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Summary. We formulate elliptic boundary value problems with stochastic
loading in a bounded domainD ⊂ R

d . We show well-posedness of the prob-
lem in stochastic Sobolev spaces and we derive a deterministic elliptic PDE
in D ×D for the spatial correlation of the random solution. We show well-
posedness and regularity results for this PDE in a scale of weighted Sobolev
spaces with mixed highest order derivatives. Discretization with sparse ten-
sor products of any hierarchic finite element (FE) spaces inD yields optimal
asymptotic rates of convergence for the spatial correlation even in the pres-
ence of singularities or for spatially completely uncorrelated data. Multilevel
preconditioning in D × D allows iterative solution of the discrete equation
for the correlation kernel in essentially the same complexity as the solution
of the mean field equation.

Mathematics Subject Classification (2000): 65N30

1 Introduction

Due to the rapid development of scientific computing in recent years, accu-
rate numerical solution of boundary value problems for partial differential
equations is now possible in many applications. For given problem data, such
as domains, coefficients and boundary data, the solution can be computed to
high accuracy. Often, however, the problem data is either incompletely known
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or uncertain which implies that highly accurate numerical solutions are of
limited use. One way to deal with such uncertainty is to describe the problem
data as random fields which turns the problem into a stochastic differential
equation. The formulation and numerical solution of stochastic differential
equations has received increasing interest in recent years. We mention here
only [18], [19], [16] and the references there on stochastic ordinary differen-
tial equations and [12], [13], [7] on stochastic partial differential equations.
In engineering simulations, uncertainty in coefficients and loadings has been
dealt with by means of the stochastic finite element method in structural
mechanics (see [15] and the references there) and by the related first order,
second moment perturbation technique in subsurface flow models, introduced
in [6].

The solution of a stochastic differential equation is, in general, a random
field which takes values in a suitable function space. Complete description
of this random field requires knowledge of its joint probability densities. In
applications, however, one is often only interested in the first moments of the
random solution. These moments can be computed e.g. by the Monte-Carlo
(MC) Method, where numerous ‘samples’ of the random input data are gen-
erated according to prescribed, often empirical, distributions and each MC
sample entails the solution of a deterministic boundary value problem. From
the computed solutions, the mean and covariance then give estimates for the
first moments of the random solution. This approach is costly – due to the
generally slow convergence of MC methods, numerous samples must be tak-
en until a satisfactory accuracy of the computed solution has been reached.
Nevertheless, in the context of stochastic ordinary differential equations, this
technique is frequently employed (e.g. [16]) with good success. For partial
differential equations, one could discretize in the spatial variables first, e.g.
by the Finite Element Method (FEM). This will then lead to large linear sys-
tems with random stiffness and mass matrices, the so-called stochastic FEM
[15]. The cost of this approach is often prohibitive, particularly in 3-d.

Alternatively one can directly compute the moments of interest for the ran-
dom solution and this is the approach which we follow here. This
approach consists in deriving deterministic partial differential equations for
the moments of the random solution, thereby eliminating the need for MC
simulations. This advantage is bought, however, at a price: if the differential
equation is posed in the physical domain D ⊂ R

d , the 2nd moment of the
solution, the spatial correlation, is a function in D × D ⊂ R

2d . We show
in the present paper for elliptic partial differential equations with stochastic
input data that the deterministic equation for the correlation has a very special
structure. We exploit this structure for anisotropic regularity estimates which
in turn show that finite element approximations of the correlation can be com-
puted in essentially the same complexity as FE solutions of the deterministic
problem in D by sparse tensor products of FE spaces.
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We now specify the problems to be considered. Let (�,�, P ) be aσ -finite
probability space and D ⊂ R

d a bounded open set with Lipschitz boundary
∂D. Let A ∈ L∞(D,Rd×d

sym ) be also positive definite, i.e. for some α, β > 0
there holds

α‖ξ‖2 ≤ ξ�A(x)ξ ≤ β‖ξ‖2 ∀ξ ∈ R
d and λ− a.e. x ∈ D.(1.1)

We define a random field on a submanifold M of R
d (it will be always D

or some part of its boundary) as a jointly measurable function from M ×�

to R. Suppose ∂D = 	0 ∪ 	1 is a disjoint union of closed subsets, where 	0

has positive surface measure and let f , g andh be random fields onD, 	0 and
	1 respectively. We consider the following model problem, with stochastic
r.h.s.,

L(∂x)u

γ0(u)

γn(u)





:=






−div(A(x)∇u(x, ω))
u(x, ω) |	0

n�A(x)∇u(x, ω) |	1





=






f (x, ω) in D
g(x, ω) on 	0

h(x, ω) on 	1

,(1.2)

where the operators involved in the boundary conditions should be thought of
as stochastic counterparts of the classical trace on 	0 or 	1 and distributional
conormal derivative operators, γ0, γ1 and γn respectively.

We mention that in practice, one is also interested in solving a problem
with stochastic coefficientA(x, ω), where usuallyA(x, ω) is an ε-small per-
turbation of its mean field w.r.t. ω. The Keller method [14] represents the
stochastic solution as an exponentially convergent series, in which each term
solves a stochastic problem with the same deterministic coefficient but dif-
ferent stochastic loadings. Clearly then, a rigorous study of (1.2), which is
the purpose of this work, is a key step towards efficient numerical methods
for the more general case of a stochastic coefficient.

The present paper is organized as follows. In Section 2, we first introduce
appropriate function spaces of data (f, g, h) and solutionsu in such a way that
(1.2) becomes a well-posed problem. In Section 3 we define the ‘statistics
of u’, and we derive deterministic partial differential equations which de-
scribe them. The ‘statistics ofu’that we are interested in here are the moments
of first and second order of the random solution u(x, ω) to (1.2), sometimes
referred to as the mean field (or expectation)Eu and correlationCu ofu(x, ω).
They are defined by

Eu(x) :=
∫

�

u(x, ω)dP (ω), Cu(x, y) :=
∫

�

u(x, ω)u(y, ω)dP (ω),

whenever these quantities exist. Section 4 addresses the regularity of the cor-
relation equation, in particular also in polygonal domains. Section 5 discusses
the finite element approximation of the correlation equation. We describe a
sparse FE space which allows to achieve, in terms of the number of degrees
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of freedom, the same convergence rates as for the mean field problem in the
domainD. Section 6 addresses the preconditioning and the iterative solution
of the linear system of equations for the correlation problem. Also, a detailed
complexity analysis is given and logarithmic linear complexity of the algo-
rithm is established. Finally, Section 7 presents numerical experiments which
confirm the theoretical estimates.

2 Preliminaries

2.1 Stochastic Sobolev spaces

The most appropriate tools for the study of (1.2) are the stochastic Sobolev
spaces, which we shall define as tensor products of usual function spac-
es. Within the setting of the previous section, we consider L2(�, dP ), the
Hilbert space of all real random variables on � with finite second moments,
equipped with the usual inner product

〈u, v〉 :=
∫

�

u(ω)v(ω)dP (ω).(2.1)

Our convention will be that whenever H is a Sobolev space, H will denote
its stochastic counterpart, that is, the tensor product of H and L2(�, dP ).
For instance, we shall use

Hk(D) := Hk(D)⊗ L2(�, dP ), L2(D)d := L2(D)d ⊗ L2(�, dP )

H1/2(	0) := H 1/2(	0)⊗ L2(�, dP ), etc.

The stochastic Sobolev spaces are equipped with natural Hilbert structures
induced from the tensor product factors. Embedding and trace theorems sim-
ilar to the usual ones hold also true on account of the fact that bounded linear
operators between Hilbert spaces can be tensorised. Hence we shall use the
following operators,

∇ ∈ B(H 1(D), L2(D)d) ∇ ⊗ Id ∈ B(H1(D),L2(D)d)

div ∈ B(L2(D)d,H−1(D)) div ⊗ Id ∈ B(L2(D)d,H−1(D))

γj ∈ B(H 1(D),H 1/2(	j )) γj ⊗ Id ∈ B(H1(D),H1/2(	j )), j = 0, 1

Further notations will be

H 1
(0)(D) := Ker γ0 = {u ∈ H 1(D) | γ0 u = 0}

H1
(0)(D) := Ker (γ0 ⊗ Id)

H−1(D) := (H 1
(0)(D)⊗ L2(�, dP )) ∗ � H−1(D)⊗ L2(�, dP ),

where B denotes the space of bounded linear operators between two Hilbert
spaces, and we have used the usual notation K for the dual space of a Hilbert
space K. We always identifyL2(D)with its dual, via the Riesz isomorphism.
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As for the coefficient A(x), (1.1) ensures the positivity of the associated
multiplication operator, that is, for all u ∈ L2(D)d it holds

α‖u‖2
L2(D)d

≤ 〈(A⊗ Id)u, u〉L2(D)d ≤ β‖u‖2
L2(D)d

.(2.2)

Regarding the stochastic Sobolev spaces, we remark that the norm on H1
(0)(D)

is given by

‖ · ‖1 := ‖(∇ ⊗ Id) · ‖L2(D)d ,(2.3)

since the scalar product in H1
(0)(D) is obtained by tensorizing the scalar

products 〈∇·,∇·〉L2(D)d in H 1
(0)(D) and (2.1) in L2(�, dP ).

The following result justifies the terminology ‘random fields’for the elements
of the tensor product spaces introduced above (see, e. g. [23]).

Proposition 1 We have the canonical isomorphisms

Hk(D;L2(�, dP )) � Hk(D) � L2(�, dP ;Hk(D)).(2.4)

2.2 Random solutions

We give next a variational formulation of problem (1.2).

Proposition 2 Assume that f ∈H−1(D), g∈H1/2(	0) and h∈H−1/2(	1).
Then there exists a unique random solutionu ∈ H1(D) such that (γ0⊗Id)u =
g and

〈(A⊗ Id)(∇ ⊗ Id)u, (∇ ⊗ Id)v〉L2(D)d

= 〈f, v〉H−1(D),H1
(0)(D)

+ 〈h, (γ1 ⊗ Id)v〉H−1/2(	1),H1/2(	1)(2.5)

for all v ∈ H1
(0)(D).

Proof. Since H 1(D)/H 1
(0)(D) � H 1/2(	0) as topological spaces, there

exists u1 ∈ H1(D) such that (γ0 ⊗ Id)(u1) = g. The result follows then
from the Lax-Milgram Lemma applied in H1

(0)(D), since on account of
(2.1) and (2.2), the bilinear form defined by the l.h.s. of (2.5) is bounded and
coercive on H1

(0)(D), while the r.h.s. of the problem for u − u1 defines a
bounded linear functional on the same space. ��
Remark 1 If we choose (e)i≥1 to be an ONB inL2(�; dP ) and if we expand
f = ∑

i fi ⊗ ei with
∑

i ‖fi‖2
L2(D)

≤ ∞, as well as g and h accordingly,
then the solution of (1.2) can be written as a series u = ∑

i ui ⊗ ei which
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converges absolutely in H1(D) and whose coefficient functions ui solve the
deterministic mixed boundary value problems

P(ui): =





L(∂x)ui
γ0(ui)

γn(ui)





=






fi in D
gi on 	0

hi on 	1





, i = 1, 2, . . .(2.6)

This can be seen by choosing the test function in (2.5) of the form v = w⊗ei ,
with w ∈ H 1

(0)(D). Note that the deterministic character of A is essential in
this decomposition.

3 Statistics of u

In this section we obtain deterministic equations for the expectation and the
correlation of the random solution u. While the expectationEu(x) of the ran-
dom solution u(x, ω) at x ∈ D is obviously of interest, its spatial correlation
Cu(x, x

′) allows, for instance, to obtain the variance of the random solution
u(x, ω) at x ∈ D via

Var(u(x, ·)) = Cu(x, x)− (Eu(x))
2, x ∈ D.

3.1 Second order moments

We shall first give the definition of the correlation of a pair (u, v) when
u, v ∈ H1(D) and we shall then introduce the expectation of u as the corre-
lation of the pair (u, 1) where 1 ∈ H1(D) is the tensor product of constant
functions equal to 1 on D and � respectively. It is easy to prove that

Proposition 3 Let u and v be elements of H1(D) and let (ei)i≥1 be an
ONB in L2(�; dP ), so that u = ∑

i ui ⊗ ei , where ui ∈ H 1(D) ∀i ≥ 1
and

∑
i ‖ui‖2

H 1(D)
< ∞. Define vi similarly. Then

∑
i ui ⊗ vi converges in

H 1(D) ⊗ H 1(D) and the limit does not depend on the choice of the basis
(ei)i≥1.

The previous result motivates the following

Definition 1 If u and v are elements of H1(D), then the series Cu,v defined
in Proposition 3 is called the correlation of the pair (u, v). If u = v we write
Cu instead of Cu,u and speak about the correlation of u.

Remark 2 From the proof it follows also that if H,H1, H2 are separable
Hilbert spaces, and u ∈ H1 ⊗ H, v ∈ H2 ⊗ H , the correlation Cu,v can
be defined as an element of H1 ⊗ H2. We shall use this for H1 = H−1(D)

and H2 = L2(S; dm) where (S,ϒ,m) is a σ -finite measure space, or for
H1 = H2 = H−1(D). In this way one can construct the correlations of the
pairs (f, h) and (f, f ) with f and h as in Proposition 2.
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3.2 Equation for Cu

We define the expectation, or mean field, of u by Eu := Cu,1 =
∫

�

u(x, ω)

dP (ω). The expectation Eu of the random solution u(x, ω) satisfies a deter-
ministic boundary value problem which is easily derived. We choose an ONB
(ei)i≥1 in L2(�; dP ) with e1 = 1 (the constant function equal to 1 on�), so
that Eu = u1 is the unique solution of a mixed boundary value problem with
data f1 = Cf,1 =: Ef , g1 = Cg,1 =: Eg, h1 = Ch,1 =: Eh, as follows
from Remark 1

P(Eu) =





L(∂x)Eu
γ0(Eu)

γn(Eu)





=






Ef in D,
Eg on 	0,

Eh on 	1.





.(3.1)

For future reference, we recall here also the variational formulation.

Find Eu ∈ {Eg} +H 1
(0)(D) such that

q(Eu, v) = l(v) ∀v ∈ H 1
(0)(D),(3.2)

where

q(u, v) := 〈A∇u,∇v〉L2(D)d ,

l(v) := 〈Ef , v〉H−1(D),H 1
(0)(D)

+ 〈Eh, v〉L2(	1).

To give a weak deterministic equation for the correlation function, we intro-
duce, following [1], anisotropic Sobolev spaces on D ×D by

Hk,l(D ×D) := Hk(D)⊗Hl(D)

H
k,l
(0) (D ×D) := Hk

(0)(D)⊗Hl
(0)(D)

for all integers k, l ≥ 1. Using also the notationL2(D×D)d×d forL2(D)d⊗
L2(D)d , we consider the following operators acting on the anisotropic spaces,

∇x,y := ∇x ⊗ ∇y ∈ B(H 1,1(D ×D),L2(D ×D)d×d)
γj,x,y := γj.x ⊗ γj,y ∈ B(H 1,1(D ×D),L2(	j × 	j)) for j = 0, 1
Ax,y := Ax ⊗ Ay ∈ B(L2(D ×D)d×d).

The correlation of u given by (2.5) satisfies a fourth-order elliptic equation in
D×D and that the bilinear form involved is coercive (see also [5]). As it can
be easily seen, if u solves (2.5), then Cu satifies also the following boundary
conditions

(γ0 ⊗ Id)Cu = Cg,u and (Id ⊗ γ0)Cu = Cu,g(3.3)

on 	0 ×D andD×	0 respectively. We shall assume homogeneous Dirichlet
boundary condition on 	0, g = 0. In view of the fact that the trace operator
of D ×D on (	0 × D̄) ∪ (D̄ × 	0) is (γ0 ⊗ Id)⊕ (Id ⊗ γ0), (3.3) means, if
g = 0, that Cu ∈ H 1,1

(0) (D ×D). Moreover, it holds
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Proposition 4 Assume that u is the solution of (2.5) with h ∈ L2(	1), f ∈
L2(D) and g = 0. Then the correlation Cu of the random solution u(x, ω)
is the unique solution in H 1,1

(0) (D ×D) of

Cu ∈ H 1,1
(0) (D ×D) : Q(Cu, C) = L(C) ∀C ∈ H 1,1

(0) (D ×D),(3.4)

where the bilinear form Q is given by

Q(Cu, C) := 〈Ax,y∇x,yCu,∇x,yC〉L2(D×D)d×d(3.5)

and the load functional is

L(C) := 〈Cf ,C〉L2(D×D) + 〈Ch,f , (γ1 ⊗ Id)C〉L2(	1×D)
+ 〈Cf,h, (Id ⊗ γ1)C〉L2(D×	1) + 〈Ch, (γ1 ⊗ γ1)C〉L2(	1×	1)(3.6)

Proof. Expand C = ∑
i wi ⊗ vi where (vi)i≥1 is an ONB in H 1

(0)(D) and
(wi)i≥1 ⊂ H 1

(0)(D) with
∑

i ‖wi‖2
H 1
(0)(D)

< ∞. Then

Q(Cu, C) =
∑

i,j

〈Ax∇xui ⊗ Ay∇yui,∇xwj ⊗ ∇yvj 〉

=
∑

i,j

〈Ax∇xui,∇xwj 〉〈Ay∇yui,∇yvj 〉

= 〈
∑

i

fi ⊗ fi,
∑

j

wj ⊗ vj 〉

+ 〈
∑

i

hi ⊗ fi,
∑

j

γ1wj ⊗ vj 〉

+ 〈
∑

i

fi ⊗ hi,
∑

j

wj ⊗ γ1vj 〉

+ 〈
∑

i

hi ⊗ hi,
∑

j

γ1wj ⊗ γ1vj 〉

where all scalar products are L2 on appropriate domains and all series con-
verge absolutely. As (3.6) defines a continuous linear functional onH 1,1

(0) (D×
D), we have to check, in order to ensure the uniqueness of a solution for (3.4),
only the boundedness and coercivity in the same space of the sesquilinear
form (3.5). But this follows at once from the boundedness and the strict po-
sitivity of the operator Ax,y in L2(D×D)d×d (with lower and upper bounds
α2 and β2 respectively), and from the fact that ‖ · ‖1 := ‖∇x,y · ‖L2(D×D)d×d
is a norm on H 1,1

(0) (D ×D). ��
Remark 3 The proof of Proposition 4 can be easily modified in order to cov-
er also the more general situation f ∈ H−1(D). Note that in this case one
should replace in the definition (3.6) of the functional L the L2(D) scalar
product by the duality pairing H 1

(0)(D)×H−1(D).
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Remark 4 If Cf,h �= Ef ⊗ Eh, f and h are said to be correlated. As it is
readily seen, the superposition principle does not hold for (3.4) due to the
non-linearity of the correlations Cf ,Cf,h, Ch,f .

4 Regularity

4.1 Shift theorem

Here we derive a regularity result for the weak solution of the correlation
equation (3.4). As we shall see, this follows from elliptic regularity, applied
in a suitable fashion. We therefore collect first standard results for the mean
field problem (3.2).

Definition 2 The problem (3.2) admits a shift theorem at order s ≥ 0 ifEf ∈
Hs−1(D),Eg ∈ Hs+1/2(	0) andEh ∈ Hs−1/2(	1) implyEu ∈ Hs+1(D) and
the dependence of the solution on data is continuous in these spaces.

Sufficient conditions for a shift theorem at order s ≥ 0 are given e.g. in
[8].

Proposition 5 Assume that ∂D ∈ C∞, and that the entries of A are of class
Cs,1(D̄)with s > 0. Then the problem (3.2) admits a shift theorem at order s.

A shift theorem for the mean field equation (3.2) carries over to the corre-
lation problem (3.4), as follows. We assume, again for convenience, g = 0.

Proposition 6 Suppose that (3.2) satisfies the shift theorem at order s. Then
the correlation problem (3.4) admits a shift theorem at order s in spaces of
mixed highest derivatives. More precisely, if

Cf ∈ Hs−1,s−1(D ×D), Ch ∈ Hs−1/2,s−1/2(	1 × 	1)

Cf,h ∈ Hs−1,s−1/2(D × 	1), Ch,f ∈ Hs−1/2,s−1(	1 ×D),
(4.1)

then Cu ∈ Hs+1,s+1(D).

Proof. In the case g = 0 the operator P−1 which associates to each element
of Hs−1(D) ⊕ Hs−1/2(	1) the corresponding solution of the problem (3.2)
is a homeomorphism on Hs+1(D) ∩ H 1

(0)(D). We deduce that P−1 ⊗ P−1

is a homeomorphism from H := (H s−1(D) ⊗ Hs−1(D)) ⊕ (H s−1(D) ⊗
Hs−1/2(	1))⊕ (H s−1/2(	1)⊗Hs−1(D))⊕ (H s−1/2(	1)⊗Hs−1/2(	1)) on-
to its range in Hs+1,s+1(D) ∩ H

1,1
(0) (D × D). We still have to check that

P−1 ⊗ P−1 sends the quadruple (Cf , Cf,h, Ch,f , Ch) into the solution Cu
of the corresponding problem (3.4). It is enough to prove this for (f1, h1)⊗
(f2, h2), in view of the density of the span of such elements in H . To this
end, we note that (P−1 ⊗ P−1)((f1, h1) ⊗ (f2, h2)) = u1 ⊗ u2, where u1

and u2 solve the classical boundary value problem (2.6) with data (f1, 0, h1)

and (f2, 0, h2) respectively. Upon multiplying the variational formulations
of these two problems we obtain the desired conclusion. ��
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4.2 Nonsmooth domains

If ∂D is not smooth, the problem (3.2) admits a shift theorem at order s only
for 0 ≤ s < s∗ with a small s∗ > 0 (depending on the smoothness of ∂D
and A). In such situations we also have a shift theorem at order s ≥ s∗ in
weighted Sobolev spaces.We exemplify this in dimensiond = 2. LetD ⊂ R

2

be a bounded polygon withM vertices Ai, i = 1, . . . ,M and straight sides
	i, i = 1, . . . ,M connecting Ai and Ai+1 (we set AM+1 = A1). Denote by
ωi the size of the interior angle at vertex Ai . For x ∈ D, ri(x) is the distance
from x toAi and we associate with eachAi an exponent βi ∈ (0, 1).We write
β = (β1, β2, . . . , βM) and, for k ∈ Z, β+k := (β1+k, β2+k, . . . , βM+k).
We define further the weight functions by

ωβ+k(x) :=
M∏

i=1

(ri(x))
βi+k.(4.2)

The weighted Sobolev spaces Hk,l
β (D) are defined as closures of C∞(D)

under the norms

‖u‖2
H
k,l
β (D)

:= ‖u‖2
Hl−1(D)

+
k∑

|α|=l
‖ωβ+|α|−lDαu‖2

L2(D)
,(4.3)

if k ≥ l ≥ 0. Then it holds (see e.g. [2])

Proposition 7 Assume that D ⊂ R
2 is a polygon with M straight sides and

that Aij (x) ∈ C∞(D). Assume further that the boundary data Eg,Eh in
(3.2) admit liftings EG ∈ Hs+1,2

β (D),EH ∈ Hs,1
β (D) for some s ≥ 0. Then

there exist numbers βi ∈ [0, 1), i = 1, . . . ,M such that for any k ∈ N0

andEf ∈ Hk,0
β (D) the solutionEu of (3.2) belongs toHk+2,2

β (D). Moreover,
denoting s := k+1, there holds a shift theorem at order s in weighted spaces,

‖Eu‖Hs+1,2
β (D)

� ‖Ef ‖
H
s−1,0
β (D)

+ ‖EG‖
H
s+1,2
β (D)

+ ‖EH‖
H
s,1
β (D)

.(4.4)

Since solution singularities can only appear on a measure zero subset of ∂D
(i.e. at vertices), a trace operator Tr on 	1 can be defined as anL0(	1)-valued
linear operator onHs,1

β (D), where byL0(	1)we denote the space of measur-
able functions on 	1. It is trivial to see that the kernel of this trace operator
is closed in Hs,1

β (D). This enables us to define further Hs−1/2,1/2
β (	1) :=

H
s,1
β (D) /Ker(Tr) as a Banach-space, with the usual inf-norm. Passing in

(4.4) to the infimum over all H ∈ H
s,1
β (D) with the same trace h, we ob-

tain that the operator which associates to each pair (f, h) the solution u of
(3.2) with g = 0 is a homeomorphism from H

s−1,0
β (D) ⊗ H

s−1/2,1/2
β (	1)

to Hs+1,2
β (D) ∩ H 1

(0)(D). In view of the fact that a tensor product of linear
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homeomorphisms between Hilbert spaces is again a homeomorphism, we
obtain, using the same argument as in Proposition 6, the following regularity
result.

Proposition 8 Assume thatD ⊂ R
2 is a polygon with straight sides and that

the problem (3.2) admits a shift estimate (4.4) at order s ≥ 0 in weighted
spaces. Assume further that the data are sufficently regular, namely that for
some positive s ∈ R holds

Cf,f ∈ Hs−1,0
β (D)⊗H

s−1,0
β (D), Ch,h ∈ Hs−1/2,1/2

β (	1)⊗H
s−1/2,1/2
β (	1)

Cf,h ∈ Hs−1,0
β (D)⊗H

s−1/2,1/2
β (	1), Ch,f ∈ Hs−1/2,1/2

β (	1)⊗H
s−1,0
β (D).

Then

Cu ∈ Hs+1,2
β (D)⊗H

s+1,2
β (D).

We apply the basic regularity result Proposition 6 to two frequently used
examples of spatial correlation functions.

4.3 Exponential correlation

We consider a second order process f with correlation function

Cf (x, y) = e−c|x−y|, (x, y) ∈ D ×D,(4.5)

where c > 0 is a parameter and the bounded domainD ⊂ R
d is smooth. Note

that this correlation kernel can be used to characterize the well-known Marko-
vian processes. For various examples of such processes we refer to [22].
To deduce the regularity of Cf given by (4.5), we use the following two
auxiliary results (see also [20]).

Lemma 1 Let u : R
d → R be defined by u(x) = exp(−|x|). Then u ∈

Hs(Rd), for s < d/2 + 1.

Lemma 2 If s = p + q with p, q ≥ 0 and f ∈ Hs(Rd), then the function
u : R

d × R
d → R defined by

u(x, y) := f (x − y) a.e. (x, y) ∈ R
d × R

d(4.6)

belongs to Hp,q

loc (R
d × R

d).

Proof. We have to show that if φ,ψ ∈ C∞
0 (R

d), the function v : R
d×R

d →
R defined a.e. by v(x, y) := φ(x)ψ(y)f (x− y) belongs toHp,q(Rd × R

d).
We remark that it suffices to show that the function w : R

d × R
d → R

defined a.e. by w(x, y) := ψ(y)f (x − y) belongs to Hp,q(Rd × R
d), since

the multiplication operator by φ is bounded in Hp(Rd) and tensorizing it



718 C. Schwab, R.-A. Todor

by the identity of Hq(Rd) produces again a bounded operator, this time in
Hp,q(Rd × R

d). In view of the fact that the Fourier transform and tensor
product commute, all we have to check is (〈ξ〉 := (1 + |ξ |2)1/2)

〈ξ〉p〈η〉qŵ(ξ, η) ∈ L2
ξ,η(R

d × R
d).(4.7)

Explicit computation of the Fourier transform of w in terms of those of f
and ψ shows that

ŵ(ξ, η) = ψ̂(ξ + η)f̂ (ξ).(4.8)

Using (4.8), (4.7) can be then written

〈ξ〉p〈η〉q
〈ξ + η〉q〈ξ〉s · 〈ξ + η〉qψ̂(ξ + η) · 〈ξ〉s f̂ (ξ) ∈ L2

ξ,η(R
d × R

d).(4.9)

But this follows if we note that, by assumption onf , the last of the three factors
in (4.9) belongs toL2

ξ (R
d), the second one belongs toL2

η(R
d), uniformly in ξ

(ψ̂ ∈ S(Rd)), while the first is bounded uniformly in ξ and η, since s = p+q
and the inequality

√
2〈x〉〈y〉 > 〈x + y〉 holds for all x, y ∈ R

d . ��
As a direct consequence of the previous two lemmas and the boundedness

of the restriction operator fromHs
loc(R

d) toHs(D) for all s ≥ 0, d ∈ N
∗, the

correlation kernel (4.5) satisfies

Cf (x, y) = e−c|x−y| ∈ H(d+2)/4−ε,(d+2)/4−ε(D ×D), ∀ε > 0.

We can therefore apply Proposition 6 with 	1 = ∅, and deduce

Proposition 9 If (3.2) admits a shift theorem at level s ≥ 0 inHs+1(D) and
if the correlation of the data f is Cf (x, y) = e−c|x−y| for some c > 0, then
the solution Cu of (3.4) with g = 0 and 	1 = ∅ belongs, for any ε > 0, to
Ht,t (D ×D), where

t = min((d + 10)/4 − ε, s + 1),

and

‖Cu‖Ht,t (D×D) � ‖Cf ‖Ht−2,t−2(D×D),(4.10)

with a constant depending only on t and d.

This result shows that the regularity of Cu in a polygon D ⊂ R
2, mea-

sured in Hs(D), with Cf = e−c|x−y|, is determined by corner singularities,
since s < 2 for a reentrant corner.
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4.4 Vanishing spatial correlation

Here we consider that D is a bounded Lipschitz domain in R
d , with d ≤ 3

and 	1 = ∅ which ensuresH 1,1
(0) (D×D) = H

1,1
0 (D×D). We denote further

by�D the diagonal set ofD×D, and we consider also an arbitrary function
k ∈ L2(�D). We let then k · δ(x − y) be the distribution defined by

〈k · δ(x − y), φ〉 =
∫

�D

k(x)φ(x, x)dx ∀ φ ∈ C∞
0 (D ×D).(4.11)

Note that one can view the correlation kernel δ(x − y) as a limiting case of
exponential-type correlations described in the previous section, due to

cd
(∫

Rd

e−|z| dz
)−1

e−c|x−y|
c→∞−→ δ(x − y) in D′(Rd × R

d)

Vanishing spatial correlations lead formally to the problem of finding Cu ∈
H

1,1
(0) (D ×D) such that

Q(Cu, Cv) = 〈k · δ(x − y), Cv〉 ∀Cv ∈ H 1,1
(0) (D ×D).(4.12)

The solvability of (4.12) depends on the admissibility of the data (4.11), and
this follows for d ≤ 3 from

Lemma 3 ([21]) If D is a bounded Lipschitz domain in R
d , the trace oper-

ator R : C∞(D̄ × D̄) −→ L2(�D),

R(φ)(x) = φ(x, x) ∀ x ∈ D(4.13)

has a unique linear continuous extension from Hs,s(D × D) to L2(�D),
provided that s > d/4.

Lemma 3 and Proposition 6 imply

Proposition 10 If a shift theorem at level s ≥ 0 holds for problem (3.2) in
D ⊂ R

d , d ≤ 3, then there exists a unique weak solution Cu solution of
(4.12) and it belongs, for any ε > 0, to Ht,t (D ×D), where

t = min(2 − d/4 − ε, s + 1).

Moreover, the following a-priori estimate holds, with a constant depending
only on t and d,

‖Cu‖Ht,t (D×D) � ‖k‖L2(�) · ‖R‖B(H 2−t,2−t (D×D),L2(�)).(4.14)



720 C. Schwab, R.-A. Todor

5 Discretization

5.1 FE spaces and approximation properties

We investigate the Finite Element approximation of the statistics of u. Let
{V L}L≥0 be a dense, hierarchical sequence of finite dimensional subspaces
of H 1

(0)(D), that is,

V 0 ⊂ V 1 ⊂ . . . ⊂ V L ⊂ . . . ⊂ H 1
(0)(D),(5.1)

where NL = dim(V L) < ∞ for all L (here L stands for the level). We
assume also that the following approximation property holds,

min
v∈V L

‖u− v‖H 1
(0)(D)

≤ �(NL, s)‖u‖Hs+1(D),(5.2)

for all u ∈ Hs+1(D)∩H 1
(0)(D), with�(N, s) → 0 for s > 0 asN → ∞. For

regular solutions the usual FE spaces based on quasiuniform, shape regular
meshes are suitable.

Example 1 Let {T L}L∈N be a nested sequence of regular, simplicial triangu-
lations of the domain D of meshwidth hL = hL−1/2, ∀L ≥ 1 and let p ≥ 1
be a polynomial degree. Then

V L := Sp(D, T L) := {u ∈ C0(D̄) : u|K ∈ Pp(K) ∀K ∈ T L}(5.3)

satisfies (5.1), as well as (5.2), with �(N, s) = O(N−δ), for fixed p and
L → ∞, where δ := min{p, s}/d.

Remark 5 If D ⊂ R
2 is a polygon, problem (3.2) admits a shift theorem at

order s in the spacesHs+1(D) only for small values of s (often 1/2 < s < 1).
In this case, however, for smooth data in (3.2), we still have a shift theorem
at order s ≥ 0 in the weighted spaces H 1+s,2

β (D) with some β ∈ (0, 1)M ,
i.e. the weight function ωβ+k(x) introduced in Section 4.1 compensates for

the corner singularities of the solution u. To the weighted spaces Hk,l
β (D)

correspond FE approximations on sequences of graded meshes {T n
γ }n with

shape-regular elements which satisfy in dimension 2

|T n
γ | := # of triangles in T n

γ = O(n2),

∀ T ∈ T n
γ : hT := diam (T ) ≤ Cω(x)1−1/γ n−1,

for γ ≥ 1. Clearly, γ = 1 corresponds to quasiuniform triangulations of
meshwidth h = O(n−1), whereas γ � 1 corresponds to strong refinement
near the vertices. Then, for any u ∈ H 1+s,2

β (D) we have, as n → ∞
inf

v∈Sp(D,T n
γ )

‖u− v‖H 1(D) � N−δ‖u‖
H

1+s,2
β (D)

,

with δ := min{p, s}/d, provided that γ > min{p, s}/Reλ, where Reλ > 0
denotes the real part of the smallest singularity exponent of the solution u in
the polygon D.
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5.2 Rate of convergence for Cu

The standard approximation result for the mean field problem (3.2) with the
FE spaces of Example 1 reads,

Proposition 11 Assume that the mixed boundary value problem (3.2) forEu
satisfies the shift theorem at order s ≥ 0. Then the FE approximation ELu ∈
V L of Eu, the solution of (3.2) with data Ef ∈ Hs−1(D), Eg ∈ Hs+1/2(	0),
Eh ∈ Hs−1/2(	1), reads

ELu ∈ Sp(D, T L), q(ELu ,Ev) = l(Ev) ∀Ev ∈ Sp(D, T L).(5.4)

Then, with δ = min{p, s}/d, we have the following error estimate, asymp-
totically as NL → ∞,

‖Eu − ELu ‖H 1(D) � (NL)
−δ ‖Eu‖Hs+1(D).(5.5)

We investigate next the FE approximation of the correlation kernel Cu in
the deterministic elliptic equation (3.4). Since Cu solves an elliptic problem
on D × D, we construct FE spaces in this product domain, starting from
{V L}L≥0 in (5.1). Full tensor product spaces {V L ⊗ V L}L≥0 present them-
selves as natural candidates. We next prove that, for the regularity (4.1) of
Cu, the sparse tensor product FE spaces, defined by (see [24])

V̂ L := Span
{
V i ⊗ V j | 0 ≤ i + j ≤ L

} ⊂ H
1,1
(0) (D ×D)(5.6)

allow to approximate Cu at essentially the same rate. Sparse tensor product
spaces can be described in terms of a hierarchic excess of the scale (5.1), that
is, of an algebraic summand WL of V L−1 in V L,

WL := V L � V L−1 L ≥ 0,(5.7)

where we set V −1 := {0}. It follows that V L decomposes as a direct sum

V L =
⊕

0≤i≤L
Wi,(5.8)

while the similar decomposition of the full tensor product FE spaces inD×D
reads

V̄ L := V L ⊗ V L =
⊕

0≤i,j≤L
Wi ⊗Wj ⊂ H

1,1
(0) (D ×D),(5.9)

for all L ∈ N. The sparse tensor product spaces (5.6) are then given by

V̂ L =
⊕

0≤i+j≤L
Wi ⊗Wj.(5.10)
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For an arbitrary Cu ∈ H 1,1
(0) (D ×D) we define CLu , the sparse interpolant of

Cu in V̂ L, as theH 1,1
(0) (D×D) projection of Cu on V̂ L. With these notations,

the following result (see also [11], [17]) shows that the approximation prop-
erty of the scale {V L}L≥0 carries over to the sparse scale {V̂ L}L≥0 (�(N−1, s)

is defined as the embedding constant of H 1(D) in Hs+1(D)).

Proposition 12 Assume that the sequence (5.1) of FE spaces {VL}L≥0 has the
approximation property (5.2). Then for Cu ∈ H 1,1

(0) (D×D) ∩ Hs+1,t+1(D×
D) with s, t > 0 the sparse interpolant CLu approximates Cu with the error
eLu := Cu − CLu ,

‖eLu ‖
H

1,1
(0) (D×D) ≤

[
L+1∑

i=0

�2(Ni−1, s)�2(NL−i , t)

]1/2

‖Cu‖Hs+1,t+1(D×D)

+
[ ∞∑

i=L+1

�2(Ni, s)

]1/2

‖Cu‖Hs+1,1(D×D).(5.11)

Proof. Let us denote by PL the H 1
(0)(D) orthogonal projection onto V L. We

choose WL to be the orthogonal complement of V L−1 in V L (∀L ≥ 0) and
use (5.10) to orthogonally decompose Cu and CLu as

Cu =
∑

0≤i,j
(Qi ⊗Qj)Cu, CLu =

∑

0≤i+j≤L
(Qi ⊗Qj)Cu,(5.12)

whereQi denotes the orthogonal projection P i −P i−1 onWi . (5.12) implies
then, all norms being evaluated in H 1,1

(0) (D ×D),

‖eLu ‖2 = ‖
∑

i+j≥L+1

(Qi ⊗Qj)Cu‖2

= ‖
∞∑

i=0

∑

j≥max{L+1−i,0}
(Qi ⊗Qj)Cu‖2

= ‖
L+1∑

i=0

Qi ⊗ (Id − PL−i )Cu‖2 + ‖
∞∑

i=L+2

Qi ⊗ IdCu‖2.(5.13)

Since for all u ∈ H 1
(0)(D) ∩Hs+1(D) we have

‖Qiu‖H 1
(0)(D)

≤ ‖(Id − P i−1)u‖H 1
(0)(D)

(5.14)

‖(Id − PL)u‖H 1
(0)(D)

≤ �(NL, s)‖u‖Hs+1(D),(5.15)

the estimate (5.11) follows by using (5.15) and (5.14) in (5.13). ��
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Specializing the FE spaces V L as in Example 1, we obtain that the FE ap-
proximation ĈLu ∈ V̂ L of Cu requires, for a prescribed accuracy, essentially
O(NL) degrees of freedom.

Proposition 13 Assume that the mean field problem (3.1) satisfies the shift
theorem at order s ≥ 0 and that the correlation functions of the data
satisfy Cf ∈ Hs−1,s−1(D × D), Cf,h ∈ Hs−1,s−1/2(D × 	1), Ch,f ∈
Hs−1/2,s−1(	1 ×D) and Ch ∈ Hs−1/2,s−1/2(	1 × 	1).
Then the sparse FE approximation ĈLu of the correlation function Cu which
is defined by

ĈLu ∈ V̂ L, Q(ĈLu , C) = L(C) ∀C ∈ V̂ L,(5.16)

converges, as L → ∞, with the rate

‖Cu − ĈLu ‖
H

1,1
(0) (D×D) � (logNL)1/2(NL)−δ ‖Cu‖Hs+1,s+1(D×D)(5.17)

where δ = min{p, s}/d.

Proof. The coercivity of the sesquilinear form Q defined in (3.5) has been
proved in Proposition 4. A direct consequence of this fact is the quasi-opti-
mality of the FE solution ĈLu ( ‖ · ‖ is here the norm in H 1,1

(0) (D ×D)),

‖Cu − ĈLu ‖ � min
C∈V̂ L

‖Cu − C‖ = ‖Cu − CLu ‖.(5.18)

with a constant depending only on the bounds α and β. The quadruple
(Cf , Cf,h, Ch,f , Ch) satisfies the regularity assumptions that enable us to
apply Proposition 6 and to deduce that Cu ∈ Hs+1,s+1(D×D). Since Nj =
O(2dj ), (5.11) with s = t shows that

‖Cu − CLu ‖
H

1,1
(0) (D×D) � (logNL)1/2(NL)−δ ‖Cu‖Hs+1,s+1(D×D)

From this and (5.18) follows then the claimed estimate. Note also, for later
use, that, due to (5.10), it holds, asymptotically as L → ∞,

N̂L := dim(V̂ L) = O(L 2dL) = O((logNL)NL),(5.19)

which allows us to express the convergence rate (5.17) in terms of the number
of degrees of freedom N̂L in D ×D,

‖Cu − ĈLu ‖
H

1,1
(0) (D×D) � (logN̂L)1/2+δ(N̂L)−δ‖Cu‖Hs+1,s+1(D×D).(5.20)

��



724 C. Schwab, R.-A. Todor

Remark 6 The FE approximation C̄Lu of Cu,

C̄Lu ∈ V̄ L, Q(C̄Lu , C) = L(C) ∀C ∈ V̄ L,(5.21)

based on the full tensor product space V̄ L in (5.9) satisfies, under the regu-
larity assumptions in Proposition 13,

‖Cu − C̄Lu ‖
H

1,1
(0) (D×D) � (NL)−δ/2 ‖Cu‖Hs+1,s+1(D×D).(5.22)

We see that for a given regularity of the data, the rate (5.22) in terms of the
number of degrees of freedom is essentially half of (5.17).

Remark 7 If D is nonsmooth, it follows from Proposition 8 and Remark 5
that the influence of corner singularities in D × D can be compensated by
forming sparse tensor-products of FE spaces inD with judicious mesh refine-
ment towards the vertices ofD. Once good meshes for the solutionEu of (3.2)
have been determined, the sparse FE space forCu based on these meshes will
also give optimal rates of convergence for ĈLu , provided Cf ,Cf,h, Ch,f , Ch
in Proposition 8 are sufficiently regular.

6 Implementation aspects and complexity

The discretized correlation equation consists in solving a linear system

ÂLCLu = CLf ,(6.1)

where ÂL denotes the stiffness matrix of (5.16) with respect to some basis of
the sparse tensor product space V̂ L ⊂ H

(1,1)
(0) (D×D).As it is well-known, the

conjugate gradient method generates an approximating sequence {CLu,n}n≥0

satisfying

‖CLu − CLu,n‖2 ≤ 2 ·
(√

κ − 1√
κ + 1

)n

‖CLu − CLu,0‖2, n = 0, 1, 2 . . . ,(6.2)

where κ = cond2(Â
L) and ‖ · ‖2 denotes the Euclidian norm (see e.g. [9]).

The efficiency of this method relies on the well-conditioning (or boundedness
of κ asL → ∞) and the sparsity of the matrix involved, ÂL. We shall see that
a wavelet preconditioning procedure can be used to ensure the well-condi-
tioning, while the sparsity, which fails to hold, can be replaced by a systematic
use of the tensor product structure of the correlation equation. We derive an
algorithm which employs this special structure to perform the multiplication
of a vector by ÂL (as required by one step of CG) in a logarithmic-linear
complexity without building the entire matrix ÂL.
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6.1 Multilevel FE space in D and preconditioning

The first question to be addressed is therefore the choice of a basis in the
sparse tensor space such that cond2(Â

L) remains bounded as L → ∞.

Assumption 1 There exists a family {ψli }l∈N0,i∈I l ⊂ H 1
0 (D) such that each

u ∈ H 1
0 (D) can be expanded as a convergent series in H 1

0 (D)

u =
∑

l∈N0

∑

i∈I l
cliψ

l
i ,(6.3)

and the following ‘stability condition’ is fulfilled
∑

l∈N0

∑

i∈I l
(cli)

2 ∼ ‖
∑

l∈N0

∑

i∈I l
cliψ

l
i ‖2
H 1

0 (D)
.(6.4)

We present some examples of families satisfying Assumption 1.

Example 2 ForD =]0, 1[, let us consider φ the hat function on R, piecewise
linear, taking values (0, 1, 0) at (0, 1/2, 1) and vanishing outside D. We set
I l := {1, 2, . . . , 2l} and ψli (x) := 2−l/2φ(2lx − i + 1), x ∈ D. The family
thus obtained satisfies then Assumption 1.

Example 3 With D, I l and φ as above, we define on R the function ψ ,
piecewise linear, taking values (0, 1,−6, 10,−6, 1, 0) in consecutive points
(0, 1/2, 1, 3/2, 2, 5/2, 3) and vanishing outside ]0, 3[. Similarly, ψ take
(0, 9,−6, 1, 0) at (0, 1/2, 1, 3/2, 2) and ψ assumes values (0, 1,−6, 9, 0)
at (0, 1/2, 1, 3/2, 2). Further, we define ψ0

1 := φ (scaling function) and
ψl1(x) := 2−l/2ψ(2lx), ψl2l := 2−l/2ψ(2lx − 2l + 1), x ∈ D, for l ≥ 1
(boundary wavelets). Analogously, ψli (x) := 2−l/2ψ(2lx − i + 2), x ∈ D

for 2 ≤ i ≤ 2l − 1 and l ≥ 2 (interior wavelets). The family thus obtained
satisfies Assumption 1.

Remark 8 Higher order functions satisfying Assumption 1 exist as well (see,
e.g. [3]). In the case D is an arbitrary polygon, bases satisfying Assumption
1 can also be constructed. See [4] for examples.

Example 4 If D =]0, 1[d , we consider the index set I l := {(j, k) ∈ N
d
0 ×

N
d
0 | max1≤q≤d jq = l, 1 ≤ kq ≤ 2jq }. Then, starting from the family in

Example 3, we put ψli (x) = ∏d
q=1 ψ

jq
kq
(xq) ∀ x = (xq)1≤q≤d ∈ D, with

i = (j, k), to obtain (after rescaling) a family which satisfies Assumption 1
(see [10]).

Returning to the family {ψli }l∈N0,i∈I l provided by Assumption 1, an in-
creasing sequence of FE spaces inD can be defined in terms of these functions
by

V L := Span{ψli | 0 ≤ l ≤ L, i ∈ I l}.(6.5)
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An algebraic complement WL of V L−1 in V L is explicitly given by

WL := Span{ψLi | i ∈ IL}.(6.6)

We define the index set

ÎL :=
⋃

l1+l2=L
I l1 × I l2(6.7)

as a direct union, and for i := (i1, i2) ∈ I l1 × I l2 ⊂ Î l1+l2 we consider the
functions

ψli := ψ
l1
i1

⊗ ψ
l2
i2
, with l := l1 + l2.(6.8)

Since they are linearly independent, we obtain, via (5.10), the following
explicit description of the sparse tensor space V̂ L through a basis,

V̂ L = Span{ψli | 0 ≤ l ≤ L, i ∈ Î l}.(6.9)

An algebraic excess ŴL of the sparse tensor scale {V̂ L}L≥0 can be defined
by

ŴL := Span{ψLi | i ∈ ÎL},(6.10)

and this space can be further decomposed as

ŴL =
⊕

|l|=L
W l with W l := Span{ψ |l|

i | i ∈ I l1 × I l2},(6.11)

where |l| := l1 + l2 for l = (l1, l2) ∈ N
2
0.

For further reference, let us collect, forL ≥ 0, in a column vector denoted
�L, the basis functions in the definition (6.6) of WL. Similarly, for l ∈ N

2
0

let � l be the column vector containing the basis functions of W l, as defined
in (6.11). By nnz we denote the number of nonzero entries of a matrix.

Proposition 14 i) The matrix ÂL has uniformly bounded condition number,
as L → ∞.
ii) The matrix ÂL is not sparse, in the sense that nnz(ÂL) ≥ O((NL)2)

(compare (5.19))

Proof. i) (6.4) means that

u =
∑

l≥0

∑

i∈I l
cliψ

l
i −→ |u|2w :=

∑

l≥0

∑

i∈I l
(cli)

2(6.12)

defines an equivalent norm on H 1
0 (D). The same holds then for the basis

{ψli }l∈N0,i∈Î l introduced in (6.8) w.r.t. the spaceH 1,1
(0) (D×D). It follows that
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forC := (Cli )l,i ∈ R
N̂L (recall that N̂L := dim V̂ L),C := ∑L

l=0

∑
i∈Î l C

l
iψ

l
i

is an element of V̂ L and

〈ÂLC,C〉
RN̂

L = Q(C,C) ∼ ‖C‖2
H

1,1
(0) (D×D) ∼

L∑

l=0

∑

i∈Î l
(Cli )

2 = ‖C‖2
RN̂

L

As for ii), one can easily see that for all the examples we considered before,
the entries of ÂL corresponding to the basis functionsψl1i1 ⊗ψ0

i2
andψ0

i3
⊗ψl2i4

for all admissible indices j1, j2, i1, i2, i3, i4 are in general nonzero, implying
the desired lower bound. ��

6.2 Matrix-vector multiplication

The nonsparsity makes the storage and use of ÂL rather costly. Taking into
account the structure of ÂL, one should store only the matrixAL correspond-
ing to the discrete mean field problem (5.4) and relate ÂL to AL to perform
one step of the CG algorithm.

Elementary considerations show that for every Cu = (C l
u)

� · � l ∈
V̂ L, C = (C l)� ·� l ∈ V̂ L,

Q(Cu, C) =
L∑

l,l′=0

∑

|l|=l
|l′|=l′

(C l
u)

� · (AL
l1,l

′
1
⊗ AL

l2,l
′
2
)C l′,(6.13)

where AL
l,l′ := q(�l,�l′), ∀ 0 ≤ l, l′ ≤ L are the blocks of the stiffness

matrix AL of the mean field problem (5.4) in D describing the interactions
between levels l and l′. This shows that the stiffness matrix ÂL of the corre-
lation problem computed w.r.t. the hierarchical basis (6.9) of V̂ L has a block
structure and each block is a tensor product of certain blocks of the stiffness
matrix AL of (5.4).

We assume AL to be sparse in the following sense.

Assumption 2 The number of nonzero entries of the block AL
l,l′ admits the

upper bound

nnz(ALl,l′) � (min(l, l′)+ 1)d−1 2d max{l,l′}, ∀ 0 ≤ l, l′ ≤ L,(6.14)

for some d ∈ N and with a constant depending only on d.

We remark that for each of the previously mentioned examples, as well
as for similar wavelet constructions, Assumption 2 holds.

Under Assumption 2, and using (6.13), the following algorithm realizes
the multiplication C → ÂLC in log-linear complexity. Here Idl,l stands for
the identity matrix of size dim(W l).
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Algorithm 3 Assume (6.14).

store AL = (AL
l,l′)0≤l,l′≤L and x = (xl)l1+l2≤L, O(Ld 2dL) numbers

for l = (l1, l2) satisfying l1 + l2 ≤ L

initialize (ÂLx)l := 0;
for l′ = (l′1, l

′
2) satisfying l′1 + l′2 ≤ L

if l1 + l′2 ≤ l′1 + l2
yl := (Idl1,l1 ⊗ AL

l2,l
′
2
)((AL

l1,l
′
1
⊗ Idl′2,l′2)xl′);

else
yl := (AL

l1,l
′
1
⊗ Idl2,l2)((Idl′1,l′1 ⊗ AL

l2,l
′
2
)xl′);

end % if
update (ÂLx)l := (ÂLx)l + yl;

end % for
end % for

We emphasize that the order in the block multiplication of Algorithm 3 is
essential for the following bound on its complexity.

6.3 Complexity

Theorem 4 Under Assumption 2, Algorithm 3 performs the matrix-vector
multiplication x → ÂLx in O((logNL)2d+2NL) floating point operations.
Besides, it requires only storage of x and of the stiffness matrix AL of the
mean field problem (5.4) in a hierarchical basis, that is O(Ld 2dL) memory.

Proof. Due to (6.13), we can write

(ÂLx)l =
∑

|l′|≤L
(AL

l1,l
′
1
⊗ AL

l2,l
′
2
) · xl′ .(6.15)

To perform the multiplication under the summation above, we note that

AL
l1,l

′
1
⊗ AL

l2,l
′
2
= (AL

l1,l
′
1
⊗ Idl2,l2) · (Idl′1,l′1 ⊗ AL

l2,l
′
2
)(6.16)

= (Idl1,l1 ⊗ AL
l2,l

′
2
) · (AL

l1,l
′
1
⊗ Idl′2,l′2).(6.17)

To multiply the l.h.s. of (6.16) by xl′ , we have two possibilities: we can use
either the r.h.s. of (6.16), or the r.h.s. of (6.17) (explicit building of the ten-
sor block has been already ruled out, cf. Proposition 14 ii.). We choose the
cheapest of the two, in terms of floating point operations, and that is what
Algorithm 3 actually does through its selection statement.

Suppose therefore that l1 + l′2 ≤ l′1 + l2, so that we choose (6.17) over
(6.16), as indicated in the algorithm. On account of (6.14), we deduce that
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the number #1 of floating point operations required by the first multiplication
in the computation of yl can be estimated by

#1 ≤ nnz(AL
l1,l

′
1
⊗ Idl′2,l′2) � (min(l1, l

′
1)+ 1)d−1 (l′2 + 1)d 2d(max{l1,l′1}+l′2).

Using the same argument, the subsequent multiplication requires an addi-
tional amount of floating point operations, #2, for which it holds

#2 ≤ nnz(Idl1,l1 ⊗ AL
l2,l

′
2
) � (min(l2, l

′
2)+ 1)d−1 (l1 + 1)d 2d(max{l2,l′2}+l1).

We note that l1 + l′2 ≤ l′1 + l2 implies

max{l1, l′1} + l′2,max{l2, l′2} + l1 ≤ max
{
l1 + l2, l

′
1 + l′2

}
(6.18)

It is easily seen then, using (6.18), that the multiplication under the summation
in (6.15) can be performed using (for L ≥ 1)

#1 + #2 �
(
max

{
l1 + l2, l

′
1 + l′2

})2d−1
2d max{l1+l2, l′1+l′2}(6.19)

flops, with a constant which depends only on d.
Note that in the case l1 + l′2 > l′1 + l2, one should use (6.16) to perform
the multiplication in (6.15). Symetrically, the computational cost admits also
in this case the upper bound (6.19). From (6.15) and (6.19) follows that the
number of operations needed to perform x → ÂLx (collect all blocks (ÂLx)l
for l = (l1, l2) ∈ N

2
0 subject to |l| = l1 + l2 ≤ L) is bounded from above by

∑

l1+l2≤L

∑

l′1+l′2≤L

(
max

{
l1 + l2, l

′
1 + l′2

})2d−1
2d max{l1+l2, l′1+l′2}.

Since for a given l ≥ 0 the equation l1 + l2 = l has exactly l + 1 solutions
(l1, l2) ∈ N

2
0, we conclude that the total number of flops # required by the

multiplication x → ÂLx satisfies

# �
L∑

l=0

l3 l2d−1 2dl = O(L2d+2 2dL) = O((logNL)2d+2NL). ��

Since the number of steps required by the CG algorithm to compute the
discrete solution up to a prescribed accuracy is bounded provided that the
stiffness matrix is well-conditioned (ensured here via Proposition 14) and
that we use the FE solution at level L− 1 as initial guess for the level L, we
obtain

Theorem 5 The deterministic problem (3.4) for the correlation function
Cu ∈ Hs+1,s+1(D ×D) ∩H 1,1

(0) (D ×D) of the random solution u to (2.5) is
numerically solvable at a cost of

O((logNL)2d+2NL)(6.20)
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floating point operations, with

O((logNL)d NL)(6.21)

memory, for a relative accuracy in H 1,1(D ×D) of

O((logNL)1/2 (NL)−δ),(6.22)

where δ = min{p, s}/d and NL denotes the number of degrees of freedom
for the mean field problem.

Up to logarithmic terms, the estimates (6.20), (6.21), (6.22) are similar to
those of the mean field problem (3.2).

Remark 9 If the domain D ⊂ R
d has itself a product structure, for instance

D = D1 × D2 or D =] − a, a[d , sparse grids w.r.t. this product structure
can be used to further reduce the complexity of the correlation problem (3.4)
(see e.g. [11]). Note, however, that this requires regularity of the correlation
kernel Cu on the corresponding anisotropic Sobolev scale inD, which can in
turn be ensured only by a much higher, even unrealistic regularity of Cu (or
of u(·, ω)) on the scale naturally associated to the Laplace operator acting in
D, the isotropic Sobolev scale.

7 Numerical experiments

We present here elementary numerical results that are to be compared with
the theoretical ones we have obtained in Sections 5 and 6. We include the two
examples introduced in Section 4, involving exponential and Dirac correla-
tion (for simplicity we assume thatD = (−1, 1) and A = 1). We investigate
then a third situation in which the coefficient A is non-constant. We mention
that each figure presents two curves: the one corresponding to the theoretical
result (dashed) and the one obtained numerically (solid). We also mention
that in all these cases, the hat-function basis from Example 2 has been used
to perform numerical algorithms.

The first example to be considered is therefore the Dirichlet problem
{
L(∂x)L(∂y)Cu

γ0(Cu)

= e−|x−y|

= 0
in L2((−1, 1)2)
on ∂(−1, 1)2,

with A(x) = IdR,∀x ∈ D = (−1, 1), that is, L(∂x) = −�x .
Figure 1 shows the convergence of the FE solution in this simple case,

with non-singular (but also non-smooth) data and constant coefficient A.
From Theorem 5 follows that for this particular choice of data the rate of
convergence equals (logN)3/2N−1, where throughout this section N stands
for the number of degrees of freedom.
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Fig. 1. Convergence in the case of exponential r.h.s. and constant coefficientA = 1 (solid)
and the bound (6.22), with δ = 1 (dashed)

Our next example is the one-dimensional white noise (see (4.12)), with
the singular r.h.s. Cf = δ(x − y). Thus the problem reads

{
L(∂x)L(∂y)Cu

γ0(Cu)

= δ(x − y)

= 0
in the dual space of H 1,1

0 ((−1, 1)2)
on ∂(−1, 1)2,

where L(∂x) = −�x . Figure 2 shows the convergence of the FE-solution.
The theoretical convergence rate is here (logN)5/4N−3/4, again as a conse-
quence of Theorem 5.

We conclude this section with a new example, in which all data are again
smooth but the coefficientA is no longer constant. More precisely, we choose
the coefficent A and the solution Cu as follows:

A(x) = 2 + sin(πx), Cu(x, y) = (1 − x2)(1 − y2)exy(7.1)

for all x, y ∈ D = (−1, 1). The numerical results are shown in Figure 3. As
in the first example, the error decays as (logN)3/2N−1 when N → ∞. This
curve, as well as those we have plotted before, does not have the appearance
of a straight line and this is due to the logarithmic terms arising in the error
estimates by sparse grids. Of course, asymptotically asN → ∞, these terms
do not play an essential role, but it turns out that their influence is rather
strong, within the computational range.
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Fig. 2. Convergence in the case of singular r.h.s. and constant coefficient A = 1 (solid)
and the bound (6.22), with δ = 3/4 (dashed)
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Fig. 3. Convergence in the case of non-constant coefficientA (solid) and the bound (6.22),
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Fig. 4. Comparison between the effort required by the standard CG method based on
Algorithm 3 (solid) and its theoretical estimate given in Theorem 5 by (6.20) (dashed)

Finally, Figure 4 shows the performance of Algorithm 3 matching the
theoretical estimate concerning the computational effort given by (6.20),
namely #flops ∼ (logNL)5 · NL. We mention that this analysis has been
done for the same example (7.1), and that the solution at each level L has
been computed directly, without using the solution at level L − 1 as initial
guess.
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