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Presence of uncertainties caused by unforeseen malfunctions in actuation system or changes in aircraft 
behaviour could lead to aircraft loss-of-control during flight. The paper presents Two-Layer Adaptive 
augmentation for Incremental Backstepping (TLA-IBKS) control algorithm designed for a large transport 
aircraft. IBKS uses angular accelerations and current control deflections to reduce the dependency on 
the aircraft model. However, it requires knowledge of control effectiveness. The proposed technique is 
capable to detect possible failures for an overactuated system. At the first layer, the system performs 
monitoring of a combined effectiveness and detects possible failures via an innovation process. If a 
problem is detected the algorithm initiates the second-layer algorithm for adaptation of effectiveness of 
individual control effectors. Filippov generalization for nonlinear differential equations with discontinuous 
right-hand sides is utilized to develop Lyapunov based tuning function adaptive law for the second layer 
adaptation and to prove uniform asymptotic stability of the resultant closed-loop system. Conducted 
simulation manifests that if the input-affine property of the IBKS is violated, e.g., in severe conditions 
with a combination of multiple failures, the IBKS can lose stability. Meanwhile, the proposed TLA-IBKS 
algorithm demonstrates improved stability and tracking performance.

© 2020 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Enabling flight safety of passenger aviation in the presence of 
abnormal conditions, such as those caused by equipment failures 
and/or adverse environmental factors, is a vital problem. Analysis 
of accident and incidence reports revealed that the main contri-
bution to the fatal accidents were due to aircraft Loss of Control 
In-Flight and Controlled Flight Into Terrain [1]. The main reasons 
caused these accidents are pilot mistakes, technical malfunctions, 
or their combination.

Recently, great efforts have been undertaken to develop aircraft 
control design tools and techniques for enabling safe flight [2–8]. 
The idea that non-conventional control strategies can prevent pos-
sible accidents and recover aircraft from dangerous situations stim-
ulates researches toward fault-tolerant and adaptive flight control 
[9–12].

Gain-scheduling of linear feedback controllers is widely applied 
in commercial applications to achieve stabilization and satisfactory 
tracking performance of aircraft over a wide range of flight con-
ditions [13], [14]. In case of severe and unpredicted changing in 
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aircraft behaviour such controllers cannot be used or can be used 
only with a restricted functionality.

Nonlinear Dynamics Inversion (NDI) and Backstepping (BS) 
techniques have become popular control strategies for adapta-
tion since they can be used for global linearization of the system 
dynamics and control decoupling [15–19]. The BS control has ad-
vantages in comparison with the NDI, namely, it is more flexible 
and it is based on Lyapunov stability theory. Later, to make the NDI 
and BS controls more robust and fault-tolerant an incremental-type 
sensor-based form has been proposed [20–22].

However, even in this formulation the controller still requires 
accurate knowledge of the control effectiveness, especially, if the 
system is not affine in control inputs because of non-linearity 
in actuators or due to large transport delays. Additional adap-
tation strategies augmenting the incremental-type controllers to 
reduce dependency on an aircraft model were applied for a high-
performance aircraft model in [23], [24]. Adaptive strategy helped 
to improve performance of IBKS control of the hypersonic intercep-
tor [25]. Regardless of the fact that IBKS demonstrates robustness 
to some failures [26] estimation of the control effectiveness im-
proves fault-tolerant abilities of the system [27], [28].

It is well known that one of the main challenges of an online 
estimation is that it is carried out while a control system is oper-
ss article under the CC BY-NC-ND license 
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ating [29]. It is common for an automatic control system to move 
several control surfaces in a proportional manner, bringing about 
nearly exact linear correlation between control surfaces. In addi-
tion, modern passenger aircrafts have many control effectors for 
both longitudinal and lateral control, so the multiple-input prob-
lem appears. Dedicated manoeuvres that maximise the observ-
ability of the parameters to be estimated, for example, individual 
rudder or aileron steps, cannot be carried out. Thus, the identifica-
tion capabilities of the algorithm are limited, especially, in case of 
failures.

Reliable identification can be achieved via the maximization of 
the information content in the data using proper excitations of the 
system. On the other hand, excessive system excitation because 
of ongoing manoeuvres can cause several undesired consequences, 
such as a decrease in passenger comfort during flight or decrease 
of control performance. But, estimation algorithms without persis-
tent excitation could suffer from estimator windup [30], which is 
unbounded growth of adaptation gains, making the estimator algo-
rithm sensitive to noise. Thus, the identification routine should be 
a trade-off between identification precision and performance re-
quirements. Such constraints leave an imprint on the online iden-
tification routine.

The present paper demonstrates results from the European 
project INCEPTION, which is seeking the development of fault-
tolerant Automatic Flight Control System for fixed-wing aircraft 
allying incremental control strategies, adaptive augmentation and 
envelope protection [31]. Two-Layer Adaptive augmentation to 
IBKS control law (TLA-IBKS) is developed in the current study. The 
proposed augmentation is designed to improve stability and track-
ing performance of the IBKS baseline controller by providing actual 
information about control effectiveness in case of uncertainty or 
failure.

The first layer is responsible for detecting anomalies in the 
control effectiveness of the overactuated system, while the sec-
ond layer is designed to determine and update the effectiveness 
of the individual effector detected as failed. At the first layer, the 
system performs monitoring of the combined effectiveness and de-
tects possible failures via the generation of an innovation process. 
The innovation process is defined as the difference between the 
actual system output and the expected output based on the model 
and the previous output data. The first layer governs the control ef-
fectiveness estimation in the second layer. If a problem in the com-
bined control effectiveness is detected, the algorithm activates the 
second-layer estimation of the individual effectiveness and stops 
the adaptation algorithm at the second layer when the difference 
between the actual system output and the updated model output 
becomes small. Such a structure helps to design a fault-tolerant 
control without making assumptions about a fault type. Activation 
and termination of the second layer adaptation by the first layer 
cause discontinuity of the closed-loop system dynamics and thus 
classical Lyapunov based approach is not applicable to design an 
adaptive control law. Filippov generalization for nonlinear differ-
ential equations with discontinuous right-hand sides is adopted to 
develop Lyapunov based TF adaptive law for the second layer adap-
tation and to prove uniform asymptotic stability of the resultant 
closed-loop system. Simulation results demonstrate the effective-
ness of the proposed structure in tackling the model uncertainties.

The paper is organized in the following way. A very brief 
overview of the flight dynamics and IBKS control strategy are given 
in Sections 2 and 3 correspondingly. Section 4 provides a descrip-
tion of the two-layer identification framework in general. The first 
layer algorithm is considered in Sections 5. The development of 
the second layer adaptation law and proof of the closed-loop sys-
tem stability with the proposed two-layer structure is discussed in 
Section 6. Section 7 deals with a simulation study of the proposed 
framework. In particular, proposed TF adaptive algorithm is com-
pared with the Recursive Least Squares bases adaptation. Finally, 
concluding remarks are articulated in Section 8.

2. Flight dynamics model

Equations of motions of the aircraft can be represented with 
kinematics and dynamics models. The kinematics of the aircraft is 
described by the attitude state vector ξ = [φ θ β]T , where φ, θ , β
are roll, pitch and sideslip angles.

ξ̇ = fξ + Tξω (1)

where

fξ =
[
0 0 − Ax

Vt
cosα sinβ + A y

Vt
cosβ − Az

Vt
sinα sinβ + g y

Vt

]T

,

Tξ =
⎡
⎣ 1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

sinα 0 − cosα

⎤
⎦ ,

ω = [p,q, r]T is the rotational rate vector. Specific forces Ax, A y

and Az can be directly measured by the accelerometers. Vt is the 
true airspeed, α is the angle of attack, g y is the y-axis component 
of the gravitational acceleration calculated in the wind reference 
frame.

The aircraft dynamics is represented with the state-space form 
for the state vector y = [Vt p q r]T composed of airspeed Vt , roll 
rate p, pitch rate q and yaw rate r.

ẏ = fy(y,u) (2)

Control inputs u = [δailI L δailI R δailO L δailO R δeI L δeI R δeO L δeO R δru δrl δT I L

δT I R δT O L δT O R ]T are the inner-left, inner-right, outer-left, and outer-
right ailerons; inner-left, inner-right, outer-left, and outer-right 
elevators; upper and lower rudders; outer-left, inner-left, inner-
right, and outer-right engines throttle.

The nonlinear dynamics fy(y, u) is linearized using the incre-
mental dynamics approach for the incremental controller design 
and thus the precise description is not provided here.

3. Incremental backstepping

Sensor-based technique utilizing Incremental Dynamics (ID) ap-
plied to obtain an IBKS controller, which is less dependent on the 
system model, is discussed in [32], [33]. Below, we will just pro-
vide a brief description of this controller. Details could be found 
in the original papers. IBKS computes incremental commands em-
ploying acceleration feedback estimations to extract unmodelled
dynamics information. In the present study, we are using this con-
troller as a baseline controller, which is augmented with the two-
layer online parameter estimation framework.

3.1. Incremental dynamics model

Let us assume that a system dynamics is described by the fol-
lowing equation:

ẋ = fx (x,u) (3)

where fx : Rn × [0,∞) → Rn is Lipschitz continuous function, x
and u are the state and the control input vectors. Expanding (3)
into the Taylor series around (x0,u0) corresponding to the pre-
vious time moment t0 the dynamics (3) can be expressed in the 
following form

ẋ ∼= ẋ0 + ∂fx (x,u)
(x − x0) + ∂fx (x,u)

(u − u0) (4)

∂x ∂u
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Fig. 1. Controller structure.
Assuming that the increment in state 	x = x − x0 is much 
smaller than the increment in both state derivative 	ẋ = ẋ − ẋ0

and input 	u = u − u0, the dynamics (4) can be simplified

	ẋ ∼= B0	u (5)

where B0 = ∂fx(x,u)
∂u is a control effectiveness matrix.

The dynamics equation in the form (5) articulates that ID of 
the system is produced by the control input increment. For imple-
mentation of such a concept it is assumed that sampling time is 
small. In this case, the assumption that 	x � 	ẋ and 	x � 	u
becomes possible for the real aircraft because the control surface 
deflections directly effect the angular accelerations, whereas the 
angular rates are only changed by integrating these angular ac-
celerations. Actuators are assumed to be instantaneously fast such 
that the demanded input increment can be achieved within the 
small sampling time. In addition, the sensors are assumed to be 
ideal, i.e. providing state derivative without errors.

3.2. Attitude controller

The ID idea combined with the backstepping paradigm was 
used to design the aircraft baseline controller. To increase the con-
trol robustness and simplify its implementation, both angle and 
rate controllers using ID were formulated. The general structure of 
the baseline controller, manifesting the interaction between atti-
tude and rate controllers, is provided in Fig. 1.

Equations (1) and (2) constitute the system dynamics. Introduc-
ing the kinematics tracking error variable zξ = ξd − ξ , where ξd is 
the desired kinematics state vector, the sub-system (1) can be re-
formulated in terms of zξ :

żξ = ξ̇d − fξ − Tξω (6)

The general idea behind the backstepping is to consider the 
state vector ω = [p q r]T from (2) as a control input for zξ sub-
system (6). Since ω is just a state variable and not the real control 
input, it is called a virtual control input.

For the zξ subsystem a Candidate Lyapunov Function (CLF) V ξ

is selected:

V ξ = 1

2
zT
ξ zξ , (7)

which is positive for the whole domain, excluding the origin, 
where it equals to zero.

For the asymptotic convergence of the error, the CLF derivative 
must be strictly negative along the solutions of (6). Considering a 
positive definite matrix Wξ ∈R3×3, the CLF is strictly negative if:

V̇ ξ = zT
ξ żξ = −zT

ξ Wξ zξ . (8)
The kinematics tracking error dynamics can be represented in 
the incremental form

żξ = ξ̇d − ξ̇0 − Tξ (ω − ω0) . (9)

Substituting the expression żξ = −Wξ zξ derived from (8), the 
following tracking error dynamics is obtained

ξ̇d − ξ̇0 − Tξ (ω − ω0) + Wξ zξ = 0. (10)

The virtual control law να = ω can be obtained by inversion of 
(10) with respect to ω

να = ω0 + T −1
ξ

(
Wξ zξ + ξ̇d − ξ̇0

)
, (11)

since Tξ is invertible for the transport aircraft within the flight 
envelope. The control law (11) is used as a desired value for the 
virtual control input ω.

3.3. Rate controller

The difference between the dynamics state variable y = [
VtωT

]T

and its desired value yd = [
Vtdω

T
d

]T
is defined as the dynamics 

tracking error variable zy = yd − y. It should be noted that the 
airspeed is introduced as a state to the dynamics state vector in 
order to design the controller that simultaneously tracks the air-
speed and angular rates of the aircraft. To design a control law u
that ensures that zy converges to zero, the following CLF for the 
complete 

(
zξ , zy

)
-system is formed:

V y = V ξ + 1

2a
zT

y zy, (12)

where a is a design scale factor. Similar to design of CLF for the 
zξ subsystem in (8), here a matrix W y ∈R4×4 is assumed to be a 
positive definite matrix such that

V̇ y = V̇ ξ + 1

a
zT

y ży = −zT
ξ Wξ zξ − 1

a
zT

y W yzy . (13)

Thus, the error zy converges asymptotically to zero since the 
derivative of the CLF V y is strictly negative for non-zero errors. 
The following tracking error dynamics in the incremental repre-
sentation has the following form:

ży = ẏd − ẏ0 − B0 (u − u0) , (14)

where B0 = ∂fx(x,u)
∂u is the control effectiveness matrix.

The selection matrix C yω = [
03 I3

]
, which performs the map-

ping ω = C yωy, is introduced. Combining the incremental dynam-
ics of zξ (10) and zy , one can obtain
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zT
ξ

(
ξ̇d − ξ̇0 − Tξ

(
να − C yωzy − ω0

) + Wξ zξ

)

+ 1

a
zT

y

(
ẏd − ẏ0 − B0 (u − u0) + W yzy

)
. (15)

Eventually, for non-zero errors, substituting (11) into (15) and 
solving it with respect to u, the resultant control law is designed

uc = u0 + B−1
0 �

(
aC T

yωT T
ξ zξ + W y(yd − y) + ẏd − ẏ0

)
(16)

To attenuate the measurement noise and increase the control 
robustness, B0 is multiplied by a diagonal matrix � > 0 with ele-
ments λii ∈ [0, 1].

The control law in the form (16) requires inversion of the ma-
trix B0, which is not square for the overactuated modern transport 
aircraft. To tackle this issue, Moore-Penrose Pseudo-inverse is ap-
plied [33], and

B†
0 = BT

0

(
B0 BT

0

)−1
(17)

is used in (16) instead of B0.

3.4. Command filter

To avoid infeasible commands provided by the controller, a 
Command Filter (CF) is added to the controller output. For incre-
mental controllers, the CF is used to constrain the input to respect 
the actuators dynamics and saturation.

Taking into account the influence of the CF χ ∈ R3 on the 
tracking error zy (14) the dynamics of the modified tracking er-
ror z̄y is introduced [23]

˙̄zy = ẏd − ẏ0 − B0 (u − u0) − χ̇ (18)

Effect of the CF on the tracking error can be estimated by the 
stable linear filter [23]:

χ̇ = −W yχ + B0 (uC F − uc) , (19)

where uC F is the controller output after CF.

4. Two-layer estimator

Finally, the cascaded baseline controller consists of attitude and 
rate controllers (11) and (16). Both attitude and rate controllers 
have the similar control structure, namely, the control signal com-
pensating the difference between the reference and measured (or 
estimated) state variables is added to the current value of the con-
trol value. Such a structure is very simple and robust to the model 
uncertainties. However, to ensure stability and performance of the 
algorithm, the precise knowledge of the control input matrices Tξ

and B0 is required. The precise value of Tξ within the flight enve-
lope can be easily determined because it represents the kinematic 
relationships. The matrix B0 specifies the control effectiveness, 
which might change during flight because of changing of environ-
mental conditions, structural deformations, failures etc. Hence, an 
unmodelled actuator dynamics is a source of uncertainty.

The main purpose of the adaptive augmentation for the IBKS 
is to compensate the effect of these uncertainties and to improve 
performance and stability of the IBKS controller. This paper in-
troduces a two-layer identification framework detecting, isolating 
anomalies and estimating the aircraft control derivatives B0 when 
uncertainties are in the actuation system. Interaction of the adap-
tive augmentation with the baseline controller is demonstrated in 
Fig. 1. The adaptive block performs fault detection, isolation, esti-
mation and adaptation of the control effectiveness matrix B0.

The two-layer estimator structure is designed to avoid exces-
sive system excitation. The high-level structure of the interaction 
Fig. 2. High-level representation of the system.

between the proposed framework with the baseline controller and 
the aircraft is shown in Fig. 2. The first layer is a supervising algo-
rithm that activates second layer identification if any discrepancy 
between the on-board model and the estimated generalized pa-
rameter is observed. At the second level, the values of individual 
control effectiveness are estimated. The identification manoeuvres
are demanded together with the second layer activation. At the 
same time, if a new estimated value suits the model, the first layer 
turns off the estimation process of the second layer. In addition 
to reducing the required system excitation, such a strategy makes 
possible parameter estimations under limited system excitations.

5. First layer

Reliability of the identification results could be achieved via 
maximization of the information content in the data using proper 
excitations of the system. On the other hand, excessive system 
excitation could cause several undesired consequences, such as a 
decrease in passenger comfort during flight or decrease of a mis-
sion accomplishment performance because of ongoing manoeu-
vres. Thus designed identification routine should be a trade-off 
between identification precision and mission performance require-
ments.

An aircraft flight control system sends the same signals for all 
individual control surfaces, making the individual signals are pro-
portional to each other and causing a high-correlation between the 
individual signals. If all the input signal forms look the same, then 
any algorithm trying to assign values for the control effectiveness 
of each individual control will fail, because it is impossible to de-
termine which of the multiple inputs, moved in the same manner, 
was responsible for changes in the aerodynamic forces and mo-
ments. Input forms that are completely decorrelated will give the 
most accurate control effectiveness estimates. Unfortunately, when 
a feedback control system is operating, desired input forms be-
come distorted by the feedback control.

Since the main uncertainty of the proposed control law is con-
sidered to be in the control effectiveness, a combined effectiveness, 
which essentially treats all of the correlated control surfaces as if 
they were a single control surface [29], is used as a generalized 
system parameter. The combined effectiveness was used in fault 
detection and isolation in [28], [34].

5.1. Combined effectiveness estimation

The combined effectiveness for each of the component of the 
dynamic state y = [V p q r] is estimated from the regression 
model independently

ςm
∼= Aθ̂m, (20)

where ςm = [	 ẏm (1)	 ẏm (2) ...	 ẏm (N)] is the response vari-
able vector, 	 ẏm (1)	 ẏm (2) ...	 ẏm (N) is the record of deriva-
tive increment for m component of the dynamic state vec-
tor y, A = [	uc (1)	uc (2) ...	uc (N)] is a predictor variable, 
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	uc (1)	uc (2) ...	uc (N) is the record of increment of the com-
bined control effector in m direction, θ̂m is the combined control 
effectiveness, which is a parameter to be identified.

The combined control effector in m direction is calculated using 
the following equation:

	uc(t) =
Nu∑
i=1

b̂mi 	ui(t)

/ Nu∑
i=1

b̂mi , (21)

where b̂mi is the estimation of individual effectiveness of control 
effector i in m direction obtained in the previous periods, ui is the 
control input form effector i at time moment t , Nu is a number 
of effectors. It is assumed that at least one effector is available for 
each of the control direction m.

The combined effectiveness serves as a generalized parameter 
that is used for monitoring of the system state. Monitoring only 
one parameter reduces the computation costs of the algorithm as 
compared to monitoring the state of each effector.

5.2. Recursive least square with modified exponential forgetting

The combined effectiveness is estimated online using the Recur-
sive Least Square (RLS) with exponential forgetting (EF), which is 
commonly used for the real-time system identification. The tech-
nique enables recursive computations of estimates to be carried 
out. The typical algorithm for EF RLS is

θ̂(t) = θ̂(t − 1) + P (t)ϕ(t)
[

y(t) − ϕT (t)θ̂(t − 1)
]
,

R(t) = F (t)R(t − 1) + ϕ(t)ϕT (t),

F = μI

(22)

where θ̂(t) ∈ Rn is the estimates of the parameter vector at time 
step t , ϕ(t) ∈ Rn is the observer data vector, y(t) ∈ R is the system 
output vector, P (t) ∈ Rn×n is the covariance matrix, R(t) ∈ Rn×n

is the information matrix that is inverse of the covariance matrix, 
F (t) ∈ Rn×n is the forgetting matrix, μ ∈ (0, 1) is the scalar forget-
ting factor.

It is well known that EF RLS shows good results under the 
persistent excitation (PE) conditions. However, this condition is 
hardly possible in the real flight conditions of transport aircraft, 
for example, during the cruise flight. If the PE is not achieved 
the EF RLS could suffer from estimator windup [30]. To tackle this 
problem the following modification of EF algorithm was proposed 
in [35]

F (t) = μI + δP (t − 1), (23)

where δ > 0 is a design parameter. This modification guarantees 
the boundedness of the information matrix, while maintaining the 
convergence characteristics of the EF algorithm. It was shown in 
[35] that, where the PE condition does not hold, the following in-
formation matrix evaluation is true

R(t) ≥ δ

1 − μ
I ∀t.

Therefore, the covariance matrix is uniformly bounded from 
above even without PE in the proposed algorithm. The lower 
bound of the information matrix is determined by δ, μ, and ex-
citation of ϕ(t)ϕT (t). This implies that the lower bound can be 
controlled within the proposed algorithm.
5.3. Failure detection

Generally, a fault of the actuation system cause a change in 
aerodynamic effectiveness, which is captured by combined effec-
tiveness estimations θ̂m through (20)–(23). To detect possible fail-
ures, the current state of aerodynamic efficiency is evaluated in 
comparison with the model one. The model combined effective-
ness is based on the information received in the previous periods 
and computed through the following equation

θ̄m(t) =
Nu∑
i=1

b̂mi 	ui(t)

/ Nu∑
i=1

	ui(t). (24)

The error signal of the observation i is calculated as the dif-
ference between the estimated combined effectiveness and the 
expected effectiveness based on the model and the previous data:

ei = θ̂mi − θ̄m. (25)

Under normal conditions, the error signal is “small” and cor-
responds to random fluctuations in the output since all the sys-
tematic trends are predicted by the model. However, under faulty 
conditions, the error signal is significant and contains systematic 
trends because the model no longer represents the physical sys-
tem adequately.

Among different fault types that can arise in the system, in the 
current study, we consider only actuator faults that can be de-
scribed with first and second-order actuator dynamics, which can 
be used for wide class of failures [36], [37]. These faults make the 
error signal depart from the zero mean. Hence, it is useful to per-
form the statistical test of the zero mean. The mean of the error 
signal sequence is estimated as

ē = 1

n

n∑
i=1

ei,

where n is the sample-size. The standard deviation is estimated as 
follows

σst = 1

n − 1

n∑
i=1

e2
i .

We introduce T-statistics calculated for the mean of the error 
signal as a measurable criterion for decision making [38]:

Tstat = (ē − μ)/
(
(σst + b)/

√
n
)

(26)

where μ is the population mean. Since the test checks whether 
the sequence has zero mean, μ = 0. The bias b is introduced to 
increase the tolerance of the detection procedure to “small” errors 
of the identification algorithm.

The calculated statistics is tested against two hypotheses:

H0 : Tstat < Tα/2, H1 : Tstat ≥ Tα/2 (27)

The following interpretation can be obtained as a result of test-
ing (27):

(1) Rejecting H0 (accepting H1): there is significant evidence that 
the error is not zero and the error can be due to a fault.

(2) Keeping H0: we do not have enough evidence to believe that 
there is a fault.
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Fig. 3. Operational diagram of the online identification routine.

6. Second layer of identification

If the system detects any deviation from the nominal opera-
tional regime in one of the control direction, the system steps into 
the second layer of estimator where the failure is localized and the 
individual effectiveness is evaluated (see Fig. 3).

As it was mentioned before, identification of individual control 
effectiveness is complicated with a high-correlation between the 
individual signals. To tackle this issue, we use a priori information 
through fixing the effectiveness of all but one of the correlated 
control surfaces to a priori values [29].

While identifying the effectiveness of a certain control surface, 
the aircraft is demanded to perform manoeuvres with reduced co-
efficients in the allocation matrix W s Du for all control effectors 
responsible for the motion, except the coefficient relating to the 
elevator under study. In such a case, the control signal is split into 
two signals, the first one is for the control surface of which effec-
tiveness is treated, while the second signal is for all other surfaces 
from the pool. Thus, the first signal is responsible for generating 
the required information for identification and second one is used 
for guaranteeing the aircraft stability.

In the current section, we would like to design an adaptive aug-
mentation to the baseline IBKS controller using the Tuning Func-
tion (TF) approach [17]. Meanwhile, in the proposed concept the 
second-layer adaptation is supervised by the first layer algorithm 
monitoring T-statistics (27) and thus the adaptation becomes a 
non-smooth and time-dependent process. To prove stability of the 
system in case of two-layer adaptation let us consider the system 
in the general form.

Existence and uniqueness of the continuous solution x of (3)
are provided under the condition that the function fx is Lipschitz 
continuous. However, in the current study, we consider that the 
second layer adaptation is activated by the external process - the 
first-layer estimator - as a result of failure detection and, in the 
general case, makes fx discontinuous.

If fx contains a discontinuity, then a solution to (3) may not ex-
ist in the classical sense. Utilizing differential inclusions, the value 
of a generalized solution (e.g., [39] Filippov solution) at a certain 
point can be found by interpreting the behaviour of its derivative 
at nearby points. Generalized solutions will be close to the trajec-
tories of the actual system since they are a limit of solutions of 
ordinary differential equations with a continuous right-hand side.
Before design of the estimation law, let us introduce the follow-
ing important definitions.

6.1. Preliminaries

Definition 1 (Filippov solution). A function x is called a solution of 
(3) on the interval [t0, t1] if it is absolutely continuous on [t0, t1]
and for almost all t ∈ [t0, t1]

ẋ ∈ K [f] (x, t) (28)

where

K [f] (x, t)
	=

⋂
δ>0

⋂
μN=0

c̄o f (B (x, δ)\N, t) (29)

⋂
μN=0 denotes the intersection over all sets N of Lebesgue mea-

sure zero, c̄o denotes convex closure and B (x, δ) = {
v ∈Rn

∣∣‖x −
v‖ < δ

}
.

Definition 2. The generalized directional derivative is introduced 
[40]:

f◦ (x,v) = lim
y→x

sup
t→+0

f (y + tv) − f (y)

t
(30)

Definition 3 (Regular function). [40]. Function f (x) : Rm → Rn is 
called to be regular at x ∈ Rm if for all v ∈ Rm , the right di-
rectional derivative of f at x in the direction of v exists and 
f′ (x,v) = f◦ (x,v).

Theorem 1 (Chain rule). [41]. Let x be a Filippov solution of (3) on an 
interval containing t and V : Rn × [0,∞) → R be a locally Lipschitz, 
regular function. Then V (x(t), t) is absolutely continuous, d

dt V (x(t), t)
exists almost everywhere (a.e.) and

d

dt
V (x(t), t)

a.e.∈ ˙̃V (x, t) (31)

where

˙̃V (x, t)
	=

⋂
ξ∈∂V (x,t)

ξ T
(

K [f] (x, t)
1

)
(32)

The stability theorems are stated in terms of the set valued map 
˙̃V [41].

Theorem 2 (Stability). Let f (x, t) be essentially locally bounded and 0 ∈
K [f] (0, t) in a region Q ⊃ {x ∈Rn

∣∣‖x‖ < r} × { t| t0 ≤ t < ∞}. Also, 
let V : Rn × R → R be a regular function satisfying

V (0, t) = 0 (33)

and

0 < V 1 (‖x‖) ≤ V (x, t) ≤ V 2 (‖x‖) for x �= 0 (34)

in Q for some class K (a definition of class K functions can be found in 
[42]). Then,

1. ˙̃V (x, t) ≤ 0 in Q implies x(t) ≡ 0 is a uniformly stable solution.
2. If in addition, there exists a class K functions � in Q with the prop-

erty

˙̃V (x, t) ≤ −�(x) < 0 (35)

then the solution x(t) ≡ 0 is uniformly asymptotically stable.
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6.2. Estimation law

Here, we assume that actuator failure causes degradation of the 
actuation effectiveness. The dynamics of the general tracking error 

dynamics zg =
[

zT
ξ zT

y

]T ∈ R7, which is measurable system state, is 
introduced with the following equations

żξ = ξ̇d (t) − ξ̇0
(
zg, t

) − Tξ

(
ω

(
zg, t

) − ω0
(
zg, t

))
,

˙̄zy = ẏd (ω0, t) − ẏ
(
zg, t

) − B0 (t)
(
u

(
zg, t

) − u0
(
zg, t

))
− χ̇ (u, t) ,

(36)

where ξ̇d, ̇ξ0, ̇y, ̇yd are essentially locally bounded, uniformly in t
functions, B0 (t) is the effectiveness matrix, an unknown, linear-
parameterizable, essentially locally bounded function, χ̇ is influ-
ence of the CF, which is essentially locally bounded function, u is 
the baseline control input. B̂0 :R4×14 × [0,∞) →R4×14 is the es-
timate of B0. We assume that there exists an unknown parameter 
vector θ̂ ∈ Rk to be estimated such that j-column b̂ j ∈ Rk of B̂ T

0
can be represented as

b̂ j = �T
j (ξ0,y0,u0, t)θ̂ , (37)

where �T
j (ξ0, y0, u0, t) :R3×4×14 × [0,∞) →R4×k is the regressor 

function.
The estimation error is

B̃0 = B0 − B̂0. (38)

In this case, the parameter estimation errors and its derivative 
are the following

θ̃ = θ − θ̂ ,
˙̃θ = −˙̂

θ . (39)

For such a system, Lyapunov-based estimation algorithm can be 
designed

˙̂
θ = −ν��T

j (x0,u0)z̄y	u j, (40)

where � ∈R+ are positive adaptation gains, 	u j is jth element of 
	u, and

ν =
{

1, if |Tstat | > Tα/2
0, if |Tstat | < Tα/2

.

6.3. Proof of stability

Let ζ
(

zξ , z̄y, θ̃
)

∈ R7+k be defined as ζ =
[

zT
ξ z̄T

y θ̃
T
]T

. The 
following regular CLF is selected to consider the stability of the 
system

Vad (ζ )
	= 1

2
zT
ξ zξ + 1

2a
z̄T

y z̄y + 1

2
θ̃

T
�−1θ̃ . (41)

The CLF in (41) complies with the following inequalities:

0 < W1 (ζ ) ≤ Vad (ζ , t) ≤ W2 (ζ ) , for ζ �= 0, (42)

where the continuous positive-definite functions W1, W2 :R7+k →
R+ are defined as W1

	= λ1 ‖ζ‖2 and W2
	= λ2 ‖ζ‖2, where 

λ1, λ2 ∈R+ are known constants. Then, V̇ad (ζ (t) , t)
a.e.∈ ˙̃V (ζ (t) , t)

and

˙̃V 	= ∩
η∈∂Vad

ηT K

⎡
⎢⎢⎢⎣

żξ

˙̄zy

˙̃θ
1

⎤
⎥⎥⎥⎦

(
zξ , z̄y, θ̃ , t

)
.

The CLF is C∞ in ζ , then

˙̃V ⊂ ∇V T
ad K

⎡
⎢⎣

żξ

˙̄zy

˙̃θ

⎤
⎥⎦(

zξ z̄y θ̃
)

⊂
[

zT
ξ , z̄T

y , θ̃
T
�−1

]
K

⎡
⎢⎣

żξ

˙̄zy

˙̃θ

⎤
⎥⎦(

zξ z̄y θ̃
)
.

(43)
The relationship (43) can be stated in the following form:

˙̃Vad ⊂ zξ

(
ξ̇d − ξ̇0 − Tξ (ω − ω0)

) + z̄y
(
ẏ
(
z̄y, t

)
+ B0 (t)	u

(
z̄y, t

) − ẏd (t) − χ̇
(
z̄y, t

))+
+ θ̃

(
−sign (ν)��T

j (x0,u0)z̄y	u j

)
=

= −zT
ξ Wξ zξ − 1

a
zT

y W yzy − 1

a
zT

y B̃0	u − θ̃
T
ν�−1 ˙̂

θ

= −zT
ξ Wξ zξ − 1

a
zT

y W yzy .

(44)

Since Wξ and W y are the positive symmetric matrices, then

˙̃Vad(ζ, t) ≤ W3(ζ ) = −ρ ‖ζ‖2 . (45)

Since the W3(ζ ) does not depend on ν , it follows that (45) is 
true almost everywhere. Thus, according to Theorem 2 this proves 
that the equilibrium 

[
zT
ξ z̄T

y θ̃
T
]

= 0 is uniformly asymptotically 
stable.

6.4. Recursive least squares

Described above second-layer estimator based on the TF ap-
proach is compared here with the EF RLS estimator.

Similar to the combined effectiveness, the identification prob-
lem is stated as follows:

ς ∼= Aθ̂ , (46)

where the response variable vector is the following

ς = [	 ẏind
m (1) − W s Du B̂0	usup(1)

	 ẏind
m (2) − W s Du B̂0	usup(2)...

	 ẏind
m (N) − W s Du B̂0	usup(N)],

	 ẏind
m (1)	 ẏind

m (2) ...	 ẏind
m (N) is the record of derivative incre-

ment for m component of the dynamic state vector y, the predictor 
variable vector is based on the incremental signal for the control 
surface under study

A =
[
	uind (1)	uind (2) ...	uind (N)

]T
,

Du is the allocation matrix, W s is the amplification matrix re-
quired to produce the supporting control signal usup. Elements 
of W s specify how the individual actuator signals differ from the 
generic one. The terms −W s Du B̂0usup (i), i = 1...N , which are re-
sponsible for the subtraction of contribution from the supporting 
signal to the flight dynamics, are introduced in order to obtain the 
pure dynamics produced by the treated control surface. We used 
the modified EF RLS [35] to solve (46).

7. Simulation results

In this section, a simulation study of the ability of the discussed 
algorithms to tackle the failures is considered.

A nonlinear model of the Boeing 747 aircraft, courteously pro-
vided by the consortium partner TU Munich, is used to validate 
the designed approach. This model is a variant of the GARTEUR RE-
COVER benchmark simulator [7]. The Boeing 747 is a large, trans-
port aircraft with four wing-mounted engines. It has a length of 
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Fig. 4. Two failures and loss of effectiveness. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
approximately 70 meters, wingspan of 60 meters, and the max-
imum take-off weight is greater than 300 tons. The actuation of 
the Boeing 747 simulator corresponds to four ailerons, four eleva-
tors, two rudders, and four engines.

The nominal condition from which the simulation starts is a 
straight flight towards North with 340 knots of True Airspeed (TAS) 
and at an altitude of 5000 ft. The flight is developed under a low 
turbulence condition defined by a 20-feet wind of 15 m/s in North 
direction and a turbulence intensity exceedance probability of 0.01. 
In the current research, a longitudinal motion is considered.

Parameters of the first layer: Forgetting function of the modified EF 
RLS for the first layer F = 0.99999I +0.000002P (t −1) is the same 
for all algorithms of the second layer. Tolerance to the noise in (26)
is b = 0.03 for modified EF RLS and b = 0.01 for TFs. A significance 
level for the T-statistics is α = 5.

Parameters of the second layer: Adaptation gain for the TF update 
law is � = 300. Forgetting function of EF RLS, which is used 
for comparison purposes at the second layer, is F = 0.99995I +
0.000007P (t − 1).

The performance of the proposed scheme is validated for the 
cases of multiple failures. The detailed explanation of the scenarios 
is given below.

7.1. Two failures and loss of effectiveness

In the current section an ability of the developed controller is 
evaluated in a case of a two failures (stuck-in-position) and a par-
tial loss of effectiveness of the third elevator. Due to this failure, 
the effectiveness of the elevator is reduced by 50 percent.

The results are presented in Fig. 4. Here it is assumed that two 
elevators failed before t = 0 s. For the adaptive algorithm, it is con-
sidered that these two failures detected and isolated also before 
t = 0 s, which means that corresponding coefficients equal to zero 
in the B̂0. The loss of effectiveness of one the two rest elevators 
simulated at t = 150 s.

On the left subplots the pitch angle, pitch rate and angle of 
attack θ, q, α are presented. On the right-top subplot the real effec-
tiveness of two working elevators, namely, inner and outer eleva-
tors, are demonstrated. One can see that at t = 150 s the effective-
ness of the inner elevator degraded. On the middle-right subplot 
the coefficients in the effectiveness matrix B̂0 are demonstrated. 
Green solid line corresponds to estimation of the effectiveness of 
the third elevator with partial loss of effectiveness at t = 150 s ob-
tained by the proposed algorithm. The estimation obtained using 
RLS algorithm is coplotted with the solid green line for comparison 
purpose. Effectiveness of the elevators failed before t = 0 s is zero. 
Dash-dotted green (TF) and blue lines (RLS) are effectiveness of 
the “supporting” elevator, which usage is artificially reduced during 
identification according to W s during the identification manoeu-
vres. On the bottom-right subplot an evolution of the innovation 
process for the proposed TF approach demonstrates governing pro-
cess of the adaptation; the innovation process for the RLS is not 
plotted to avoid overload of the figure. From the pitch angle θ sub-
plot (top-left) one can conclude that the tracking performance of 
the adaptive strategies is improved as compared to the baseline 
controller.

T-criterion is used to govern the identification process. The 
threshold for the T-criterion is violated after failure, the system de-
tects the failure and starts identification. As soon as the algorithm 
gets a new value of the effectiveness, the T-criterion goes below 
the threshold and stops estimations. From the presented results, 
it can be concluded that it is an iterative process and T-statistics 
goes below and above the threshold value several times before the 
final convergence. Eventually, when the process converges, the T-
criterion stays beyond the threshold value, the estimation of failed 
elevator effectiveness is completed and the value of the reduced 
“supporting” elevator recovers back to its initial value. It should 



D.I. Ignatyev et al. / Aerospace Science and Technology 105 (2020) 106051 9

Fig. 5. Comparison of IBKS and TLA-IBKS algorithm: 1st order nonlinear dynamics.
be mentioned that when T-statistics is below the significance level 
before the final convergence of the algorithm, the adaptation pro-
cess is stopped and, thus, a slower convergence rate of the esti-
mation algorithm is implemented. However, it helps to reduce the 
excessive excitation of the system.

7.2. First order dynamics

Results obtained in the previous section for a partial loss of 
effectiveness correlates with the results of the other researchers 
[33], [43] manifesting robustness of the IBKS to actuator failures 
conserving the system input affine property. In the current sec-
tion, we would like to go ahead and investigate the property of 
the IBKS and proposed TLA-IBKS controllers under failures break-
ing this property. For example, this section considers the presence 
of the first order unmodelled actuator dynamics.

High level of redundancy (four elevators) allows conserving the 
input affine property for Boeing 747 even for the case of appear-
ance of unmodelled dynamics in one of the actuators. To simulate 
the conditions where the input affine property is not valid any-
more we assume here that two elevators failed (before t = 0 s) 
and in one of the rest operating elevators an unmodelled dynam-
ics has arisen. For the adaptive algorithm, it is again considered 
that these two elevator failures were detected and isolated be-
fore t = 0 s and those corresponding coefficients equal to zero in 
B̂0. Meanwhile, for the pure IBKS, it is considered, that the algo-
rithm does not have access to new information about the control 
effectiveness, and thus, uses initial matrix B̂0. At t = 150 s, the 
nonlinear unmodelled dynamics arises at one of the two working 
actuators as a result of a failure. It was reported that many known 
actuator failures can be simulated with the first or second order 
actuator dynamics [36], [37]. For the current scenario, we assumed 
the first order dynamics, represented with the following equation

F (s) = (2s + 1)−1 . (47)

Comparison of behaviours of the baseline IBKS controller and 
the TLA-IBKS is presented in Fig. 5.

The figure shows the parameters of the state vector θ, q, α
along with estimates of the effectiveness of the elevator for TLA-
IBKS. Before t = 150 s, the IBKS demonstrates robustness to fail-
ures, namely, even with two failed elevators it follows the ref-
erence signal. At the same time, the tracking error of the TLA-
IBKS is reduced as compared to the baseline IBKS because of up-
dated knowledge of B̂0. The first order actuator dynamics arose at 
t = 150 s has a significant effect on the performance of the IBKS 
algorithm, namely, weakly damped oscillations are observed in the 
state vector parameters θ, q, α. Augmentation of the baseline con-
troller with adaptive element cancels this undesired behaviour of 
the system. Operation of the TL-adaptation algorithm is demon-
strated in the bottom-left subplot. The effectivenesses of all eleva-
tors are illustrated, two elevators are failed before t = 0 s, one is 
operating and producing the supporting signal, and effectiveness of 
the fourth one is estimated. For the supporting signal, one can see 
switching from nominal B̂0 values ≈ −0.12 to reduced B̂0 values 
≈ −0.036 and back. These switches are produced when T-statistics 
of the first layer algorithm goes above and below the significance 
level. The estimation algorithm iteratively convergences similar to 
the previous case, and the first layer estimator governs the system 
identification rate.

Proposed TF estimator is compared with RLS estimator and re-
sults are presented in Fig. 6.

In the figure, plots of transition processes of state vector param-
eters θ, q, α together with elevator effectiveness estimations are 
given. On the effectiveness subplot (bottom-left subplot), two sup-
porting signals and two estimations, corresponding to TF and RLS 
algorithms, are shown here. Convergence of the RLS algorithm is 
slightly faster than TF. The RLS performs abrupt adaptation dur-
ing the first seconds. The TF approach produces adaptation slightly 
slower, however, along the trajectories, guaranteeing the system 
stability (40). The performances of both algorithms starting from 
t ≈ 230 s are almost undistinguishable. However, pithing rate os-
cillation level is higher for RLS adaptation strategy (has higher 
peaks), and thus could have more harm effect on the performance, 
for example, on the passenger comfort.

7.3. Second order dynamics

As it is shown in the previous section, presence of uncertainty 
in the form of non-linear dynamics in actuators could cause a 
degradation of the system performance since the input affine prop-
erty is not valid anymore. In this section, this issue is further stud-
ied. Particularly, presence of non-linear dynamics of the second 
order in one of the actuators is presented. Similar to the previ-
ous test cases, we assume that two elevators failed before t = 0 s, 
for the adaptive controller, it is considered that these two failures 
detected and isolated before t = 0 s and those corresponding coef-
ficients equal to zero in B̂0. At t = 150 s the nonlinear unmodelled
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Fig. 6. Comparison of EF RLS and TF adaptive algorithm: 1st order nonlinear dynamics.

Fig. 7. Comparison of IBKS and TLA-IBKS: 2nd order nonlinear dynamics.
dynamics arises at the one of the two working actuators as a result 
of failure, which can be modelled by the second order dynamics:

F (s) =
(

2s2 + s + 1
)−1

. (48)

Shown in Fig. 7 is comparison between behaviour of IBKS and 
Adaptive IBKS in considered case.

Similar to the previous figures, the transition processes of state 
vector parameters θ, q, α are provided in the top-left, top-right and 
bottom-right subplots correspondingly. Convergence of the effec-
tiveness estimations is demonstrated in the bottom-left subplot of 
the figure. From the figure, one can see that under the presence 
of 2-nd order dynamics the IBKS control suffers from the insta-
bility in the form of high-amplitude limit-cycle oscillations. Such 
a nonlinear dynamics is caused by interaction between failed and 
non-failed elevators. Meantime, TLA-IBKS manifests the system sta-
bility and good tracking performance.

The proposed TF estimator is compared with the RLS-based es-
timator in Fig. 8. Both algorithms provide stability. RLS has larger 
estimation rate at the initial stage and thus provides faster adapta-
tion and less oscillatory behaviour because it “switch off” the failed 
elevator faster than TF.
8. Conclusions

Incremental Backstepping is recently developed technique with 
a reduced dependency on the on-board aircraft model. This ap-
proach uses estimates of the state derivatives and the current actu-
ator states to linearize the flight dynamics with respect to current 
state. Our results and also results of the other researchers revealed 
robustness of the IBKS to actuator failures when the system re-
mains input affine, even for the case of multiple failures. However, 
as we have shown in the current study, in severe conditions, with 
a combination of multiple failures and presence of unmodelled ac-
tuator dynamics, the system dynamics might loss its input affine 
property. Such conditions might be a case for not only scenarios 
considered in the current study but also for some others, for ex-
ample, in case of partial loss of effectiveness and large transport 
delay. As a result, the stability of the system cannot be guaranteed 
anymore and adaptive augmentation is required to compensate the 
unmodelled dynamics.

In this research, Two-Layer Adaptive augmentation for Incre-
mental Backstepping Flight Control, which was capable to tackle 
possible actuator failures, was proposed. At the first layer, the sys-
tem performs monitoring of the combined control effectiveness, 
compares estimated values with the values obtained previously 
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Fig. 8. Comparison of RLS and TF estimators: 2nd order nonlinear dynamics.
and calculates T-statistics. If T-statistics violates the significance 
level, the system detects possible anomalies through it. In case 
of an anomaly detection, the algorithm initiates the second-layer 
estimation determining the individual effectiveness and provides 
updated information about the effectiveness matrix to the base-
line controller. Such two-layer structure requires less excitation of 
the system, thus, increases comfort and tracking performance. In 
addition, fault isolation in the form of control effectiveness identi-
fication increases tolerance to faults since does not require infor-
mation on a failure type and can be used for unforeseen failures.

From the theoretical point of view, the closed-loop dynamics 
of the system augmented with TLA becomes nonsmooth. Filippov 
generalization for nonlinear differential equations with discontin-
uous right-hand sides was applied to develop Lyapunov based TF 
adaptive law for the second layer adaptation. Uniform asymptotic 
stability for the proposed estimation procedure was proven.

Performance of the TLA-IBKS was studied in simulations of 
three different failure scenarios developed for Boeing 747 involving 
multiple failures, partial loss of effectiveness, unmodelled actuator 
dynamics of the first and the second orders. Our results manifested 
improved stability and tracking performance characteristics of the 
TLA-IBKS controller as compared to the baseline IBKS. In particular, 
information that is more precise provided to the baseline con-
troller by the developed TLA augmentation improved tracking per-
formance for the case of loss of effectiveness, cancelled undesired 
oscillations observed for the IBKS in case of first order actuator 
dynamics and prevented from a loss of stability for the second-
order actuator dynamics. TF second layer estimator performance is 
evaluated by comparison with RLS estimator. Performance of both 
estimators are very similar, however, the proposed TF approach is 
preferred since the stability of the system can be guaranteed from 
the theoretical point of view.
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