mutation operator 

4.2: Hybrid Genetic algorithm based on bin packing strategy 

As for the pure genetic algorithm, it may lead to slow convergence speed and local 

optimum easily considering that the generation of processing sequence of jobs to a 

workgroup is completely random. Hence, a bin-packing strategy is used to generate the 

processing sequence of jobs for each workgroup, which can optimize the operations of 

population initialization. 

4.2.1: Bin packing strategy 

Consider a single workgroup scheduling problem where the jobs assigned to the 

workgroup are known. It can be regard as a two-dimensional strip packing problem, 

which is shown in figure 5. Given a rectangular case where the length represents the 

makespan and the width represents the units of human resources, the objective is to 

place a set of rectangular items (represent jobs) into the case with no overlap in x-axis 

or y-axis with the previously item kj so that the length is minimized. Based on this, the 

single workgroup scheduling problem can be solved with packing methods. At present, 

a number of studies have used the idea of packing methods for solving scheduling 

problems (Liang, X., Zhou, S., Chen, H., and Xu, R. 2019; Fanjul-Peyro, L., Perea, F., 

and Ruiz Rubén 2017).  
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Figure 5. The diagram of strip packing problem 

In this section, by analysing the best-fit heuristic algorithm proposed by Burke, 

E., Kendall, R., and Whitwell, G. (2006) and the recursive heuristic algorithm given by 

Peng, B.T., and Zhou, Y.W. (2012), we give a best priority first-heuristic packing 

strategy (denoted by BP) and apply it to solve single workgroup scheduling problem 

based on the proposed MIP model. There are seven kinds of priorities of job (denoted 

by jP ) which can be seen in figure 6 and the idea of this method is to find the highest 

priority job to assign in the process of each iteration.  

 

Figure 6. The rules of priority setting 

Based on the above rules, the steps of BP algorithm are shown as follows. 

Algorithm: BP 
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Input: Job set iJ processed in workgroup i  

Output: Processing sequence  iS J of jobs in workgroup i . 

Initializes the node set  = 0E , decision variable =0ijtx ; 

Sort iJ in descending order by ij ijr p ; 

for kt E  do 

    if ij J  , when  
1

k iJiJ t p
x


 , 

 

1

max ,

k ij

i k ij

t p

ij ijs i

j J s t p

r x R

 

 

   , then  

        Flag = True 

    else  

        Flag = False 

    if Flag == False, then 

        delete kt  from E  

        continue 

    else if ij J  ,
 

1

max ,

k ij

i k ij

t p

ij i ij ijs

j J s t p

r R r x

 

 

    , 1ij k kp t t   , then 7jP    

    else if 1 2, ij j J  , 
 

1 2

1

max ,

+
k ij

i k ij

t p

ij ij i ij ijs

j J s t p

r r R r x

 

 

    , 
1 2 1+ ij ij k kp p t t   , then

1 2, 6j jP   

    else if ij J  , 
 

1

max ,

k ij

i k ij

t p

ij i ij ijs

j J s t p

r R r x

 

 

    , then 5jP   

    else if 1 2, ij j J  , 
 

1 2

1

max ,

+
k ij

i k ij

t p

ij ij i ij ijs

j J s t p

r r R r x

 

 

    , then
1 2, 4j jP   

    else if ij J  , 1ij k kp t t   , then 3jP   

else if 1 2, ij j J  , 
1 2 1+ ij ij k kp p t t   , then

1 2, 2j jP   

else 1jP   

Choose ij J   and  max jj
P P  or choose 1 2, ij j J   and  *

1 2,
max jj j

P P   

Let 
 * 1

k iJij t p
x


  and delete 

*j  or 1 2,j j   from iJ  

update E  

if iJ  , then 

     break 

else 

     continue 

end 

4.2.2: Hybrid genetic algorithm 

 For a given working group, as long as the jobs processed in it are determined, it 

is obvious that the scheduling scheme generated by the processing sequence obtained by 

the BP algorithm is better than the randomly generated result in most cases. Based on 
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the BP algorithm, a hybrid genetic algorithm (denoted by BP_GA) is proposed. In 

BP_GA, instead of generating the processing order of jobs randomly, the BP algorithm 

is added to produce better chromosomes. Except for the formation of initial population, 

the other process including the mutation and the crossover operations for GA are also 

adopted for BP_GA. The steps of BP_GA are given as follows. 

Algorithm: BP_GA 

Input: Data of jobs and workgroups 

Output: A near optimal scheduling scheme J  

1. Parameter initialization: population size S , maximum generation maxG , crossover 

probability cP , and mutation probability mP  

2. Let generation index 1k   

3. Population initialization: 

Let individual index 1r   

while r S , do 

Determine  1 2, ,..., ni i i ,  1,2,...,ji m  

for each workgroup i : 

Get job set iJ  

Run BP with one input iJ  

    return  iS J  

Generate chromosome rCh  

1r r   

1pop( =1) { ,... ,... }r sk Ch Ch Ch  

4. while maxk G , do 

Do decoding operations 

Calculate the fitness of the k population 

Roulette selection 

if random<= cP , then 

Do crossover operations for the first-row gene string 

Do correction operations for the second-row gene string 

if random<= mP , then 

Do mutations operations for the first-row gene string 

Do correction operations for the second-row gene string 

1k k   

5. Choose the population with the lowest fitness 

end 
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5: Computational experiments 

In this section, we conduct computational experiments with instances of small and large 

sizes to evaluate the performance of the proposed GAs. For small problems, a branch 

and bound approach (B&B) under the Gurobi 8.1.1 software is adopted to get the 

optimal solution approach and compared with the proposed algorithms. However, with 

the increase of the size of the problem, it is impossible to get an optimal solution in an 

acceptable CPU time. Hence, the problems are optimally solved by the B&B with 3h 

run time limitation. All instances are randomly generated and the results are discussed 

for different sizes. The generation of instances and the proposed algorithms are coded 

with Python 3.7 by the PyCharm 2019 software. Both Gurobi and Pycharm software run 

on a personal computer including Inter(R) Core(TM) i5-8265U CPU with 2GHz speed 

and 8GB of RAM.  

5.1: Instances generation 

It is important that different degrees of parameters will affect the performance of the 

solution obtained by the algorithm. For the instances of UPWR problem, we choose the 

combination of the total number of workgroups ( m ) and the number of jobs ( n ) with 

different levels to reflect the size of the experiment. The other parameters for 

scheduling problems are purely at random within a given range.  ,U a b is a random 

integer uniformly distribution between a and b  (both extremes included), which is the 

most commonly distribution used for generating the instance about scheduling problem. 

(1) The number of workgroups m :  2,4,6m is considered. 

(2) The number of jobs n :  10,20,30,40,50n is considered for small-size instance 

and  120,140,160,180,200n for large-size.  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



(3) The maximum value of the time index maxT : For the UPWR problem, maxT is an upper 

bound of the optimal solution. For a certain workgroup, the maximum complete 

time equal to the sum of the processing times of these jobs which can be processed 

in this workgroup. Hence, maxT can be set equal to the maximum value of the 

maximum complete times for all workgroups, that is, 

max

1

= max , 1,2,...,
n

ij ij

j

T eg p i m


 
  

 
 . 

(4) The processing time ijp of job j  on workgroup i : let  = 1,20ijp U . 

(5) The eligible constraints ijeg : for job j , first determine the number of workgroups 

which can process job j  is  1,U m , then randomly add a workgroup without 

repetition from set of workgroups  1,2,...,m  to a set jV and execute  1,U m  times. 

Let 1ijeg  if ji V  and 0ijeg  if ji V . 

(6) The total number iR of human resources on workgroup i : let  = 10,15iR U . 

(7) The number ijr of processing personnel of job j  on workgroup i : let  = 1,ij ir U R . 

 Each size has totally 9 test problems respectively (denoted by n m ). For small-

size instance, let  10,20,30n when =2m ,   20,30,40n when =4m , and 

 30,40,50n when =6m . The setting for large-size instance is the same. In addition, 

we repeat all possible combinations ten times. Hence, the number of small-size and 

large-size instances to be tested is 90 separately. 

5.2: Algorithm parameter setting 

The performance of GA is generally sensitive to the settings of the parameters, which 

mainly include maximum generation maxG , population size S , crossover probability cP , 

and mutation probability mP . In this section, design of experiment (DOE) (Quenouille, 
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M.H., Kimball, A.W. 1953) is adopted to test the influence of different levels of factors 

on algorithm performance.  

 Each parameter takes four levels and the value of each level is shown in Table 2. 

According to the number of parameters and levels, an orthogonal experiment with 

 4

16 4L size is adopted in this paper.  The 50 4n m   size of instance and pure genetic 

algorithm (GA) are selected to test, and the algorithm runs independently 20 times for 

each combination of parameters. The average value of relative percentage deviation 

(RPD) is applied for response variable (RV). The orthogonal table and RV value of each 

parameter combination are shown in Table 3, the range and importance of each 

parameter are shown in Table 4, and the influence trend of each parameter on algorithm 

performance is shown in Figure 7 where the gray line shows mean value of each 

parameter. 

Table 2. Values of each level for four parameters 

Parameter Level 

1 2 3 4 

maxG  100 150 200 300 

S  100 150 200 250 

cP  0.6 0.7 0.8 0.9 

mP  0.01 0.05 0.1 0.25 

 

Table 3. Values of each level for four parameters 

No. Level RV 

maxG  S  cP  mP  

1 1 1 1 1 42.84 

2 1 2 2 2 33.86 

3 1 3 3 3 29.09 

4 1 4 4 4 24.43 

5 2 1 2 3 36.47 

6 2 2 1 4 30.22 

7 2 3 4 1 27.61 

8 2 4 3 2 24.55 

9 3 1 3 4 30.34 

10 3 2 4 3 25.57 

11 3 3 1 2 29.54 

12 3 4 2 1 31.36 

13 4 1 4 2 31.59 
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14 4 2 3 1 32.95 

15 4 3 2 4 25.34 

16 4 4 1 3 26.25 

 

Table 4. Values of each level for four parameters 

Level maxG  S  cP  mP  

1 32.56 35.31 32.22 33.69 

2 29.72 30.65 31.76 29.89 

3 29.20 27.90 29.23 29.35 

4 29.03 26.65 27.30 27.59 

Range 3.52 8.66 4.91 6.11 

Rank 4 1 3 2 

 

 

Figure 7. The influence trend of each parameter on algorithm performance 

As shown in Table 3 and Fig. 7, the maximum range is population size S , which 

indicates different population sizes have great influence on the algorithm. Small value 

of S will get poor result while large value will affect the search efficiency. The second 

largest is mutation probability mP . As with population size, the value of is mP neither too 

large nor too small. The maximum generation maxG and crossover probability cP  hold 

small fluctuation during the test. Based on the above analysis, the recommended values 

of the four parameters are: max =150G , =200S , =0.8cP , =0.1mP . 

5.3: Experimental results and analysis 

To evaluate the performance of the proposed algorithms, the CPU time and RPD are 

often used as reference indexes. Since all size of problems are tested for ten times, we 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



use the average CPU time ( ACT ) and the relative percentage deviation ( ARPD ) to 

evaluate each algorithm. ARPD  is computed for each instance according to the 

following expression: 

  lg min

max max100 / 1 /10aARPD C C    (7) 

where lg

max

aC  is the makespan obtained by each algorithm for each size of instance and

min

maxC  is the best solution through all approaches.  

The test results for the UPWR problem with small sizes and algorithms are 

summarized in Table 5. The ARPD  and ACT  by ten times running of B&B, GA, 

BP_GA for small-size instance are compared.  

Table 5. Experimental results given by the three algorithms for small-size problem 

No. Size ARPD  ACT (s) 

 n m  B&B GA BP_GA  B&B GA BP_GA 

1 10 2  0 0 0  1.01 5.5 5.9 

2 20 2  0 0 0  6.98 11.5 17.4 

3 30 2  0 9.13 7.97  508.28 15.5 16.2 

4 20 4  0 8.42 6.32  0.72 19.9 24.4 

5 30 4  0 19.6 25.2  43 16.9 16.3 

6 40 4  0 18.85 20.86  2025.42 16.9 42.2 

7 30 6  0 19.05 20.48  2.04 17.6 12.8 

8 40 6  0 12.58 1.61  3.35 17 22.4 

9 50 6  0 31.2 42.8  10.32 25 32 

  

Table 6. Comparison between GA and BP_GA for large-size problems 

No. Size ARPD   ACT (s) 

 n m  GA BP_GA  GA BP_GA 

1 120 2  4.43 3.58   75.5 58.5 

2 140 2  7.59 4.99   89.3 83.5 

3 160 2  8.95 3.62   99.6 99.3 

4 140 4  12.76 18.09   80.7 90.5 

5 160 4  8.56 5.10  116 92.7 
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6 180 4  6.33 4.25  128.4 98.9 

7 160 6  16.72 10.00  110.8 93.5 

8 180 6  15.07 11.58   121.7 117.3 

9 200 6  16.16 9.80  126.5 108.8 

  

 Table 5 shows the obtained results from B&B, GA and BP_GA for nine size 

problems. As it can be seen from Table 5, the proposed Gas can get satisfactory solution 

in a short time but the exact algorithm can also get the exact solution in a very short 

time for most cases. Hence, the meta-heuristic algorithm has no advantage over exact 

algorithm in solving small-scale problems. However, for large size of problems, as 

shown in Table6, the exact algorithm can’t achieve best solution in acceptable run time. 

But the GAs can get a better solution in a short time and BP_GA performs better than 

GA. As a result, for selecting only one algorithm, BP_GA is more suitable than GA to 

finding the accurate solution. 

6: Conclusions 

This paper addresses a realistic unrelated parallel workgroup scheduling problem where 

tasks are processed by workgroups rather than machines which results in the ability to 

process multiple tasks in the same workgroup at the same time. An integer 

programming model is proposed to consider makespan for this problem. A pure genetic 

algorithm and a hybrid genetic algorithm based on bin packing strategy are given, and 

different sizes of instances are adopted to test proposed algorithms. The main 

contributions could be summarized as follows: 

(1) An unrelated parallel workgroup scheduling problem with workgroup eligibility 

and resource constraints is proposed where a workgroup process multiple jobs at 

the same time, and we formulate the problem as an integer programming model 

with the objective of minimizing makespan. 
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(2) A pure genetic algorithm (GA) model is adopted to solve this problem. In order 

to describe this problem easily, we design a mapping rule to simplify 

chromosome coding. 

(3) A hybrid genetic algorithm based on bin packing strategy is further developed 

by the consideration of transforming the single workgroup scheduling to a strip-

packing problem, i.e. total amount of personnel in a workgroup is defined as 

width of rectangle and makespan represents the length of rectangle.  

(4) Small and large sizes of cases are adopted to test the algorithms. Results show 

that the proposed BP_GA can provide a feasible and superior solution for the 

UPWR  

Additionally, our future research directions involve the consideration of other 

factors such as the release times and due dates of jobs. Furthermore, we will build 

multi-objective optimization model in future studies in order to make our model more 

realistic. Considering other bin packing strategies also seems interesting. 
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