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 Abstract — We present a local convergence analysis for a family 
of Steffensen-type fourth-order methods in order to approximate a 
solution of a nonlinear equation. We use hypotheses up to the first 
derivative in contrast to earlier studies such as [1], [5]-[28] using 
hypotheses up to the fifth derivative. This way the applicability 
of these methods is extended under weaker hypotheses. Moreover 
the radius of convergence and computable error bounds on the 
distances involved are also given in this study. Numerical examples 
are also presented in this study.
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convergence, local convergence.

I. Introduction

In this study we are concerned with the problem of approximating a

locally unique solution ∗x   of equation

0,=)(xF (1)

where  SSDF →⊆:  is a nonlinear function,  D  is a convex subset 
of  S  and  S  is  R  or  .C  Artificial intelligence and e-learning are two 
of the emerging needs of the information age. Authors from various 
other areas can follow these techniques to serve another scientific 
communities. Newton-like methods are famous for finding solution 
of (1), these methods are usually studied based on: semi-local and 
local convergence. The semi-local convergence matter is, based on 
the information around an initial point, to give conditions ensuring the 
convergence of the iterative procedure; while the local one is, based 
on the information around a solution, to find estimates of the radii of 
convergence balls [3, 4, 20, 21, 22, 24, 26].

Third order methods such as Euler’s, Halley’s, super Halley’s, 
Chebyshev’s [1]-[28] require the evaluation of the second derivative 
 F ′′  at each step, which in general is very expensive. That is why many 
authors have used higher order multipoint methods [1]-[28]. In this 
paper, we study the local convergence of fourth order Steffensen-type 

method defined for each  �0,1,2,=n  by 
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where  0x  is an initial point. Method (2) was studied in [11] under
hypotheses reaching upto the fifth derivative of function  .F

Other single and multi-point methods can be found in [2, 3, 20, 25] 

and the references there in. The local convergence of the preceding 
methods has been shown under hypotheses up to the fifth derivative 
(or even higher). These hypotheses restrict the applicability of these 

methods. As a motivational example, let us define function  f  on 

 ]
2
5,

2
1[= −D  by 





 ≠−+

0=0,
0,ln=)(

4523

x
xxxxxxf

Choose  1.=∗x  We have that 

3,=(1),245ln3=)( 23422 fxxxxxxf ′+−+′

 xxxxxxf 101220ln6=)( 232 +−+′′

 22.2460ln6=)( 22 +−+′′′ xxxxf

 Then, obviously, function  f ′′′  is unbounded on  .D  In the present 
paper we only use hypotheses on the first Fréchet derivative. This way 
we expand the applicability of method (2).

The rest of the paper is organized as follows: Section 2 contains the 
local convergence analysis of methods (2). The numerical examples 
are presented in the concluding Section 3.  

II. Local convergence for method (2)

We present the local convergence analysis of method (2) in this 

section. Let  ),(),,( ρρ vUvU  stand for the open and closed balls in S , 

 respectively, with center  Sv∈  and of radius  0.>ρ

Let  0>0,>0,>0,> 00 MMLL  and  0>α  be given parameters. 
It is convenient for the local convergence analysis of method(2) that 

follows to define some function on the interval  )1[0,
0L

 by 

 ,
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Notice that if: 

 000 << rrLLM A⇒

 000 == rrLLM A⇒

 .<> 000 ArrLLM ⇒

We have that  0,=)( Arg  and 

 ).[0,1<)(0 Artforeachtg ∈≤

Define function  1g  on the interval  )[0, 0r  by 
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and set 

 1.)(=)( 11 −tgth

We get that  0<1=(0)1 −h  and  +∞→)(1 th  as .0
−→ rt   It follows 

from the Intermediate Value theorem that function  1h  has zeros in the 

interval  ).(0, 0r  Denote by  1r  the smallest such zero. Moreover, define 

function on the interval  )[0, 0r  by 
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and set 

 1.)(=)( −tpth

Then, we have that  0<1=(0) −h  and  +∞→)(th  as .0
−→ rt   

Hence, function  h  has a smallest zero  ).(0, 0rrp ∈  Furthermore, 

define functions on the interval  )[0, 0r  by 
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 and set 

 1.)(=)( 22 −tgth

Then, we have  0<1=(0)2 −h  and  +∞→)(2 th  as  .0
−→ rt  Hence, 

function  2h  has a smallest zero  ).(0, 02 rr ∈  Set  

}.,,{min= 21 prrrr  (1)

Then, we get that for each  )[0, rt∈   

1,<)(0 1 tg≤  (2)

1,<)(0 tp≤  (3)

)(0 1 tp≤  (4)

 and  

1.<)(0 2 tg≤  (5)

Next, using the above notation we present the local convergence 
analysis of method (2).  

THEOREM 2.1  Let  SSDF →⊆:  be a differentiable function. 

Suppose that there exist  ,Dx ∈∗   0>0,>0,>0,> 00 MLLα  and 

 0>M  such that for each  Dyx ∈,  the following hold  

,)(0,)(0,=)( α≤′≠′ ∗∗∗ �� xFwithxFxF  (6)

  |,||))()(()(| 0
1 ∗∗−∗ −≤′−′′ xxLxFxFxF  (7)

  |,||))()(()(| 1 yxLyFxFxF −≤′−′′ −∗  (8)

  ,|)(| 0MxF ≤′  (9)

  MxFxF ≤′′ −∗ |)()(| 1  (10)

 and  

,))(1,( 0 DrMxU ⊆+∗  (11)

 where  r  is defined by (1). Then, the sequence  }{ nx  generated 

by method (2) for  }{),(0
∗∗ −∈ xrxUx  is well defined, remains in 

 ),( rxU ∗  for each  �0,1,2,=n  and converges to  .∗x  Moreover, the 

following estimates hold for each  ,0,1,2,= �n   
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 where the  "" g  functions are defined above Theorem 2.1. 

Furthermore, if that there exists  )2,[
0L

rT ∈  such that  ,),( DTxU ⊂∗  

then the limit point  ∗x  is the only solution of equation  0=)(xF  in 

 ).,( TxU ∗   
   Proof. We shall use induction to show estimates (12) and (13). 

Using the hypothesis },{),(0
∗∗ −∈ xrxUx   the definition of  r  and (7) 

we get that  

1.<|<||))()(()(| 0000
1 rLxxLxFxFxF ∗∗−∗ −≤′−′′  (14)

 It follows from (14) and the Banach Lemma on invertible functions 

[3, 4, 19, 20, 22, 23] that  )( 0xF ′  is invertible and  
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We can write by (6) that  
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1

000 θθ dxxxxxFxFxFxF ∗∗∗∗ −−+′− ∫  (16)

Then, we have by (9), (10) and (16) that 
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 where we used rxxxxxx |<||=)(| 00
∗∗∗∗ −−−+ θθ   for each 

 [0,1].∈θ  We also have by (17) and (11) that 

 |)(||||)(| 0000 xFxxxxFx +−≤−± ∗∗

 ,)(1|<||| 0000 rMxxMxx +−+−≤ ∗∗

 so  .)( 00 DxFx ∈±  Next we shall show that 

 ))(())(( 0000 xFxFxFxF −−+  is invertible. Using the definition of 

 ,0r  (7) and (17), we get in turn that 
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 It follows from (19) that  )(())(( 0000 xFxFxFxF −−+  is 
invertible and 
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Hence,  0y  is well defined by the first substep of method (2) for 
 0.=n  Then, we can write 
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The first expression at the right hand side of (21), using (8) and (15) 
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Using (6), (8), (17) and (18) the numerator of the second expression 
in (21) gives 
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Then, it follows from (2), (15), (20), (21)-(23) that 
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 which shows (12) for  0=n  and ).,(0 rxUy ∗∈   Next, we shall 

show that  )()(2 00 xFyF −  is invertible. First notice that by the first 

substep of method (2) for  0,=n  (9), (10), (20) and the definition of 

function  1p  we have that 
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 Then, using the definition of function  ,, 0
∗≠ xxp  (3), (4), (7), (12) 

(for 0=n ) and (24), we get in turn that 
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 It follows from (25) that )()(2 00 xFyF −   is invertible and  
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Hence, 1x   is well defined by the second step of method (2) for 
0.=n   We can also write that 
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 100 ,, xyx  by  1,, +kkk xyx  in the preceding estimates we arrive at 

estimates (12) and (13). Using the estimate  ,|<|<|| 1 rxxxx kk
∗∗

+ −−  

we deduce that  ),(1 rxUxk
∗

+ ∈  and .=lim ∗
→∞ xxkk   To show 

the uniqueness part, let  θθ dyxyFQ )((=
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 ),( TxUy ∗∗ ∈  with  0.=)( ∗yF  Using (6) we get that 
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It follows from (30) and the Banach Lemma on invertible 

functions that Q   is invertible. Finally, from the identity 

 ),(=)()(=0 ∗∗∗∗ −− yxQyFxF  we deduce that .= ∗∗ yx ▪

 
REMARK 2.2   
1.  In view of (8) and the estimate 

 |||||||| IxFxFxFxFxF +′−′′′′ ∗−∗−∗ ))()(()(=)()( 11
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 condition (10) can be dropped and  M  can be replaced by 

 .1=)( 0tLtM +

2.  The results obtained here can be used for operators  F  satisfying 
autonomous differential equations [3] of the form 

 ))((=)( xFPxF ′

where  P  is a continuous operator. Then, since 

 (0),=))((=)( PxFPxF ∗∗′  we can apply the results without 

actually knowing  .∗x  For example, let  1.=)( −xexF  Then, we 

can choose:  1.=)( +xxP  

    3.  The radius  Ar  was shown by us to be the convergence radius 
of Newton’s method [2]-[4]  
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 under the conditions (8) and (9). It follows from the definition 
of  r  that the convergence radius  r  of the method (2) cannot 

be larger than the convergence radius  Ar  of the second order 

Newton’s method (31) if .00 LML ≥   Even in the case ,<00 LML   
still  r  may be smaller than .Ar   As already noted in [3, 4] Ar   is 
at least as large as the convergence ball given by Rheinboldt [25]  
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 In particular, for LL <0   we have that 
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That is our convergence ball Ar   is at most three times larger than 

Rheinboldt’s. The same value for Rr   was given by Traub [26]. 

4.  It is worth noticing that method (2) is not changing when we use 
the conditions of Theorem 2.1 instead of the stronger conditions 
used in [1, 5, 11-28]. Moreover, we can compute the computational 
order of convergence (COC) defined by 
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This way we obtain in practice the order of convergence in a way 
that avoids the bounds involving estimates using estimates higher than 
the first Fréchet derivative of operator .F   

III. numerical examples

We present numerical examples in this section.  

EXAMPLE 3.1 Let ].,[= +∞−∞D   Define function f   of D   by  

).(sin=)( xxf  (1)

 Then we have for 0=∗x   that 1.=1,==== 00 αMMLL   The 
parameters are given in Table 1.

 
 

 

 Table 1 

  EXAMPLE 3.2 Let 1,1].[= −D   Define function f  of D   by  

1.=)( −xexf  (2)

 Using (2) and 0,=∗x   we get that 

1.=,===<1= 00 αeMMLeL −   The parameters are given in 
Table 2.  
 

0.6667=Ar

0.6667=0r

0.4000=1r

0.1138=pr

0.2240=2r

4.9901=1ξ
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 Table 2 

EXAMPLE 3.3 Returning back to the motivational 
example at the introduction of this study, we have 

1.=,3=8,101.557800=3,146.662907== 00 αMMMLL   The 
parameters are given in Table 3. 
 

 

 Table 3 
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