
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-35-

Abstract — Agent can play a key role in bringing suitable

cloud services to the customer based on their requirements. In

agent based cloud computing, agent does negotiation,

coordination, cooperation and collaboration on behalf of the

customer to make the decisions in efficient manner. However the

agent based cloud computing have some security issues like (a.)

addition of malicious agent in the cloud environment which could

demolish the process by attacking other agents, (b.) denial of

service by creating flooding attacks on other involved agents. (c.)

Some of the exceptions in the agent interaction protocol such as

Not-Understood and Cancel_Meta protocol can be misused and

may lead to terminating the connection of all the other agents

participating in the negotiating services. Also, this paper

proposes algorithms to solve these issues to ensure that there will

be no intervention of any malicious activities during the agent

interaction.

Keywords — Agents, Cloud Computing, Security, Contract Net

Protocol, Service Capability Table, Agent Trust Table

I. INTRODUCTION

LOUD computing is a fast developing technology which

provides scalable data storage to large and various

services without the hassle of installation and maintenance.

Since there is an increase in number of users for the cloud

services, there is a demand on cloud service providers. Hence

there is a need for dynamic and automated cloud service

composition [1, 2].

With the emergence of large number of service providers,

users are not able to choose the best cloud service based on

their technical and financial requirements.

To address this problem agents are introduced in the cloud

environment. These agents make the decision making process

easier for consumers by choosing and providing the best fit

service for them, based on their requirements. According to

Kwang Sim’s model of agent based cloud composition [1],

there are four agents involved in the cloud commerce such as

Consumer Agent (CA), Broker Agent (BA), Service Provider

Agent (SPA) and Resource Agent (RA).

 Every agent will maintain a SCT (Service Capability

Table), the attributes of SCTs are: (i) agents’ addresses (ii) the

requirements that agents can resolve, and (iii) the last known

status of the service [1]. The SCT gets updated with agent’s

status after each and every agent-agent interaction.

All the agents interact with each other to deliver the best

cloud service to the user. The whole process of agent

interaction is controlled by the semi recursive contract net

protocol (SR-CNP). This protocol is used to do the negotiation

process between the task managers and the contractors. Here,

the agent who initiates the process and requires a task to be

done is referred as task manager and the agent who is able to

execute the task is known as contractor.

There are various interaction protocols that can be followed

for the agent-agent interaction. The model of agent based

cloud commerce requires recursive call for, proposal and

acceptance at various stages. So the contract net protocol in a

semi recursive manner suits well into the model.

There are two roles in the contract net protocol: (i) Initiator

(ii) Participant [6].

A consumer adopting the initiator role broadcasts a call-for-

proposals to achieve a task (e.g., service composition) to n

participants (contractors). The participants may reply with: (i)

a proposal (quotation) to carry out the task, or (ii) a refuse

message.

From the received m proposals, the initiator will select the

best (cheapest) proposal, and sends: (i) an accept-proposal

message to the best participant, and (ii) reject-proposal

messages to the remaining (m – 1) contractors [1].

After carrying out the task, the selected participant sends

either: (i) an inform-result message or (ii) a failure message in

case of unsuccessful results.

This paper briefs about the mechanism of agent based cloud

computing in section II, explains the security issues with agent

based cloud computing in section III, and proposes solutions

to overcome the issues in section IV and conclusion in Section

V.

II. MECHANISM OF AGENT BASED CLOUD

COMPUTING

A. Consumer Agent

Consumer agents receive requirements from the consumers.

Each consumer agent maintains an SCT, which contains list of

several broker agents known to it. Whenever a user requests

for a cloud service, consumer agents receive these requests

and sends a call for proposal to all the broker agents with a

certain timeout, say 30 seconds, to respond.

Broker agent responds with either accept or reject based on

its ability to resolve the request. Consumer agent only accepts

those responses which come within the timeout period, other

responses are discarded.

Among all the responses received, CA selects the most

suitable BA, sends the accept-proposal to the selected BA and

Security Framework for Agent-Based Cloud

Computing

Venkateshwaran K, Anu Malviya, Utkarsha Dikshit, S.Venkatesan

Department of Information Technology, Indian Institute of Information Technology Allahabad

C

DOI: 10.9781/ijimai.2015.334

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Re-UNIR

https://core.ac.uk/display/327051933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Regular Issue

-36-

refuse-proposal to all other BAs.

B. Broker Agent

Broker agents provide a single virtual cloud service to the

consumers by contacting and selecting set of Service Provider

Agents (SPA). BAs act as an intermediate between the CAs

and SPAs.

Every BA has two SCTs:

a) List of SPAs

b) List of other BAs (to be used in case of sub
contracts required).

BAs also handle the update requests from the consumer

agent. BA selected by the consumer agent selects the SPAs

from its list, makes a contract with SPA and delivers service to

the consumer agent.

Fig 1. Mechanism of Agent-Based Cloud Computing

C. Service Provider Agent

On the agreement of transactions, SPA allocates and de-

allocates the cloud resources from the resource agents.

Every SPA has two SCTs.

a) List of Resource agents (RA)

b) List of other SPAs for the subcontracts.

SPAs keep track of the available resources and synchronize

with the RAs for concurrent or parallel executions. Selected

SPA approaches the available RAs and makes the contract for

the consumer requirements.

D. Resource Agent

Resource agents are the major control agents for accessing

cloud resources. RAs are associated with SCT table consisting

of SPAs. Whenever there is a request from SPA, RA sends

resource or status to SPA based on the availability of

resources.

As depicted in Figure 1,Once RA sends resource to SPA,

resources are delivered to BA, BA delivers the cloud service

to CA and consumer gets its service from CA.

Agents use predefined built-in functions [1] for sending

messages to other agents.

The process is bounded by the timeouts. It involves two

timeouts, timeout1 and timeout2. Timeout1 refers to the

deadline of proposal submission and timeout2 refers to the

deadline to deliver the virtual service.

This mechanism, delivers the cloud service to the consumer

by making use of agents.

III. SECURITY ISSUES IN AGENT BASED CLOUD

COMPUTING

Agent based cloud computing is developed in an ideal

environment. Agents have been introduced to mainly focus on

the process of negotiation for choosing the best cloud resource

for the consumer. Since agents are the third parties, there are

lots of security issues involved. This paper identifies several

security issues which can block the agents from choosing

suitable resources.

1. Addition of Malicious agent

Unlike the acquaintance network which updates the agent

list only during the addition of new agent, SCTs update the

agent list whenever a transaction happens between the agents.

Though this feature of SCTs improves the performance of

message exchange and always keeps the updated information

about agent in the table, there is a security threat in addition of

new agents.

 According to Kwang’s model [1], SCTs can add a new

agent into the list when there has been a previous encounter

with the agent or by mere presence of an agent in the same

cloud.

In this scenario, any malicious agent can add itself into an

SCT and can receive all the consumer requirements associated

with it.

Following are the possible impacts when a malicious agent

gets added into an SCT.

a) Getting involved in all consumer requirement
negotiations thus misguiding the process by
providing unrealistically cheap prices and blocking
other legitimate cloud resources from providing
services to the consumer.

b) Capturing the responses of other agents and sending
spoofed messages to the initiator and other
participant agents.

2. Flooding Attack

To keep the records updated, SCTs get updated with agent’s

status whenever a transaction between agents occurs.For

Example consider, a broker agent sends a call for proposal

request to all the SPAs given in the SCT. Suppose the broker

agent’s SCT contains a malicious agent then during the

broadcast of call for proposal for a consumer requirement,

malicious agent gets a message. Now, the malicious agent can

flood the response to the initiator agent (i.e. Broker agent)

with its response as accept the proposal and status of the agent

as available.

Until the timeout, initiator agent will receive all the

responses from SPAs and update its SCT. When a malicious

agent creates flooding response, SCT will be involved in

updating the information of the malicious agent only.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-37-

3. Exceptions to Protocol flow

FIPA has mandated few exceptions in the agent interaction

which should be present in every multi-agent system to control

the flow of the process. Some of such exceptions like

Cancel_Meta protocol and Not-Understood problem can be

misused by the intruder agents.

These exceptions can be used for attacks as explained

below:

 (i) Forced termination of agent interaction

As per FIPA interaction protocol flow [6], any interaction

between agents is identified using a globally unique and non-

null conversation-id parameter. In a multi-agent environment

having no security measure, a malicious agent can get

involved in some other agent-agent interaction.

A broker agent sends a call for proposal to all the SPAs in

its SCT. Agents reply with accept/reject messages. Any

malicious agent can send a spoofed message with

conversation-id and agent's address stating that context of the

message is not-understood.

Not-Understood is a communicative act in the FIPA so that

an agent should be able to handle errors when the semantics

followed by different agents are different. When any agent

does not understand the context of message sent by the sender,

then the receiver can send a Not-Understood message, in this

case sender will handle the error and terminate the connection

with receiver. This can be exploited by malicious agent

because on receiving the Not-Understood message, Broker

agent terminates the connection with the SPA.

Further, response of the legitimate SPA will be discarded by

the broker agent. Hence, there will be a forced termination of

the connection between agents.

 (ii) Artificial timeout creation

When an agent sends any request to other agent, it receives

the response within the timeout period. As per FIPA exception

of protocol flow, there is a provision that a sender can cancel

the previously sent request by sending a Cancel_Meta protocol

message to the receiver. On receiving Cancel_Meta protocol

message, receiver thinks that sender no longer requires

response for the request sent.

 In cloud environment, any malicious agent with

conversation-id and agent address can send a Cancel_Meta

protocol. On receiving the message, receiver ignores the

request sent from the sender while sender is still waiting for

the response from receiver until the timeout period. Hence the

artificial timeout created by malicious agent stops the receiver

agent from sending the response to sender agent.

IV. PROPOSED SOLUTION

Proposed framework consists of various modules includes

Security Agent, serving as front end authenticator and trust

analyzer of a cloud. Other sections depict solution for various

identified security issues.

Security Agent

Among the four agents (CA, BA, SPA, RA) involved in

cloud computing, SPA and RA are created by the respective

clouds and are called as cloud agents. Remaining CA and BA

are referred as outsider agents. These outsider agents

especially BAs interact with SPAs to get a cloud's service.

Hence, entry of malicious agent may occurs when BA come

to interact with an SPA to request and negotiate for a

requirement. So, a new entity known as Security Agent (SA)

is introduced for every cloud environment (Fig. 2) to handle

the outsider agents.

SA provides two services:

i. Verification

ii. Trust Degree Analysis

 To interact with SPA and RA of a cloud environment, an

outsider agent should be authenticated by the Security Agent

every time (Fig.1).

(i) Verification

When an agent comes to interact with any cloud

environment, SA should verify the agent with Agent Trust

Table. If the agent record is not available in ATT, it is

considered as New Agent to the cloud environment. The agent

details will be added to ATT after verification process from

Third Party. If the agent record is available in ATT, agent is

already registered by SA and considered as Registered Agent.

For Registered Agent, SA should check for agent's

authentication on its proxy server with the credentials. If the

authentication process fails the agent is discarded with no

more further processing. If the authentication is successful, the

agent is allowed to interact with the cloud agent and then the

trust degree of the replying agent will be analyzed and updated

in ATT.

Thus a secure environment for agent interaction can be

created and this can resolve the addition of malicious agents

into the cloud environment (Fig. 2).

(ii) Trust Degree Analysis

To maintain trust in agent interaction, a trust model can be

used. When a trusted communication happens, the trust degree

of the agent gets increase.

Regular Issue

-38-

Fig 2. Agent Based Cloud Computing

Fig 3. Framework for Secure Agent Communication

Similarly, when a non-trusted communication happens, the

trust degree of the agent gets decrease. The probability of

executing a request for any trusted agent is higher than the

non-trusted or innocent agent. Suppose, there are n number of

agents in a cloud with their Agent ID’s = {AID1, AID2…

AIDn}. If at any instance ith reply is analyzed for addition of

its details in SCT table of New Agent (NA), then i Є {1, 2...

n}. The Agent may be trusted, non-trusted or innocent.

Agent Trust Table (ATT)

A trusted agent’s Trust Degree increases and decreases on

completion of a process either successfully or unsuccessfully

depending on its performance or set policies. Probability

function is used to determine the trust degree of an agent

replying with its SCT table. Based on the TD, agents will be

marked as trusted, non-trusted or innocent. Actions for any

task can be positive or negative.

There is a difference among the negative actions. It can be a

wrong action or a malicious action. Positive actions are the

right actions done by the trusted agent. Wrong actions are the

bad actions that do not cause any damage or may cause

damages done by the innocent agent and malicious. actions are

harmful actions such as attacks done by the non-trusted agent.

The Trust Degree can be calculated by the equation: [4]

Trust Degree 𝑇𝐷 = (1 −
𝑁𝑎

𝑇𝑎
) 𝐴𝑤

(𝑠)
 Where 0 TD 1

Na = No. of negative actions

Ta = Total no of actions

Aw =weight of an action = 1 (for positive action)

 0.9 (for negative action)

s = security level, s 1

Initially TD = 1; s =1

Threshold value =0.1

As the trust degree is calculated by exponential times of

security level, if the positive action is happen with number of

times (security level s =1,2…n), the term Aw
(s)

 and should

maintain the trust degree value . Hence, for positive actions,

Aw is set to 1 and for negative actions, Aw is set to 0.9 to

decrease the trust degree.

For example, suppose for a particular agent, Na is 50, Ta is

100 and the last updated behavior is positive and the s is 10th.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-39-

Then the Trust Degree from the above equation comes as TD

= 0.5, which is greater than the threshold value i.e. the action

is positive. Hence, its details will be added in the SCT.

Security Agent creates and maintains an Agent Trust Table

(ATT) that include Agent’s ID (AID), number of negative

actions (Na) , total number of actions (Ta), Agents Behavior,

security level (s) and action value or Trust Degree (TD) (Fig.

4).

Fig 4. Agent Trust Table.

 It is used to check trustworthiness of either a newly

created or previously registered agent through this calculated

Trust Degree. The Agent Behavior of ATT is used to account

the action weight of that agent depending upon its behavior

either positive or negative. This ATT is updated every time

after completion of a transaction.

On every completion of a transaction, this Trust Degree is

calculated and ATT is updated with latest Agent Behavior by

the Security Agent.

Addition of New Agent

Security Agent (SA) authenticates new agent arriving in

cloud and handles Trust Degree for updating Service

Capability Table (SCT) of that new agent.

When a New_Agent (NA) arrives in cloud environment, it

goes to Security Agent (SA) which authenticates this NA by

checking its Agent_id (AID) in trusted third part, if present,

Algorithm for Addition of New Agent:

Input: New Agent

Output: Addition or Discarding of New Agent

1 New_Agent (NA) arrives in cloud environment

2 NA goes to Security Agent (SA)

3 if SA (AID (NA) present in index of AMS)

4 Assign password for AID

5 Check Authentication on proxy server created by SA

6 if (AID (NA) && pwd == Correct)

7 Create SCT table

8 Broadcast SCT_details (AID)

9 if SCT_details (AID,reply (AIDi))

10 Send Request (AIDi ,TD) to SA

11 SA if (TD (AIDi) > threshold_val ?)

12 Update (ATT)

13 Update New_Agent (AIDi ,SCT)

14 Check for more Agent’s reply Goto Step 9

15 else decrease (TD(AIDi))

16 Report AIDi action as negative to SA

17 if (no. of negative behaviour >= x)

18 Report AIDi as malicious to SA and Discard AIDi

19 else Goto Step 9

20 else Goto Step 8

21 else Discard NA

SA will assign a unique password. Here after authenticated

by the cloud’s proxy server created by Security Agent and

SCT table of NA is created, otherwise this NA is discarded.

The NA now sends a broadcast message to all the other

agents in the cloud environment to enter details into its SCT

table. Since the issue was to avoid addition of malicious agent

details, so the trustworthiness of the agent is measured for

every ith reply coming with its SCT details. The NA requests

SA to check the Trust Degree (TD) of ith agent, if it’s greater

than or equal to defined threshold value, the SCT detail of ith

agent is updated in NA’s SCT. If number of negative behavior

identified by SA is greater than the threshold value, the reply

is discarded.

This involves two processes:

Regular Issue

-40-

(i) Authentication and

(ii) Trust Examining.

i. Authentication

Addition of new agent to the cloud environment: According

to various research papers addition of agent can be based on

1. Trust: Where Certificate Authority (CA) serves as the

root of trust.

CA issues these certificates only to those Principals who are

trusted by the CA based on their harmless intentions and

actions (Principal is a person who signs on behalf of the Agent

code and is responsible for the behaviour of agent. Principal

should be well aware of the workflow, behaviour and

operational consequences of the agent).

2. Validation: When the owner registers the agent to the

agent platform, this platform should validate the owner and

log the request's source address.

Thus an agent arriving newly in a cloud environment must

be signed for trust or be registered with a Third party who

can guarantor for the Agent’s behavior. This generates a

unique identifier for each agent named as Agent Identifier

(AID).

When a new agent (NA) wants to enter into a cloud, it

reaches to Security Agent of that cloud which checks for its

registration with Third Party by looking for its AID into their

index, its Access permissions and its previous transaction or

registration details with other clouds, to verify whether the

coming agent is a legitimate agent or not. After verification if

NA is found legitimate, SA assigns a password to it. The agent

is now every time authenticated on cloud environment by its

proxy server with this AID and password. Any discrimination

from above checks leads to discarding of agent from

interacting with cloud agents. The agent record is added in the

Agent Trust Table (ATT) with default values. All the trusted

agents of the cloud are added in the agent SCT broadcast list.

Algorithm for Solution of Forced Termination of Connection and Artificial Timeout:

Input: Reply from Particapant_Agent

Output: Accept or Discard the Reply

1 Initiator_Agent sends Call_for_Proposal

2 if Reply (Participant_Agent, Call_for_Proposal) == Accept

3 Connection (i) Initialisation

4 if Replyi () ==Cancel_Meta || Not_Understood

5 query_if (Replyi, Reciever_AgentSender_Agent)

6 if query_if (Acki) ==True

7 Process Reply (Cancel_Meta or Not_Understood)

8 else

 Ignore (Replyi)

9 else

 Ignore (Reply ())

ii. Trust Examining

When a reply is received from an agent with its current SCT

details, a request is sent to Security Agent (SA) with

Agent_ID (AID) where current or updated Trust Degree (TD),

present in Agent Trust Table (ATT) is checked or calculated

and compared with Threshold Value. If the Agent’s TD on an

instance i is greater than the set Threshold Value, the ATT is

updated and NA’s SCT is updated with SCT details of

replying agent (AIDi).

If current or updated TD is less than the threshold value, the

action is said to be a negative action. TD of that agent (AIDi)

is decreased as per the set policies and action is reported as

negative or wrong to SA. If negative action occurs greater than

or equal to x times, the action is reported as malicious and

hence this replying participant agent (AIDi) is discarded from

further processing.

The advantage is that the New_Agent (NA) remains

unaffected when an identified participant agent does any

malicious actions in the cloud environment. The Trust Degree

of participant agent decreases accordingly with the malicious

activities and the updating policies.

Handling flooding attack

To handle flooding attack issue, two flag attributes:

Request_Flag and Response_Flag (Fig. 5), are introduced into

the SCT along with the Agent’s Address, Requirement

provides and the Last Known Status. Since these are flags, so

there values are either 0 or 1. Initially, both Request_Flag and

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-41-

Response_Flag are 0. The values of these flags changes when

a request is sent or a response is received for any agent.

Fig. 5. Service Capability Table

When an agent sends a message to other agent, represented

as Request initiation, the Request_Flag in SCT sets to 1 and

starts waiting for the response. As soon as the reply is

recieved, it checks for the current status of flags i.e. if any

response is received until now for that agent or not. If

Request_Flag is equal to 1 and and Response_Flag is 0, the

SCT of the Initiator_Agent is updated with Response_Flag as

1. Otherwise the response is discarded, showing that the reply

from the agent for that request is already received. As soon as

timeout occurs, the flag values are again set to 0.

Handling exceptions to Protocol flow

To avoid attacks on exceptions to Protocol flow the use of

query_if function [5,10] is proposed. When Initiator_Agent

broadcasts a Call_for_Proposal to all the other agents in the

cloud, all the other agents reply either with accept or reject

message depending on their willingness to communicate. The

Initiator_Agent initializes the connection with all the agents

replying as Accept, with unique Conversation_ID and Reject

reply is ignored. If during the communication a

Not_Understood or Cancel_Meta message is encountered,

query_if function is initiated. The Receiver_Agent of these

message sends a query_if message to the Sender_Agent and

waits for the acknowledgment. If acknowledgment comes as

true, the connection is terminated follow the message and act

accordingly. Otherwise reply is ignored and the

communication is continued.

Limitations and Implications

Though, we have mentioned that SA should refer to the

trusted third party to verify the genuineness of an agent, it

depends upon the cloud service providers to decide which

trusted third party they want to believe. SA has to process

each and every agent interaction occurs in a cloud. SA must be

developed with the capability to handle maximum number of

agents’ queries at same time.

There may be possibility of discarding of an agent request,

if the SA is not developed to handle multiple requests.

However, this framework can be extended to determine the

quality of the service offered by an agent. When the quality of

the service can be compared, the user will get the most

suitable service than the negotiation based on cost and time.

Algorithm for Flooding Attack

Input: Status Update Request from Participant_Agent

Output: Updating SCT or Discard the Update Request

SCT (Agent’s Address, Requirement provides, Last Known Status, Request_Flag, Response_Flag)

Initially,

 Request_Flag = 0;

 Response_Flag = 0;

1 Initiator_Agent initiates Request ();

 Set Request_Flag = 1

2 receive Reply (Initiator_Agent, Participant_Agent)

3 if (Request_Flag == 1 && Response_Flag == 0) ==True

4 Update SCT (, , ,1,1)

5 else

Discard Reply (Initiator_Agent, Participant_Agent)

6 if (Timeout)

7 Reset Request_Flag=0

 & Response_Flag=0

8 else

Goto Step 2

V. CONCLUSION

Cloud computing is one of the futuristic technologies on

which technology giants are counting. In future, number of

users using the cloud computing is expected to increase

gradually as there is a demand for cloud service exists. In such

a scenario, there will no doubt that agents will play key role in

selecting suitable services to users.

 Since, it will be in the hands of agents to deliver a service to

end user, agents should be free from attacks and bias. In this

paper we have identified several security issues during the

agent interaction. We have proposed solutions to handle those

security issues. End User who uses the cloud services doesn’t

have any idea about how the agents are interacting and the

service delivered is best among others or not. There is a

possibility that malicious agent can involve in the process and

Regular Issue

-42-

deliver wrong or malicious service to the user. So, we have

used the trust degree analysis to decide whether the agent

involved in the negotiation process is trusted or not. Analysis

of this will help the proposed framework of security agent to

allow only the trusted agents to deliver the service to end-user.

However, several issues may arise when the agents plays

dominant role such as determining the quality of the cloud

service. With the proper security measures implemented in the

cloud environment, agent based cloud computing will play as

a platform for the consumers to use the perfect service.

REFERENCES

[1] Kwang Mong Sim, "Agent-based cloud service composition," Springer
Science + Business Media, LLC2012

[2] Kwang Mong Sim, "Agent-based cloud commerce," Department of
Information and Communications, Gwangju Institute of Science &
Technology, South Korea

[3] Page, J.; Zaslavsky, A.; Indrawan, M., "Countering agent security
vulnerabilities using an extended SENSE schema," Intelligent Agent
Technology, 2004. (IAT 2004). Proceedings. IEEE/WIC/ACM
International Conference on , vol., no., pp.183,189, 20-24 Sept. 2004

doi: 10.1109/IAT.2004.1342942

[4] Shantanu Pal, Sunirmal Khatua, Corresponding Author Nabendu Chaki,
Sugata Sanyal, "A New Trusted and Collaborative Agent Based
approach for Ensuring Cloud Security," in arxiv.org 2011

92 A. P. C. Road, University of Calcutta, India

[5] Fabio Bellifemine, Giovanni Caire,Dominic Greenwood in book
"Developing Multi-Agent Systems with JADE,"

Telecom Italia, Italy.

[6] "FIPA Contract Net Interaction Protocol Specification,”

in http://www.fipa.org/specs/fipa00029/SC00029H.html

[7] Fatma Masmoudi, Monia Loulou,Ahmed Hadj Kacem, "Formal Security
Framework For Agent Based Cloud Systems," in 2014 International
Workshop on Advanced Information Systems for Enterprises ,ReDCAD
Laboratory, University of Sfax, Tunisia.

[8] Suleiman Onimisi Aliyu and Kwang Mong Sim, IEEE Senior Member,
"Minimizing Message Exchanges in Agent Based Cloud Service
Composition," in Proceedings of the International MultiConference of
Engineers and Computer Scientists 2014 Vol I,

IMECS 2014, March 12 - 14, 2014, Hong Kong

[9] Khushbu Virani, Dhara Virani, "Service Composition Based on Multi
Agent in Cloud Environment," in International Journal of Engineering
Research & Technology (IJERT) Vol. 1 Issue 9, November- 2012

[10] “FIPA Request Interaction Protocol Specification,”

http://www.fipa.org/specs/fipa00026/SC00026H.htm

[11] Juan Pablo Paz Grau, Andrés Castillo Sanz, Rubén González Crespo
“An Evaluation of Integration Technologies to Expose Agent Actions as
Web Services,” in Practical Applications of Intelligent Systems 259-270,
January 1,2014, Springer Berlin Heidelberg

[12] Gutierrez, C., “An Analysis Architecture for Communications in Multi-
agent Systems,” International Journal of Interactive Multimedia and
Artificial Intelligence (IJIMAI), Special Issue on Artificial Intelligence
and Social Application Vol 2 Number 1 Pagination 65-72, March, 2013

[13] Jordán Pascual Espada, Vicente García Díaz, Rubén González Crespo,
Oscar Sanjuán Martínez, B Cristina Pelayo G-Bustelo, Juan Manuel
Cueva Lovelle, “Using extended web technologies to develop Bluetooth
multi-platform mobile applications for interact with smart things,”
Information Fusion Vol 21 Pages 30-41,January 31,2015, Elsevier

S.Venkatesan received his Ph.D in Computer Science

and Engineering from Anna University,Chennai, Tamil
Nadu, India. He is an Assistant Professor in Department

of Information Technology at Indian Institute of

Information Technology, Allahabad. He has published
various papers in numerous international conferences

and journals. He is an active member in Association for

Computing Machinery (ACM) Cryptology Research
Society of India (CRSI). His current research includes Mobile Agent Security,

Cryptography and Cloud Computing and Social Network Privacy.

Anu Malviya is a MS (Cyber Law and Information

Security) research student in Indian Institute of

Information Technology, Allahabad. She completed her
Bachelor of Technology in Computer Science from

Uttar Pradesh Technical University Lucknow. She is an

active IEEE member. She has served as Trainer-
Information Security in Mphasis, Bangalore as an intern.

Her current research area includes cloud computing, IT

Governance, Risk & Compliance.

Venkateshwaran K received his B.Tech in

Information and Technology from Anna University,
Coimbatore, Tamil Nadu, India. He is pursuing his

Master of Science in Cyber Law and Information

Security at Indian Institute of Information Technology,
Allahabad. He worked as Software Engineer for two

years in the domain of Mainframe Systems. His current
research area includes cloud computing, Data

Protection and Privacy, Risk assessment.

Utkarsha Dikshit is a MS (Cyber Law and

Information Security) research student in Indian

Institute of Information Technology, Allahabad. She
has completed her Bachelor of Technology from SRM

University, Chennai.

