
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-51-

Abstract — Nowadays, video games such as Massively

Multiplayer Online Game (MMOG) have become cultural

mediators. Mobile games contribute to a large number of

downloads and potential benefits in the applications market.

Although processing power of mobile devices increases the

bandwidth transmission, a poor network connectivity may

bottleneck Gaming as a Service (GaaS). In order to enhance

performance in digital ecosystem, processing tasks are

distributed among thin client devices and robust servers. This

research is based on the method ‘divide and rule’, that is,

volumetric surfaces are subdivided using a tree-KD of sequence

of scenes in a game, so reducing the surface into small sets of

points. Reconstruction efficiency is improved, because the search

of data is performed in local and small regions. Processes are

modeled through a finite set of states that are built using Hidden

Markov Models with domains configured by heuristics. Six test

that control the states of each heuristic, including the number of

intervals are carried out to validate the proposed model. This

validation concludes that the proposed model optimizes response

frames per second, in a sequence of interactions.

Keywords — Distribution render; Mobile devices; Hidden

Markov models; Gaming as a service.

I. INTRODUCTION

OWADAYS, a vast network of recognized media, such

as television, internet, game consoles, smartphones,

tablets and desktop devices create new ways to play, to

express oneself, learn, explore ideas and generate culture.

Computers are used as mediators in the learning process

through play and social interaction. An example is the

Massively Multiplayer Online Game (MMOG). In some

scenarios, these games are considered an educational platform,

because they allow players to learn together through personal

interaction in a cooperative process. Recent studies reveal that,

with the continued use of this type of games [1, 2, 3, 4],

several learning processes are achieved (when creating a

virtual identity, for instance).

Recent trends in mobile computing have truly

commoditized a large number of components required for

immersive virtual reality [3, 5]. Current thin client devices,

such as smartphones and tablets, represent a renaissance in

mobile computing. With gaming as a driver for the adoption of

mobile graphics chipsets, these devices package

unprecedented graphics dealing with position/orientation

sensing, wireless networking, and high resolution displays.

Such systems provide unique opportunities for constructing

low-cost and mobile virtual reality systems [6].

Mobile games contribute to a huge number of downloads

and, consequentially, to potential profits in the application

market. However, although the processing power of mobile

devices, as well as the transmission bandwidth is increasing,

the unstable network connectivity may bottleneck the

providing of Gaming as a Service (GaaS) for mobile devices.

The hardware constraints of mobile devices, such as

computational power, storage and battery, limit the

representation of games [7].

Therefore, there is a need to reduce content and processing

requirements, as well as to maintain control of storage and

communication between users. For the mobile clients, one of

the most problematic tasks is the presentation of the 3D

Virtual Reality data. According to the 3D Virtual Reality data,

the client has to calculate the position of objects, the lightning

and shadows. This is a difficult task to perform with weak

processors and a low main memory. In complex scenes, a high

processing power is needed to process all data in nearly real

time. A solution for this problem is the consumption of the

processing task not on the client [8].

Render has significant features since there are a variety of

methods to perform these virtual 3D graphics. In terms of

software highlights there are four main algorithms: scanline

rendering and rasterization, ray casting, ray tracing, and

radiosity. Each of these algorithms is focused as a

fundamental part in representing complex images, either by

means of the light beam, or grouping pixels to reduce

computer processing, or calculating the passage of light, etc.

[9]. It must be taken into account that these processes also

depend on the geometry applied in each algorithm.

Aside from the request processing with 3D content, it is also

important to control the storage of data generated by

applications and their communication in order to achieve

decent interactivity between geographically dispersed users.

Data are not centralized on a single server; therefore control is

needed over scalability and fault tolerance to provide a

An Architecture Approach for 3D Render

Distribution using Mobile Devices in Real

Time

Holman Diego Bolívar
1
, John Alexander Velandia

1
, Jenny Natalia Torres

1
, Elena Giménez de Ory

2

1
Faculty of Engineering, Universidad Católica de Colombia, Bogotá D.C, Colombia

2
School of Engineering, La Rioja, Spain

N

DOI: 10.9781/ijimai.2015.337

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Re-UNIR

https://core.ac.uk/display/327052061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Regular Issue

-52-

response to user requests [10]. Moreover, having a distributed

system is an advantage for processing and user control.

A Platform as a Service (PaaS) allows virtualized

computing resources via internet or advanced networks,

allowing transparent use of resources. Along with offering

storage services and computer processing, PaaS is built with

Internet standards and protocols such as HTTP. A PaaS

combines quality of service and broadcast functions

distributed with capabilities in parallel processing. Together,

these features create a platform for development software,

designed specifically for network applications that produce

and consume massive amounts of digital media. Thus, it is

necessary to identify the technological architecture for

gaming.

The reminder of this paper is organized as follows: section

II summarizes the related work in industry and academy, and

section III studies the process of subdivision surfaces to be

held inside a mobile device. Section IV presents a model,

including its architecture for distributed rendering based on

hidden Markov model. The proposed model is assessed using

performance tests according to frames per second. Section V

presents the results of assessing the model, and section VI

concludes our work, including future work to be developed

from this research.

II. RELATED WORKS

Render 3D is used today to display molecular orbitals in the

analysis of results of simulations of quantum chemistry [11],

for dynamic medical evaluations, analysis of complex

information models associated with medical training,

management of geographically referenced information, and in

the searching of extraterrestrial intelligence, among many

other uses. [12]. In recent years, the performance and capacity

of graphics processing units have improved dramatically,

thanks to the parallelization of computational tasks [13], but

an efficient operation of large capacities of parallelism,

allowing a linear acceleration along with multiple compute

nodes are still required [14], for they would optimize the

graphics processing level data volume with polynomial

complexity.

The display group NERSC and Lawrence Berkeley National

Laboratory (LBNL) have developed the Visapult tool to attack

these problems. Visapult is an application of parallel

distributed processing that leverages the resources of computer

networks and the processing power of supercomputers.

Renders for volume ray tracing and traditional series can take

many minutes or hours. Visapult supports interactive volume

rendering to rates by employing distributed network

components and a high degree of parallelism. Image Based

Volume Rendering Algorithm when used with this program,

Visapult can exchange additional information with reduced

bandwidth [15].

For improving traditional visualization of render, Corcoran

et al. [16] propose a model that employs two phases, which

depend firstly on rendering volume direct (RVD), and on a

number of other rendering non photorealistic processing

techniques (RNF). By separating the visualization on two

levels, allowing a higher level of detail than that normally

observed with the traditional process, it is noteworthy its level

software architecture. The interactivity drawback is due to the

lack of specific limits and sometimes it is possible to get

occlusion by overlapping images. Because being interactive,

they require minimum time response.

The model poses strategies to solve these problems,

emphasizing the perception of images.

Bounding volume hierarchies (BVHS) hold great promise

for dynamic scenes. However, each proposed technique

changes for handling animations has limitations, such as a

reduced performance in a prolonged time and some difficulty

in the processing of deformed objects. It avoids

synchronization problems but in the other hand limits the

speed at which BVH can build frames [17].

Madhavan et al., [18] show a model that seeks an

implementation of a distributed rendering environment which

is easily accessible according to the system requirements. The

model generates the deployment work, with monitoring

render, data sending, error corrections and reducing waiting

times. Furthermore, Taura [19] proposes an architecture based

on real time monitoring system called VGXP, based on a

technology called GXP. For the system, it is important to

monitor and control the performance of a distributed process,

as well as the performance, scalability, fault tolerance, and

also data sent to the client without overloading and security.

The system generates a 3D graphics response in java.

In the system proposed with Kamoshida [20], the server

collects the monitoring data required and sends it to the client

through a hierarchical architecture. An agent process runs on

each node, which monitors the control data produced by each

process and event. To accomplish this communication, the

agents form a tree structure for TCP connections. The root of

the tree is the server process.

Madhavan et al. [21] propose a software architecture based

on Java for real-time visualization and generating interactive

graphics. This architecture minimizes the amount of required

synchronization between PCs, resulting in excellent

scalability.

The modular architecture provides a framework that can

accommodate a variety of algorithms and data formats

representation, provided that rendering algorithms are used to

generate individual pixels and data duplication in each

computer. As an object-oriented design, it implements the

basic functionality required for distributed rendering.

Due to the complexity of volumetric rendering, the problem

can be divided [22, 23, 24]. They propose using the Octree

algorithm, which is responsible for dividing the volumetric

scene in scenes less complex, according to the user's request.

Another advantage is the weight of the scene at the time of

transport on the network, since it does not require the entire

bandwidth needed initially. The problem that arises with

volumetric rendering is the volume size. Therefore, the image

must submit to procedures outside the nucleus to avoid

charges in memory.

Another algorithm commonly used for rendering is Ray-

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-53-

tracing [15,16, 17, 25, 26, 27, 28]. This is based on the

illumination of the image, capturing the beam size and its

reflection on the object. This involves various drawbacks

(shading, texture object, etc) when there are complex object.

In order to optimize performance, an intersection is found,

the beam is transferred to the point of intersection and its

address is modified according to the type of beam, shadow or

reflection, using various characteristics of objects to be

displayed and geometric data. The iterations stop when the

reflected ray does not hit any objects or the maximum

predetermined level of reflection is reached. Ray-traicing is a

dynamic algorithm with a high cost in displaying images.

Castanie et al [29] propose a model based on an original

application of DSM (Distributed Shared Memory), as it is a

type of implementation to level hardware and software system.

Each node in a cluster has access to a large shared memory

that is added to the limited unshared memory of each node.

However, this implementation is reconstructed, generating

four additional access levels that are included in this system,

such as the graphics memory, the local memory in the node,

the memory of the other nodes through the network and the

disk. This new implementation is called Distributed

Hierarchical Cache System (DHCS).

III. SUBDIVISION SURFACE METHOD ON MOBILE DEVICE

The visualization process is composed of four parts: data

collection, image processing, building surface and display of

image. As regards techniques, there are two types of volume

rendering methods: direct and indirect. Direct methods use a

type of 3D volumetric images generated without explicitly

extracting geometric surfaces from the data. Indirect method

consists of marching cubes algorithm, from which the cells

belonging to a surface threshold, and a threshold value provide

as a result a cubic grid containing a classification of the object

data, which is modeled through an octal tree.

Nowadays, the graphic processing is performed by the z-

buffer algorithm which handles the display of images. It is

useful because it processes millions of images interactively

using triangles. It takes image texture and illuminates to a low

computational cost. According to Shirley et al. [25], it has the

following disadvantages:

 Applications with data sets significantly large, generates

processing times of order NP.

 Applications with non-polygonal data are not easily

converted into triangles for processing as image.

 Applications that demand high quality shadows, with

reflection, refraction and particle effects are difficult to

process.

An option is to perform the rendering process using ray-

tracing techniques. However, a high computational cost is

generated by the large number of ray tracing for each scene.

This problem can be minimized by using special data

structures able to organize or group scene objects spatially.

The number of intersection tests involved in searching is

greatly reduced.

So instead of following a comprehensive search to identify

the correct scene for the nearest intersection, only nearby

objects are approved and the remaining are discarded, as

recommended by Siu-Lung et al. [26].

To develop volumetric render, tree octants Local Grade

Smooth algorithm is used (OOLSD). It is submitted by Xing et

al. [30]. First the image is divided into some small sets of

points according to the octree construction, then a local

triangular mesh through the region is built by fusing the

triangulations recursively and aplying the principle of “divide

and rule”.

By reducing the surface into small sets of points,

reconstruction efficiency is improved because the search

region is small and local. In the recursive fusion process, the

optimization operation is performed between boundary

triangles. Therefore, the number of the mesh boundary

triangulation does not increase, so the complexity of the

algorithm is stable.

Fig. 1 Octree subdivision surface

Fig. 1 shows the subdivision surface from octants optimized

algorithm, also known as Local Grade Smooth. The involved

process of this algorithm reduces the level of memory which is

stored in the mobile device by eliminating non-relevant

images [22, 23].

For subdivision surfaces, it is necessary in the first place to

identify those that are visible to users, through the hidden

surface removal algorithm through JPCT 3D engine. Through

CubMotion class structure renders is performed, based on the

World Reference, FrameBuffer, Light, Object name,

RGBColor Matrix, xPosition, YPosition, Object

RenderOpenGL and URL ConstructiónXML. Given the

description of the object in an XML file, the implementation is

performed in the OpenGLRender class, which is responsible

for the subdivision. By each tree node an event at BuildXML

class is being created. BuildXML class is responsible for

building tree-KD through spatial subdivision based on

heuristics and surface areas. Taking into account the

recommendation of Wald and Havran [31], Fig. 2 shows the

Regular Issue

-54-

sequence diagram associated with the interaction surface

subdivision process.

After the construction of the tree-KD, a session through the

JSCH library is created, which is an implementation of the

SSH2 protocol that provides support for secure remote access

and data compression. In the SSH communication the

following key issues are discussed:

 To access the server, it is necessary to provide credentials,

user and password.

 Sockets are used to establish a communication between

client and server. Thus, data transmission through objects

is serialized.

 JSCH library provides an encrypted communication

channel, protecting data that are travelling between client

and server.

Fig. 2 Sequence diagram of surface subdivision

Once communication channel is created and a session is

defined, the manner of handling events is throughout an

implemented interface. ActivitySPC component is used to

close sessions. Fig. 3 shows the deployment diagram

associated with the process of subdivision surface on the

mobile device and the creation of the communication channel.

Regarding the hardware environment used for testing, it

encompassed a server and several mobile devices. The Server

responsible for storing WMA has the following description: a

blade server PowerEdge M620, Intel Xeon E5-2600 processor,

Intel QuickPath Interconnect (QPI) 7.2 GT / s, 2.5 MB cache

per core with 4 cores, 16GB RAM, 3TB HDD master was

utilized and 3 TB hard drive slave, this server has a Matrox

G200 video card integrated. This server has installed an

operating system: Red Hat Enterprise Linux. Moreover, all

test devices had the Android operating system, due to the need

for the installation and configuration of JPCT 3D engine.

IV. ARCHITECTURE PROPOSAL FOR DISTRIBUTION OF RENDER

According to the tree-KD, metadata is generated for each

node which is recorded in real time from a web service and

relational database management system (RDBMS). This

process consists of defining a structure with associated data

that should map to an XML template in order to generate the

BuildXML class. Fig. 4 shows the interaction diagram for

each node.

For each mobile registered in the information system, a

Workload Management Agent (WMA), similar to proposed in

[20] is created. This agent is responsible for managing all

render and sending requests to a scheduler that is in charge of

being a matchmaker for compatible resources in a distributed

system. Regarding the execution domain, it is based on

Platform as a Service (PaaS). Inside this platform, there is a

task called “Job Submission Service” responsible for sending

tasks to the “Local Resource Manager”. Then tasks are

processed and a local scheduling is assigned to available

resources schematized as worker nodes, which return the load

to the WMA, which sends information mobile device.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-55-

Fig. 3 Deployment diagram of surface subdivision

Fig. 4 Interaction diagram of nodes

Clearly, there is a dependence on bandwidth which is given

by network congestion, the intensity of the received signal and

the mobile device. Additionally, it should be considered that

the following restrictions exist: network 2.5G technology and

General Packet Radio Service (GPRS) transmitting 56 kbps.

The aforementioned restriction inhibit data transmission to

WMA since the standard for real-time animation is 24 frames

per second (fps) with a limit of 292 Bytes for each XML

document. Additionally, range between 1KB and 15KB acts as

another restriction for data test.

Therefore, a minimum of 2880 kbps connection is required,

which is only available in 4G networks.

One solution is to compress data using redundant coding

bytes, through a grammar based on X3D standard. Then,

decompression is performed in the WMA.

In the compression process, files are reduced to 500 B and

2.5 KB respectively, due to the redundancy of coordinates and

XML tags.

Considering that the minimum value to establish a

connection using compressed data is 480 kbps, it is still

possible to perform tasks throughout 3G network. Regarding

2G networks with a top speed of 232 kbps, the rendering

process requires applying a stroboscopic effect, reducing a

third of the number of frames processed remotely.

To maintain the visual quality of animation in a game,

mobile device should process two frames while the last frame

is sent remotely. However, this simple model is not feasible

due to ignorance of network traffic and the instability of the

connection.

To identify the number of nodes created by each scene, we

propose using Hidden Markov Models (HMM) that create a

finite number of states, from an initial test of connection

between the mobile device and WMA.

To model the full process, a known and finite set of states S

Hidden Markov, one for each domain, is built. A domain is set

from the combination of different heuristics such as:

 Connection speed.

 Latency time.

 Size of the scene.

 Number of nodes to construct feasible by scene.

 Probability of failure on the connection

Given that each of the established heuristics may vary in

different real or integer values, prioritizing intervals according

to initial conditions are established. One descendent

prioritization is done according to the ideal conditions and the

worst-case scenario and then it is assigned to each interval

heuristic relevance considering the Hurwitz criterion. To

calculate the weight of each interval heuristic 𝑊[ℎ(𝑛)], in the

Regular Issue

-56-

development of research, it was used:

𝑊[ℎ(𝑛)] =
𝑊[ℎ(1)]+𝑊[ℎ(2)]…+𝑊[ℎ(𝑛)]

𝑛
 (1)

𝑊[ℎ(𝑛 − 1)] = 𝑊[ℎ(𝑛)] +
𝑊[ℎ(1)]+𝑊[ℎ(2)]…+𝑊[ℎ(𝑛)]

𝑛−1
 (2)

In equation (1) weight or heuristic value is determined by

assigning a weight to the last interval equal to the sum of the

weights of the intervals over the number of intervals. Initial

weight is 1 for each element. For the next element, previous

element weight is taken and added to the result of the equation

(2).

To calculate the relevance of each heuristic 𝑅[ℎ(𝑖)], the

value is set to 1 or 0 if the connection is in any of the

established ranges and the importance, 𝐼[ℎ(𝑖)], is indicated.

The value obtained in (2) is multiplied by the value of the

relevance of each heuristic, then added and this allows us to

identify the importance of each heuristic. Equation (3),

presents a formal method to identify the relevance of each

heuristic.

𝑅[ℎ(𝑛)] = ∑ 𝑊[ℎ(𝑖)] ∗ 𝐼[ℎ(𝑖)]

𝑛

1

 (3)

𝑅[ℎ(𝑛)] Sets the probability of heuristics associated,

according to the connection status for each domain. A

transition matrix between states is then generated.

In order to model the probability of the states, several vector

observation, 𝑉(𝑖), have been established before the training

phase models.

Formally, the probability to move from one state to another

is represented by directed edges. Usually the nodes are

numbered from 1 to N, according to the number of nodes and

edges are labeled with probability values between 0 and 1.

Each possible state 𝑉(𝑖), is represented by a labeled box and

the probability that a job stay with some priority according to

the policy node is expressed as a directed edge from that state

to the observed symbol, as shown in Fig. 5.

Having defined the structure of the overall model and each

of the HMM training proceeds of the S models to calculate the

optimal values of all parameters that have been mentioned.

For that, the k observation sequences in each state have been

used.

For the proposed model the vector of initial probabilities 𝐴𝑖
𝑠

each HMM is initialized with probability value equal to 1 / N,

as follows:

𝐴𝑖
𝑠 =

1

𝑁
, 1 ≤ 𝑗 ≤ 𝑆 𝑎𝑛𝑑 1 ≤ 𝑖 ≤ 𝑁 (4)

B = (bj(k))N is a vector of observation symbol probability,

one for each estate, in which bj = (bj1, bj2, ..., bjM) defines

observation symbol probability ot = vk of the alphabet in the

state j.

Fig. 5 Architecture fully connected (ergodic) model of Nodes

The learning model is to adjust the parameters to maximize

P(𝑉(𝑖)/) including several algorithms for training the HM

Baum-Welch, Expectation Maximization (EM), Generalized

Expectation Maximization (GEM), and different forms of

gradient descent [30].

The procedure of training with EM for restimation of HMM

parameters uses the variable 𝑊[ℎ(𝑡(𝑖, 𝑗))], that is the

probability of being in state i at time t, and state j at time t + 1,

for a given model  and a observation sequence 𝑉(𝑖), i.e.

𝑊[ℎ(𝑡(𝑖, 𝑗))] = 𝑃[𝑞𝑡 = 𝑖, 𝑞𝑡+1

𝑗

𝑉(𝑖)
, 𝜆] (5)

𝑊[ℎ(𝑡(𝑖, 𝑗))] =
𝑃[𝑞𝑡 = 𝑖, 𝑞𝑡+1 = 𝑗. 𝑉(𝑖)/𝜆]

𝑃(
𝑉(𝑖)

𝜆
)

 (6)

The sum of (5) on t can be interpreted as the expected

number of transitions from state i to state j, formally expressed

in (6):

∑ ∑ 𝑊[ℎ(𝑡(𝑖, 𝑗))]

𝑁

𝑗=1

𝑇−1

𝑖=1

 (6)

Representing the expected number of transitions from state i

to state j in 𝑉(𝑖). For optimal state sequence, the probability of

the observation sequence 𝑉(𝑖), P(𝑉(𝑖)|), is calculated

efficiently.

The evaluation of the probability of the sequence consists of

calculating the probability of the observation sequence

P(𝑉(𝑖)|). The way to solve the problem is to apply a forward

algorithm. In this algorithm, it is assumed that t (i) = P(o1 o2

... ot, qt = i | ). Then the probability of observing the partial

sequence P(𝑉(𝑖)|) in state i to time t can be calculated as

follows,

𝛼1(𝑖) = 𝐴𝑖𝑏𝑖(𝑉(𝑖)), 1 ≤ 𝑖 ≤ 𝑁 (7)

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-57-

𝛼𝑡+1(𝑖) = ∑ 𝛼𝑡(𝑖)𝑎𝑖𝑗 .

111𝑡

𝑖=1

𝑏𝑖(𝑉(𝑡 + 1)), 1 ≤ 𝑡 ≤ 𝑇 − 1 (8)

P(𝑉(𝑖)|) = ∑ 𝛼𝑇(𝑖)

𝑁

𝑖=1

 (9)

The observation probabilities are given by the state of the

connection according to the values given by heuristic

calculations taken into account (3).

WMA is responsible for maintaining a probability table for

device and continuously monitors the connection status, acting

as a brokered services under an implementation Gamming as a

Service (GaaS) [4,5,7].

V. RESULTS AND DISCUSSION

The render becomes a multi objective problem, since there

is a problem of processing capacity on the mobile device.

The number of heuristics is increased, considering other

factors such as device processing power, load balancing,

cumulative yield, missed deadlines, equity, preference of

users, total weighted completion time, delays weighted

number of tardy jobs, and many others [33].

An animation render sequence was performed, starting at

the scene shown in Fig. 6 and ending at the scene shown in

Fig. 7. The animation corresponds to a 30 second walk of the

main character (Fig. 7).

Fig. 6 Opening scene

The number of polygons of each scene varies between 7000

and 19000, with an average variation of 10% between frames.

In this research only the volume rendering process is taken

into account, regardless of color, texture and lighting of the

scene. For this reason buildings are in gray.

In order to validate the proposed model, six domains where

considered and a controlled manner to stablish the states of

each heuristic and the importance, 𝐼[ℎ(𝑖)], associated with the

number of intervals.

Table 1 shows the values of ranges for the best case, worst

case and number of intervals associated to test domains

according to heuristic set.

Fig. 7 End scene

Table 2 shows the domains where controlled tests were

performed, which yielded the number of frames per second.

TABLE I

VALUES OF TEST DOMAINS USING HEURISTIC

Table 3. Presents a variation of frames in mobile devices

according to processor and memory. The conclusion is that the

proposed model is valid for a set of significant number of

polygons or a low-speed connection.

According to Table 3 and Fig. 8, there is not a significant

variation between tests with domains 2 to 5, while in domain 1

there is a significant variation since it was considered the

worst case in heuristics in Table 2.

Regarding the aforementioned, there is an inverse

correlation between processor and memory capacity of the

device, network speed and the number of frames per second if

rendering process with JPCT 3D engine is performed.

However, the correlation is reduced by 40% implementing the

proposed model.

The rendering process is performed constructing a reference

environment, commonly referred as world.

speed

(Kbps)

latency

(ms)

Polygons

(int)

Node-KD

(int)

frames per

second (int)

Best case
I[h(i)]

Worst case 128 250 19000 8 16

number of

intervals
100 15 15 7 8

10240 100 7000 64 24

Regular Issue

-58-

TABLE II

TEST DOMAINS

TABLE III

TEST RESULTS BY MOBILE DEVICE FEATURES

Although reliability is tied to redundancy, this approach

encompasses metrics of fault tolerance and system

consistency. In that way, the expected reliability is covered,

and the information system would cover the property of fault

tolerance in its implementation. The proposed model was

implemented and, during the phase of handling tasks, the

rendering process was executed without interrupting the

service.

speed

(Kbps)

latency

(ms)

Polygons

(int)

Node-KD

(int)

Domain 1 128 250 19000 8

Domain 2 10240 100 7000 64

Domain 3 1024 180 12000 32

Domain 4 2048 150 9000 64

Domain 5 512 100 15000 64

Domain 1 Domain 2 Domain 3 Domain 4 Domain 5

2GB HSPA+

Quad-core

de 1,6 GHz

Cortex-A15

Android V4.2

Jelly Bean
16,24 24,03 23,82 23,49 24,08 24,00

2GB 4G LTE

Quad-core

1.2 GHz

Cortex-A53

Android 4.4

Kitkat
15,93 24,07 23,67 23,44 24,01 24,00

3GB 4G LTE

Quad-core

2.7 GHz

Krait 450

Android 5.0

Lollipop
16,70 24,02 24,01 23,99 24,02 24,00

1GB 4G LTE

Quad-core

1.2 GHz

Cortex-A7

Android 4.3

Jelly Bean
16,54 24,05 23,49 24,18 24,04 24,00

512MB HSPA+
Dual Core

1.3 GHZ

Android V4.2

Jelly Bean
12,09 24,03 23,08 23,38 24,01 24,00

512MB HSPA+

Dual-core

de 1 GHz

Cortex-A5

Android V4.2

Jelly Bean
12,50 24,03 23,04 22,88 23,98 24,00

With

WMA

Only JPCT 3D

Mobile device Average frames per second

memory
phone

network
CPU

operating

system

version

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-59-

Fig. 8 Variation render between only JPCT and with WMA

Fig. 8 Variation Error Average on Perfect Frame

VI. CONCLUSIONS AND FUTURE WORK

To implement a Gaming as a Service (GaaS), an

infrastructure that allows seamless experience for the user

interaction is required. The number of frames per second that a

mobile device processes according to a scene, facilitates

interaction experience. However, the more complex a scene, a

greater processing power is needed to process all data in real

time. One solution to this problem is to take this responsibility

to the mobile device, but the unstable network connectivity is

the bottleneck.

To optimize the rendering process to a good rate according

to the processing capability and network speed, it is necessary

to perform a multi objective analysis. By validating different

characteristics simultaneously, an efficient distribution of

work is done. In the first instance, subdivision of surface is

required using the octree algorithm, in order to divide the

problem into less complex problems.

To model the entire process, a known and finite set of

Hidden Markov Models, one for each node o domine, must be

built. Each domine consists of a set of heuristics with

unknown cardinality, each one of which could have different

states, associated to the local responsability.

This research had only covered the volume rendering

process, regardless of color, texture and lighting of the scene.

However, these factors can be as crucial as the volume of the

object in the interaction with the user.

In future researches, it becomes necessary to involve the

algorithms associated with the shadows, textures and lighting

to optimize a platform of Gaming as a Service.

REFERENCES

[1] Bolívar Holman, González Rubén, Pascual Jordan, Sanjuan Oscar
(2010) Assessment of learning in environments interactive through

fuzzy cognitive maps, Soft Computing, vol 19, pp 1037 C1050

Regular Issue

-60-

[2] Barab S, Thomas M, Dodge T, Carteaux R, Tuzun H (2005) Making

learning fun: quest Atlantis, a game without guns, Educational
Technology Research and Development, vol 53, no. 1, pp 86 C107

[3] Siu-Lung J, Chi-Wai R, Fang Y (2012) The effects of peer intrinsic and

extrinsic motivation on MMOG game-based collaborative learning,
Information & Management, vol 49, no. 1, pp 1 C9

[4] Gonzalez-Crespo R, Rios-Aguilar R, Ferro-Escobar, Torres N (2012)

Dynamic, ecological, accessible and 3D Virtual Worlds-based Libraries
using OpenSim and Sloodle along with mobile location and NFC for

checking in, International Journal of Interactive Multimedia and

Artificial Intelligence, vol 1, pp 62 C69
[5] Neri R, Lopez M, Bolivar-Baron H, Gonzalez-Crespo R (2023)

Annotation and Visualization in Android: An Application for Education

and Real Time Information, International Journal of Interactive
Multimedia and Artificial Intelligence, vol 2, pp 7 C12

[6] Hoberman P, Krum D. M, Suma E. A, Bolas M (2012) Immersive

training games for Smartphone-based head mounted displays,
Proceedings of Virtual Reality Workshop, pp 151 C152

[7] Cai W, Leung V, Hu L (2013) A Cloudlet-Assisted Multiplayer Cloud

Gaming System, Mobile Networks and Applications, vol 19, pp 144
C152

[8] Feisst M, Christ A (2004) Dynamically Optimized 3D (Virtual Reality)

Data Transmission for Mobile Devices, In: Proceedings of the 2nd
International Symposium on, pp 270 C274

[9] Nguyen Thu D, Peery C, Zahorian J (2001) DDDDRRaW: A Prototype

Toolkit for Distributed Real-Time Rendering on Commodity Clusters,
Proceedings of 15th International Parallel and Distributed Processing

Symposium
[10] Bolívar H, Martínez M, Gonzalez R, Sanjuan. O (2012) A multi-agent

matchmaker based on hidden markov model for decentralized grid

scheduler, Proceedings of 4th International Conference on Intelligent
Networking and Collaborative Systems (INCoS), pp 628 C636

[11] Stone J, Saam J, Hardy D, Vandivort K, Hwu W, Schulten K, (2009)

High performance computation and interactive display of molecular
ortitals on GPUs and multi-core CPUs, Proceedings of 2nd Workshop

on General Purpose Processing on Graphics Processing Units, pp 9 C18

[12] Anderson D, Estrada T, Taufer M, Reed K (2009) EmBIOINC: An
emulator for performance analysis of BOINC projects, Proceedings of

the 2009 IEEE International Symposium on Parallel & Distributed

Processing, pp 1 C8

[13] Yamagiwa S, Wada K (2009) Performance study of interference on GPU

and CPU resources with multiple apllications, Proceedings of the 2009

IEEE International Symposium on Parallel & Distributed Processing, pp
1 C8

[14] Thomas D, Howes L, Luk W. (2009) A comparison of CPUs, GPUs,

FPGAs, and massively parallel processor arrays for random numer
generation, Proceedings of the ACM/SIGDA International symposium

on Field programmeable gate arrays, pp 63 C72

[15] Bethel W, Shalf J (2003) Grid-Distributed Visualizations Using
Connectionless Protocols, Computer Graphics and Applications, pp 51

C59

[16] Corcoran A, Redmond N, Dingliana J (2010) Perceptual enhancement of
two-level volume rendering, Computers & Graphics, vol 34, no. 4, pp

388 C397

[17] Wald I, Ize T, Parker S (2008) Fast, Parallel, and Asynchronous
Construction of BVHs for Ray Tracing Animated Scenes, Computers &

Graphics, vol 32, pp 3 C13

[18] Madhavan, K.P.C. Arns L.L, Bertoline G.R (2005) A distributed
rendering environment for teaching animation and scientific

visualization, Computer Graphics and Applications, vol 25, no. 5, pp 32

C38
[19] Taura K (2004) GXP: An Interactive Shell for the Grid Environment, In

International Workshop on Innovative Architecture for Future

Generation High-Performance Processors and Systems, pp 59 C67
[20] Kamoshida Y, Taura K (2008) Scalable Data Gathering for Real-time

Monitoring Systems on Distributed Computing, CCGRID '08. 8th IEEE

International Symposium on Cluster Computing and the Grid, pp 425
C432

[21] Mahovsky J, Benedicenti L (2003) An Architecture for Java-Based

Real-Time Distributed Visualization, Visualization and Computer
Graphics, vol 9, no. 4, pp 570 C 579

[22] Carmona R, Froehlich B (2011) Error-controlled real-time cut updates

for multi-resolution volume rendering, Computers & Graphics, vol 35,
no. 4, pp 931 C944

[23] Scheiblauer C, Wimmer M (2011) Out-of-Core Selection and Editing of

Huge Point Clouds, Computers & Graphics, vol 35, no. 2, pp 342 C351
[24] Klein J, Friman O, Hadwiger M, Preim B, Ritter F, Vilanova A,

Zachmann G, Bartz D (2009) Visual computing for medical diagnosis

and treatment, Computers & Graphics, vol 33, no.4, pp 554 C565
[25] Shirley P, Sung K, Brunvand E, Davis A, Parker S, Boulos S (2008)

Fast ray tracing and the potential effects on graphics and gaming

courses, Computers & Graphics vol 32, no. 2, pp 260 C267
[26] Santos A, Teixeira J. M., Farias T, Teichrieb V, Kelner J (2012)

Understanding the Efficiency of kD-tree Ray-Traversal Techniques over

a GPGPU, Architecture International Journal of Parallel
Programming, vol 40, no.3, pp 331 C352

[27] Steinberger M, Kainz B, Hauswiesner S, Khlebnikov R, Kalkofen D,

Schmalstieg D (2012) Ray prioritization using stylization and visual
saliency, Computers & Graphics, vol 36, no. 6, pp 673 C684

[28] Parker S, G., Bigler J, Dietrich A, Friedrich H, Hoberock J, et al. (2010)

Optix: a general purpose ray tracing engine. ACM Transactions on
Graphics (TOG) - Proceedings of ACM SIGGRAPH 2010, vol 29, no.

66

[29] Castanie L, Mion C, Cavin X, Levy B (2006) Distributed Shared
Memory for Roaming Large Volumes, IEEE Transactions on

Visualization and Computer Graphics, vol 12, no. 5 pp 1299 C1306

[30] Xing X, Jia R, Lv X (2011) A Surface Reconstruction Algorithm based
on Octree and Optimized Local Smooth Degree, Procedia Engineering,

vol 15, pp 3728 C3732

[31] Wald I, Havran V (2006) On building fast kd-trees for ray tracing, and
on doing that in O (N log N), In: Proceedings of the 2006 IEEE

Symposium on Interactive Ray Tracing, pp 61 C69
[32] Baum L, Petrie T, Soules G, Weiss N (1970) A maximization technique

occurring in the statistical analysis of probabilistic functions of Markov

chains, The Annals of Mathematical Statistics, vol 26, pp 164 C171
[33] Xhafa F, Abraham A Computational models and heuristic methods for

Grid scheduling problem, Future Generation Computer System, vol 26,

pp 608 C621

Holman Bolívar, PhD, is the director of Software

Engineering Program at the Universidad Católica de

Colombia. Professor of computer programming and
Artificial Intelligence. He has participated in numerous

projects I + D + I such as Senacyt and Colciencias among

others. His research and scientific production focuses on
serious gaming, web engineering, mobile technologies

and cognitive training. He has published more than 20 works in indexed

research journals and conferences.

John Velandia, holds a MSc. from Stuttgart University

(Germany). He has been leader of IT projects in the
industry, in sectors such as Education, Food an

Automotive. He manages his projects based on PMI,

TOGAF and ITIL. Moreover, He teaches software
architecture and guide bachelor thesis at the Catholic

University. He is responsible of a research junior group
named GINOSKO. The fields of research area are Web technologies,

Business Intelligence and IT frameworks.

Jenny Torres Engineer telematics and magister in

software engineering. professor of Software

Engineering Program at the Universidad Católica de
Colombia. She has directed numerous projects Social

Responsibility. She is a enthusiastic and leader person

who has gained knowledge and experience in areas
such as software engineering and project management

Elena Giménez B.S. Degree in Mathematics at

Faculty of Mathematics, Universidad Complutense and

PhD at Engineering School, Univerisdad de Jaén

(Spain). She has published several scientific papers in

international peer-reviewed journals. Nowadays, she is

working at Universidad Internacional de la Rioja, as an

assistant professor, project manager and continues

doing research work in engineering and technology.

