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Abstract—The rapid increase of air traffic demand and com-
plexity of radio access network motivate developing scalable
wireless communications by adopting system intelligence. The
lack of adaptive reconfiguration in radio transmission systems
may cause dramatic impacts on the traffic management con-
cerning congestion and demand-capacity imbalances driving the
industry to jointly access licensed and unlicensed bands for
improved airport connectivity. Therefore, intelligent system is
embedded into fifth generation (5G) ultra-dense networks (UDNs)
to provision dense and irregular deployments that maintain
extended coverage and also to improve the energy-efficiency
for the entire airport network providing high speed services.
To define the technical aspects of this solution, this paper
addresses new intelligent technique that configures the coverage
and capacity factors of radio access network considering the
changes in air traffic demands. This technique is analysed
through mathematical models that employ power consumption
constraints to support dynamic traffic control requirements to
improve the overall network capacity. The presented problem
is formulated and exactly solved for medium or large airport
air transportation network. The power optimization problem is
solved using linear programming with careful consideration to
latency and energy efficiency factors. Specifically, an intelligent
pilot power method is adopted to maintain the connectivity
throughout multi-interface technologies by assuming minimum
power requirements. Numerical and system-level analysis are
conducted to validate the performance of the proposed schemes
for both licenced macrocell Long-Term Evolution (LTE) and
unlicensed wireless fidelity (WiFi) topologies. Finally, the insights
of problem modelling with intelligent techniques provide signif-
icant advantages at reasonable complexity and brings the great
opportunity to improve the airport network capacity.

Index Terms—Airport connectivity, Fifth generation (5G)
Energy efficiency, Load balancing, Network coverage, Power
optimization, Ultra dense networks.

I. INTRODUCTION

THE rapid increase in traffic load and the requirement

for ubiquitous access network services in airport do-

mains have triggered a dramatic expansion of radio access

infrastructure that subsequently led to a huge increase in

consumed power. The fifth generation (5G) networks, specified

as International Mobile Telecommunications-2020 (IMT-2020

Standard), support multigigabit downloading speed in few

milliseconds latencies to connect various types of services

and machines [1]. Although 5G addresses a wide range of

use cases, there is no standard or globally agreed radio inter-

face that defines a dedicated data communication system for

simultaneous airport operations or airport connectivity. There

are different commercial systems (e.g. cellular solutions, cus-

tom/proprietary systems (Gatelink, etc.)) that are in operation

at various airports, however, they provide a limited capacity

compared with the rapid increase in the number of connected

airport machinery that increasingly become a bottleneck of

the air transportation network [2]. There is also the problem

of compatibility since most of current technologies are meant

to connect users and Internet of Things (IoT) sensors. These

are not used for air traffic management (ATM) communication

due to the issues of reliability, availability, and security. This

marks a strong need to incorporate additional services within

the current airport infrastructure such as Air Traffic Control

(ATC) communications, very high frequency (VHF), Aircraft

Communications, Addressing and Reporting System (ACARS)

and Satcom Global (SATCOM) systems. For air interface,

the VHF has limited spectrum and is already fully occupied

with heavy traffic congestion and does not have the capability

to support the rapidly growing air traffic and future high-

speed data applications, while SATCOM is costly and does

not provide good connectivity at the airport surface due to

interference and buildings. To this end, there is a need to

develop a new radio interface that connects all users within

airport domain.

The evolvement of artificial intelligent (AI) techniques can

improve the wireless access by intelligent learning about the

spectrum availability to assign data within the existing radio

capacity. Following the new approach of intelligent system

can improve the resource utilization and potentially support

proactive decisions on radio access actions. To elaborate on

airport technology features, the emerging ultra-dense networks

are anticipated to be a combination of multi-tiers, radio access

technologies with different transmission rate and coverage

sizes [3]. Therefore, low-power small cells deployments within

macrocell layout are key components to enhance the energy

efficiency for the entire airport domain. The LTE Release 15

introduces a new features for cellular network, to improve the

coverage and enhanced system capacity, which makes signif-

icant development in energy efficiency that needs to satisfy

challenging requirements for supporting several functionalities

[4]. The carrier aggregation technology is a key feature to

boost LTE capacity by aggregating multi-carriers to support

higher speed downloading at the user side [5]. Therefore,

wireless networks are expected to have more dense structure

than before [6], consisting of operator overloaded by small

cells (e.g., femtocell, pico, and micro) to emerge as users-

deployed units that can be governed by macrocell to improve

service delivery and threatens to increase the networks energy

efficiency. LTE is expected to be a main part of next-generation

aviation communication system to support fixed and mobile

services for aircraft surfaces. In the 5G UDN paradigm [7],

it is more reasonable to find alternative ways to exchange
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data rather then fibre networks, which was the case in the

old infrastructure, partially because the high cost of deploy-

ment. As an alternative, networks may employ millimetre

wave technology to deliver the data through short-range high-

capacity wireless links. Consequently, dense network of small

cells are becoming the primarily solution to deliver traffic to

end users over less-occupied unlicensed channels. However,

this type of network infrastructure consumes a lot of energy

that can be reduced through energy-aware resource allocation

schemes. The optimization strategies to minimize the total

power consumption and improve energy efficiency are either

employed by site provisioning entities to reduce the number

of operational base stations or by deploying small cells that

consumer lower power [8], [9]. To elaborate, the challenge of

power efficiency in dense networks scales-up when deploying

more small cells [10]. Therefore, pilot power utilization for

energy consumption may become a less effective method in

small cell networks compared with other optimization schemes

that tackles the network infrastructure. Therefore, we focus on

a new energy optimization scheme that considers multi-tire of

base stations in 5G UDNs.

A. Related Work

Recently, several noteworthy studies has been considered

intelligent solutions [11], to facilitate the network operators,

while reducing the overall complexity and simplify the recon-

figuration procedures of mobile networks. The main objective

of the existing approaches is to leverage decision making for

an airport based macrocell to transmit data with very low

power to support multiple end users (e.g. aircraft), considering

the various conditions of traffic load within the cell. An

optimization solution based intelligent approach will extend

the coverage area and improve the system capacity in 5G

UDNs leading to new models of intelligent network coverage

that can support a large number of users with high data rates

[12]. Some of optimization techniques have been successfully

applied, for example in [13], the convex optimization problem

has been considered to solve the power consumption problem

by maximize energy efficiency while satisfying the system

requirements. The pilot power transmission scheme in [14] in-

vestigated an intelligent network coverage model according to

the aircraft location. Furthermore, the maximization of energy

efficiency in LTE macrocell is formulated as an optimization

problem for each base station power constraints. In [15], the

near-optimal algorithm achieves energy efficiency performance

with low complexity. However, these studies do not consider

the impact of the dynamic changes in traffic on the network

power consumption.

The authors of [16] considered a power optimization model

for load balancing and show that network performance can

be enhanced by proper adjustments of the pilot powers.

However, the authors do not consider the impact of small cell

deployments. Furthermore, a stochastic optimization problem

is considered in [17] to mitigate the effect of cell outage and

provide efficient cells deployment. In [18], the authors con-

sidered optimization technique using mixed integer non-linear

problem (MINLP) to improve the wireless throughput and

TABLE I
LIST OF MAIN VARIABLES AND PARAMETERS

Symbols Definitions

m = 1, ...,M Cells in the system
k = 1, ...,K Set of base stations
j = 1, ..., J Set of vehicles

Gdl
kj

Downloading power gain from base station k to aircraft
j

P tot
k

Total power transmitted from base station k
P tot
j Total power transmitted from aircraft j

Pmx
k

The maximum transmission power

ηdl
k

Cell load factor

P pch
kj

Amounts of power devoted to a pilot channel from base
station k to aircraft j

Ikj Total interference between base station k and aircraft j

δpch
dl

Portion of interfering power from the primary cell power
mainly due to multipath signals that are not orthogonally
captured by the terminal user receiver

Nj Thermal noise power at aircraft j

Γpch
kj

Received signal to interference density (Ec/Io) ratio
for aircraft j from base stations k

ρj Threshold sensitivity required to detect a signal at
aircraft j

Cdl
kj

Capacity of a link between base station k and aircraft
j

βk Frequency bandwidth of base station k
Cdl

j (t) Downlink capacity for each at a specific time t

P pch
j (t) Power received by each aircraft at time t

C̃jk Spectral efficiency for specific channel

C̃M Overall spectral efficiency at the network site
Pop Operating power expenditure

σeNBM
Network factor that scales down from LTE macrocell to
the small cells

Pk,eNB Power consumption due to eNB macrocell backhauling
Pfc Functional power consumption
Nsec Number of sectors for UEeNB
Namp Number of antenna per sector
γamp Power amplifier efficiency
Pαo Transmit power offset
hc Cooling losses in the system
hb Battery backup losses in the system

P
co(k)
eNB

Power consumption for the eNB macrocell

P
co(k)
sc Power consumption for small cells

ÅeNB Coefficient account for power consumption to scale the
average radiated to power for the eNBs macrocell

Åsc Coefficient account for power consumption to scale the
average radiated to power for small cells

P eNB
αo

Transmit power offset for eNB macrocell

P sc
αo

Transmit power offset for small cell base station

P
co(M)
site Site power consumption

PM
A

Area power consumption

Asite Area site is 3
√
3/2(Rsite)

2

Rsite Radius of the network site
⊓max
k

Upper bound limit for the pilot power

⊓min
k

Lower bound limit for the pilot power
Xk Pilot power of base station k
Zkj Base station k covers aircraft j

vjs Mobile at position s in the area of base station k
Sj Total number of aircraft in the area of base station k

P pch

kv1
j Base station k is covering a aircraft at position vj1

Ek Total number of vehicles in the sequence of s within
base station k

P ∗ Optimum amount of pilot power
Esite Site energy consumption

N eNB
k

Number of eNB macrocell base stations in the sites

EeNB
M Energy usage over for eNB macrocell
Eo Energy consumed by other aircraft network elements

such as the core network and radio network controllers



3

Nj Number of aircraft
Ej Energy consumed by single aircraft
Esc

M Energy consumed by the WiFill
N sc

k
Number of small cell in each eNB macrocell network

E/A Daily energy consumption

ηDL∗

k
New parametric values of the modified load with respect
to the old parametric values of the reference load
network

ηo Minimum load due to control signalling
Rj User bit rate of user j
vj Activity factor of number of users j
ζR
k

System chip rate
α̃ Spreading code orthogonal factor

J̃ Other cell interference factor

provide a flexible coverage for 5G UDNs. The configuration

of radio access parameters can involve the adjustment of pilot

transmission power using intelligent learning technique (e.g.

Reinforcement Learning (RL)). More specifically, for example,

[19] proposed an intelligent configuration of antenna power

transmission in order to adjust its coverage and capacity. The

authors considered distributed algorithm in macrocell network

scenario and present three different learning approaches with

performance evaluations. Other techniques aim to adjust the

radio transmission parameters based on measurements of sig-

nal received from neighbour base stations. For example, [20]

studied an energy-efficient high-capacity LTE macrocell net-

work through utilizing small cells and energy saving strategy.

However, this requires a low-latency backhaul to distribute

packets between base stations and to coordinate multi-point

transmission techniques [21]. It is important to understand

that existing schemes are not generic and cannot be applied

directly to multi-tier cells due to various differences in vendor

specific physical specification, maximum transmit power for

local domains, and so on. In [22], the authors investigated

an energy saving scheme that exploits the amount of traffic

processed by a certain cell to decide whether a cell with low

load should be switched to sleep mode. Similarly, the dynamic

adjustment in the number of active base stations and their

coverage domains is analysed considering the traffic status

throughout the network [23], [24].

In [23], the authors evaluated various cell discovery tech-

niques tailored for energy efficient detection of small cells

deployed. In ultra-dense paradigm, adjusting the power levels

of the transmitted pilot signal may change the coverage area

of the cells. Although the energy efficiency approach has

been considered in various scenarios such as sleep mode,

scheduling in LTE macrocell base station [25], and energy-

efficient cooperative multicast [26]. The 5G UDNs paradigm,

which is considered in this study is very different, by de-

veloping an energy-efficient backhauling scheme for small

cells deployment in macrocell domain, where the power

transmissions are activated for lower energy consumption.

This can facilitate some guidelines for the existing wireless

solutions. Specifically, the adoption of pilot power approach

in order to systematically address the critical issue of power

saving in dense network, together with the ultra-dense capacity

management solution. In summary, existing studies on the

energy-efficient of 5G UDNs only consider the orthogonal

channel deployment and the impact of interferences. These

observations motivate us to address the power optimization

problem to develop a mathematical model using linear integer

programming to maximize the throughout while minimizing

the overall transmitted power [27]. The airport capacity mea-

surement is considered for Cranfield Airport environment. This

power transmission optimization represent local base stations

with the intention to cover large parts or the entire airport area.

It is however likely that the capacity requirement in particular

airport with large coverage will be too tough to be managed by

one or a few base stations to cover the entire airport surface.

B. Contributions

In this paper, we provide a new formulation for the energy-

efficient optimization technique based on 5G UDNs, where

macrocell base stations overlaid with small cells cooperatively

serve multiple users using shared resources with guaranteed

data rate requirements. The challenge in dense networks is to

achieve high capacity with satisfaction for traffic demand. To

tackle this problem, we first formulate the power optimization

problem, which is critical for proposing an optimal solution

that maximizes the energy efficiency while minimizing the

overall transmission power. Then, we propose an intelligent

pilot power allocation strategy that responds to the dynamic

traffic changes based on the energy saving metric. The major

contributions of this paper are outlined as follows:

1) Maximizing spectral efficiency: In any given area the

achievable spectrum efficiency is impacted by the un-

derlying user population. We provide new modelling for

area spectral efficiency in dense networks loaded with

different traffic profiles with the assumption that each

access point transmits at maximum power to cover all

users. Then, we formulate the DownLink (DL) through-

put maximization problem to improve the overall system

services.

2) Power optimization problem with a consideration of

data traffic requirements: Most existing transmit power

optimization rely on the statistics of the signal and

interference power [18] and [22]. Different from this,

we propose an intelligent pilot power for small cells

embedded in macrocell area that addresses both power

consumption reduction and cell coverage balancing.

Hence, we formulate an optimization linear problem of

pilot power control in order to minimizing the energy

consumption by fully exploit the cell coverage and attain

high throughput.

3) Simplify the power optimization problem using an en-

hanced integer programming method: We reduce the

power consumption using energy-aware pilot power

schemes, for cooperative transmission and allow a quick

response to the dynamic changes in microcell traffic

load. Optimizing the pilot power allows us to restructure

the cell coverage area with minimal transmission power

using convex theory.

4) Network capacity: We calculate the network capacity

and energy efficiency for various deployment scenarios.

We first develop energy performance metrics for 5G

UDNs. In addition, we exam the potential daily energy
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savings when deploying small cells along with macrocell

base stations with different values of transmitted power

and different traffic load profiles.

5) Numerical analysis and simulations: We carry out exten-

sive numerical analysis and simulations to validate the

effectiveness and efficiency of our proposed power opti-

mization approach. Theoretical analysis and simulation

results show that the proposed pilot power optimization

model not only has low power consumption, but also

offers energy efficiency performance enhancement and

increases the system resources capability.

The rest of this paper is organized as follows: the proposed

system model in dense networks is presented in Section II.

The analysis of site energy consumption is given in Section

III. The system performance and numerical evaluation are

discussed in Section IV. Conclusions are drawn in Section V.

Main parameters, notations, and variables used in this paper

are listed in Table I.

II. SYSTEM MODEL

We consider 5G UDNs with m = {1, ...,M} cells in the

system. The set of base stations is denoted by k = {1, ...,K}.

Each base station has a set of vehicles denoted by j =
{1, ..., J}. Let Pmx

k be the maximum transmit power of any

base station. As for a grid of base stations, Gdl
kj , is the power

gain between a base station k and the aircraft j. Let Ptot
k

and Ptot
j denote the total power transmitted from base station

k and aircraft j, respectively. The total power in any cell m
in the network is given by Ptot

k ≤ Pmx
k as it is completely

dependent on the DL traffic. Thus, the DL load factor can be

obtained as ηdlk = Ptot
k /Pmx

k , which is the amount of power

devoted to the pilot channel for aircraft j in cell m. We assume

that all base stations operate at maximum power.

Fig. 1. Adaptive coverage and cell grid of aircraft locations.

The total interference of aircraft j from its surroundings

with respect to the base station k is given by

Ikj = Gdl
kjP

tot
k δdlpch +

J
∑

j=1

(

Gdl
kjP

tot
j ηdlk +Nj

)

, (1)

where Nj denotes the thermal noise power, and δdlpch the

power interference caused by non-orthogonal signals that are

transmitted by eNB.

The received signal to interference density Ec/Io ratio for

aircraft j from base station k can be calculated as

Γ
pch
kj

=
Gdl
kj P

pch
kj

Ikj
. (2)

Thus, the updated pilot power signal can be derived as

P
pch
kj

=
Γ
pch
kj

Gdl
kj

(Gdl
kjP

tot
k δdlpch+

J
∑

j=1

K
∑

k=1

(

Gdl
kjP

tot
j ηdlk +Nj

)

. (3)

To achieve an active coverage, the pilot signal power of

base station k, received at aircraft j must fulfil the following

condition

Gdl
kjP

pch
kj

≥ ρj, (4)

where ρj is the threshold sensitivity required to detect a signal

at aircraft j.

In the following sub-sections, we identify the metrics for

area spectral efficiency and power consumption in order to

solve the pilot power optimization problem.

A. The Metric of Area Spectral Efficiency

Spectral efficiency is one of the key performance parameters

and major challenge in ultra-dense domain. The maximum

throughput and the area spectral efficiency (ASE) of the

network can be represented in bps/Hz/km2 and scale linearly

according to the base stations deployments [28]. Therefore,

the capacity of a link between base station k and vehicle j is

given by

Cdl
kj = βk log2(1 + Γ

pch
kj

), (5)

where βk is the frequency bandwidth available in the site

covered by base station k.

As the traffic and aircraft j locations are fluctuation, we

use (5) to identify the interim DL capacity for the aircraft at

a specific time t as
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Cdl
j (t) = βk log2






1 +

P
pch
kj

(t)

∑J
j=1 P

tot
j (t) ηdlj (t) +Nj






,

(6)

where Ptot
j (t) is the power received by aircraft at time t.

We propose a new approach, that can be used for dynamic

traffic, called interim spectral efficiency C̃jk for a specific

channel at time t, given by

C̃jk (t) =
Cdl
j (t)

βk
= log2







1 + P
pch
kj

(t)

ΣJj=1 Ptot
j (t) . ηdlj (t) +Nj






.

(7)

Note that the area spectral efficiency is expressed in

bits/sec/Hz/km2. The overall spectral efficiency obtained at

the 5G UDNs C̃M can be calculated as

C̃M =

K
∑

k=1

J
∑

j=1

C̃jk (t) . (8)

This spectral efficiency reflects the 5G UDN performance for

a certain traffic profile.

B. Throughput Maximization Problem

The coverage of ultra-dense is defined as the probability

that the signal-to-interference-noise ratio (SINR) of aircraft is

above a SINR threshold [28]. Hence, We formulate the DL

throughput maximization problem built up on equation (5) as

Max

K
∑

k=1

J
∑

j=1

βkjlog2(1 + Γ
pch
kj

), (9)

s.t.

J
∑

j=1

βkj ≤ βk, ∀j , (9a)

K
∑

k=1

Ptot
k ≤ Pmx

k , ∀k, (9b)

Ptot
k ≤ P∗, (9c)

where Γ
pch
kj

≥ 0 is the received signal to interference density

(Ec=Io) ratio for aircraft j from base stations k. The Ptot
k ≥ 0

is the transmission power from base station k to aircraft j.

βkj is the total bandwidth of the base station k at aircraft j,

P∗ is the optimum transmission power of base station k to

aircraft j.

C. Power Consumption Model

We develop a power consumption model to evaluate the

consumed power for macrocell overlaid with small cells in 5G

UDNs. In order to analyse the overall power savings that can

be obtained in ultra-dense environment, we start by identifying

the operating power expenditure (OPEX) [29] of the network,

Pop given as

Pop =

K
∑

k=1

(

ηdlk Pmx
k σeNBM

+ Pk,eNB

)

, (10)

where ηdlk denotes the cell load that may vary between 0.1

and 0.9 depending on the users capacity and radio interface

configuration, Pmx
k denotes the power that is required to

create the mximum transmission power in the antenna output,

σeNBM
denotes the network factor that scales down from

macrocell to the small cells, and Pk,eNB is the power

consumption due to eNB backhauling.

The macrocell base station also incorporates functional

power expenditure due to hardware components cooling re-

sulted from thermal radiation regardless of the transmit power.

This becomes significant as the spectral efficiency of the DL

increases, causing additional backhauling and signal process-

ing. This functional power consumption Pfc can be calculated

in Joules/sec as

Pfc = N secNamp

(

γamp Pmx
k + Pαo

)

+ (1 + hc)
(

1 + hb
)

Pk,eNB, (11)

where Nsec is the number of sectors for eNB, Namp is the

number of antenna per sector, Pmx
k is the transmit power

of the base station, γamp is the power amplifier efficiency,

Pαo is the transmit power offset which depends on the power

spent for signal processing. hc and hb respectively denote the

cooling and battery backup losses in the system.

The relation between the average radiated power obtained

using (10) and (11) with respect to the site’s power consump-

tion is linearly modelled for both macrocell and small cell

base station sites [30], can be calculated as

P
co(k)
eNB = NsecNamp

(

ÅeNB Pmx
k + PeNB

αo

)

(12)

P
co(k)
sc = Åsc Pmx

k + Psc
αo, (13)

where ÅeNB and Åsc are the coefficients to scale the average

radiated power for the macrocell and small cells respectively.

PeNB
αo and Psc

αo are the transmit power offset for macrocell

and small cell, respectively.

The overall site power consumption can be calculated as

P
co(M)
site =

M
∑

m=1

(

P
co(k)
eNB + P

co(k)
sc

)

. (14)
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The area power consumption is defined as the average power

consumption per cell divided by the cell area measured in

Watt/Km2. Finally, the overall area power consumption can

be expressed as

PM
A =

P
co(M)
site
Asite

, (15)

where Asite is the area site is equal to 3
√
3/2(Rsite)

2 in

km2 and Rsite is the radius of the network site.

D. Formulation of the Pilot Power Problem

We aim to minimize the pilot power value according to

the data rate requirement of each user, where the macrocell

and a set of small cell base stations jointly serve all aircraft

users located in the dense networks. Therefore, we introduce

a pilot power optimization problem with optimum coverage

requirement, as follows

min

J
∑

j=1

P
pch
kj

, (16)

s.t. Gdl
jkP

pch
kj

≥ Pj, (16a)

⊓max
k ≤ P

pch
kj

, (16b)

0 ≤ ⊓min
k ≤ Pmax

k . (16c)

In constraint (16b) at least one base station is required to

serve a set of aircraft users. Constraints (16c) and (16d) sets

the upper and lower bound limit, respectively, for the pilot

power in base station k. We use pilot power minimization as

specified in [31] for constrained multi-objective optimization

to formulate the cell-aircraft coverage problem. For simplicity,

we do not include the traffic and service area in this model by

letting them to be equal to one. The notations are used in the

following formulations, Xk is the pilot power of base station

k, and Zkj is a binary variable that equals 1 if base station

k covers aircraft j and 0 otherwise. The problem formulation

for full coverage (P1) is given as

P1: min

K
∑

k=1

Xk, (17)

s.t.

M
∑

k=1

Zkj ≥ 1, j = 1, ..., J, (17a)

P
pch
kj

Zkj ≤ Xk k = 1, ...,K, j = 1, ..., J, (17b)

⊓min
k ≤ Xk ≤ Pmax

k k = 1, ...,K, (17c)

Zkj ∈ {0, 1}, k = 1, ...,K, j = 1, ..., J, (17d)

Xk ∈ {0, 1}, k = 1, ...,K, j = 1, ..., J, (17e)

Constraint (17a) guarantees full coverage. The pilot power

level of base station k must be at least equal or greater than the

maximum P
pch
kj

value among its aircraft users as in constraint

(17b). The constraint (17c) ensures that pilot power level in

cell k is within the given interval.

E. Enhanced Formulation for Near-Optimum Solution

In the ultra-dense domain we need to identify the optimal

pilot power level for each cell. Therefore, we use the integer

programming based incremental technique to find a near-

optimal solution that can be applicable to all cell sites. For

base station k, we introduce a new sequence for P
pch
kj

in

ascending order using the set v
j
1, v

j
2, ..., v

j
s−1, v

j
s , where v

j
s

denotes the aircraft at positions in the area of base station k,

as shown in Fig. 1.

We re-model the pilot power according to this new sequence

of pilot power for base station k in an incremental technique as

P
pch

kv
j
1

≤ P
pch

kv
j
2

≤ ... ≤ P
pch

kv
j
s−1

≤ P
pch

kv
j
s

≤ .. Therefore, the

value of P
pch

kv
j
1

is used by base station k to cover a aircraft

at position v
j
1. For any subsequent positions in the order of

s ∈ {2, ..., Ek} an additional power increment of P
pchJ

kv
j
s

is

added to the initial values in order to cover the additional

aircraft distances, where Ek is the total number of vehicles in

the sequence of s within base station k.

Let ∂ ∈ {0, 1} denote the required level of traffic coverage

(∂ = 1.0 means full coverage). ys is a binary variable that

equals 1 if base station k covers aircraft j and 0 otherwise.

Thus, we reformulate the power minimization as

P2: min

K
∑

k=1






⊓min
k +

Ek
∑

s=1

P
pchJ

kv
j
s

X
kv

j
s






, (18)

s.t.

K
∑

k=1

fsys ≥ ∂F, (18a)

K
∑

k=1

Zkj ≥ ys, k = 1, ...,K, (18b)

X
kv

j
s−1

≤ X
kv

j
s
, k = 1, ...,K, j = 1, ..., Ek, (18c)

Zkj ∈ {0, 1}, k = 1, ...,K, j = 1, ..., J, (18d)

ys ∈ {0, 1}, j = 1, ..., J, (18e)

In P2, constraints (18a) referred to the base station pilot

constraint, states that if the base station k covers any aircraft
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j, then the pilot power equals P
pchJ

kv
j
s

. Constraints (18b) define

the minimum uniform pilot power that satisfies the coverage

requirement. The new sequence of pilot power for base station

k in an incremental technique is stated in (18c). It is important

to note that the base station with pilot power level equal or

close to ⊓min
k may consider to switch off [32]. Therefore, the

pilot power of the base station is the required minimum ⊓min
k

if it covers at least one aircraft, otherwise it is zero.

III. SITE ENERGY CONSUMPTION

In this section, we adopted an energy consumptions model

as specified in [33] to calculate the energy saving obtained

from various traffic profiles with the area power efficiency.

The energy consumption for a network site using real time

application can be estimated at a certain time interval t as

Esite =

M
∑

m=1

K
∑

k=1

[

N eNB
k

(

Pop + (ηdlk Pmx
k )

)

t

]

, (19)

where N eNB
k refers to the number of macrocell base station

in the site. The energy usage over time t (seconds) for an 5G

UDN can be calculated as

EeNB
M =

M
∑

k=1

N eNB
k Esite+

J
∑

j=1

Nj Ej + Eo. (20)

This is a standard definition for the energy consumed in

all base stations in the network. Here Esite is the energy

consumed by a single base station site, Nj refers to the number

of aircraft, Ej refers to the energy consumed by a single

aircraft, and Eo is the energy consumed by other aircraft

network elements, such as the controllers, core, and radio

access network.

When small cell systems are deployed in 5G UDN, the

energy consumed by the small cell network can be expressed

as

Esc
M =

K
∑

k=1

Nsite N e
kNB +

(

N sc
k . P

co(k)
sc

)

t, (21)

where N sc
k is the number of small cells in each macrocell

domain and P
co(k)
sc is the power usage of the small cell base

station over time t.

We develop an analytical model with intelligent coverage

area and dynamic traffic to measure the network performance,

expressed in terms of the daily energy consumption per square

kilometer (kWh/km2) as follows

(

EeNB
M ,Esc

M

)

Area

=

K
∑

k=1

[

(

Nn
siteN

eNB
k

Pop + (ηdl
∗

k Pmx
k )

NsiteAsite

)

+
(N sc

k P
co(k)
sc

Asite

)

]

24. (22)

The number of sites in the new deployment is represented

by Nn
site and the corresponding load ηdl

∗
k refers to the new

parametric values of the modified load network with respect

to the old parametric values of the reference load network.

To simplify calculations, we assume a fixed site as stated

in [34] with a dynamic traffic in order to measure the impact

of traffic, and daily energy consumption changes is given by

(

EeNB
M ,Esc

M

)

Area

=

K
∑

k=1

[

N eNB
k

Pop + (ηdl
∗

k Pmx
k )

NsiteAsite

]

24. (23)

Finally, we include the impacts of incorporating the small

cells in the macrocell domain for a dynamic traffic profile as

follows

(

EeNB
M ,Esc

M

)

Area

=

K
∑

k=1

[

(

N eNB
k

Pop + (ηdl
∗

k Pmx
k )

Asite

)

+

(N sc
k P

co(k)
sc

Asite

)

]

24. (24)

The focus is on the downlink of macrocell base station

where the same resources are allocated. The load factor can

be approximated by its average value across the cell being

formulated as in [35] as

ηdl
∗

k = ηo +Nj

Γ
pch
kj

Rj vj

ζR
k

(1− α̃+ J̃ ), (25)

where, ηo denotes to the minimum load due to control

signaling, vj denotes the activity factor of number of users

j, Rj denotes the user bit rate, ζRk denotes the system chip

rate, α̃ denotes the spreading code orthogonally factor and J̃
is represent other to own cell interference factor. The load is

considered to be dependent on the expected α̃ and J̃ over the

entire cell area, where the system characteristics are listed in

Table II.

The relation between energy consumption in kWh per

km2 and the load from (0.1 to 1) is displayed in Fig. 2.

It is observed that when the small cells are deployed with
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TABLE II
SYSTEM CHARACTERISTICS.

Parameter Value

System chip rate 3.81 Mcps
Shadow fading margin 6 dB
Mean α̃ (Average orthogonality factor in the cell) 0.45

Mean J̃ interference ratio 0.60
Activity factor aj 1.00
Minimum load 0.075
System load 1 to 100%

total power (6W, 3W, and 2W) in macrocell domain, around

25%, 17%, and 11% of energy would be saved and it keeps

on increasing as the number of small cells increases. The

deployment of small cells results in reducing the load and

power delivered through the macrocell. Another observation is

that for the low power case, the energy saving keep decreasing

with increasing the traffic load in the system.

Fig. 2. Energy consumption vs. ratio connection of macrocell and small cell.

Numerical results reveal that for current network design and

operation, the energy efficiency is mostly independent of the

traffic load. This highlights the significant potential for energy

savings by improving the energy efficiency of base stations at

low load. Furthermore, the results prove that small cell link

can effectively save the spectrum resources for the macrocell

subscribers.

A. Numerical Analysis

In this section, we evaluate the energy saving performance

and the efficiency tradeoff for the proposed power consump-

tion model of multiple cellular communication domains. The

numerical analysis of system networks is presented to obtain

the optimum inter site distance (ISD) value. Our scenario has

considered seven macrocell with variable grid of sites sym-

bolized by the ISD, which ranges between 500-2000 meters.

We assume that the cell area is 95% covered for macrocell

and small cells domain to get better coverage performance.

Mobile station terminals are placed randomly in the macrocell

domain, small cell sites are assumed to support a circular area

of radius 30 m, which are positioned at the cell edges where,

the signal levels of the macrocell is expected to be low. The

spectral efficiency C̃M is assumed to be 6 bit/s/Hz according

to (8). The power model parameters are selected as the values

resulting from (13) and (14), assuming that the coefficients of

power consumption are ÅeNB = 3.8, PeNB
αo = 68.8 W, Åsc

= 6.3, Psc
αo = 0.5 W. The power consumption is calculated

according to (15). The SINR requirements according to [36]

for transmission bandwidth are shown in Table III below.

TABLE III
THE REQUIREMENTS OF MACROCELL SINR

CQI Modulation Code Spectral Efficiency Receiver
Rate [bps/Hz] SINR [dB]

0
1 QPSK 1/5 0.40 -2.9
2 QPSK 1/5 0.40 -2.9
3 QPSK 1/4 0.55 -1.7
4 QPSK 1/3 0.66 -1.00
5 QPSK 1/2 1.00 2.0
6 QPSK 2/3 1.33 4.3
7 QPSK 3/4 1.50 5.5
8 QPSK 4/5 1.60 6.2
9 16-QAM 1/2 2.00 7.9

10 16-QAM 2/3 2.66 11.3
11 16-QAM 3/4 3.00 12.3
12 16-QAM 4/5 3.20 12.8
13 16-QAM 2/3 4.00 15.3
14 16-QAM 3/4 4.50 17.5
15 16-QAM 4/5 4.80 18.6

Fig. 3. Area power consumption vs. ISD (βk=2GHz, ρj=-70dBm).

The area power consumption analysis as a function of

ISD for various small cell deployment densities is depicted

in Fig. 3. As expected, results show that the area power

consumption decreases as the small cell density increases

compared to the case when only macrocell unit is in place.

Also, all power consumptions decrease with the increase of

ISD. This confirms the fact that the small cells deployment

decreases the energy consumed in the system by utilizing the

smaller transmission domains and shorter formulated links.

By ignoring the impact of shadowing, it is easier to identify

the optimum cell radius as well as the optimum ISD that

achieve minimum area power consumptions for each analyzed

scenario. Fig. 3. shows that the optimum corresponding ISD

is 1300 m achieving the minimum area power consumption

of 400 W/km2. When small cell nodes are deployed, they
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offload the premium users from the macro base station and

free macro resources to serve basic users. It can be observed,

that all deployment strategies have the same optimal ISD

but with different values of minimum power consumptions.

For ultra-dense deployment scenarios as percentage of 20%,

40%, 60%, and 80% of small cells in the macrocell domain.

The power consumptions range between 800-1270 W/km2,

which is considerably less than the power consumed in the

traditional services delivered by the macrocell base station.

Thus, the small cells deployment reduces the power consumed

in the system. However, small cell base stations are not able

to increase the optimum inter site distance for the site under

coverage. It is clear that the new model improves the area

power consumption with a logical and applicable approach

by using optimization power model. The power consumption

for higher densities of deployed small cell is decreasing for

the same ISD value. The lowest power for ISD occurs at

1300 m for the macrocell domain.

IV. SYSTEM PERFORMANCE

We carry out a system simulation level to evaluate the

performance of 5G UDNs overlaid small cells. The simulated

network incorporates seven macrocells, where the base station

is placed at cell centre of hexagonal layout with a fixed ISD

and number of small cells are distributed randomly along the

edge of the cells. Each macrocell includes three sectors with

antenna pointing in the three horizontal directions separated

by 120 degrees. In this radio system, the estimation of load

demand fluctuation and configuration is considered to show

how it affects the energy consumption level. The macrocell

has an optimum value of ISD = 1.3 km obtained from our

numerical calculations. The small cell radius is assumed to be

30 m, for a cell range of Rk , the cell area can be calculated

as 3
√
3/2(Rk)

2. The small radio systems are deployed to

compare four different network scenarios and assess how

the change in the 5G UDN configuration affect the energy

consumption in the wireless system. The simulation parameter

values are given in Table IV.

In the simulation model, the compute the expected execution

time will be each of the five min programs. The task-level

performance information is returned by the execution time

block, in our case is five mints. The first output port shows

the total time of execution of each base rate step of the entire

model.

2) Impact of Traffic Load

Fig. 4 shows the power consumption for aggregate the

data traffic loads of high and low profiles. The incorporation

of the new proposed scheme shows a major improvement

in the system performance by reducing the values of power

consumption. This is due to the fact that the optimization

of pilot power creates effective coverage areas that identify

the aircraft location, which means there is no requirement to

transmit power beyond the actual user location. The figure

shows that high traffic profile consume more power than the

low traffic. This is due to the fact that more packets need

high power during transmission operation compared with low

traffic profiles. Results also indicate that the load performance

is effected by the number of deployed small cells as this

will change the traffic volume transfers a cross the networks.

Therefore, more network stability and throughput advantages

can be achieved with the small cell deployment. As the

structure of the network changes with more deployed small

cells, the overall consumed power increases gradually due to

the direct impact from the increased traffic.

TABLE IV
SIMULATION PARAMETERS.

Parameters Value

Simulation time, t 5 min
Transmit power of macrocell 40 dBm
Transmit power of small cell base station 20 dBm
Bandwidth 5 MHz
Antenna gain of macro/ small cell /aircraft (14/5/0) dB
Thermal noise density -174 dBm/Hz
Noise figure in aircraft terminal 9 dB
Antenna pattern Omni
Propagation model of macro and small cell 4 dB, 8 dB
Noise density -80 dBm/Hz
Path loss outdoor 70 dB

Fig. 4. Power consumption as a function of traffic.

4) SINR of DL Channel

For channel capacity, the simulation environment is intro-

duced for modeling radio channels with line-of-sight (LoS)

and non-line-of-sight (NLOS) connection between aircraft and

marcocell bastion in an operating airport telecommunications

system. In general, wireless communications at large air-

ports will experience the most areas of multipath fading and

(NLOS). In the simulation model, the compute the expected

execution time will be each of the five min programs. The task-

level performance information is returned by the execution

time block, in our case is five mints. The first output port

shows the total time of execution of each base rate step of the

entire model. Fig. 5 shows the DL channel SINR of 5G UDNs

for different system connection times. The graph shows the

improved performance of using intelligent pilot power scheme

compared to the conventional pilot power [18]. In fact, the

proposed intelligent power scheme needs some time to adjust

the power of transmission while identifying the user locations.
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This means that the same process of finding the user positions

and adjusting power at small cells is needed again before the

performance stabilizes, as shown for the interval from 70 to

240 seconds.

Fig. 5. SINR improvements in 5G UDN.

V. CONCLUSIONS

In this paper, the utilization of airport traffic load capacity

problem and energy-efficiency were investigated for 5G UDNs

environments employing licenced and unlicensed bands. First,

we defined new optimization metrics to improve the network

coverage control by leveraging an intelligent pilot power tech-

nique that allows scaling the system capacity based on fluctu-

ations in user demands. Then, we formulated the optimization

problem using linear programming method to minimize the

power consumption in the ultra-dense paradigm. The perfor-

mance metrics for capacity were characterized using different

load profiles for the simulated dense network scenarios to

validate the proposed solutions. In addition, we evaluated the

optimization solution to show the potential energy savings with

daily variances of both transmitted power and load profiles.

Our numerical analysis demonstrated a significant savings

of approximately 17% in the overall energy consumption of

dense networks. Also, the system-level analysis validated the

performance of intelligent power transmissions in improving

the air interface with aircrafts at very low latencies. Finally, the

proposed scheme of linear optimization resulted in minimized

pilot power while maximized the overall system capacity for

a fully autonomous and intelligent connectivity.
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