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Abstract. We propose a distributed dictionary that allows insert and search opera-
tions and that tolerates arbitrary single server crashes. The distinctive feature of our
model is that the crash of a server cannot be detected. This is in contrast to all other
proposals of distributed fault-tolerant search structures presented thus far. It reflects
the real situation in the internet more accurately, and is in general more suitable to
complex overall conditions. This makes our solution fundamentally different from
all previous ones, but also more complicated. We present in detail the algorithms
for searching, insertion, and graceful recovery of crashed servers.

1. Introduction

The amount of digital information grows at a breathtaking pace, and constantly im-
proving networking technology makes distributed computing power readily available.
Modern databases make use of today’s technology and develop into increasingly global
information systems. The efficient storage and retrieval of data becomes a critical issue,
and as a consequence, distributed data structures have gained considerable attention [1],
[3], [6], [7], [9], [10], [12], [13], [15].

∗ A preliminary version of this report appeared as [14]. We gratefully acknowledge the support of the
project “Highly available scalable data structures (2100-066768)” by the Swiss National Science Foundation
SNF.
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It has been shown to what extent classical central concepts carry over to the dis-
tributed setting: Litwin et al. [10] present a distributed hash file, whereas Kröll and
Widmayer [6] propose a scalable data structure based on random binary leaf search
trees. For many data warehousing and multidimensional database applications, the im-
portant access primitives include a variety of similarity search operations, such as nearest
neighbor queries or the enumeration of the data in a close neighborhood of the query.

In their seminal paper [10], Litwin et al. coined the term Scalable Distributed Data
Structure (SDDS) for structures that satisfy the following requirements: a file expands
to new servers gracefully; there is no master site that must be accessed for virtually each
operation; the file access and maintenance primitives never require atomic updates to
multiple workstations.

1.1. Fault Tolerance

A distributed system offers the chance to remain operational even if an individual com-
puter fails. For a large distributed system, such a failure must indeed be expected from
time to time. Therefore, distributed data structures have been proposed that tolerate
limited hardware failures and still support access to all data at all times. This failure
resilience is achieved by means of data replication [9], or by applying the technique of
parity records and buckets [8], [11]. In these proposals an essential feature is that a server
can detect rapidly whether some other server is operational or crashed. This is certainly
a reasonable assumption for local networks, but it is unrealistic for globally distributed
databases.

The distinguishing feature of our approach is that fault tolerance can be achieved
even if no server can ever detect whether some other server is operational or has crashed.
This strong interpretation of asynchronicity makes the design of a data structure quite
complicated and fundamentally different from the situation where a server crash can be
detected [7]–[9], [11]. For instance, locks are not allowed to synchronize servers, since
the server that has to unlock another server could have a crash failure, thereby letting the
other wait—clearly an unacceptable situation.

1.2. Results

In this paper we propose a scalable, distributed dictionary. It is based on distributed
search trees [6] that support insert and a variety of search operations for keys from a
linearly ordered universe, say integers, in a challenging environment. The dictionary
works in a totally asynchronous setting, where faulty servers cannot be detected, and it
tolerates crashes: a single server crash is guaranteed to do no harm at all, and simultaneous
crashes of more than one server are also often harmless, but with no guarantee. Such
data structures are called highly available data structures [9]. More specifically:

1. The dictionary remains fully operational in the presence of a single failure, i.e.,
all search and insert operations work correctly and efficiently.

2. It enables efficient recovery, i.e., a server that has suffered a crash failure can
reinvolve itself into the data structure, and after the recovery is complete, a client
cannot distinguish whether a crash occurred.
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3. Compared with the operations of the distributed search trees on which our ap-
proach is based, the high availability of our fault tolerant dictionary comes at a
small constant overhead (number of messages, memory) in the worst case.

1.3. The Model

Let us now be more precise about the distributed system and its availability. Let the
set of computers be connected by a network. Computers communicate by sending and
receiving messages. Every computer is identified uniquely by its address. We do not
focus on message size, assuming that large buffers for incoming messages are available.
We express this by assuming that messages can be arbitrarily large, but we will not
exploit this in any extreme way. In particular, fault tolerance will add nothing to the
length of messages. Message transmission is asynchronous in the following sense. First,
no computer has access to a global clock. Second, every sent message will be delivered
eventually, but message transmission times are unpredictable and not bounded. Third,
messages can pass each other on different paths. For instance, if a computer C sends a
message m1 and then a message m2 to a computer C ′, then it is possible that C ′ receives
m2 before m1.

We distinguish client computers that initiate insert or search operations on the data
set from servers that store data. Starting with one server S0, more and more servers
become involved as needed to keep the individual server load small; we consider the set
of potential servers to be arbitrarily large for this purpose. The SDDS conditions can
be satisfied with the following basic strategy. An SDDS is distributed among servers
and is manipulated by requests from client sites which always have their own image of
the structure. However, the image of the client can be outdated, because the SDDS may
have, for example, split some of its buckets and distributed them between old and new
servers. The structure is designed so that with an outdated image the client can find the
correct bucket but cannot send the query directly to the new server. After this, a new
updated image will be sent to the client so that it cannot make the same error twice.
In this way the most important property of an SDDS is achieved: no bottlenecks are
created because clients with updated information can usually send their queries directly
to correct servers.

In our model, communication is reliable, but a server can break down. Therefore, we
distinguish operational and crashed servers. An operational server is fully functional,
while a crashed server can neither receive nor send messages nor perform a computation.
An operational server can crash. A crashed server loses all its data, except for some small
piece of data in a secure memory. The reason is that, on one hand, a server cannot recover
without any information at all about its role in the data structure, and, on the other hand,
it is not economically feasible to protect all its data against loss. For simplicity of the
discussion, we assume that the first crash of a server can only happen after the server
has been involved into the data structure. This assumption is not a serious restriction, as
we show in Section 5.1. Since a failure cannot be detected, we have to use a technique
that can be classified as Hot Standby [5]; i.e., data is duplicated in a way where every
key is stored on two different servers, and without failure both copies are equally well
available. A crashed server can recover; this will change its state to operational, and the
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server will reinvolve itself into the data structure in a way that we will propose in
detail.

Server S0 has an exceptional role and does not crash. This may appear like a strong
and unrealistic assumption, but it is neither. It is realistic, because securing a single
machine in a network is easy and is routinely done in practice; it is not stronger than
the minimum needed, since the impossibility of distributed consensus [4] suggests that
without this assumption, the desired behavior cannot be achieved. Furthermore, to obtain
the required properties, we will see that our data structure also needs a secure and central
entity, the so-called split manager. Although this is not desired in a distributed system, its
existence is not a serious drawback. In fact, all distributed data structures in the literature
need some central entity to do a small but important piece of work. For instance, in [6]
such an entity finds the next server that can be involved into the data structure, and [10]
needs a central entity as split coordinator. For convenience, we propose implementing the
split manager within S0, but other implementations are possible. We avoid the discussion
of operational details that are local in a server, and assume that receiving and processing
a message and sending messages as a consequence is one atomic step.

1.4. Organization of This Paper

Section 2 reviews the distributed binary search trees, and Section 3 presents our proposal
for a fault-tolerant distributed dictionary based on distributed binary trees. Section 4
proves its properties. Section 5 discusses modifications, and Section 6 concludes the
paper.

2. Distributed Binary Search Trees

We present a solution to the fault-tolerant distributed dictionary problem with distributed
binary leaf search trees [6], in which the keys (and data) are stored in leaves that are
similar to B-tree leaves and the internal nodes are binary routers. The tree structure not
only supports the access of single records but also allows a variety of efficient similarity
queries. We limit ourselves to the explicit discussion of the former, since it will become
clear how to perform the latter. The nodes of the tree are stored in servers, and the edges
are communication links. In this section we shortly review the binary tree structure, for
more details we refer to [6].

With every node u, we associate a nonempty responsibility interval Iu ⊂ ZZ, repre-
sented by a pair lu, ru ∈ ZZ ∪ {−∞,∞}. Node u is responsible for a key k, if k ∈ Iu .
Each internal node u with left child v1 and right child v2 has a split value σu ∈ Iu such
that Iv1 = [lu, σu] and Iv2 = [σu + 1, ru]. For every key k ∈ ZZ there is exactly one
leaf v that is responsible for k. Leaves store keys, with leaf v storing a set Kv ⊆ Iv of
keys.

In our model, each server can hold a constant number of leaves. Internal nodes
contain routing information only, and there is no a priori bound on the number of internal
nodes a server can contain.

In a state in which no insert operations are under way, each client has a picture
of that part of the binary tree structure above all leaves it has accessed. All searches
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(c)(b)(a)
S1

S3

S2

S1 S1

Fig. 1. The distributed tree grows from one leaf in server S1 (a) to two leaves and servers (b), and further to
three leaves and servers (c).

by clients will be directly sent to leaves and servers in the known part of the tree. If
queries are evenly distributed, so is the load of servers; even if the distribution of queries
and insertions is skewed, the load of servers can be leveled out nicely with a concept
proposed in [15].

Initially, the structure contains one leaf only, and whenever, due to insertions, a split
occurs a new server is taken to store one-half of the records the split node was responsible
for. A split also means that a new internal node must be created; this will be stored in
the old server that held the split node, see Figure 1.

To avoid the situation that the root becomes a bottleneck, the lazy update concept
can be used. We illustrate this with the following example, more details can be found
in [6]. Consider then the situation depicted in Figure 1, and assume that a client has an
out-of-date picture of the structure telling that there is only one leaf even though the true
picture is as given in Figure 1(c).

Assume further that the client searches for a key which has been moved to server
S3. Using its out-of-date picture the client sends the query to server S1, and seeing that
the required key is not in its own leaf, S1 sends according to the tree structure the query
to S2. Similarly, S2 sends the query to S3 whose leaf is responsible for the key of the
query.

After the query has been performed and the client has obtained the corresponding
information, the search path used is also sent to the client. Then, for all keys the nodes
in this path are responsible for, this path is first used in the client before accessing the
global structure.

3. Highly Available Trees

Roughly speaking, the Highly Available Tree (HAT) that we now propose duplicates data
and stores copies in two different distributed binary leaf search trees. Both trees are kept
as similar as possible, but failures and different execution speeds may create differences
between the trees that will be repaired as operations progress. Every node u in one tree
has an associated node u′ in the other tree, its buddy. Every request is performed on both
trees simultaneously.

In more detail, a HAT H consists of a pair of rooted binary trees Tl and Tr with
roots rl , rr . Initially, each of the trees T• consists of its root r• only. The trees grow by
splitting a leaf into an internal node with two children.

We define the buddy operator, denoted by a prime symbol ′, as follows. If rl is the
root of Tl and rr is the root of Tr , then r ′l := rr and r ′r := rl . If u is an internal node and



616 K. Schlude, E. Soisalon-Soininen, and P. Widmayer

p(u) p(u′)

s(u)u u′ s(u′)

Fig. 2. Pair of two isomorphic trees.

v is its left (right) child, then v′ is defined as the left (right) child of u′. For any other
pair of nodesw1, w2,w′1 �= w2 andw′2 �= w1 hold. Observe that for any node u, we have
u′′ = (u′)′ = u. The parent of a node u is denoted by p(u), the sibling of u is denoted
by s(u), see Figure 2. If u′ = v for two nodes u, v, then v is the buddy of u and u is the
buddy of v.

It follows that a node has at most one buddy; a node can send a message to its
buddy’s address anytime, even though this buddy need not be part of the dictionary at
the moment at which the message is sent. A node u knows the addresses of its sibling
and its parent (if u is not a root). If u is an internal node, it knows the addresses of its
children.

In H , two trees Tl , Tr are linked in the following way. Every node u is restricted to
having the same responsibility interval as its buddy u′, i.e., Iu = Iu′ , and u knows the
address of u′. Furthermore, u knows the address of its buddy’s parent p(u′) and sibling
s(u′). If u′ is an internal node with children v′1 and v′2, then u knows the addresses of v′1
and v′2 or will know these addresses eventually.

A node u can send messages to node v, if u knows the address of v.
To simplify notation, we do not distinguish between an object and its address, i.e.,

u denotes a node or the address of this node, c denotes a client or the address of this
client. If a node u receives a message m, then u is also informed about the address of the
sender of m; in particular, u knows whether m was sent from its parent p(u), its buddy
u′, or a client c.

3.1. Mapping Nodes to Servers

The described structure has to be mapped to the set of servers, i.e., every node u is stored
on a server S(u). The set of all potential servers is enumerated {S0, S1, S2, . . .}, but this
enumeration and the corresponding addresses of the servers need to be known only to S0.
On the other hand, the addresses of S0, S1, and S2 are known to every computer. Server
S0 maintains a counter new for the relative number of the server to be involved next.
Since we start with two root servers, initially new = 3. A server S is called involved
if there is a node u with S = S(u). For the resilience against one-server failures it is
important that a node and its buddy are not on the same server, i.e., S(u) �= S(u′) for
every node u. In order to ensure scalability, no server is allowed to store more than a
constant number of leaves. Since internal nodes contain routing information only, we do
not impose an a priori bound on the number of internal nodes on a server.

The allocation rule maps the nodes as follows (Figure 3):

1. The root of Tl is stored on S1, the root of Tr is stored on S2.
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Snew = S3

v′1 v′2

u u′
S1 S2

Fig. 3. Mapping trees to servers.

2. Let u ∈ Tl be a leaf that performs a split and becomes an internal node with left
child v1 and right child v2. Then:
(a) The left child v1 is stored on S(u), i.e., S(v1) = S(u).
(b) The right child v′2 is stored on S(u′), i.e., S(v′2) = S(u′).
(c) The nodes v2, v

′
1 are stored on a new server Snew, i.e., S(v2) = S(v′1) = Snew.

The construction immediately implies:

Lemma 3.1. The allocation rule of mapping HAT nodes to servers has the following
properties:

1. Buddies are on different servers. More formally, for every node u, S(u) �= S(u′)
holds.

2. No server stores more than two leaves.

Note that a message from a node u to a node v has to be sent from the server S(u) to
the server S(v), and S(v) has to hand the message over to v locally. We simplify notation
by letting nodes act (instead of servers only) and therefore say that this message goes
directly from u to v even if S(u) = S(v).

It is possible that a node u is stored on a crashed server S(u). To simplify notation, we
call u crashed, if the server S(u) is crashed or has not performed its recovery. Otherwise
u is called operational.

3.2. Dictionary Operations

This section shows how the described structure can be used to implement the dictionary
operations search and insert.

3.2.1. Initialization. A HAT H is initialized as empty. The empty structure H consists
only of the roots rl of Tl and rr of Tr . Let rl be stored on S1, rr on S2. For the responsibility
intervals, we get Irl = Irr = ZZ. The two nodes do not contain keys, i.e., Krl = Krr = ∅.
The address of rl is stored in the secure memory of S2, and the address of rr is stored in
the secure memory of S1.

3.2.2. Search. A search request of a client c for a key k is performed simultaneously
in both trees of H , since c cannot decide whether there is a failure in a tree. To perform
an operation, c sends two messages to the roots rl , rr , from which the messages are
forwarded to the responsible children, until the messages reach the responsible leaves. If
a leaf receives a search request message, it sends its response about k to c, telling whether
k has been inserted or not. Since in this naive approach the roots become bottlenecks,
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Tr

u′

v′
u

v

Tl
Search(c, key k, ID)

Client c

Fig. 4. Simultaneous search in a HAT.

we apply the ideas proposed in [6] of informing clients about the tree structure in a lazy
fashion so that they can start future searches further down the tree. This is discussed in
Section 5.2.

Whereas in an ordinary leaf search tree the search request leads to a search path
from the root to the responsible leaf, in a HAT such a request defines a pair of search
paths, see Figure 4.

However, as a consequence of the weakness of our assumptions about the distributed
system, such a pair of independent search paths is not enough: if in Figure 4 the nodes
rl = p(u) and u′ crash, then the search request from client c cannot reach the responsible
leaves. In order to bypass crashed nodes safely without loss of information, we connect
the search paths in the following way. If a node u sends a message m to a child v, then u
also sends m to v′. If there is no crash failure, v receives two copies of the same message,
one from u, the other from u′. Theorem 4.5 proves that in this way, crashed nodes can
be bypassed.

This, however, causes the next problem: if a node sends two messages for every
message it receives, the number of messages doubles at every node on the search path.
Since this exponential growth is totally unacceptable, we control it by keeping track of
what happened as follows. If a client c wants to search for a key k, it chooses an identifier
ID that is unique with respect to c, for instance the number of inserts and searches c
has requested so far. Then c sends the message Search(c, k, ID) to the roots of H . If a
node receives a message, this node keeps track with a message tag for the pair c, ID of
receiving this message, and it forwards the message to its corresponding child v and to
v′. If a second copy of this message is received later, the node recognizes from the tag
that it has forwarded the message before and hence does not forward the message again.

Now, a (smaller) problem is that a tag has to be stored in memory. To save memory,
a tag should be deleted after a while. One option is to delete the tag after the node has
received the second copy of the message (if the node is a root, then no tags are needed).
However, now we run into a further problem: it is possible that a tag is never deleted.
In the example of Figure 5, a search message is sent to buddies u and u′. Both u and u′

are about to split. Now, assume that node u′ has already performed its split, while u has

Search(c, k, ID)

u

v′1 v′2

u′

v1 v2

Fig. 5. Nonisomorphic trees.
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v′

u′

v

u

Fig. 6. Search ladder.

not. Since u is a leaf, it responds to the client. Moreover, since u′ is an internal node, it
forwards the search request to the responsible child v′2 and to v2. The corresponding tags
in u and u′ will be deleted. However, the children v2 and v′2 receive only one copy of the
message, and, therefore, their tags will never be deleted. Although tags may seem like
a rather small problem, their number might increase with every search operation, and,
in the long run, this is clearly undesirable. We therefore choose to avoid the possible
unbounded growth of the number of tags with the following concept.

If u forwards the search message to children v and v′, or responds to a client c,
then u sends the message together with the addresses of v and v′ or c to its buddy u′,
called a cross message.1 Lemma 4.1 shows that cross messages suffice to achieve the
desired properties. We call the pair of connected search paths, including cross messages,
a search ladder, see Figure 6.

In more detail, the tags work as follows. If a node u receives the c, ID pair in a
message Search(c, k, ID) for the first time, then u creates a tag. Such a tag consists of
three entries:

• Message: The message identifier c, ID.
• Received from: The addresses of the nodes or the client c from which u has received

the message in the past. Initially, this entry is empty. After having received the
message Search(c, k, ID) from a sender, u adds the address of this sender to the
entry.
• Sent to: The addresses of the nodes or the client c to which the message is sent. If

u is a leaf, then it sends messages to c and to u′. If u is an internal node, messages
are sent to children v and v′ and to u′.

If u is the responsible leaf for key k, then u sends a response message to client c. If
u is an internal node, then u forwards the message Search(c, k, ID) to its child v and its
buddy’s child v′ with k ∈ Iv = Iv′ . In both cases a message is sent to u′, too.

If u receives a message from a client, then it expects to receive the message twice,
once from the client and once from its buddy u′. If u receives a message from a parent
node p(u) or p(u′), then u expects to receive this message three times: from p(u), p(u′),
and u′. The message tag is deleted after u has received the messages from all the expected
senders.

1 Cross messages can be avoided if both nodes have performed their splits and have become internal
nodes.
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This mechanism lets u forward a message only once, although u receives that same
message up to three times. However, unfortunately, it also introduces an extra compli-
cation in the following situation: Leaf u has performed a split, while u′ has not. If u has
sent the message to children v and v′ while u′ has sent an answer to the client c, then
the following happens. By receiving the message from u, u′ recognizes that its buddy
has links to their children while it does not. To remedy the situation, u′ now sends the
message Search(c, k, ID) to v and v′ and changes its tag entry “Sent to” from (c, u)
to (v, v′, u). After that u′ will perform a split, see Section 3.3. Hence, the search along
connected paths in this way correctly manages the tags, provided that no crash failures
occur.

Table 1 presents the pseudo-code for a node that is not a root. In this case, let s be
the sender of a search message m, where s can be a parent node or the buddy. With p, we
denote the parent of u. The pseudo-code for a root node is quite similar. The difference
to the previous case is that the sender can be a client c or the buddy u′ and that tags can
be deleted after the second copy of the search request has been received.

Table 1. The pseudo-code for a search operation.

ReceiveSearchRequest(client c, key k, identifier I D)
if (u is an inner node)

if (there is no tag for m)
generate a tag
forward the message to children v, v′ and to u′

else (comment: there is no tag for m)
if (the message has been received from p, p′ and u′)

delete the tag
else (comment: u is a leaf)

if (s = u′ and u′ is an inner node)
if (there is no tag for m)

generate a tag
forward the message to children v, v′ and to u′

else (comment: there is a tag for m)
forward the message to children v, v′
delete the tag

if (s = u′ and u′ is a leaf)
if (there is no tag for m)

generate a tag
forward the message to client c and to u′

else (comment: there is a tag for m)
if (the message has been received from p, p′ and u′)

delete the tag
if (s = p or s = p′)

if (there is no tag for m)
generate a tag
forward the message to u′ and send an answer to c

else (comment: there is a tag for m)
if (the message has been received from p, p′ and u′)

delete the tag
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3.2.3. Insert. To insert key k into the HAT, client c sends the message Insert(c, k, ID)
to the roots rl , rr . In the same way as a search message, this insert message is forwarded
through the HAT. Each internal node u that receives Insert(c, k, ID) forwards the mes-
sage to the buddy u′ and to children v and v′ with k ∈ Iv . A tag for this message is
created.

Eventually the message will reach a leaf. If k is in the responsible leaf u, i.e., k ∈ Ku ,
then u sends the message NotInserted(k, ID) to c; otherwise k is inserted into u, i.e.,
Ku �→ Ku ∪ {k}, and u sends the message Inserted(k, ID) to c.

Insertions into a leaf u could lead to a split of u, see Section 3.3.

3.3. Split

A split of a leaf u is necessary if the set of stored keys Ku and therefore the workload
becomes too big. During a split, the leaf u becomes an internal node with left child v1

and right child v2.
Because a node and its buddy must have the same responsibility interval, u and u′

must have the same split value σu = σu′ . Since the split should be adaptive, the split
value has to be chosen according to the key sets Ku and Ku′ , for instance as their median
key (a merely space-dependent split value such as lu + �(ru − lu)/2� is not sufficiently
adaptive). However, since insertions can be made in u and u′ in a different order, Ku and
Ku′ can differ greatly in size. Therefore, no node alone can choose the split value, we need
a consensus between u and u′. In [4] it was shown that such a consensus between two or
more nodes is impossible in our model; there is no protocol that guarantees consensus
in the presence of failures.

We arrive at a split value decision by circumventing the impossibility of consensus:
The split value is chosen by a central entity, the split manager. The split manager is
stored on the fail-safe server S0, and hence every node knows its address.

As a suggestion for the split value σu , u computes the median σ̃u of its key set
Ku . Then u sends the message SplitRequest(u, u′, σ̃u) to the split manager. After having
received the first split request from u or its buddy u′, the split manager selects four new
nodes v1, v2, v

′
1, v
′
2 (according to the scheme described in Section 3.1), decides the split

value σu (picking either σ̃u or σ̃u′), and sends the message SplitGrant(u, u′, v1, v2, v
′
1,

v′2, σu) to u.
The split manager responds with SplitGrant(u′, u, v′1, v

′
2, v1, v2, σu) if it receives a

split request from u′. This implies that the split manager keeps track of that split, using a
split tag. If the split manager receives another split request from u′ or u, it uses the split
tag to reconstruct the SplitGrant message sent before and to reuse the previously chosen
split value. As before, to save memory, the split tags should be deleted as soon as they
have become useless.

Again, this requirement introduces an extra difficulty. Because a leaf can perform
many splits, it is not enough that a tag is deleted after each of both corresponding nodes
has performed a split. To see this, assume that a leaf u had performed a split before it
had a crash failure. Its buddy u′ has not performed a split. If u sends a recover request to
u′, then u is recovered as a leaf. Therefore, u can split again, and it can repeat this over
and over.
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We solve this problem by keeping track of the split event history in the split tags. A
split tag t (u, u′) consists of four parts:

• Nodes to split: The addresses of the nodes u, u′.
• Split value: The split value σu that the split manager selected.
• New nodes: The addresses of the four children v1, v2, v

′
1, v
′
2.

• Split performed: Two flags indicating whether the split manager has received the
forwarded messages about performed splits from u, u′. The flags are initialized
as “no”.

After having received the split grant, u uses the split value σu to compute new
intervals I1 := [lu, σu], I2 := [σu+1, ru] and key sets K1 := Ku∩I1, K2 := Ku∩I2. Then
u sends the message Initialize(u, u′, vi , v

′
i , s(vi ), s(v′i ), Ii , Ki ) to vi and the message

Initialize(u′, u, v′i , vi , s(v′i ), s(vi ), Ii , Ki ) to v′i . Then u stores the addresses of v1, v2 as
its children and the addresses of v′1, v

′
2 as its buddy’s children and deletes its key set

Ku . Furthermore, u sends the message SplitPerformed(u) to its buddy u′. Then u is an
internal node.

Eventually u′ receives the message SplitPerformed(u). If u′ is already an internal
node, then u′ forwards the message FwSplitPerformed(u) to the split manager. If u′ is
still a leaf, SplitPerformed(u) forces u′ to begin its own split. After becoming an internal
node, u′ sends the message FwSplitPerformed(u) to the split manager.

The Initialize(u, u′, vi , v
′
i , s(vi ), s(v′i ), Ii , Ki ) message reaches the server S(vi )

eventually. If node vi has not been initialized already by a message from u′, then S(vi )

initializes vi with responsibility interval Ivi := Ii and key set Kvi := Ki . The addresses
u, u′, v′i , s(vi ), s(v′i ) are the addresses of the parents, the buddy, the sibling, and its
buddy’s sibling. The buddy address v′i is stored in the secure memory of S(vi ). If a sec-
ond message Initialize(u′, u, vi , v

′
i , s(vi ), s(v′i ), Ii , K ′i ) is received, then K ′i is inserted

in Kvi , i.e., Kvi := Kvi ∪ K ′i .
If the split manager receives a message FwSplitPerformed(u), then it sets the cor-

responding entry in the split tag t (u, u′) to “yes”. If both entries are set to “yes”, then
t (u, u′) is deleted.

As a detail on the side that illustrates the intricacy of our mechanism, note that since
every node v knows the address of its buddy v′, it could happen that v sends a message
to v′, although the server S(v′) does not know of v′ yet. However, the server S(v′) stores
the message in a large enough queue for future service. After v′ has been initialized, it
works on the messages that have been received before by S(v′). Therefore, we can safely
assume that every node has a buddy at all times.

3.4. Recovery

Let S be a server after a crash, whose state changes from crashed to operational. Then S
starts the following recovery protocol. According to the model, S knows the address of the
buddy of at least one of its nodes from the secure memory. Let u′ be one of these addresses,
indicating that there was a node u on S before the crash. Every such node u on the server
now sends the message RecoverRequest() to its buddy u′. If u′ is an internal node, it
answers with the message Recover(Iu, v1, v2, v

′
1, v
′
2, σu, p(u), p(u′), s(u), s(u′)), where

Iu is the responsibility interval of u and u′; v1, v2, v
′
1, v
′
2 are the addresses of the children
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and their buddies; σu is the split value; p(u), p(u′) are the addresses of the parents;
and s(u), s(u′) are the addresses of the siblings. If u′ is a leaf, then the answer is
Recover(Iu, p(u), p(u′), s(u), s(u′), Ku′ ), where Ku′ is the set of keys of u′, and the
rest is as before. After having received and processed this recover message, server S
checks whether there is a child vi , a parent p(u), or a buddy’s sibling s(u′) that should
be on S and that has no address of its buddy in the secure memory. If so, S initializes
this node and sends the recover request to its buddy.

After every node on the server has received and processed the recover message from
its buddy, the recovery protocol is finished.

Observe that it is enough for a server in the recovery process to know one node’s
buddy, even if many nodes were stored on that server before the crash. To see this, let
u, v be two nodes on the same server, i.e., S(u) = S(v). If both nodes are in the same
tree, without loss of generality u, v ∈ Tl , then these nodes are on a path from the root to
a leaf, i.e., one node is the descendant of the other. If u ∈ Tl and v ∈ Tr , then there are
nodes wl ∈ Tl and wr ∈ Tr with the properties:

• u is a descendant of wl .
• v is a descendant of wr .
• wl is the sibling of the buddy of wr , i.e., wl = s(w′r ).

Therefore, the recovery protocol can recover every node on a server, if the address of
only one buddy is available and none of these buddies has crashed.

4. Properties

We now argue that the mechanism described in Section 3 indeed leads to the desired
behavior. Let H be a HAT with subtrees Tl , Tr . In its history, H starts out as an empty
data structure with two roots rl , rr . Then a finite sequence of insert and search operations
O = {o1, o2, . . . , on} is performed on H , and there are no other operations on H . During
this phase, servers are allowed to have crash failures. Eventually, H reaches a state in
which no messages are sent or received any more; measured in global time, we call this
moment τ0. Let us now observe H from an external point of view. We look at the set S
of involved servers and the set F ⊂ S of servers that have had crash failures before τ0.
For this situation, we get the following results.

Theorem 4.1 (Isomorphic Trees and Overhead). If no server has had a crash failure,
i.e., F = ∅, then at τ0 the HAT H is in the following situation:

1. The trees Tl , Tr are isomorphic.
2. For every pair of nodes u, u′, Iu = Iu′ holds.
3. For every pair of leaves u, u′, Ku = Ku′ holds.
4. All tags have been deleted.

Furthermore, the number of messages sent to perform O on H is less than seven times
the number of messages in each one of the underlying trees Tl or Tr .
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Proof. Every insert operation is performed on both trees. Therefore, if one of the two
roots has performed a split, the other has done it too. Furthermore, the splits have been
done with the same split value. Induction shows the first three properties.

Let u, u′ be a pair of leaves. The split of one node forces the other to split, too. The
nodes u, u′ perform their splits and send the messages SplitPerformed to its buddy, and
they forward these messages to the split manager. The split manager has created the split
tag t (u, u′), and after having received these SplitPerformed messages, t (u, u′) is deleted.

Let c be a client that sends an insert or search message to a pair of nodes u, u′. Both
nodes create message tags, but these tags will be deleted after having received the second
message from the buddy. If both nodes are leaves, then they send messages only back to c
and no other tags are created. If both nodes have performed splits, then u, u′ forward the
messages to nodes v, v′. Each of these two nodes will receive messages from u, u′ and
one from its buddy. Therefore, the tags in v, v′ will be deleted. If u has performed a split
while u′ has not, then u sends the message to nodes v, v′ and u′ sends a message back to
c. The cross message (Search(c, k, ID), v, v′) forces u′ to send the message to v, v′ too.
Therefore, each of the nodes v, v′ receives three messages and deletes the corresponding
tag after that.

We prove the factor 7 by counting the messages that are sent to perform the operations
O . A message can be sent (1) from a node to another node, or (2) from a node to the
split manager, or (3) from the split manager to a node, or (4) from a leaf to a client. Let
MH (O) be the set of these messages, and let MH (O) := |MH (O)|. This number will
be compared with the number of messages in the tree Tl . A message m ∈ MH (O) is
called an internal message of Tl if m is sent (1) from a node u ∈ Tl to a node v ∈ Tl , or (2)
from a node u ∈ Tl to the split manager, or (3) from the split manager to a node u ∈ Tl ,
or (4) from a leaf of Tl to a client. To perform O on Tl , these internal messages have
to be sent. In order to compare MH (O), let Ml(O) be the number of internal messages
of Tl . Lemma 4.2 shows that if no crash failure occurs, then MH (O) < 7Ml(O) holds.
This completes the proof of the theorem.

Lemma 4.2. If no crash failure occurs, then MH (O) < 7Ml(O) holds.

Proof. We regard every possible case and compute the factor that bounds the number
of messages in this case.

Case 1. If u, u′ are internal nodes that receive a message, e.g., a Search(c, k, ID)
message, for the first time, then due to their routing scheme u and u′ send six messages.
One of them is an internal message of Tl .

Case 2. If two leaves u, u′ receive a message, then each sends two messages, one to
the client c and one to the buddy. One of these four messages is counted in Ml(O).

Case 3. It is possible that a node u has performed its split while u′ has not. In this case
at most seven messages are sent. Node u sends messages to two nodes v, v′ and to u′; u′

sends messages to u and to the client c; by receiving the message from u, u′ recognizes
that it has to send the message also to v and v′. One of these seven messages is an internal
message. The same result holds for the case that u′ has performed a split while u has
not.
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Case 4. If two leaves u, u′ perform their splits 12 messages have to be sent. For each
leaf there are the SplitRequest, SplitGrant, SplitPerformed, FwSplitPerformed, and two
Initialize messages. Only 3 of these 12 messages are internal messages of Tl .

Case 3 leads to the inequality MH (O) ≤ 7Ml(O), but, since for every operation
o ∈ O case 2 occurs once, the inequality becomes MH (O) < 7Ml(O).

It is obvious that H works well if no crash failure occurs: every insertion and every
search will be carried through, the trees tend to be isomorphic and every tag will be
deleted. Deletion of the tags cannot be guaranteed, if failures can occur. However, it has
to be guaranteed that a split tag is not deleted too early. Otherwise it could happen that
the unique split value gets lost in a sequence of splits, crash failures, and recoveries, i.e.,
u uses a split value different from that of u′. This would imply that the buddy condition
is violated, and recovery is not possible.

Lemma 4.3. Let u, u′ be two nodes, where one of them has sent a split request to the
split manager. After the corresponding split tag t (u, u′) is deleted, neither u nor u′ will
send a split request.

Proof. Assume that the tag t (u, u′) is deleted. Each node must have forwarded the split
performed message from its buddy. At the moment at which u has sent the message
FwSplitPerformed(u′), it has been an internal node already. If u′ sends a recover request
to u, then u′ will be recovered as an internal node. Therefore, no node will send a split
request.

Definition 4.4 (Recoverable Crashes). We call the set of crashed servers F recover-
able, if for every node u, S(u) /∈ F or S(u′) /∈ F hold.

Note that in this very strict definition, we do not pay attention to the possibility
that a crashed server could have performed its recovery before a second server crashes,
without any loss of data or messages. However, on the other hand, in contrast to what
one might think at first glance, the restriction that two buddies u, u′ are not crashed at
the same time, is not strict enough. This is shown in the example in Figure 7. Messages
are sent to a node u and its buddy u′. The messages get lost although the nodes u, u′ are
not crashed at the same time, because the messages reach crashed servers S(u), S(u′).

We only state the properties of the HAT under extreme circumstances; situations in
between will lead to behavior in between.

time
Insert(c, k,ID) global

S(u) crashed S(u′) crashed

Fig. 7. Unrecoverable situation.
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Theorem 4.5 (Correct Operation). If F is recoverable, then all of the following hold
at τ0:

1. Every search request has been answered.
2. Every insert request has been processed by at least one responsible leaf.
3. Let k be a key that has been inserted. If no more crash failure happens after τ0

and a single client c starts a search for k, then c will be informed that k has been
found.

Proof. We can assume that there is no recovery, i.e., crashed servers remain crashed.
Let u, u′ be the addressees of a Search(c, k, ID) message. Since F is recoverable at
least one of these nodes is operational and acts on the message: if it is a leaf, it sends a
message to c, if it is an internal node it forwards Search(c, k, ID) to the children v, v′.
Since O is finite, the number of nodes in H is bounded and the message will reach a
leaf eventually. This leaf sends a message back to the client c. The same holds for an
Insert(c, k, ID) message.

For every inserted key k there is a node u, with k inserted in u and S(u) /∈ F .
The Search(c, k, ID) message will reach u eventually. If u is still a leaf, then u sends a
response to c. If u has performed a split, then u forwards Search(c, k, ID) to a child v.
Eventually Search(c, k, ID) reaches a leafw. Since c has sent the Search(c, k, ID) after
τ0, the key k is in w, i.e., k ∈ Kw. Then w sends a response to c.

Theorem 4.6 (Trees are Identical Copies). If F is recoverable and no more crash fail-
ure happens after τ0, then H will eventually reach a state in which all of the following
hold:

1. The trees Tl , Tr are isomorphic.
2. Both nodes in a pair of nodes u, u′ have the same responsibility interval, i.e.,

Iu = Iu′ .
3. Both nodes in a pair of leaves u, u′ have the same data, i.e., Ku = Ku′ .

Proof. Let S be a server with S ∈ F . Due to the assumption that a server can have a
crash failure only after the initialization of the first node, S had stored at least one node
before the crash failure happened. Let u be such a node. Since F is recoverable, the
server S(u′) had no crash failure. Therefore, u can determine its parent, children, and
sibling. This is enough information for S to reconstruct every node v with S = S(v).
Therefore, the trees become isomorphic.

Let u, u′ be two nodes. If S(u) /∈ F and S(u′) /∈ F , then Iu = Iu′ due to construction.
If one of these nodes is on a crashed server, e.g., S(u) ∈ F , then this node is recovered
with the responsibility interval of its buddy. Therefore, the equality Iu = Iu′ holds in
both cases.

Let w be a node with S(w) /∈ F . If k ∈ Kw, every request Insert(c, k, ID) has
reached w or w has been initialized with k ∈ Kw. A leaf splits when its key set becomes
too big. Therefore, ifw is a leaf, its decision to split or not to split does not depend on the
size of F . This shows that Ku = Ku′ for a pair of leaves with S(u) /∈ F and S(u′) /∈ F .
If S(u) ∈ F and S(u′) /∈ F , then the key sets are equal, since Ku is a copy of Ku′ .
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Let us summarize: a HAT works well, if not too many servers are crashed at the
same time and recovery is performed fast enough. Of course, if crashes are too frequent
and recovery is too slow, no data structure whatsoever can offer a reliable service.

5. Improvements and Modifications

So far we have described the HAT with a few assumptions and in its most simple form.
We now discuss the flexibility of the basic HAT concept.

5.1. Secure Memory and Early Crashes

We have assumed that every server has a small secure memory. This is done to enable
a server’s recovery after a crash. However, the server can obtain the information in a
different way, too. Let S be a server that after having a crash failure wants to recover. If S
receives a message from a node u, then S knows that there should be a node v ∈ S which
is in some relation to u. Therefore S can send a message to u, asking for the information.
Hence, an extra message exchange can replace the secure memory. The same technique
can be applied to eliminate the assumption that no server crashes before it is involved in
the data structure: if it instead does crash first, but later gets a message from some other
server, it will know that it is involved, and it will get the necessary information with a
message exchange.

5.2. Lazy Update

We described in Section 2 how clients with more activity tend to have better knowledge
of the tree. We now explain the (fairly obvious) extension of the lazy update concept
presented in [6] to the HAT. If a node u sends a message m to another node or to a client,
u attaches its address and its responsibility interval to m. Every search or insert operation
a client c initializes, gives information about the HAT’s structure to c. If c knows the
addresses of two nodes u, u′ and their responsibility interval Iu , c can send every search
for a key k ∈ Iu to u, u′ directly.

5.3. Hidden Data

In a distributed data structure, it is not always clear what the correct answer for a search
request is. If one client searches for a key k and a second client wants to insert k into
the structure, the answer to the search depends on factors such as the transmission time
of the messages. This is a somewhat undesirable, but unavoidable, property. Therefore
in a HAT, a client can get two different answers for a search. From one positive answer
already, the client knows that the key is present.

In the described model, data structures have another property. It is possible that a
key k is not found, although k has been inserted into a leaf earlier. This can happen if a
leaf u has performed a split (and deleted its key set Ku), while the child has not received
the Initialize message from u, i.e., the data is hidden in an unreachable message. In the
following we describe a protocol that avoids this undesired behavior.



628 K. Schlude, E. Soisalon-Soininen, and P. Widmayer

If a node u performs a split and sends Initialize messages to children vi , v
′
i , then u

does not delete its key set Ku = K1 ∪ K2. Every following message Search(c, k, ID)
is forwarded according to the described routing scheme, but additionally u sends an
answer to c. Also, every following message Insert(c, k, ID) is forwarded according to
the routing scheme, and k is inserted in Ku . Node u is called schizophrenic, since it acts
on a leaf and an internal node at the same time.

If a node v receives an Initialize message, then it sends a message InitializationOK()
back to the sender. If node u receives the message InitializationOK() from a node vi or
v′i , then it deletes Ki , i.e., Ku �→ Ku\Ki . If Ku = ∅, then u stops its schizophrenic
behavior.

It can be easily seen that if a key k has been inserted in a leaf u, then all following
search requests will find at least one copy of k.

6. Conclusions

We have proposed a distributed dictionary that tolerates arbitrary single server crashes.
The distinctive feature of our model is that the crash of a server cannot be detected.
This is in contrast to all other proposals of distributed fault-tolerant search structures
presented thus far. It reflects the real situation in a global database more accurately,
and is in general more suitable to complex overall conditions. This makes our solution
fundamentally different from all previous ones, but also more complicated. We have
presented in detail the algorithms for searching, insertion, and graceful recovery of
crashed servers.

The HAT structure works in a weak environmental setting. In order to get a better
understanding of the HAT structure, experimental studies will be carried out in the future.
Designing an experimental setup in itself is a major effort, since we need to appropriately
intertwine a wealth of parameters, ranging from patterns for data, for queries, to timing
and distribution of crash failures. Especially, we are interested in the probability of loss
of data and in the overhead during the time period in which operations are performed.
Furthermore, we want to compare different allocation rules that map nodes to servers.

We are working on the application of our scheme on a pair of B-trees (see [2]).
We aim at a structure that is balanced and therefore guarantees logarithmic tree height.
On the other hand, we expect disadvantages also: For instance, it may be impossible
to delete message tags, because there can be more than one path from a root to a leaf.
Furthermore, there is no guarantee that the path length is logarithmic although the tree
height is. These issues have to be taken into consideration when generalizing our scheme
to B-trees.
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