
Journal of Intelligent Manufacturing

Hybrid genetic algorithms based on bin packing strategy for the unrelated parallel
workgroup scheduling problem

--Manuscript Draft--

Manuscript Number: JIMS-D-19-00463R4

Full Title: Hybrid genetic algorithms based on bin packing strategy for the unrelated parallel
workgroup scheduling problem

Article Type: Original Research

Keywords: Unrelated parallel machine problem; Workgroup scheduling; Two-dimensional bin
packing problem; Heuristic strategy; Genetic Algorithm

Corresponding Author: Naiming Xie, Ph.D
Nanjing University of Aeronautics and Astronautics College of Economics and
Management
CHINA

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Nanjing University of Aeronautics and Astronautics College of Economics and
Management

Corresponding Author's Secondary
Institution:

First Author: Bentao Su

First Author Secondary Information:

Order of Authors: Bentao Su

Naiming Xie, Ph.D

Yingjie Yang

Order of Authors Secondary Information:

Funding Information: National Natural Science Foundation of
China
(71671090)

Dr. Naiming Xie

National Natural Science Foundation of
China
(71871117)

Dr. Naiming Xie

Joint research project of National Natural
Science Foundation of China and Royal
Society of UK
(71811530338)

Dr. Naiming Xie

Fundamental Research Funds for the
Central Universities
(NP2018466)

Dr. Naiming Xie

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Hybrid genetic algorithm based on bin packing strategy for the unrelated

parallel workgroup scheduling problem

Bentao Sua, Naiming Xiea* and Yingjie Yangb

a. College of Economics and Management, Nanjing University of Aeronautics and

Astronautics, Nanjing, China

b. Institute of Artificial Intelligence, De Montfort University, Leicester, UK

*Correspondence: Naiming Xie, College of Economics and Management, Nanjing

University of Aeronautics and Astronautics, 29th, Jiangjun Avenue, Nanjing, Jiangsu,

People’s Republic of China

Email: xienaiming@nuaa.edu.cn

Manuscript Click here to access/download;Manuscript;revised
manuscript.docx

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.editorialmanager.com/jims/download.aspx?id=131090&guid=b4b3100f-128c-42e0-8d63-bd923d88deaf&scheme=1
https://www.editorialmanager.com/jims/download.aspx?id=131090&guid=b4b3100f-128c-42e0-8d63-bd923d88deaf&scheme=1
https://www.editorialmanager.com/jims/viewRCResults.aspx?pdf=1&docID=10894&rev=4&fileID=131090&msid=3eb7a737-277d-4aa4-b7bd-3deb2824b2de

Hybrid genetic algorithms based on bin packing strategy for the

unrelated parallel workgroup scheduling problem

In this paper we focus on an unrelated parallel workgroup scheduling problem

where each workgroup is composed of a number of personnel with similar work

skills which has eligibility and human resource constraints. The most difference

from the general unrelated parallel machine scheduling with resource constraints

is that one workgroup can process multiple jobs at a time as long as the resources

are available, which means that a feasible scheduling scheme is impossible to get

if we consider the processing sequence of jobs only in time dimension. We

construct this problem as an integer programming model with the objective of

minimizing makespan. As it is incapable to get the optimal solution in the

acceptable time for the presented model by exact algorithm, meta-heuristic is

considered to design. A pure genetic algorithm based on special coding design is

proposed firstly. Then a hybrid genetic algorithm based on bin packing strategy is

further developed by the consideration of transforming the single workgroup

scheduling to a strip-packing problem. Finally, the proposed algorithms, together

with exact approach, are tested at different size of instances. Results demonstrate

that the proposed hybrid genetic algorithm shows the effective performance.

Keywords: Unrelated parallel machine problem; Workgroup scheduling; Two-

dimensional bin packing problem; Heuristic strategy; Genetic algorithm

1: Introduction

The effective management for modern manufacturing enterprises is essentially the

reorganization and relocation of the existing resources of enterprises especially in the

face of turbulent requirements. A certain proportion of human labor is prevalent in most

enterprises due to the requirements on high quality and even the main mode of

production in some specific industry processes is still carried out manually. Therefore, it

is particularly important to optimize the allocation of human resources.

 In a practical production system, the employees with single technical ability still

account for a large proportion. In addition, many jobs involve more than one worker

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

because of the complexity of their associated processes. These tasks require several

personnel to work together as a workgroup, which is a group of personnel with

complementary work skills for the tasks. Each workgroup has the ability to process one

or more types of jobs independently. Therefore, assigning tasks often becomes a

troublesome problem for managers not only to choose workgroup to process, but also to

allocate workers under limited resource.

 Consider such a scheduling problem if a set of jobs are processed by a number of

unrelated parallel workgroups with fixed quantity of personnel in every group and each

job has to choose one of the eligible groups to process with a determined processing time.

Meanwhile, each job needs one or more personnel to process, which means it is possible

that multiple jobs are processed simultaneously in one workgroup. However, these jobs

can’t be processed infinitely at the same time because of the limited total number of

personnel in each workgroup. This scheduling problem is common especially in complex

equipment manufacturing areas, such as aerospace composites manufacturing and

locomotive production, etc.

 The classical unrelated parallel machine scheduling problem with additional

resource (UPMR) refers to a set of jobs arranged to a number of parallel machines which

require a number of units of a scare resource and there's a total amount of resources. This

problem requires that no more than the total number of resources are used at any time.

As for the problem we deal with in this paper, it’s similar to the UPMR problem when

we regard workgroup as machine and the number of personnel for each workgroup is the

human resource. We refer to such scheduling problem as the unrelated parallel

workgroup scheduling problem with eligibility workgroup and resource constraints

(denoted by UPWR).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The rest of the paper is organized as follows. In section 2, we review the

relevant research work. In section 3, we define the problem and present the

mathematical formulations. In section 4, we propose the two meta-heuristic algorithms

to solve this problem. In section 5, the proposed algorithms are computationally tested

and compared with existing models. Finally, we conclude the study and discuss for

future research in section 6.

2: Literature Review

The classical parallel machine scheduling problem (PMSP) is a typical scheduling

problem in textile industry, electronic manufacturing, mechanical processing, etc

(Pinedo 2016). In 1959, PMSPs were firstly proposed by McNaughton (1959) and

have attracted wide attention from scholars since then. Mathematically, even the two

identical parallel machines were also demonstrated to be NP-hard (Lenstra, Rinnooy

Kan, and Brucker 1977). According to the different types of parallel machines, PMSPs

can be generally classified into identical (Lann and Mosheiov 2003), uniform (Lee,

Chuang, and Yeh 2012) and unrelated (Mokotoff and Chrétienne 2002). As the identical

and uniform parallel machines can be regarded as special cases of unrelated parallel

machines, the UPM problem is a general form of PMSP.

In most of the UPM study, machine is the only resource to be considered.

However, in a real-world production system, processing a job may needs another

resource such as human labor, materlals, energy and so on (Slowinski 1980; Blazewicz

et al. 1983; Ventura and Kim 2000). After that, the research on UPMR problem mainly

focuses on the following aspects: types of resources, objective functions and solution

methods. The types of resources are renewable, non-renewable and doubly constrained

(Edis, E.B., Oguz, C., and Ozkarahan, I. 2013). Chen, L., Ye, D., Zhang G. (2018)

consider a problem of scheduling with renewable speed-up resources and give a 2-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

approximation algorithm. Due to the consideration of additional resources, problems

based on different objective functions have also been studied. Edis, E.B., Oguz, C., and

Ozkarahan, I. (2012) proposed integer and constraint programming models for

minimizing the completion time of the last job.

Solution approaches related to the UPMR problems are mainly included

polynomial-time algorithms, exact approaches and approximation/heuristic approaches.

Gyorgyi, Peter (2017) propose a polynomial time approximation scheme to solve the

UPMR with non-renewable resource constraints. Fu, Y., Jiang, G., Tian, G., et al (2019)

design a constructive heuristic approach and a hybrid nested partition method to fix the

UPS where the resource needs to be allocated to machines in advance. Fanjul-Peyro, L.,

Perea, F., Ruiz, Rubén (2017) uses the ideas obtained from bin packing problem and

propose matheuristic strategies. In addition, Akyol Ozer, E., Sarac, T. (2018) and

Afzalirad, M. and Shafipour, M. (2018) also use meta-heuristic algorithm to solve the

problem for large size of instances. More recently a lot of researches have begun to

focus on the changes of time related to resources. Jin, J., Ji, P. (2017) consider that the

resource-dependent ready times of jobs are continuous functions of their consumed

resource. Wang, Z., Xiao, C., Lin, X., and Lu, Y. (2017) consider a single-machine

scheduling problem with a deteriorating and resource-dependent maintenance activity.

At present, most of the researches on personnel scheduling are transformed into

machine scheduling problems. Considering the particularity of UPWR problem, newer

methods need to be considered on the basis of traditional approaches.

3: Problem definition and mathematical formulations

This study describes an unrelated parallel workgroup scheduling problem with

eligibility and resource constraints (UPWR), where there are a set of jobs to be allocated

to a set of workgroups with determined processing time and number of processing

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

personnel. The workgroups are unrelated due to the different work skills of the staff.

The difference in work skills results in the inability of personnel to move between

workgroups, as well as the impossible processing once the manpower is insufficient.

The goal is minimizing the makespan.

3.1: Assumptions

 All jobs are available at time zero, the processing time and number of personnel

for each job, are fixed and known in advance.

 All workgroups are always available for processing since time zero.

 Each workgroup can process one or more jobs at a time within resource

constraints.

 Workgroup eligibility constraints: not all jobs can be processed on all

workgroups.

 Preemption is not allowed.

3.2: Notations

For convenience, following notations are introduced.

(1) Indices

1, 2,...,i m Index for workgroups

1,2,...,j n Index for jobs

max0,1,...,t T Index for time

(2) Problem Parameters

ijp Processing time of job j on workgroup i

ijeg 1 if workgroup i capable to process job j ; 0, otherwise

ijr Number of processing personnel of job j on workgroup i

iR Total number of human resources on workgroup i

(3) Decision Variables

ijtx
1 if job j is assigned to workgroup i and completes its processing at time t ;

0, otherwise

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

maxC makespan

3.3: Mathematical formulation

There, the UPWR is considered as a mixed integer programming model. It is formulated

as below:

 (Problem-UPWR)

max Min C (1)

subject to

max

max

1

 j
ij

Tm

ijt

i t p

x t C
 

   (2)

max

1

=1 j
ij

Tm

ijt

i t p

x
 

 (3)

max

 i,j
ij

T

ijt ij

t p

x eg


  (4)

 

 min 1,

1 max ,

 i,t
ij

ij

t p Tn

ij ijs i

j s t p

r x R

 

 

    (5)

  0,1 , ,ijtx i j t  (6)

There is one objective function of the UPWR, which aims to minimize the

makespan (Eq. 1). Formulas (2) to (6) are constraints. Constraints (2) determine the

makespan. Constraints (3) dictate that each job is assigned exactly one workgroup.

Constraints (4) are workgroup eligibility constraints where a job is not allowed to be

processed on an ineligible workgroup. Constraints (5) ensure that no more than iR units

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

of human resource are used at any time for each workgroup. Constraints (6) indicates

that the decision variables ijtx are binary.

In order to give a clearer illustration of the UPWR, an example is given to show

the differences between this problem and the UPMR.

Example 1.1. Consider the following instance of eight tasks (8n ) needed to be

processed. There are two available machines 1M , 2M for the UPMR with total eight

units resources (max 8R ) , while there are two available workgroups 1W , 2W with four

units of personnel (1 2 4R R )in each group for the UPWR. Let the processing time is

denoted by ijp and the number of resource need is ijr .The specific processing data are

shown in Table 1. Some columns have null values in table 1, which means that the

corresponding task can’t be processed by this machine or workgroup.

Table 1. Processing data of example 1.1

Job j 1 jp 2 jp 1 jr 2 jr

1 3 NULL 2 NULL

2 NULL 3 NULL 3

3 3 2 2 2

4 3 3 4 1

5 3 2 3 4

6 1 2 1 1

7 NULL 1 NULL 1

8 1 2 4 3

Figure 1 shows the solutions to UPMR and UPWR. An optimal solution of the

UPMR is shown in Fig.1a, where each machine is fully utilized and the optimal

makespan max 8C  , but we can see the resources are not fully utilized. If these jobs are

processed by workgroups, we obtain the solution given in Fig.1b with a shorter optimal

makespan max 5C  and the utilization rates of personnel in the two workgroups are 95%

and 100% respectively. As we can see, in UPWR problem, different jobs can be

processed in one workgroup at the same time, for example, job 3 and 1, job 2 and 4. By

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

processing multiple tasks at the same time in one workgroup, the completion time is

greatly shortened and the utilization of resources is effectively improved.

Figure 1. Gantt diagrams representing the solutions to UPMR and UPWR

Through the analysis of example1.1, the UPWR problem needs to consider not

only the assignment of jobs to workgroups, but also the allocation of resources of each

workgroup to jobs. Therefore, it requires another way of thinking so as to solve this

problem.

4: Solution method

Solving the UPWR problem consists in determining the assignment of the jobs to the

workgroups under workgroup eligibility constraints and the processing position of the

jobs in the selected workgroup based on the constraints of human resources. In

particular, it is possible for a workgroup to process multiple jobs at a time, which means

that it is needed to confirm the processing sequence of jobs to a workgroup searching in

a two-dimensional solution space. Different from the classical UPMR problem where

the determination of order of jobs to a machine is only considered in time dimension,

the UPWR is more complicated and difficult to solve.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

As the addressed problem is NP-hard, applying exact approaches to solve the

UPMR instances, especially for large-scale problems, may not get satisfactory solution

within an acceptable time. Hence, we focus on developing meta-heuristic algorithms to

solve it. Genetic algorithm (GA), proposed by Holland and John, H. (1973), is a well-

known approach to generate near-optimal solutions with flexible encoding scheme and

genetic operators in a short computation time, which are widely used in various

optimization problems (Rubén Ruiz, Concepción Maroto 2006, Ta, Q.C., Billaut, J.C.,

Bouquard, J.L. 2015). Besides, GA has been applied to solve the parallel machine

scheduling problems.

In this section, we first define a kind of mapping to map a set of processing

sequences of jobs to a workgroup into a feasible scheduling scheme and propose a pure

genetic algorithm with chromosome encoding of two-dimensional vector based on this

mapping. In addition, considering the large solution space of the job processing

sequence, we use the ideas obtained from bin-packing strategy to optimize the

population initialization, crossover operator and mutation operator.

4.1: Genetic algorithm (GA)

4.1.1: Encoding and decoding operator

For the UPMR problem, a set of processing sequences of jobs to a machine can

represent a scheduling scheme on the corresponding machine. It is not feasible to

represent a scheduling scheme directly by using the order of jobs as multiple jobs can be

processed in a workgroup at one time. Hence, a two-dimensional vectors group coding

method is adapted to construct chromosome and a mapping rule is designed to ensure

the uniqueness of decoding operator.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 Let  
1 2

1 2

1 2

, ,...,
, ,...,

, ,...,
n

n

n

i i i

i i i
Ch g g g

s s s

 
   

 
denotes a chromosome where the length

of it is equal to the total number of jobs n . For each gene
j

j

j

i

i
g

s

 
  
  

 (1,2,...,j n), ji

represents the selected workgroup of job j and
jis denotes the processing sequence of

job j in workgroup ji .

 Without loss of generality, assume subset iJ consists of all the jobs assigned to

the workgroup i . Let  iJ denote a feasible scheduling scheme of workgroup i under a

given processing sequence (denoted by  iS J) of job set iJ , where  represents a

mapping relationship. Let set E denote a set of time index kt (max0,1,...,kt T) . Such a

mapping process is achieved by the following rule (donated by MAP-Rule) based on the

MIP model.

MAP-Rule

Input: Processing sequence  iS J of job set iJ in workgroup i

Output: Scheduling scheme  iJ

Initializes the set  = 0E , decision variable =0ijtx ;

for iJ J do

 for t in E do

 Let  
1

iJiJ t p
x




 if  
 

1

1 max ,

 k , 1 ,
ij

ij

k pn

iJ ij ijs i

j s k p

t t p r x R

 

 

       , then

 add iJt p into set E

 sort E with ascending order

 else

 Let  
0

iJiJ t p
x




 delete t from E

 continue

 We use a diagram to depict the process of encoding and decoding operator by

taking the data of Example 1.1, which is shown in figure 2. The first string includes the

assigned workgroup which can process the corresponding job while the second is the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

processing sequence of each job in the corresponding workgroup. After adding other

parameter data, we can decode this chromosome into the scheduling scheme based on

MAP-Rule, which is shown in Fig.2.

Figure 2. The diagram of encoding and decoding operator

4.1.2: Population initialization

The initial population is generated in a completely random way, the procedure is as

follows:

Step1: For each job j , ja is chosen randomly in set jV , thus we obtain a n-

dimensional vector  1 2, ,..., na a a as the first string of chromosome;

Step2: For each workgroup i , count the total number of jobs iN ;

Step3: For each job j , the order of job j in workgroup i is a natural number

which is selected randomly and without repetition from  1, iN . Then, we get the second

string.

4.1.3: Crossover operator

In view of the special nature of the chromosome encoding and the fact that each gene

string represents a different meaning, we need a special design on the crossover

operation. Here the two rows of chromosomes are crossed respectively, which is shown

in figure 3. And the steps of crossover operator are given as follow.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 3. The diagram of crossover operator

 Step1: Randomly select the same location gene fragments of two parent

individuals and cross the first-row gene information;

Since the set of workgroups that each job can choose is predefined, the

processing constraints are still satisfied after crossover. In order to make the next

generation retain the parent information as much as possible, which is the processing

sequence on each workgroup, the second line of gene string need to be modified with

specific rules.

Step2: For each workgroup i , make the minimum value in the list of processing

sequence for the corresponding workgroup in the second line of the gene string as 1, the

second minimum value as 2, and so on. If there are p identical values corresponding to

the new gene value q , then randomly select p values without repetition from

 , 1q q p  to be the p gene values of the corresponding position after correction.

4.1.4: Mutation operator

Firstly, the gene in the first line of gene string is mutated in its optional workgroup set.

Then, the second line of gene string is modified by cross-operation modification scheme.

The diagram of mutation operator is shown in figure 4.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 4. The diagram of mutation operator

4.2: Hybrid Genetic algorithm based on bin packing strategy

As for the pure genetic algorithm, it may lead to slow convergence speed and local

optimum easily considering that the generation of processing sequence of jobs to a

workgroup is completely random. Hence, a bin-packing strategy is used to generate the

processing sequence of jobs for each workgroup, which can optimize the operations of

population initialization.

4.2.1: Bin packing strategy

Consider a single workgroup scheduling problem where the jobs assigned to the

workgroup are known. It can be regard as a two-dimensional strip packing problem,

which is shown in figure 5. Given a rectangular case where the length represents the

makespan and the width represents the units of human resources, the objective is to

place a set of rectangular items (represent jobs) into the case with no overlap in x-axis

or y-axis with the previously item kj so that the length is minimized. Based on this, the

single workgroup scheduling problem can be solved with packing methods. At present,

a number of studies have used the idea of packing methods for solving scheduling

problems (Liang, X., Zhou, S., Chen, H., and Xu, R. 2019; Fanjul-Peyro, L., Perea, F.,

and Ruiz Rubén 2017).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 5. The diagram of strip packing problem

In this section, by analysing the best-fit heuristic algorithm proposed by Burke,

E., Kendall, R., and Whitwell, G. (2006) and the recursive heuristic algorithm given by

Peng, B.T., and Zhou, Y.W. (2012), we give a best priority first-heuristic packing

strategy (denoted by BP) and apply it to solve single workgroup scheduling problem

based on the proposed MIP model. There are seven kinds of priorities of job (denoted

by jP) which can be seen in figure 6 and the idea of this method is to find the highest

priority job to assign in the process of each iteration.

Figure 6. The rules of priority setting

Based on the above rules, the steps of BP algorithm are shown as follows.

Algorithm: BP

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Input: Job set iJ processed in workgroup i

Output: Processing sequence  iS J of jobs in workgroup i .

Initializes the node set  = 0E , decision variable =0ijtx ;

Sort iJ in descending order by ij ijr p ;

for kt E do

 if ij J  , when  
1

k iJiJ t p
x


 ,

 

1

max ,

k ij

i k ij

t p

ij ijs i

j J s t p

r x R

 

 

   , then

 Flag = True

 else

 Flag = False

 if Flag == False, then

 delete kt from E

 continue

 else if ij J  ,
 

1

max ,

k ij

i k ij

t p

ij i ij ijs

j J s t p

r R r x

 

 

    , 1ij k kp t t   , then 7jP 

 else if 1 2, ij j J  ,
 

1 2

1

max ,

+
k ij

i k ij

t p

ij ij i ij ijs

j J s t p

r r R r x

 

 

    ,
1 2 1+ ij ij k kp p t t   , then

1 2, 6j jP 

 else if ij J  ,
 

1

max ,

k ij

i k ij

t p

ij i ij ijs

j J s t p

r R r x

 

 

    , then 5jP 

 else if 1 2, ij j J  ,
 

1 2

1

max ,

+
k ij

i k ij

t p

ij ij i ij ijs

j J s t p

r r R r x

 

 

    , then
1 2, 4j jP 

 else if ij J  , 1ij k kp t t   , then 3jP 

else if 1 2, ij j J  ,
1 2 1+ ij ij k kp p t t   , then

1 2, 2j jP 

else 1jP 

Choose ij J  and  max jj
P P  or choose 1 2, ij j J   and  *

1 2,
max jj j

P P 

Let
 * 1

k iJij t p
x


 and delete

*j or 1 2,j j  from iJ

update E

if iJ  , then

 break

else

 continue

end

4.2.2: Hybrid genetic algorithm

 For a given working group, as long as the jobs processed in it are determined, it

is obvious that the scheduling scheme generated by the processing sequence obtained by

the BP algorithm is better than the randomly generated result in most cases. Based on

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

the BP algorithm, a hybrid genetic algorithm (denoted by BP_GA) is proposed. In

BP_GA, instead of generating the processing order of jobs randomly, the BP algorithm

is added to produce better chromosomes. Except for the formation of initial population,

the other process including the mutation and the crossover operations for GA are also

adopted for BP_GA. The steps of BP_GA are given as follows.

Algorithm: BP_GA

Input: Data of jobs and workgroups

Output: A near optimal scheduling scheme J

1. Parameter initialization: population size S , maximum generation maxG , crossover

probability cP , and mutation probability mP

2. Let generation index 1k 

3. Population initialization:

Let individual index 1r 

while r S , do

Determine  1 2, ,..., ni i i ,  1,2,...,ji m

for each workgroup i :

Get job set iJ

Run BP with one input iJ

 return  iS J

Generate chromosome rCh

1r r 

1pop(=1) { ,... ,... }r sk Ch Ch Ch

4. while maxk G , do

Do decoding operations

Calculate the fitness of the k population

Roulette selection

if random<= cP , then

Do crossover operations for the first-row gene string

Do correction operations for the second-row gene string

if random<= mP , then

Do mutations operations for the first-row gene string

Do correction operations for the second-row gene string

1k k 

5. Choose the population with the lowest fitness

end

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

5: Computational experiments

In this section, we conduct computational experiments with instances of small and large

sizes to evaluate the performance of the proposed GAs. For small problems, a branch

and bound approach (B&B) under the Gurobi 8.1.1 software is adopted to get the

optimal solution approach and compared with the proposed algorithms. However, with

the increase of the size of the problem, it is impossible to get an optimal solution in an

acceptable CPU time. Hence, the problems are optimally solved by the B&B with 3h

run time limitation. All instances are randomly generated and the results are discussed

for different sizes. The generation of instances and the proposed algorithms are coded

with Python 3.7 by the PyCharm 2019 software. Both Gurobi and Pycharm software run

on a personal computer including Inter(R) Core(TM) i5-8265U CPU with 2GHz speed

and 8GB of RAM.

5.1: Instances generation

It is important that different degrees of parameters will affect the performance of the

solution obtained by the algorithm. For the instances of UPWR problem, we choose the

combination of the total number of workgroups (m) and the number of jobs (n) with

different levels to reflect the size of the experiment. The other parameters for

scheduling problems are purely at random within a given range.  ,U a b is a random

integer uniformly distribution between a and b (both extremes included), which is the

most commonly distribution used for generating the instance about scheduling problem.

(1) The number of workgroups m :  2,4,6m is considered.

(2) The number of jobs n :  10,20,30,40,50n is considered for small-size instance

and  120,140,160,180,200n for large-size.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(3) The maximum value of the time index maxT : For the UPWR problem, maxT is an upper

bound of the optimal solution. For a certain workgroup, the maximum complete

time equal to the sum of the processing times of these jobs which can be processed

in this workgroup. Hence, maxT can be set equal to the maximum value of the

maximum complete times for all workgroups, that is,

max

1

= max , 1,2,...,
n

ij ij

j

T eg p i m


 
  

 
 .

(4) The processing time ijp of job j on workgroup i : let  = 1,20ijp U .

(5) The eligible constraints ijeg : for job j , first determine the number of workgroups

which can process job j is  1,U m , then randomly add a workgroup without

repetition from set of workgroups  1,2,...,m to a set jV and execute  1,U m times.

Let 1ijeg  if ji V and 0ijeg  if ji V .

(6) The total number iR of human resources on workgroup i : let  = 10,15iR U .

(7) The number ijr of processing personnel of job j on workgroup i : let  = 1,ij ir U R .

 Each size has totally 9 test problems respectively (denoted by n m). For small-

size instance, let  10,20,30n when =2m ,  20,30,40n when =4m , and

 30,40,50n when =6m . The setting for large-size instance is the same. In addition,

we repeat all possible combinations ten times. Hence, the number of small-size and

large-size instances to be tested is 90 separately.

5.2: Algorithm parameter setting

The performance of GA is generally sensitive to the settings of the parameters, which

mainly include maximum generation maxG , population size S , crossover probability cP ,

and mutation probability mP . In this section, design of experiment (DOE) (Quenouille,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

M.H., Kimball, A.W. 1953) is adopted to test the influence of different levels of factors

on algorithm performance.

 Each parameter takes four levels and the value of each level is shown in Table 2.

According to the number of parameters and levels, an orthogonal experiment with

 4

16 4L size is adopted in this paper. The 50 4n m   size of instance and pure genetic

algorithm (GA) are selected to test, and the algorithm runs independently 20 times for

each combination of parameters. The average value of relative percentage deviation

(RPD) is applied for response variable (RV). The orthogonal table and RV value of each

parameter combination are shown in Table 3, the range and importance of each

parameter are shown in Table 4, and the influence trend of each parameter on algorithm

performance is shown in Figure 7 where the gray line shows mean value of each

parameter.

Table 2. Values of each level for four parameters

Parameter Level

1 2 3 4

maxG 100 150 200 300

S 100 150 200 250

cP 0.6 0.7 0.8 0.9

mP 0.01 0.05 0.1 0.25

Table 3. Values of each level for four parameters

No. Level RV

maxG S cP mP

1 1 1 1 1 42.84

2 1 2 2 2 33.86

3 1 3 3 3 29.09

4 1 4 4 4 24.43

5 2 1 2 3 36.47

6 2 2 1 4 30.22

7 2 3 4 1 27.61

8 2 4 3 2 24.55

9 3 1 3 4 30.34

10 3 2 4 3 25.57

11 3 3 1 2 29.54

12 3 4 2 1 31.36

13 4 1 4 2 31.59

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 4 2 3 1 32.95

15 4 3 2 4 25.34

16 4 4 1 3 26.25

Table 4. Values of each level for four parameters

Level maxG S cP mP

1 32.56 35.31 32.22 33.69

2 29.72 30.65 31.76 29.89

3 29.20 27.90 29.23 29.35

4 29.03 26.65 27.30 27.59

Range 3.52 8.66 4.91 6.11

Rank 4 1 3 2

Figure 7. The influence trend of each parameter on algorithm performance

As shown in Table 3 and Fig. 7, the maximum range is population size S , which

indicates different population sizes have great influence on the algorithm. Small value

of S will get poor result while large value will affect the search efficiency. The second

largest is mutation probability mP . As with population size, the value of is mP neither too

large nor too small. The maximum generation maxG and crossover probability cP hold

small fluctuation during the test. Based on the above analysis, the recommended values

of the four parameters are: max =150G , =200S , =0.8cP , =0.1mP .

5.3: Experimental results and analysis

To evaluate the performance of the proposed algorithms, the CPU time and RPD are

often used as reference indexes. Since all size of problems are tested for ten times, we

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

use the average CPU time (ACT) and the relative percentage deviation (ARPD) to

evaluate each algorithm. ARPD is computed for each instance according to the

following expression:

  lg min

max max100 / 1 /10aARPD C C   (7)

where lg

max

aC is the makespan obtained by each algorithm for each size of instance and

min

maxC is the best solution through all approaches.

The test results for the UPWR problem with small sizes and algorithms are

summarized in Table 5. The ARPD and ACT by ten times running of B&B, GA,

BP_GA for small-size instance are compared.

Table 5. Experimental results given by the three algorithms for small-size problem

No. Size ARPD ACT (s)

 n m B&B GA BP_GA B&B GA BP_GA

1 10 2 0 0 0 1.01 5.5 5.9

2 20 2 0 0 0 6.98 11.5 17.4

3 30 2 0 9.13 7.97 508.28 15.5 16.2

4 20 4 0 8.42 6.32 0.72 19.9 24.4

5 30 4 0 19.6 25.2 43 16.9 16.3

6 40 4 0 18.85 20.86 2025.42 16.9 42.2

7 30 6 0 19.05 20.48 2.04 17.6 12.8

8 40 6 0 12.58 1.61 3.35 17 22.4

9 50 6 0 31.2 42.8 10.32 25 32

Table 6. Comparison between GA and BP_GA for large-size problems

No. Size ARPD ACT (s)

 n m GA BP_GA GA BP_GA

1 120 2 4.43 3.58 75.5 58.5

2 140 2 7.59 4.99 89.3 83.5

3 160 2 8.95 3.62 99.6 99.3

4 140 4 12.76 18.09 80.7 90.5

5 160 4 8.56 5.10 116 92.7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 180 4 6.33 4.25 128.4 98.9

7 160 6 16.72 10.00 110.8 93.5

8 180 6 15.07 11.58 121.7 117.3

9 200 6 16.16 9.80 126.5 108.8

 Table 5 shows the obtained results from B&B, GA and BP_GA for nine size

problems. As it can be seen from Table 5, the proposed Gas can get satisfactory solution

in a short time but the exact algorithm can also get the exact solution in a very short

time for most cases. Hence, the meta-heuristic algorithm has no advantage over exact

algorithm in solving small-scale problems. However, for large size of problems, as

shown in Table6, the exact algorithm can’t achieve best solution in acceptable run time.

But the GAs can get a better solution in a short time and BP_GA performs better than

GA. As a result, for selecting only one algorithm, BP_GA is more suitable than GA to

finding the accurate solution.

6: Conclusions

This paper addresses a realistic unrelated parallel workgroup scheduling problem where

tasks are processed by workgroups rather than machines which results in the ability to

process multiple tasks in the same workgroup at the same time. An integer

programming model is proposed to consider makespan for this problem. A pure genetic

algorithm and a hybrid genetic algorithm based on bin packing strategy are given, and

different sizes of instances are adopted to test proposed algorithms. The main

contributions could be summarized as follows:

(1) An unrelated parallel workgroup scheduling problem with workgroup eligibility

and resource constraints is proposed where a workgroup process multiple jobs at

the same time, and we formulate the problem as an integer programming model

with the objective of minimizing makespan.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

(2) A pure genetic algorithm (GA) model is adopted to solve this problem. In order

to describe this problem easily, we design a mapping rule to simplify

chromosome coding.

(3) A hybrid genetic algorithm based on bin packing strategy is further developed

by the consideration of transforming the single workgroup scheduling to a strip-

packing problem, i.e. total amount of personnel in a workgroup is defined as

width of rectangle and makespan represents the length of rectangle.

(4) Small and large sizes of cases are adopted to test the algorithms. Results show

that the proposed BP_GA can provide a feasible and superior solution for the

UPWR

Additionally, our future research directions involve the consideration of other

factors such as the release times and due dates of jobs. Furthermore, we will build

multi-objective optimization model in future studies in order to make our model more

realistic. Considering other bin packing strategies also seems interesting.

Acknowledgements:

This work was supported by National Natural Science Foundation of China under grant

71671090 and 71871117, Joint research project of National Natural Science Foundation

of China and Royal Society of UK under grant of 71811530338, the Fundamental

Research Funds for the Central Universities under grant NP2018466 and Qinglan

Project for excellent youth or middle-aged academic leaders in Jiangsu Province

(China).

References:

Afzalirad, M., & Shafipour, M. (2018). Design of an efficient genetic algorithm for

resource-constrained unrelated parallel machine scheduling problem with

machine eligibility restrictions. Journal of Intelligent Manufacturing, 29(2),

423-437. https://doi.org/10.1007/s10845-015-1117-6.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Akyol Ozer, E., & Sarac, T. (2019). MIP models and a matheuristic algorithm for an

identical parallel machine scheduling problem under multiple copies of shared

resources constraints. TOP, 27(1), 94-124. https://doi.org/10.1007/s11750-018-

00494-x.

Blazewicz, J. (1981). Solving the resource constrained deadline scheduling problem

 via reduction to the network flow problem. European Journal of Operational

 Research, 6(1), 75–79. https://doi.org/10.1016/0377-2217(81)90331-3.

Burke, E., Hellier, R., Kendall, G., & Whitwell, G. (2006). A New Bottom-Left-Fill

Heuristic Algorithm for the Two - Dimensional Irregular Packing Problem.

Operations Research, 54(3), 587-601.

https://pubsonline.informs.org/doi/abs/10.1287/opre.1060.0293.

Chen, L., Ye, D., & Zhang, G. (2018). Parallel machine scheduling with speed-up

resources. European Journal of Operational Research, 268(1), 101-112.

https://doi.org/10.1016/j.ejor.2018.01.037.

Edis, E.B., Oguz, C., & Ozkarahan, I. (2012). Solution approaches for simultaneous

scheduling of jobs and operators on parallel machines. Journal of the Faculty of

Engineering and Architecture of Gazi University, 27(3), 527–535.

Edis, E.B., Oguz, C., & Ozkarahan, I. (2013). Parallel machine scheduling with

additional resources: Notation, classification, models and solution methods.

European Journal of Operational Research, 230(3), 449-463.

https://doi.org/10.1016/j.ejor.2013.02.042.

Fanjul-Peyro, L., Perea, F., & Ruiz, Rubén. (2017). Models and matheuristics for the

unrelated parallel machine scheduling problem with additional resources.

European Journal of Operational Research, 260(2), 482-493. https://doi.org/

10.1016/j.ejor.2017.01.002.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Fu, Y., Jiang, G., Tian, G., & Wang, Z. (2019). Job scheduling and resource allocation

in parallel‐machine system via a hybrid nested partition method. IEEJ

Transactions on Electrical and Electronic Engineering, 14(4), 597-604.

https://doi.org/10.1002/tee.22842.

Gyorgyi, Péter. (2017). A PTAS for a resource scheduling problem with arbitrary

number of parallel machines. Operations Research Letters, 45(6), 604-609.

https://doi.org/10.1016/j.orl.2017.09.007.

Holland, & John, H. (1973). Genetic algorithms and the optimal allocation of trials.

SIAM Journal on Computing, 2(2), 88-105. https://doi.org/10.1137/0202009.

Jin, J., & Ji, P. (2017). Scheduling jobs with resource-dependent ready times and

processing times depending on their starting times and positions. The Computer

Journal, 61(9), 1323-1328. https://doi.org/10.1093/comjnl/bxx120.

Lann, A., & Mosheiov, G. (2003). A note on the maximum number of on-time jobs on

parallel identical machines. Computers & Operations Research, 30(11), 1745–

1749. https://doi.org/10.1016/S0305-0548(02)00084-9.

Lee, W. C., Chuang, M. C., & Yeh, W. C. (2012). Uniform parallel-machine scheduling

to minimize makespan with position-based learning curves. Computers &

Industrial Engineering, 63(4), 813–818.

https://doi.org/10.1016/j.cie.2012.05.003.

Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complexity of Machine

Scheduling Problems. Annals of Discrete Mathematics, 1(4), 343–362.

https://doi.org/10.1016/S0167-5060(08)70743-X.

Liang, X., Zhou, S., Chen, H., & Xu, R. (2019). Pseudo transformation mechanism

between resource allocation and bin-packing in batching environments. Future

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://doi.org/10.1016/S0305-0548(02)00084-9
https://doi.org/10.1016/S0167-5060(08)70743-X

Generation Computer Systems. 95(JUN), 79-88.

https://doi.org/10.1016/j.future.2019.01.006.

McNaughton, R. (1959). Scheduling with Deadlines and Loss Functions. Management

Science, 6(1), 1–12. http://www.jstor.org/stable/2627472.

Mokotoff, E., & Chrétienne, P. (2002). A cutting plane algorithm for the unrelated

parallel machine scheduling problem. European Journal of Operational

Research, 141(3), 515–525. https://doi.org/10.1016/S0377-2217(01)00270-3.

Peng, B.T., & Zhou, Y.W. (2012). Recursive Heuristic Algorithm for the 2D

Rectangular Strip Packing Problem. [In Chinese.] Journal of Software. 23(10),

2600–2611. https://doi.org/10.3724/SP.J.1001.2012.04187.

Pinedo, M.L. (2016). Scheduling: Theory, Algorithms and Systems. 5th ed. New York,

USA: Springer. https://doi.org/10.1007/978-3-319-26580-3.

Cox, D.R., & Quenouille, M.H. (1953). The Design and Analysis of Experiment.

Biometrika, 40(3/4), 471-472. http://www.jstor.org/stable/2333370.

Rubén Ruiz, & Concepción Maroto. (2006). A genetic algorithm for hybrid flow shops

with sequence dependent setup times and machine eligibility. European Journal

of Operational Research, 169(3), 781-800.

https://doi.org/10.1016/j.ejor.2004.06.038.

Slowinski, R. (1980). Two approaches to problems of resource allocation among

 project activities – a comparative study. Journal of the Operational Research

 Society, 31(8), 711–723. https://doi.org/10.1057/jors.1980.134.

Ta, Q.C., Billaut, J.-C., & Bouquard, J.-L. (2015). Matheuristic algorithms for

minimizing total tardiness in the m-machine flow-shop scheduling problem.

Journal of Intelligent Manufacturing, 29(3), 617-628.

 https://doi.org/10.1007/s10845-015-1046-4.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.jstor.org/stable/2627472

Ventura, J.A., & Kim, D. (2000). Parallel machine scheduling about an unrestricted due

 date and additional resource constraints. IIE Transactions, 32(2), 147–153.

https://doi.org/10.1023/a:1007662314880.

Wang, Z., Xiao, C., Lin, X., & Lu, Y. (2017). Single Machine Total Absolute

Differences Penalties Minimization Scheduling with a Deteriorating and

Resource-Dependent Maintenance Activity. The Computer Journal, 61(1), 105-

110. https://doi.org/10.1093/comjnl/bxx044.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

