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Abstract The third-order iterative method designed by Weerakoon and Fernando includes the arithmetic
mean of two functional evaluations in its expression. Replacing this arithmetic mean with different means,
other iterative methods have been proposed in the literature. The evolution of these methods in terms of
order of convergence implies the inclusion of a weight function for each case, showing an optimal fourth-order
convergence, in the sense of Kung-Traub’s conjecture. The analysis of these new schemes is performed by means
of complex dynamics. These methods are applied on the solution of the nonlinear Colebrook-White equation
and the nonlinear system of the equilibrium conversion, both frequently used in Chemistry.
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1 Introduction

In this manuscript, we are interested in the determination of simple roots of the nonlinear equation f(x) = 0,
where f : I ⊆ R → R is a nonlinear function defined in the open interval I. In general, it is not possible to
solve analytically this kind of problems and it is necessary to use iterative methods in order to estimate their
solutions. The best known iterative scheme is Newton’s procedure, given by

xk+1 = xk −
f(xk)

f ′(xk)
, k = 0, 1, 2, . . .

which has quadratic convergence for simple roots under particular conditions on f . One of the first multipoint
variants of Newton’s method was designed by Weerakoon and Fernando in [18] as

yk = xk −
f(xk)

f ′(xk)
,

xk+1 = xk −
2f(xk)

f ′(xk) + f ′(yk)
, k = 0, 1, 2, . . .

whose order of convergence is three. The main idea in this method is the use of the arithmetic mean of the
derivatives f ′(xk) and f ′(yk) in the denominator of the second step. This allowed the authors to increase the
order of convergence of Newton’s scheme by adding one functional evaluation. This idea has been extended by
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other authors by replacing the arithmetic mean by other ones: Özban in [13] used the harmonic mean, Ababneh
in [1] employed the contraharmonic mean and the centroidal, Heronian, generalized and Lehmer means were
used in [17], [16], [19] and [9], respectively. All these methods reach, at most, order of convergence three.

On the other hand, Kung and Traub introduced the concept of optimality in [11] to classify the existing
iterative schemes without memory (i.e., by using only xk in order to calculate xk+1). They conjectured that the
order of convergence of an iterative methods without memory, which uses d functional evaluations per iteration
is bounded by 2d−1. When this bound is reached, the scheme is called optimal. All the methods previously
mentioned use three functional evaluations per iteration and have third-order of convergence; so, they are not
optimal schemes.

In order to reach the optimality, we introduce in this paper weight functions in the iterative expressions.
They allow us to increase the order of convergence in one unit without adding more functional evaluations. The
technique of weight functions have been successfully employed by other authors to construct optimal methods
of different orders (a good overview can be found in [2,14]). In this paper, we get fourth-order optimal methods
that hold the structure of the different means of the derivatives involved in the iterative expression.

The paper is organized as follows. In Section 2, a set of known iterative methods for solving nonlinear
equations based on different expressions of means are introduced. These methods are modified including weight
functions to increase the order of convergence of the original ones, reaching the optimality. Furthermore, some
extension of the methods are introduced to make them suitable for solving nonlinear systems. Section 3 covers
the representation of the basins of attraction of the involved iterative schemes. In Section 4, the methods are
applied for solving two common problems in Chemistry, such as the nonlinear Colebrook-White equation and
the equilibrium conversion nonlinear system, both with numerical tables and dynamical representations. Finally,
Section 5 collects the main conclusions of the study.

2 Iterative methods based on different means

The third-order method of Weerakoon and Fernando [18] has the iterative expression

xk+1 = xk −
f(xk)

MA [f ′(xk), f ′(yk)]
, k = 0, 1, 2, . . . (1)

where yk is the Newton step, and

MA [x, y] =
x+ y

2

is the arithmetic mean. From now on, instead of using the arithmetic mean, other expressions of means are
applied to generate the iterative methods.

2.1 Methods with different expressions of the mean

There are different papers in the literature that replace the arithmetic mean of (1) by other expressions, collected
in [9]. For instance,

– Özban [13] uses the harmonic mean MHa,

MHa[x, y] = 2

(
1

x
+

1

y

)−1

,

– Singh et al. [16] use the Heronian mean MHe,

MHe[x, y] =
2

3

x+ y

2
+

1

3

√
xy.

– Lukić and Ralević in [12] employ the geometric mean MG,

MG[x, y] =
√
xy,

– Xiaojian in [19] utilizes the quadratic mean MQ,

MQ[x, y] =

√
1

2
(x2 + y2).
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Replacing MA the expressions of the means MHa, MHe, MG and MQ in equation (1), the obtained iterative
schemes satisfy the following result.

Theorem 1 Let us suppose that f : I ⊂ R → R is a sufficiently differentiable function in an open interval I
and x̄ ∈ I is a simple root of f(x) = 0. If the initial guess x0 is close enough to x̄, then the methods based
on (1), replacing the arithmetic mean by the harmonic mean, the geometric mean, the Heronian mean and the
quadratic mean are third-order convergent, being its error equation

ek+1 = Me3
k +O

(
e4
k

)
,

where ek = xk − x̄ and M 6= 0.

The iterative method of Weerakoon and Fernando [18] can be rewritten using a weight function. In this way,
the iterative expression results as

xk+1 = xk −G(tk, uk), k = 0, 1, 2, . . . , (2)

where t =
f ′(yk)

f ′(xk)
, u =

f(xk)

f ′(xk)
and G(t, u) =

2u

1 + t
.

In a similar way, the iterative methods based of different means can be also expressed by means of this
weight function G(t, u). Their corresponding functions are

– Harmonic mean,

GHa(t, u) =
u

2

(
1 +

1

t

)
, (3)

– Geometric mean,

GG(t, u) =
u√
t
, (4)

– Heronian mean,

GHe(t, u) =
3u

1 + t+
√
t
, (5)

– Quadratic mean,

GQ(t, u) =
u√

1
2 + 1

2 t
2
. (6)

2.2 Increase of the order of convergence

The inclusion of a dumping parameter λ in the Newton step generates the J family of iterative methods, whose
general expression is

yk = xk − λ
f(xk)

f ′(xk)
,

xk+1 = xk − J(tk, uk), k = 0, 1, 2, . . .
(7)

where λ ∈ R ∼ {0}.

Theorem 2 Let us suppose that f : I ⊂ R −→ R is a sufficiently differentiable function in an open interval I
and x̄ ∈ I is a simple root of f(x) = 0. If the initial guess x0 is close enough of x̄, and J : R2 → R is a function
of class C4 in R2 such that J(1, 0) = J10(1, 0) = J02(1, 0) = J20(1, 0) = J03(1, 0) = J30(1, 0) = J12(1, 0) = 0,
J01(1, 0) = 1 and J11(1, 0) = − 1

2λ , J21(1, 0) = 1
2λ2 , where

Jij(t, j) =
∂i+j

∂ti∂uj
J(t, u),

then J family (7) is third-order convergent, being its error equation

ek+1 =
1

2
(3λ− 2)c3e

3
k +O(e4

k),

where cj = 1
j!
f(j)(x̄)
f ′(x̄) , for j ≥ 2. Let us observe that, for λ = 2/3, J family is fourth-order convergent, that is, an

optimal iterative method, whose error equation is

ek+1 =
(

5c32 − c3c2 +
c4
9

)
e4
k +O

(
e5
k

)
.
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Proof Using the Taylor expansion for f(x) and f ′(x) around x̄,

f(xk) = f ′(x̄)
(
ek + c2e

2
k + c3e

3
k + c4e

4
k + c5e

5
k

)
+O

(
e6
k

)
,

f ′(xk) = f ′(x̄)
(
1 + 2c2ek + 3c3e

2
k + 4c4e

3
k + 5c5e

4
k

)
+O

(
e5
k

)
,

the quotient u = f(x)
f ′(x) is

uk = f(xk)
f ′(xk)

= ek − c2e2
k +

(
2c22 − 2c3

)
e3
k +

(
−4c32 + 7c3c2 − 3c4

)
e4
k +

(
8c42 − 20c3c

2
2 + 10c4c2 + 6c23 − 4c5

)
e5
k

+O
(
e6
k

)
,

and the first step results in

yk = xk − λ
f(xk)

f ′(xk)
= (1− λ)ek + c2λe

2
k − 2λ

(
c22 − c3

)
e3
k +

(
4c32 − 7c3c2 + 3c4

)
λe4
k

−2λ
(
4c42 − 10c3c

2
2 + 5c4c2 + 3c23 − 2c5

)
e5
k +O

(
e6
k

)
.

Expanding f ′(y) around x̄,

f ′(yk) = f ′(x̄)
[
1− 2 (c2(λ− 1)) ek +

(
3c3(λ− 1)2 + 2c22λ

)
e2
k

+2
(
−2c4(λ− 1)3 − 2c32λ+ c2c3λ(5− 3λ)

)
e3
k

+
(
5c5(λ− 1)4 − 12c23λ(λ− 1) + 8c42λ+ c22c3λ(15λ− 26) + 6c2c4λ(2(λ− 2)λ+ 3)

)
e4
k

]
+O

(
e5
k

)
.

The weight variable t has the expression

tk =
f ′(yk)

f ′(xk)
= 1− 2 (c2λ) ek + 3λ

(
c3(λ− 2) + 2c22

)
e2
k − 4

(
λ
(
c4
(
λ2 − 3λ+ 3

)
+ c3c2(3λ− 7) + 4c32

))
e3
k

+λ
(
2c4c2

(
10λ2 − 24λ+ 25

)
+ 5c5

(
λ3 − 4λ2 + 6λ− 4

)
+ c3c

2
2(39λ− 100) + c23(30− 21λ) + 40c42

)
e4
k

+O
(
e5
k

)
.

Since uk → 0 and tk → 1 when k →∞, the expansion of J(t, u) around (1, 0) is

J(tk, uk) = J(1, 0) + J10(1, 0)(tk − 1) + J0,1(1, 0)uk
+ 1

2

(
J20(1, 0)(tk − 1)2 + 2J11(1, 0)(tk − 1)uk + J02(1, 0)u2

k

)
+ 1

6

(
J30(1, 0)(tk − 1)3 + J21(1, 0)(tk − 1)2uk + J12(1, 0)(tk − 1)u2

k + J03(1, 0)u3
k

)
= J(1, 0) + ek (J01(1, 0)− 2c2J10(1, 0)λ) + e2

k

(
−c2(J01(1, 0) + 2J11(1, 0)λ) + 2c22λ(3J10(1, 0)

+2J20(1, 0)λ) + 3c3J10(1, 0)(λ− 2)λ+ J02(1, 0)) + e3
k

(
2c22(J01(1, 0) + 2λ(2J11(1, 0)

+J21(1, 0)λ)) + c3(3J11(1, 0)(λ− 2)λ− 2J01(1, 0))− 2c2(J02(1, 0) + J12(1, 0)λ)
−8c32λ(2J10(1, 0) + λ(3J20(1, 0) + J30(1, 0)λ))− 4c3c2λ(J10(1, 0)(3λ− 7) + 3J20(1, 0)(λ− 2)λ)
−4c4J10(1, 0)λ((λ− 3)λ+ 3) + J03(1, 0)) + e4

k (c2 (c3(7J01(1, 0) + λ(J11(1, 0)(38− 15λ)
−12J21(1, 0)(λ− 2)λ)) + 2c4λ(J10(1, 0)(2λ(5λ− 12) + 25) + 8J20(1, 0)λ((λ− 3)λ+ 3))
−3J03(1, 0))− 2c32(2J01(1, 0) + λ(13J11(1, 0) + 14J21(1, 0)λ))− c4(3J01(1, 0)
+4J11(1, 0)λ((λ− 3)λ+ 3)) + c22 (c3λ(J10(1, 0)(39λ− 100) + 4λ(J20(1, 0)(21λ− 46)
+9J30(1, 0)(λ− 2)λ)) + 5(J02(1, 0) + 2J12(1, 0)λ)) + c3(3J12(1, 0)(λ− 2)λ− 4J02(1, 0))
+4c42λ(10J10(1, 0) + λ(25J20(1, 0) + 18J30(1, 0)λ)) + 3c23λ (J10(1, 0)(10− 7λ)
+3J20(1, 0)λ(λ− 2)2

)
+ 5c5J10(1, 0)(λ− 2)λ((λ− 2)λ+ 2)

)
+O

(
e5
k

)
.

Therefore,

ek+1 = ek − J(tk, uk)
= −J(1, 0) + ek (2c2J10(1, 0)λ− J01(1, 0) + 1) + e2

k (c2 (−2c2λ(3J10(1, 0) + 2J20(1, 0)λ) + J01(1, 0)
+2J11(1, 0)λ)− 3c3J10(1, 0)(λ− 2)λ− J02(1, 0)) + e3

k

(
−2c22(J01(1, 0) + 2λ(2J11(1, 0)

+J21(1, 0)λ)) + c3(2J01(1, 0)− 3J11(1, 0)(λ− 2)λ) + 2c2 (2c3λ(J10(1, 0)(3λ− 7)
+3J20(1, 0)(λ− 2)λ) + J02(1, 0) + J12(1, 0)λ) + 8c32λ(2J10(1, 0) + λ(3J20(1, 0) + J30(1, 0)λ))
+4c4J10(1, 0)λ((λ− 3)λ+ 3)− J03(1, 0)) + e4

k (c2 (c3(λ(J11(1, 0)(15λ− 38) + 12J21(1, 0)(λ− 2)λ)
−7J01(1, 0))− 2c4λ(J10(1, 0)(2λ(5λ− 12) + 25) + 8J20(1, 0)λ((λ− 3)λ+ 3)) + 3J03(1, 0))
+c32

(
4J01(1, 0) + 26J11(1, 0)λ+ 28J21(1, 0)λ2

)
+ c4(3J01(1, 0) + 4J11(1, 0)λ((λ− 3)λ+ 3))

+c22 (c3λ(J10(1, 0)(100− 39λ) + 4λ(J20(1, 0)(46− 21λ)− 9J30(1, 0)(λ− 2)λ))− 5(J02(1, 0)
+2J12(1, 0)λ)) + c3(4J02(1, 0)− 3J12(1, 0)(λ− 2)λ)− 4c42λ(10J10(1, 0) + λ(25J20(1, 0)
+18J30(1, 0)λ))− 3c23λ

(
J10(1, 0)(10− 7λ) + 3J20(1, 0)λ(λ− 2)2

)
−5c5J10(1, 0)(λ− 2)λ((λ− 2)λ+ 2)) +O

(
e5
k

)
.
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Setting J(1, 0) = J10(1, 0) = J02(1, 0) = J20(1, 0) = J03(1, 0) = J30(1, 0) = J12(1, 0) = 0, J01(1, 0) = 1 and
J11(1, 0) = − 1

2λ , J21(1, 0) = 1
2λ2 , the first and second order term vanish and the error equation is

ek+1 =
1

2
c3(3λ− 2)e3

k +

(
c4
(
−2λ2 + 6λ− 3

)
− 3

2
c3c2λ+ 5c32

)
e4
k +O

(
e5
k

)
.

For λ = 2/3, the family is fourth-order convergent and its error equation is

ek+1 =
(

5c32 − c3c2 +
c4
9

)
e4
k +O

(
e5
k

)
.

�

To hold the optimal fourth-order of convergence and to include the mean-based weight function G(t, u),
function J(t, u) is constructed as the product of G(t, u) and another weight function H(t). So, expression is
re-written as (7),

yk = xk − λ
f(xk)

f ′(xk)
,

xk+1 = xk −G(tk, uk)H(tk), k = 0, 1, 2, . . .
(8)

From now on, the weight function H(t) for each iterative method based on means is presented. Family (8)
is fourth-order convergent if λ = 2/3 and,

– for the arithmetic mean of Weerakoon and Fernando,

G(t, u) = GWF (t, u) =
2u

1 + t
, and H(t) = HWF (t) =

3

4
t2 − 7

4
t+ 2, (9)

being its error equation

ek+1 =
1

9

(
c32 − 9c2c3 + c4

)
e4
k +O

(
e5
k

)
.

– for the harmonic mean,

G(t, u) = GHa(t, u), and H(t) = HHa(t) =
1

2
t2 − 5

4
t+

7

4
, (10)

and its error equation is

ek+1 =

(
79

27
c32 − c2c3 +

1

9
c4

)
e4
k +O

(
e5
k

)
.

– for the geometric mean,

G(t, u) = GG(t, u), and H(t) = HG(t) =
5

8
t2 − 3

2
t+

15

8
, (11)

being

ek+1 =

(
89

27
c32 − c2c3 +

1

9
c4

)
e4
k +O

(
e5
k

)
.

– for the Heronian mean,

G(t, u) = GHe(t, u), and H(t) = HHe(t) =
7

8
t2 − 2t+

17

8
, (12)

and the corresponding error equation is

ek+1 =

(
109

27
c32 − c2c3 +

1

9
c4

)
e4
k +O

(
e5
k

)
.

– for the quadratic mean,

G(t, u) = GQ(t, u), and H(t) = HQ(t) =
17

24
t2 − 5

3
t+

47

24
, (13)

being its error equation

ek+1 =

(
287

81
c32 − c2c3 +

1

9
c4

)
e4
k +O

(
e5
k

)
.
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2.3 Extension to solve nonlinear systems

It is not always possible to directly extend an scalar iterative method to the multidimensional case F (x) = 0,
where F : D ⊆ Rn → Rn is a vectorial function defined in a convex set D. Even when it is possible, it is not
guaranteed that the order is preserved. Some of the proposed schemes can not be directly extended as square
roots of matrices are necessary; however, two of them can be used for solving nonlinear systems, preserving
their order of convergence. It is the case of the arithmetic mean scheme

y(k) = x(k) − 2
3

[
F ′(x(k))

]−1
F (x(k)),

x(k+1) = x(k) −GWF

(
t(k), u(k)

)
HWF (t(k)), k = 0, 1, 2, . . . ,

(14)

where F ′(x) is the Jacobian matrix associated to F ,

[GWF (t, u) = 2 [I + t]
−1
u, and HWF (t) =

3

4
t2 − 7

4
t+ 2I, (15)

being t =
[
F ′(y(k))

]−1
F ′(x(k)), u =

[
F ′(x(k))

]−1
F (x(k)) and I the identity matrix.

On the other hand, the fourth-order multidimensional scheme based on harmonic mean is obtained by
replacing in expression (14) weight functions GWF (t, u) and HWF (t) by

GHa =
1

2

(
u+

[
F ′
(
y(k)

)]−1

F
(
x(k)

))
, and HHa(t) =

1

2
t2 − 5

4
t+

7

4
I, (16)

respectively.

In Section 4, it will be numerically checked that these extensions can solve vectorial nonlinear chemical
problems holding the fourth-order of convergence.

3 Stability analysis

A wide stability analysis of an iterative method covers an in-depth study on the rational function that results
from the application of the method to a nonlinear function, such as [3,4,6]. However, the most of the proposed
methods include square roots in their iterative expressions and therefore, their associate fixed point functions
are not rational. Another kind of study consists of the representation of the basins of attraction of a method on
standard nonlinear equations, and an idea of their stability properties can be deduced from them.

Let R : Ĉ→ Ĉ be a fixed point function, where Ĉ is the Riemann sphere. Each iterative method has its own
fixed point operator when it is applied on a nonlinear function, but it is not always rational. Table 1 collects the
expressions of the fixed point operators obtained when the methods are applied on the quadratic polynomials
f(z) = z2 + c, c ∈ {−1, 0, 1}.

Table 1 Fixed point operators resulting from the application of the proposed methods to quadratic polynomials

Method z2 ∓ 1 z2

(9)
1∓ 4z2 + 21z4 ± 6z6

4z3 ± 20z5
3z

10

(10)
83z8 ± 343z6 + 3z4 ± z2 + 2

144z5(±1 + 2z2)

83z

288

(11)
±5
√

3− 21
√

3z2 ± 99
√

3z4 +
(
−83
√

3 + 144
√

2± 1
z2

)
z6

144z5
√

2± 1
z2

(288− 83
√

6)z

288

(12)
±121z4 − 27z2 +

(
16
√

3
√

2± 1
z2
− 5
)
z6 ± 7

16z3
(
±1 +

(√
3
√

2± 1
z2

+ 5
)
z2
)

(
16
√

6− 5
)
z

16
(√

6 + 5
)

(13)
±303

√
2z4 − 69

√
2z2 +

(
144
√

1
z4
± 4

z2
+ 13− 251

√
2
)
z6 ± 17

√
2

144
√

1
z4
± 4

z2
+ 13z5

(
−251

√
26 + 1872

)
z

1872
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Let us define the orbit of a point z0 as the set of successive applications of the operator R. It can be expressed
as

orbit(z0) = {z0, R(z0), R2(z0), . . . , Rn(z0), . . .}.
Moreover, the basin of attraction of an attracting fixed point A(z∗) is the set of initial points z0 whose orbit
tends to the attracting fixed point z∗ (that is, a point satisfying |R′(z∗)| < 1). It can be defined by

A(z∗) = {z0 ∈ Ĉ : Rn(z0) = z∗, n→∞}.
It can be checked that the attracting fixed points z∗ of the operators appearing in Table 1 match with the

roots of the polynomials. In this sense, z∗ ∈ {−1, 1} for f(z) = z2 − 1, z∗ = 0 for f(z) = z2 and z∗ ∈ {−i, i}
for f(z) = z2 + 1. So, our methods can only converge to the roots of our nonlinear equations. The dynamical
planes represent the basins of attraction of an iterative method, based on its fixed point operator. The orbit of
a set of initial points in a mesh of points having real part <{z} ∈ [−5, 5] and imaginary part ={z} ∈ [−5, 5] has
been obtained for each one of the fourth-order proposed methods, following the guidelines of [5]. The attracting
fixed points have been represented as white stars, while the color of the basins of attraction follow the mapping
of Table 2.

Table 2 Color mapping of the basins of attraction.

Function Attracting fixed point z∗ Color (RGB)

f(z) = z2 − 1 −1 Orange (255, 128, 0)
1 Blue (0, 0, 255)

f(z) = z2 0 Orange (255, 128, 0)

f(z) = z2 + 1 −i Orange (255, 128, 0)
i Blue (0, 0, 255)

Figures 1–5 represent the basins of attraction of the methods (9)–(13) when they are applied on quadratic
polynomials f(z) = z2 + c, c ∈ {−1, 0, 1}.
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Fig. 1 Dynamical planes for iterative method based on arithmetic mean (9)

For the five methods under study, each iterative expression for every quadratic polynomial converge to the
expected roots, as Figures 1–5 confirm. Moreover, the dynamical planes corresponding to f(z) = z2 − 1 and
f(z) = z2 + 1 are a rotation of π/2 radians clockwise. So, these fourth-order schemes perform in a very stable
way on quadratic polynomials. In the following section, we test their performance on other nonlinear problems.

4 Numerical performance

In order to check the applicability of the iterative methods in terms of robustness and accuracy, some nonlinear
problems appearing in Chemistry are solved. The numerical tests have been performed with Matlab version
R2017b, with variable precision arithmetics of 2000 digits of mantissa.
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Fig. 2 Dynamical planes for iterative method based on harmonic mean (10)
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Fig. 3 Dynamical planes for iterative method based on geometric mean (11)
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Fig. 4 Dynamical planes for iterative method based on Heronian mean (12)

On the one hand, we estimate the solution of the nonlinear equation involved in the obtention of the
friction factor of a pipe. For solving numerically this nonlinear equation, the stopping criteria is set at either
|f(xk+1)| < 10−500 or |xk+1 − xk| < 10−500; both residuals will be included in the table of results, joint with
the number of iterations needed and the initial guess used.

On the other hand, the equilibrium conversion of some chemical reactions. In this case, a nonlinear system
of equations is solved. The stopping criteria in this case is either

∥∥F (x(k+1)
)∥∥ < 10−500 or

∥∥x(k+1) − x(k)
∥∥ <

10−500, appearing also these residuals in Table 4, as well as the initial estimations used and the number of
iterations needed to reach the solution with the required precision.
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Fig. 5 Dynamical planes for iterative method based on quadratic mean (13)

4.1 Friction factor

A key value for obtaining the pressure drop in a pipeline at a given flow rate is the friction factor f [15]. The
Colebrook-White equation [7] is a relationship between the friction factor, the Reynolds number R, the pipe
roughness ε and the inner diameter of the pipe D. Its expression, for R > 4000, is√

1

f
= −2 log10

(
ε/D

3.7
+

2.51

R
√
f

)
. (17)

The application of the iterative methods requires the solution of g(x) = 0. Therefore, equation (17) gets into

g(x) =

√
1

f
+ 2 log10

(
ε/D

3.7
+

2.51

R
√
f

)
. (18)

For the test cases, ε/D = 10−4 and R = 105. Figure 6 represents function g(x) described in (18).
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(b) 0.016 ≤ x ≤ 0.021

Fig. 6 Friction factor

Table 3 collects the data from the application of the different iterative methods to the problem defined by
(18), for three different initial estimations x0 ∈ {0.01, 0.0185, 0.02}. The solution of (18) is f̄ ≈ 0.01851387. It
is deduced from Table 3 that every method finds the solution of the nonlinear problem, with similar accuracy,
with a high number of iterations. This is a proof of the difficult nature of the equation to be solved.

In order to observe the dependence of the methods on initial estimations, we use the dynamical lines in
Figure 7. Each dynamical line represents the performance of the methods for solving the friction factor problem
(17) when different iterative methods are applied, showing in orange color the set of initial guesses that converge
to the solution f̄ . This solution is represented with a white star. The set of initial guesses, for every method,
covers the values in the interval x0 ∈ (0, 0.035), as can be seen in Figure 7 and it can be observed that the range
of converging starting estimations is approximately the same for all the proposed methods.
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Table 3 Numerical results for proposed iterative methods solving the Colebrook-White equation (17)

x0 Method Iterations |xk+1 − xk| |g(xk+1)|

0.01 (9) 33 4.30 · 10−502 8.51 · 10−517

0.01 (10) 33 7.10 · 10−503 1.41 · 10−517

0.01 (11) 33 1.02 · 10−502 2.02 · 10−517

0.01 (12) 33 6.00 · 10−501 1.19 · 10−515

0.01 (13) 33 7.42 · 10−503 1.47 · 10−517

0.0185 (9) 31 3.69 · 10−492 7.30 · 10−507

0.0185 (10) 31 2.67 · 10−492 5.29 · 10−507

0.0185 (11) 31 3.18 · 10−492 6.30 · 10−507

0.0185 (12) 31 4.20 · 10−492 8.31 · 10−507

0.0185 (13) 31 3.52 · 10−492 6.97 · 10−507

0.02 (9) 32 4.76 · 10−497 9.42 · 10−512

0.02 (10) 32 9.43 · 10−498 1.87 · 10−512

0.02 (11) 32 2.27 · 10−497 4.49 · 10−512

0.02 (12) 32 9.09 · 10−497 1.80 · 10−511

0.02 (13) 32 3.76 · 10−497 7.45 · 10−512
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Fig. 7 Dynamical lines for iterative methods on the Colebrook-White equation (17)

4.2 Equilibrium conversion

Consider the reversible chemical reactions [8]

2A+B ↔ C, K1 =
CC

C2
ACB

,

A+D ↔ C, K2 =
CC

CACD
.

(19)

In order to find the equilibrium conversion of the reactions, the concentrations of the components can be
calculated from the equilibrium concentration of the components x1 and x2 of the above reactions and the
initial concentrations with the expressions

CA = CA0 − 2x1CB0 − x2CD0,
CB = (1− x1)CB0,
CC = CC0 + x1CB0 + x2CD0,
CD = (1− x2)CD0.

(20)
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Therefore, the nonlinear system of equations G(x1, x2) = (g1(x1, x2), g2(x1, x2)) = (0, 0) describing the problem
is defined by its coordinate functions

g1(x1, x2) =
CC

C2
ACB

−K1 =
CC0 + x1CB0 + x2CD0

(CA0 − 2x1CB0 − x2CD0)
2

(1− x1)CB0

−K1,

g2(x1, x2) =
CC

CACD
−K2 =

CC0 + x1CB0 + x2CD0

(CA0 − 2x1CB0 − x2CD0) (1− x2)CD0
−K2.

(21)

In the numerical calculations, the values of the initial concentrations are CA0 = 40, CB0 = 15, CC0 = 0 and
CD0 = 10, while the equilibrium constants are K1 = 5 ·10−4 and K2 = 4 ·10−2. Applying these values to system
(21), the numerical problem to be solved is defined by

g1(x1, x2) =
1

6000

(
−3− 20

3x1 + 2x2

(x1 − 1)(−4 + 3x1 + x2)2

)
,

g2(x1, x2) =
1

50

(
−2 +

5

2

3x1 + 2x2

(x2 − 1)(−4 + 3x1 + x2)

)
.

(22)

Table 4 collects the results of the application of the proposed iterative methods for solving nonlinear systems
to the equilibrium concentration problem. The solution of the nonlinear system (22) is

(x̄1, x̄2) ≈ (0.12026665, 0.47867067).

For different initial estimations of the concentrations of x1 and x2, the table shows the number of iterations,
the distance between the two last iterations and the norm of the value of the system in the last iteration. In
addition, the approximated computational order of convergence ACOC [10] is also displayed.

Table 4 Numerical results for extended proposed methods solving the equilibrium concentration nonlinear system (22)

x(0) Method Iterations ‖x(k+1) − x(k)‖ ‖G(x(k+1))‖ ACOC

[0.2, 0.6] (15) 7 1.77 · 10−388 1.34 · 10−1551 3.9965
[0.2, 0.6] (16) 7 1.88 · 10−424 1.23 · 10−1695 3.9968

[0.5, 0.5] (15) 8 6.99 · 10−363 4.59 · 10−1450 4.0013
[0.5, 0.5] (16) 8 2.41 · 10−432 5.39 · 10−1728 4.0010

[0.05, 0.95] (15) 9 3.72 · 10−298 2.57 · 10−1190 4.0000
[0.05, 0.95] (16) 9 1.54 · 10−420 5.59 · 10−1680 4.0000

For every case in Table 4, the extension of the methods for solving nonlinear systems finds the solution of
the problem. Let us remark that the solution using method (16) is slightly better than that obtained by (15)
method, since the residuals are smaller with the same number of iterations. Moreover, the numerical estimation
of the order of convergence (ACOC) confirms that these schemes hold the theoretical order of convergence of
their scalar partners.

In order to check the dependence of these extended vectorial methods on the initial estimations, we show in
Figure 8 the dynamical planes associated to the equilibrium conversion problem (22) when the methods based
on the arithmetic and the harmonic means are applied. Each plane represents in orange color the set of initial
guesses that converges to the solution (x̄1, x̄2), while the black color is devoted to the divergence.’ Let us remark
that a wide region of initial values x(0) reach the solution using these methods for solving nonlinear systems in
a low number of iterations.

5 Conclusions

Based on the third-order method of Weerakoon and Fernando, that includes an arithmetic mean of f ′(xk) and
f ′(yk), some known third-order iterative methods have been generated by using other definitions of means. To
increase the order of convergence without including memory, two weight functions G(t, u) and H(t) have been
designed that allows us to define a set of optimal fourth-order schemes, that still preserve the shape of each
original mean. Some of them have been extended to the vectorial case. The dynamics of the iterative methods
guarantee the convergence of the procedures for quadratic polynomials. The solution of two well-known problems
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Fig. 8 Dynamical planes for iterative methods on the equilibrium conversion nonlinear system (22)

in Chemistry, such as Colebrook-White nonlinear equation or the equilibrium conversion nonlinear system, has
been obtained by means of the introduced iterative schemes, both in numerical and dynamical tests, for a wide
set of initial estimations.
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