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Abstract 

Metaldehyde removal was delivered to below the 0.1 µg L-1 regulatory concentration in a 

laboratory scale continuous upflow fluidised sand bioreactor that had undergone 

acclimation through selective enrichment for metaldehyde degradation. This is the first 

reported case of successful continuous flow biological treatment of metaldehyde from 

real drinking water sources treating environmentally realistic metaldehyde 

concentrations. The impact of the acclimation process was impermanent, with the 

duration of effective treatment directly related to the elevated concentration of 

metaldehyde used during the enrichment process. The efficacy of the approach was 

demonstrated in continuous flow columns at both laboratory and pilot scale enabling 

degradation rates of between 0.1 and 0.2 mg L-1 h-1. Future work needs to focus on 

optimisation of the sand bioreactor and the acclimation process to ensure viability and 

feasibility of the approach at full scale.  
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Introduction 

The use of pesticides to support modern intensive crop production leads to an unavoidable 

movement of a proportion of the applied chemicals from the agricultural environment into 

connected receiving waters. Where the water is subsequently used for abstraction for potable 

water production elevated levels of specific pesticides can periodically enter the treatment 

works leading to the risk of exceeding the maximum allowable concentration (MAC) of 0.1 µg 

L-1 for any individual pesticide and 0.5 µg L-1 in total (The Council of the European Union, 

1998). Traditional treatment trains incorporating ozone and GAC are effective at managing a 

large number of these pesticides. However, pesticides such as metaldehyde, clopyralid, 

propyzamide and carbetamide are less well managed by such technologies leading to a number 

of non-compliant events (Cosgrove et al, 2019). Currently, metaldehyde is the pesticide of 

greatest concern in the UK accounting for 1131 of the 1571 pesticide compliance failures 

reported between 2000 and 2016 (Cosgrove et al., 2019). Elevated levels are most commonly 

observed from late summer to winter, especially when a period of heavy rainfall follows a 

prolonged dry period (Cosgrove et al., 2019, Rolph et al., 2019). Reported concentrations are 

typically up to 10 g L-1 in the field and up to 1-2 g L-1 at the treatment works and last for 

between 2 weeks and 2 months (Ramos et al. 2019; Cosgrove et al., 2019).  

Metaldehyde is effectively taken up onto activated carbon but breakthrough occurs very 

quickly with reported regeneration frequencies of around 44 days (Hall, 2010). This can be 

managed by switching to PAC (Sanchez, 2017) or switching to an advanced oxidation 

processes such as UV/H2O2 (Autin et al., 2012); examples of both exist at full scale. However, 

neither are particularly desired due to operational and cost challenges associated with their 

implementation. Accordingly, there is a need to see alternative options evolve that can provide 

resilient treatment in a more sustainable way.  



Sites incorporating slow sand filters (SSF) have seen periods of elevated metaldehyde removal 

across the SSF suggesting a potential biological pathway (UKWIR, 2011). Metaldehyde is 

known to be degraded aerobically in soils with a heat of combustion of 3370 KJ mol-1 when 

converted to CO2 such that it has the potential to be a carbon source for microbial growth 

(Eckert et al., 2006). Further, the transformation product is acetaldehyde, a precursor of acetyl-

coA which is central to many degradation pathways yielding twice the energy than glucose 

(Bieri, 2013). Indeed, effective biological removal of metaldehyde has been reported in water 

and aquatic sediments (Coloso et al., 1998; Calumpang et al., 1995). Recently, metaldehyde 

degrading microbes have been isolated from domestic soils (Thomas et al., 2017). The cultured 

isolates, identified within the genera Acinetobacter and Variovorax, were able to degrade 

metaldehyde as a sole carbon and energy source in elevated concentrations of 500 mg L-1. The 

two cultures were seen to have different rates of growth and utilisation rates of the substrate. 

Further, Acinetobacter was unable to grow with alternative carbon sources such as glucose, 

fructose, arabinose or glycerol but could grow on acetate (Thomas et al., 2017). Growth with 

metaldehyde was shown to increase the rate of metaldehyde degradation by a factor of 2 over 

the culture grown in acetate such that the culture was able to degrade a 50 M (8.8 mg L-1) 

solution to below the detection limit <1 nM within 30 minutes. Translation to environmental 

waters that are encountered in drinking water treatment differ in that the metaldehyde exists as 

a micropollutant (1-2 g L-1) within a background water with a dissolved organic concentration 

of several mg L-1 representing a mole ratio of around 1:10,000 (Rolph et al., 2018). In such 

cases, established belief is that removal occurs via secondary substrate utilisation or co-

metabolism (Zearley and Summers, 2012). However, recent findings suggest that metaldehyde 

may be a suitable primary carbon source even at low concertation (Thomas et al., 2017) 

offering the potential for selective enrichment of metaldehyde degrading organisms which then 

remove metaldehyde in periods of elevated concentration (Costerton et al., 1995; Wingender 



and Jaeger, 2002). Support for this has been provided in batch tests treating spiked real waters 

where the degradation rates over a 72 hour period increased in line with spike concentration 

(Rolph et al., 2019).  

Translation to continuous flow systems has not been reported to date although illustration exist 

for other pollutants suggesting that metaldehyde may be able to be biologically treated as part 

of a drinking water flowsheet. For instance, fluidised bed bioreactors (FBBR) have been 

successfully utilised for removal of perchlorate, phenol, and NOM (Han et al., 2013; Vinod 

and Reddy, 2005; Webster et al., 2009). This includes pesticides such as mecoprop, glyphosate 

and bentazone where successful treatment was demonstrated in laboratory scale sand beds 

operated at hydraulic residence times of up to 60 minutes (Hedegard and Albrechtsen, 2013). 

Full scale trials related to the treatment of mecoprop revealed degradation rates between 0.09 

and 0.96 mg min-1 tonsand
-1 with hydraulic residence times between 8 and 63 minutes 

(Hedegaard et al., 2014). The current paper posits that an appropriately operated fluidised sand 

bioreactor that is acclimated through selective enrichment will be effective in delivering 

metaldehyde compliant water when treating environmentally relevant concentrations. To test 

this, water collected from within an active drinking water works was treated in a continuously 

operated sand bioreactor containing sand from the site and was operated in upflow (fluidised) 

and downflow directions across a range of hydraulic residence times. The optimum 

arrangement was then used to trial a series of enrichment spikes to ascertain the impact on the 

resilience of treatment before scaling up the trial to a 100 L pilot sand bioreactor operated 

continuously for 100 days.  



Materials and methods 

Chemicals and natural water characteristics 

Metaldehyde (99%) was purchased from Fisher scientific (Loughborough, UK). Metaldehyde 

d16 was purchased from Qmx Laboratories (Thaxted, UK) and used as an internal standard. 

HPLC grade acetone, dichloromethane and methanol were obtained from Rathburn Chemicals 

(Walkerburn, UK). Acetone was used to clean all equipment before use to prevent metaldehyde 

contamination. For the laboratory scale sand bioreactor studies, raw water was collected 

weekly from an operational site following an initial roughing filter treatment with GAC (Table 

1). The samples were stored in sealed plastic containers at 2°C in the dark until used. For the 

pilot trial, the raw water was pumped directly from a reservoir. In all cases, spiking of raw 

water was undertaken using a stock solution of 10 mg L-1 metaldehyde dissolved in ultrapure 

water (PureLab Option s7/15, 18.2MΩ cm and TOC <3 ppb).  

Table 1: Raw water characteristics for lab and pilot studies 

Raw water characteristics Lab scale study Pilot study 

DOC (mg L-1) 4.6 (± 1.04) 6.7 (± 0.62) 

pH 8.1 (± 0.21) 8.3 (± 0.02) 

Turbidity (NTU) 2.78 (± 2.25) 7.5 (±10.22) 

Total nitrogen (mg L-1) 2.6 (± 1.3) 3.3 (± 1.27) 

Total phosphorus (mg L-1) 0.22 (± 0.085) 0.13 (± 0.03) 

Conductivity at 20°C (µS cm-1) 315.36 (± 35.11) 662.5 (±16.26) 

Metaldehyde concentration (µg L-1) 0.16 (±0.15) 0.17 (±0.07) 

 

Media 

Sand with an active biofilm was collected from a slow sand filter at an operational site in the 

east of England (see SI A). The sand size was characterised by a d10 of 0.48 mm and a d90 of 



0.94 mm. Sand media was selected as it already had an active biofilm and at the time of 88 

collection had been exposed to metaldehyde levels up to 0.5 µg L-1. Results from the treatment 

works indicated that significant metaldehyde reduction was occurring through the sand bed. 

The sand was collected in sterilised containers and stored in non-airtight (without the lid) 

polythene plastic containers at 4°C in the dark until used. Clean sand that had been through an 

onsite mechanical cleaning system (high shear washing and agitation; CDEnviro, Ireland) was 

also collected. Gravel (diameter = 10 mm) was purchased locally and used as a support media 

in the columns. The gravel was washed in deionised water before use to remove any impurities. 

All equipment was either autoclaved or rinsed with nitric acid and then rinsed with acetone to 

prevent metaldehyde contamination. Both glassware and plastic containers were previously 

tested in batch and no adsorption detected (Rolph et al, 2019).  

Laboratory scale sand bioreactors: Batch and flow through trials 

Covered perspex columns with a diameter of 2.5 cm and a height of 50 cm (Bio-Rad 

Laboratories, Hemel Hempstead UK) were filled with 5 cm of gravel and 30 cm of active sand 

(200 g). This resulted in a media volume of 1.5 x 10-4 m3. 

Batch recycle experiments were undertaken with active and clean sand in an upflow 

configuration and with active sand in a downflow configuration. One litre of raw water spiked 

with 50 µg L-1 metaldehyde was recycled for nine days. Fluidisation to a 20-30% bed expansion 

was achieved by operating the sand bioreactors at a flow rate of 10 L h-1 resulting in a single 

pass EBCT of 0.8 minutes with the flow recycled through the sand bioreactors throughout the 

duration of the trial.  

For flow-through experiments, the sand bioreactor was fed with raw water from 10 L containers 

to a 300 mL recycle reservoir which was twice the volume of the bed (Figure 1). The sand 

bioreactor was run under various contact times from 30-828 minutes. The contact time between 



the water and the sand was calculated by multiplying the number of times the recycle reservoir 

was cycled through the sand bioreactor before it was replaced from the inlet reservoir by the 

EBCT of the fluidised sand bioreactor. Each condition was held for at least one week to allow 

the system to stabilise; flow rates were adjusted using peristaltic pumps and the recycle pump 

and flow-through pump were controlled independently.  

Following this, spiking experiments were undertaken on sand collected from an operational 

site that had not been exposed to metaldehyde concentrations above 0.2 µg L-1 for several 

months. Sand bioreactors were exposed to different concentrations of metaldehyde at a contact 

time of 150 minutes. Spike concentrations from 0.5 to 50 µg L-1 were applied to the column 

for five days and then removed and replaced with a spike of 0.5 µg L-1 to represent an 

environmentally relevant metaldehyde influent concentration in order to show the impact this 

had on achieving compliance. The spiking experiment were conducted in the sequence of 2, 10 

2, 5 and 20 g L-1. In each case the inlet concentration was reduced to 0.5 g L-1 and the 

experiment continued until the effluent water become non compliant (>0.1 g L-1). Higher 

spikes of 35 and 50 g L-1 were conducted on fresh sand following the same procedure. 

Samples were taken regularly and analysed by GC-MS. 

The raw water containers and all tubing (Tygon, Fisher scientific, UK) were sterilised 

frequently and the inlet water was changed at least weekly to prevent degradation of 

metaldehyde in the containers or tubing. All experiments were conducted in a temperature 

controlled laboratory set at 20-22 C and the dissolved oxygen of the water periodically 

checked and was observed to remain above 1 mg L-1 throughout and hence conditions can be 

assumed to remain aerobic during the trials.   



 

Figure 1: Lab scale sand bioreactor set up 

Pilot scale sand bioreactor  

A pilot scale sand bioreactor was installed at a treatment works in the Anglian Water region 

and supplied with untreated reservoir water. The rig was located in an unheated building to 

replicate operational conditions as closely as possible. Water was pumped directly from the 

reservoir to a holding tank before being fed to the sand bioreactor through PVC pipes. A 1.5 m 

Perspex column with a 0.2 m ID contained a 10 cm depth of gravel onto which a 50 cm depth 

of sand was added. The sand was a uniformly mixed combination of 50% biologically active 

sand filter (collected from an active filter) and 50% clean sand with no biofilm to give a total 

media volume of 0.02 m3. The media was supported on a plinth with 5 nozzles for even 

distribution of the water through the column. The sand bioreactor was run for two weeks to 

allow biomass to develop throughout the bed. Recirculation was achieved with a positive 



displacement pump at a rate of 8-10 L min-1 equating to a fluidisation level of 5-10%. A 

peristaltic pump provided the flow to the column at a rate of 0.27 L min-1 resulting in a media 

bed hydraulic retention time (HRT) of 67 minutes and a recycle ratio of 28.6. A 0.5 m x 0.41 

m ID section of column was placed on top of the main column body to help prevent biomass 

washout. The total volume of the column was 0.1 m3. Degradation rates were calculated as the 

change in mass of metaldehyde divided by the contact time.  

Analytical Methods 

Determination of the metaldehyde concentration was performed using solid phase extraction 

(SPE) followed by analysis with gas chromatography-mass spectrometry (GC-MS). SPE 

cartridges (styrene-divinylbenzene cartridges Strata, 200 mg per 3 mL, Phenomenex, UK) were 

conditioned using 10 mL of methanol followed by 2 mL of ultrapure water. 2-250 mL of 

sample, spiked with metaldehyde d16 as an internal standard, was passed through the cartridge 

with a recovery that was greater than 94% throughout. The cartridge was rinsed with 2 mL of 

ultrapure water and dried under vacuum for 45 minutes. The samples were then eluted using 2 

mL of dichloromethane before being evaporated to 0.5 mL. Quantification was achieved using 

an Agilent 6890N gas chromatograph coupled with an Agilent 5673 mass selective detector 

with a limit of detection of 0.05 µg L-1 (GC-MS + SPE). 

DOC was measured in non-purgable organic carbon (NPOC) mode using a Shimadzu 5000-A 

TOC analyser. All samples were filtered using a 0.45 µm syringe filter (Millipore, Ireland) 

before analysis. 



Results and Discussion 

Impact of flow direction in batch sand bioreactor trials 

Flow direction had a significant impact on the lag time, rate of degradation and final 

concentration achieved during the batch column trials (Figure 2). For instance, minimal 

degradation occurred during the first 215 minutes when the sand bioreactor was operated in 

upflow compared to 645 minutes when operated in downflow. Thereafter, the rate of 

degradation observed in the upflow trials was more than twice that of the down flow direction 

at 0.045 g L-1 h-1 compared to 0.092 g L-1 h-1. Comparative beaker batch trials with non-

acclimated sand reached a maximum degradation rate of 0.17 g L-1 h-1, substantially higher 

than observed in the current trials (Rolph et al., 2019). Likewise, very high degradation rates 

of 668.8 g L-1 h-1 have been reported during batch trials with isolated metaldehyde degraders 

exposed to high concentrations of metaldehyde (Thomas et al, 2017). The efficacy was further 

confirmed as the residual metaldehyde level reduced below the compliance target, reaching 

0.049 g L-1 after a total contact time of 860 minutes in the upflow sand bioreactor. In 

comparison, the downflow sand bioreactor never reached the 0.1 g L-1 target, achieving a 

minimum of 0.36 g L-1 after 1935 minutes. Similar findings have been reported for bulk DOC 

removal where the upflow configuration removed 10% more DOC than the downflow version 

(Han et al., 2013). The differences are attributed to better mass transfer and general mixing 

which aids maximum utilisation of the available reaction space.  

A control upflow sand bioreactor with clean sand was observed to colonise quickly with 94% 

of the initial 50 µg L-1 metaldehyde spike attenuated after 9 days, equivalent to an actual contact 

time of the water with the media of 1935 minutes. However, a lag time of 5 days was observed 

before any removal occurred which aligns to the work of Rittmann and Brunner (1984) who 

reported small biofilm growth onto glass beads for four days followed by rapid increase in 



substrate removal from days 4 – 7. Trials with isolated metaldehyde cultures also observed lag 

times of between 1-4 days depending on the species being used (Thomas et al., 2017). 

Ultimately these results confirm the ability to degrade metaldehyde to below compliance 

targets and supports the need to acclimate the microbial biomass through selective enrichment 

to ensure the sand bioreactor delivers a consistent treatment.  

 

Figure 2: Metaldehyde removal in upflow and downflow sand bioreactors with active sand (● 

and □) and an upflow column with clean sand (▲) operated in batch recycle mode. Initial 

metaldehyde concentration was 50 g L-1 

Effect of contact time on removal rate in a continuous flow-through sand bioreactor 

The sand bioreactors were then operated in flow-through, upflow mode with freshly collected 

sand (active) and operated at a contact time of 828 minutes. Different mean influent 

concentrations were observed for each trial with levels of 2.0, 2.0, 1.5. 1.8 and 1.3 g L-1 for 

the trails with EBCTs of 30,100, 150, 300 and 828 minutes respectively. Steady removal of 

52.7 ± 4.2 % was achieved under this configuration with effluent concentrations ranging from 
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0.20 - 0.26 µg L-1. This set up achieved good removal but not compliant water. The contact 

time was then decreased to between 30 and 300 minutes using a fresh sand sample for each 

EBCT to acovid cumulative impacts, whilst maintaining the same fluidisation rate. Variation 

in contact time demonstrated effective removal down to 150 minutes (Figure 3). To illustrate, 

residual metaldehyde concentrations of 0.5 ± 0.2 and 0.2 ± 0.09 µg L-1 were observed for 

contact times of 30 and 150 minutes respectively from influent concentrations of 2.0 and 1.5 

µg L-1 respectively. Extending contact time over 150 minutes gave no significant benefit for 

metaldehyde removal. This compares to one trial with the downflow configuration at a contact 

time of 176 minutes which resulted in no appreciable reduction (~2%) from an initial 

metaldehyde concentration of 1 µg L-1 (data not shown). However, no contact time was able to 

reduce the metaldehyde concentration below the target 0.1 mg L-1 level supporting the need for 

acclimation of metaldehyde degraders through selective enrichment.  

 

Figure 3: Impact of contact time on metaldehyde removal (n=6) using active (non-

acclimated) sand in sand bioreactors operated in flow-through, upflow mode. Inlet 

concentrations were 2.0, 2.0, 1.5, 1.8 and 1.3 mg L-1 for EBCTs of 30, 100, 150, 300 and 828 

minutes 

Effect of acclimation spikes 
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The impact on microbial acclimation through selective enrichment was tested by using spikes 

of metaldehyde at different concentrations for 5 days for the upflow sand bioreactors operated 

with a 150 minutes contact time. Thereafter the influent was reduced to 0.5 g L-1 and the sand 

bioreactors operated for 10 days to establish the removal profile. Increasing the spike 

concentration resulted in an increased metaldehyde removal rate. This ranged from 67-86% 

with spikes ranging from 2 - 50 µg L-1; this is a larger removal than has been observed in 

previous experiments at a concentration of 0.5 µg L-1 (unspiked trials), even with an extended 

contact time of 828 minutes. The average metaldehyde removal rate following spiking showed 

a positive trend with increasing spike concentrations leading to an increase in the removal rate 

up to a maximum of 0.17 µg L-1 h-1  (Figure 4A). Larger spike concentrations also lead to an 

increased number of days that compliant water could be achieved once the sand bioreactor was 

switched to treating 0.5 g L-1 water (Figure 4B). All spike concentrations resulted in an 

increased efficacy. However, only spikes above 5 - 10 µg L-1 produced compliant water for 

any length of time.  

The observed degradation rates achieved after acclimatisation are the same as those reported 

for batch kinetic trials with non-acclimatised sand and around half the rate observed with 

acclimated sand at 50 g L- (Rolph et al., 2019). However, the rates are significantly lower 

than those reported with isolated culture trials treating high concentrations (Thomas et al., 

2017). This aligns with reports that the degradation follows Michaelis-Menton kinetics with a 

half rate constant of around 25-26 g L-1 in an environmental batch system (Rolph et al., 2019) 

and 8.8 mg L-1 in an isolated pure culture treating solutions where metaldehyde is the only 

available substrate (Thomas et al., 2017).  

Overall, the results support the notion that effective delivery of metaldehyde treatment is 

possible using a biological process as long as the sand bioreactor is acclimatised through 

selective enrichment. This has been previously established for linuron, pesticide mixtures and 



4-nitrophenol (Horemans et al., 2014; Tiam et al., 2014; Wiggins and Alexander, 1988). For 

instance, a biofilm developed over two weeks with high concentrations of galactose (300 mg 

L-1) was able to continue to degrade the galactose below a minimum substrate concentration 

(Smin) of 0.3 mg L-1 for at least 190 days (Rittmann and Brunner, 1984). In the case of Rittmann 

and Brunner (1984), it is thought that adaptation to oligotrophic conditions and other nutrients 

in the water prevented rapid biofilm decay and enabled sustained substrate removal. However, 

acclimatisation with high concentrations may not always be effective as it can lead to a 

population poorly adapted to removing trace levels of the target compound (Gözdereliler et al., 

2013). The acclimatisation period used was 5 days throughout the study and this appears to be 

a suitable time period to deliver effective treatment. This mirrors work with p-nitrophenol 

(PNP) where 5 days was reported to be sufficient to adapt the microbial population to be able 

to degrade the pollutant (Spain and Van Veld, 1983). Further work is required to optimise this 

process and reduce time periods if possible, especially where the population has been 

previously exposure to elevated concentrations. In such cases, it is likely that the degraders sit 

dormant until an elevated concentration is available at which point they become active again 

(Wingender and Jaeger, 2002). Support for this is provided by the full-scale slow sand filters, 

which quickly start to degrade metaldehyde once the concentration exceeds 0.2 g L-1 (Rolph 

et al., 2019). This offers the possibility of rapid start-up which can be triggered by early 

warning of elevated metaldehyde entering the treatment works.  



 

 

Figure 4 Acclimated sand in sand bioreactors operated in flow-through, upflow mode, with 

150 minutes contact time. (A) Efficacy of the spike measured using an average removal rate 

for the 10 days following metaldehyde spiking; and (B) Number of days compliant water was 

produced.  

Validation at pilot scale 

To confirm the efficacy of metaldehyde degradation through acclimation, a parallel trial of the 

previous laboratory sand bioreactor was undertaken with a pilot sand bioreactor, treating the 

same water although the laboratory sand bioreactor received regular batches rather than a 

continuous input. The pilot sand bioreactor initially treated a spiked water at a concentration 

of 1 g L-1 for 20 days. This was limited by site operational constraints and was selected to 

reflect levels that had previously seen enhanced degredation rates in the full scale system 

(Rolph et al, 2019). Thereafter, the column treated the incoming water to the site, which ranged 

from 0.1-0.9 µg L-1, compared to the 0.2-1.1 µg L-1 received by the laboratory sand bioreactors. 

Degradation rates during this phase varied between 0.006 and 0.229 g L-1 h-1 in the pilot plant 

and between 0.044 and 0.205 g L-1 h-1 in the laboratory sand bioreactors (Figure 5). 

Comparative data from the full scale site revealed an degradation rates that varied between of 

0.001 and 0.004 g L-1 h-1 for an influent concentration of 0.170.07 mg L-1 thereby confirming 
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the impact of acclimation even with a low influent concentration. The variability in the 

degradation rates reflect the nature of individual rate calculations such that the distribution of 

values is more important that any specific individual rate. Accordingly, the pilot sand 

bioreactors validated the findings and confirmed the suitability of biological treatment of 

pesticides down to very low levels. Whilst the spike level was lower than previously used it 

indicates that it is a combination of concentration and duration that can lead to enhanced 

performance.  

Overall, this exemplifies the opportunity to utilise existing assets that have been adapted 

through acclimating the native biomass, negating the need to consider additional assets. Further 

work is required to optimise the design and operation of the systems and establish the best 

approaches to delivering acclimatisation on full-scale plants. Importantly, the relative merits 

of in-situ or ex-situ acclimation needs to be understood. In the former the native population 

would be acclimated through selective enrichment during a period when the biofilter was off 

line. In contrast, the adapted community could be cultured externally and seeded into the 

bioreactor for rapid start up. The relative economic viability and performance resilience of the 

two options needs to considered and engineered in a practical solution and should be considered 

a key area for future research in this field. In particular, understanding the duration of the spike 

for in-situ acclimation is required to assess its suitability. It is posited that significantly reduced 

spike duration should be possible once community has been previously established.   



 

Figure 5: Rate of metaldehyde removal in pilot and labatory scale sand bioreactors, operated 

in flow-through, upflow mode, with 67 minutes contact time using acclimated sand (spiked 

with metaldehyde at 1 g L-1 for 20 days – marked with the dotted line). Inlet concentrations 

varied between 0.1-0.9 g L-1 for the pilot scale and 0.2-1.1 g L-1 for the laboratory scale 

Conclusions 

Biological treatment of pesticides in drinking water production has been shown to be an 

effective option in continuous flow sand bioreactors that have undergone acclimation through 

selective enrichment. In the current case, this was demonstrated for the pesticide metaldehyde 

in an upflow fluidised sand bioreactor where the compliance limit could be achieved for 

prolonged periods when the sand bioreactor was acclimated. In addition, without any 

acclimation, a FBBR was able to achieve more than 30% metaldehyde removal compared to 

the downflow process. The efficacy of the biotreatment was impermanent with its duration 

correlated to the level of enrichment undertaken. Importantly, in the case of metaldehyde an 

effective cycle of 30 days has been demonstrated which would be sufficient to manage the 

majority of elevated concentrations seen in the waters entering the drinking water treatment 

works. Future work is required to optimise the technology and the acclimation process to 
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maximise operability for use in full scale treatment works and to establish if once initially 

enrichment is achieved, the re-activation periods can be reached in reduced time periods and 

at lower spike concentrations.  
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