
Revista de Informática Teórica e Aplicada - RITA - ISSN 2175-2745
Vol. 27, Num. 3 (2020) 72-83

RESEARCH ARTICLE

Experiments on Model-Based Software Energy
Consumption Analysis Involving Sorting Algorithms
Experimentos com Análise de Consumo de Energia Baseada em Modelos Envolvendo
Algoritmos de Ordenação

Danilo S. Alves1*, Oseias A. Ferreira1, Lucio M. Duarte1, Davi Silva2, Paulo H. Maia2

Abstract: Although energy has become an important aspect in software development, little support exists
for creating energy-efficient programs. One reason for that is the lack of abstractions and tools to enable
the analysis of relevant properties involving energy consumption. This paper presents the results of some
experiments involving the gathering, modelling, and analysis of energy-related information, in particular, the
costs of executing certain parts of a software. We combine some existing free and open-source tools to carry out
the experiments, extending one of them to handle energy information. Our experiments consider a comparison
of energy consumption of Java implementations of the Bubble Sort, Insertion Sort and Selection Sort algorithms
using different data structures. We show how to combine an energy measurement tool and a model analysis tool
to carry such a comparison. Based on this support and on our experiments, we believe this is a first step to allow
developers to start creating more energy-efficient software.
Keywords: Energy consumption — Behaviour models — Sorting algorithms

Resumo: Embora o consumo de energia tenha se tornado um importante aspecto no desenvolvimento de
software, existe pouco suporte para a criação de programas energeticamente eficientes. Uma razão para isto
é a falta de abstrações e ferramentas que permitam a análise de relevantes propriedades relacionadas ao
consumo de energia. Este artigo apresenta os resultados de experimentos envolvendo a coleta, modelagem
e análise de informações sobre consumo de energia, em particular, o custo da execução de certas partes
do software. Ferramentas gratuitas e de código aberto foram combinadas para realização dos experimentos,
sendo que nós estendemos uma destas ferramentas para que ela trabalhasse com informações de energia.
Nossos experimentos consideram a comparação do consumo de energia dos algoritmos de ordenação Bubble
Sort, Insertion Sort e Selection Sort implementados com diferentes estruturas de dados. Demonstramos como
combinar ferramentas de aferição de energia e de análise de modelos para realizar essa comparação. Com
base no suporte utilizado e em nossos experimento, acreditamos que este é um primeiro passo para permitir
que os desenvolvedores possam desenvolver software energeticamente eficiente.
Palavras-Chave: Consumo de energia — Modelos de comportamento — Algoritmos de ordenação

1Institute of Informatics, Universidade Federal do Rio Grande do Sul, Brazil
2Distributed Software Engineering Group, Universidade Estadual do Ceará, Brazil
*Corresponding author: dsalves@inf.ufrgs.br
DOI: https://doi.org/10.22456/2175-2745.98904 • Received: 10/12/2019 • Accepted: 20/02/2020
CC BY-NC-ND 4.0 - This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

1. Introduction

The number of developers concerned about the energy con-
sumption of their software is growing over the last years. As
software spreads to different types of platforms and devices
- all of them requiring some amount of energy to execute
the necessary computations -, this energy consumption be-
comes a big issue. Research has shown mobile applications
that quickly drain battery energy tend to be rejected by users
[1], indicating energy consumption to be a relevant aspect.

Corporations have also come to the conclusion that small in-
efficiencies in software can significantly affect its operation
[2]. For this reason, energy consumption is now an important
factor during software development and evolution [3] [4].

An example of this is that, in 2010, the big clusters con-
sumed 1.12% - 1.50% of the global energy consumption [5].
In [6], they show that, in 2010, 1.3% of all electricity in the
world was consumed by data centers, being 2% of this total
consumed by the United States, and there is an expected cost
of $13 billions per year by 2020 [7]. Due to the high energy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archives of the Faculty of Veterinary Medicine UFRGS

https://core.ac.uk/display/327051269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Experiments on Model-Based Software Energy Consumption Analysis Involving Sorting Algorithms

consumption of data centers [8], some actions have been taken
to advance energy efficiency, mainly in hardware and operat-
ing systems [9] [10]. Another possibility is to perform power
optimisation in software, which is very difficult to happen if
developers do not analyse the energy costs while - or before -
they are devloping their systems [11].

It is our belief that energy will continue to increase its
importance when comes to software, becoming as important
as it already is in hardware design. Hence, we might soon start
comparing programs in terms of energy complexity as well as
we now do with time and space complexity. As systems grow
in scale and complexity, mostly composed by multiple com-
ponents geographically spread, which rely on power supply
to keep running, reducing energy consumption might become
one of the most important factors in software design.

Despite the current, and possible future, importance of
energy consumption analyses, there is still little support for
designing energy-efficient software. In fact, developers find
it still unclear how to produce and evolve energy-efficient
software [2] [12] [13], mainly due to the absence of com-
bined abstractions and tools to collect and analyse energy
consumption. If such support existed, developers could not
only identify the costs of executing their software, but also
compare different versions in terms of energy consumption
and determine possible changes to improve energy efficiency.

In this paper, we investigate a combination of tools to
analyse software energy consumption, considering the frame-
work proposed in [14]. This is a first step towards identifying
whether and how current tools could provide the necessary
support for developers to understand energy costs associated
to their software. We have executed experiments involving
Java implementations of sorting algorithms (Insertion Sort,
Bubble Sort, and Selection Sort). We work with Java because
it is a widely used programming language and also used for
the development of web and mobile applications. Carrying
out the experiments using sorting algorithms makes it easier
for the reader to understand both the software and the experi-
ments. Moreover, sorting is a basic operation in Computing
and we use the experiments to analyse the impact of different
algorithms and data structures in terms of energy costs.

As our objective is to identify how a developer could more
easily obtain information related to energy consumption, we
use free and open-source tools. Values of energy costs were
collected using jRAPL [15] and software behaviour was mod-
elled using Labelled Transitions Systems (LTS) [16]. We take
advantage of the open-source characteristic of the LoTuS tool
[17], which supports models described as LTS and analyses
on these models, to extend this tool to enable modelling and
analysis based on energy costs associated to code elements.
LoTuS, in this extended version, allows a user to graphically
construct the model and assign energy costs to its transitions,
which makes it easier to build and analyse LTS models with
energy information.

The main idea behind our experiments was to evaluate the
difficulties and limitations of existing support, whilst demon-

strating how it is possible to obtain energy-related information
that can be useful to a software developer, if tools are correctly
combined and/or extended. Our ultimate goal was to identify
whether it is possible to provide the necessary support for
developing energy-efficient software. This goal includes the
possibility of providing recommendations concerning mod-
ifications in the code that could improve efficiency, without
affecting the original semantics of the program.

This paper contains the following parts: Section 2 presents
some background information; Section 3 describes the exper-
iments and the tool support used; Section 4 discusses some
related work; and Section 5 contains the conclusions and
possible future work.

2. Background
In this section, we present some basic ideas related to energy
consumption evaluation. Following the framework proposed
in [14], we divide this background section in the steps de-
scribed as necessary for a developer to analyse their software
energy consumption.

2.1 Collecting Energy Information
Software energy efficiency has gained the attention of the
research community [1] [2] [15] [18]. The first step to make
any analysis about the energy costs of executing a software
is to collect such information. Collecting energy information
refers to executing the software using some method to obtain
energy costs as the code runs.

There are some available tools to collect energy informa-
tion about performed operations, which allow the measure-
ment of energy costs associated to code locations. It can
be done using tools such as Gem5 [19] and McPAT [20], or
jRAPL [15]. Whereas McPAT and Gem5 use abstractions
to obtain estimates of energy information, simulating an ex-
ecution, jRAPL allows the annotation of source code with
methods to collect energy information, so that the user can
select which parts of the code should be monitored for en-
ergy usage. However, jRAPL only works with some types of
architectures and just with Java programs.

Whatever tool is used, collecting energy consumption
information involves either running some simulations or exe-
cuting the program a number of times to obtain a more precise
cost information. Moreover, developers still need to under-
stand how such tools can be used to increase energy efficiency
and how the identified hotspots affect the overall energy con-
sumption of their software.

2.2 Modelling Energy
A behaviour model is an abstraction used to describe the
expected behaviour of a system. Using behaviour models,
several types of analyses can be carried out, such as validation
and verification of properties. These analyses would be very
difficult - if not impossible - to execute in the actual system.
Moreover, behaviour models can also be used to analyse the
impact of changes and provide software documentation.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.73/83 • 2020

Experiments on Model-Based Software Energy Consumption Analysis Involving Sorting Algorithms

Usually, the natural way of modelling behaviours is us-
ing finite-state machines. A finite-state machine (FSM) is
formed by a set of (abstract) states Q = {q0,q1, ...,qn} that
represent sets of possible concrete states of a system, and a
set of transitions connecting these states. The combination of
states and their transitions indicate the set of valid behaviours.
A behaviour is then a path in the FSM, starting in a given
state and proceeding through a transition to a next state, then
moving to next state, and so on, until the last state of the path
is reached. FSM have solid mathematical foundations, which
makes them suitable for analysis and automatic verification of
properties of systems. Furthermore, they are an intuitive way
of describing system behaviour with some level of abstraction,
enabling its presentation in a visual way and the analysis of
valid and invalid behaviours.

Having data about energy consumption, it can be inserted
in a model to be analysed in some available tool. A widely
used model based on FSM is Labelled Transition Systems
(LTS) [16]. In an LTS, the behaviour of a system is described
by the sequences of actions that it can execute, where actions
are defined to the level of abstraction involved, and they can
represent method calls, variable assignments, task completion,
or some other significant event.

An LTS M = (S,si, Σ,T) is then a model where:

• S is a finite set of states,

• si ∈ S represents the initial state,

• Σ is an alphabet (set of action names), and

• T ⊆ S×Σ×S is a transition relation.

Transitions are labelled with the names of actions from
the alphabet that trigger a change from the origin state to a
destination state. Therefore, given two states s0,s1 ∈ S and an
action a∈ Σ, then a transition s0

a→ s1 means that it is possible
to go from state s0 to state s1 executing action a.

A behaviour of an LTS M is then a finite sequence of ac-
tions π = 〈a1, ...,an〉 such that a1, ...,an ∈ Σ. The set L(M) =
{π1,π2, ...} of all behaviours of M is called its language.
For a state s ∈ S, E(s) = {a ∈ Σ|∃s′ ∈ S · (s,a,s′) ∈ T} rep-
resents the finite set of actions enabled in s. A path λ =
〈s1,a1,s2,a2,s3, ...〉 is a sequence of alternating states s1,s2, ...
∈ S and actions a1,a2, ... ∈ Σ labelling transitions connect-
ing these states, such that, for i ≥ 1, for every transition
t = (si,a,si+1) composing λ , t ∈ T . A path always starts
and - if finite - ends with a state.

To model energy costs using an LTS, we add cost values
to transition labels, thus associating each cost to an action.
In this context, therefore, an action can be any code element
to which we would like to associate an energy cost. Hence,
a path in this energy-labelled model is a sequence of code
elements and their respective costs, where the total cost of a
path is the sum of the costs of each element composing this
path. Representing energy in a behaviour model enables the
application of techniques to find out relevant information that

can collaborate in understanding how software is consum-
ing energy and which parts have been influencing the most.
Furthermore, the behaviour model can be used for software
documentation, which is important for new versions of sys-
tems and for checking how software evolution affects energy
consumption.

2.3 Analysing Energy Consumption
Research such as presented in [21] is one example of work on
energy consumption analysis. They focus on finding exces-
sive or anomalous energy consumption in software and use
a methodology to optimise Java programs and decrease their
energy consumption replacing data structures for their more
energy-efficient alternatives. However, they do not offer any
type of analysis tool, leaving the analysis for the developer,
based on the provided information.

In fact, energy-consumption analysis has still little support,
what makes it difficult to produce and evolve systems with
low energy costs. This happens, essentially, because of the
absence of software abstractions and tools [2]. A way of
analysing energy costs is through a behaviour model of the
system, as discussed before.

The only available tool supporting some type of cost rep-
resentation is PRISM [22]. It supports modelling systems as
Markov chains, which is used to model software considering
stochastic behaviour. Hence, states represent possible states
of the system and transitions are labelled with probabilistic in-
formation, indicating the probability of a particular transition
occur. PRISM also supports the definition of transition/state
costs/rewards, which could be used to model energy costs.
With this information, questions about accumulated energy
costs can be asked using a probabilistic temporal logic and a
probabilistic model checker. However, modelling is not visual
and analyses using PRISM can only refer to states or accumu-
lated values for a certain path in a Markov chain. Important
questions regarding comparisons between different executions
(i.e., paths) cannot be asked.

In [14] they propose a model-based framework for analysing
software energy consumption through the verification of energy-
based properties, thus providing a novel approach for the de-
velopment and evolution of energy-efficient software. The
work uses an LTS for representing the system behaviour and
its energy costs. As an LTS is a graph-like structure, graph-
based algorithms can be used to calculate accumulated costs of
paths and determine the most/least costly path (i.e., software
behaviour).

We have extended an LTS-analysis tool called LoTuS
[17] to allow the inclusion of energy cost information as part
of transition labels and implemented analysis algorithms to
support answering relevant questions about software energy
behaviour. LoTuS is an open-source tool that allows graphical
modelling of software behaviour using LTS, providing a drag-
and-drop GUI to create models.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.74/83 • 2020

Experiments on Model-Based Software Energy Consumption Analysis Involving Sorting Algorithms

3. Experiments and Results
In this section, we describe the methodology employed to
perform the experimentation phase, the obtained results and a
discussion about the experiments.

3.1 Methodology
The methodology applied to realise the experiments consisted
on an instanciation of the framework proposed in [14], which
is composed of four phases, described as follows:

• In the first phase, a behaviour model is created repre-
sented by an LTS. Model construction can be carried
out manually, using the knowledge of the user about
the software under analysis, or through a model extrac-
tion approach, such as demonstrated in [23]. In our
experiments, we built the models by hand, based on the
source code;

• The second phase consists in measuring the energy con-
sumption in specific parts of the software under analysis.
For this, we used the jRAPL library, which allows the
measurement of energy consumption based on anno-
tations in the source code. Using these annotations, it
is possible to select which parts of the code are to be
monitored for energy costs;

• At this point, it is possible to compose the software
behaviour model with the energy information collected
in the previous phase. This annotation of energy costs
can be included automatically, i.e., using a script or
an intermediate method that maps the source code to
the behaviour model, or manually by the user after per-
forming the measurements. At the end of this phase, we
finally obtain an annotated LTS, where an energy cost
is associated to each system transition. After this, we
have basically a graph structure (states and transitions)
with weights (energy costs) and graph-theory concepts
and algorithms can be applied;

• Finally, with the energy-annotated model produced in
the previous phase, it is possible to analyse some prop-
erties about energy consumption of the software, such
as the ones proposed in [14].

The annotations in the source code were included as
demonstrated in Algorithm 1 to make it possible to collect en-
ergy information. After selecting the parts of code that would
be analysed, annotations were inserted before and after these
parts to capture the values about the energy consumption at
this point of the execution. After that, the energy cost of each
annotated part would be the result of subtracting the values
collected after executing that part from those values collected
before the execution of the monitored part.Associating each
annotated part to a model transition, we could add these values
to the model.

For the experiments performed in this work, counters were
included in each monitored part of the source code to obtain

the average energy consumption value for these parts knowing
the number of times that part was executed (see Algorithm 1.
In case of control structures (loops and decisions) inside other
control structures, the intern structure cost was subtracted
from the external structure cost to obtain only the consumption
of the analysed code transition and to represent this cost in
the model correctly. With this, it was possible to travel in the
behaviour model accumulating the costs to have the energy
consumption of the whole path traversed.

3.2 Results
In this section, we describe the results of our experiments. We
used the extended version of LoTuS to graphically specify the
behaviour model, whereas energy-consumption measurement
was obtained using jRAPL.

The experiments1 consisted on analysing the impact of
different storage structures in the Bubble Sort, Insertion Sort
and Selection Sort algorithms, which were chosen because
they consume significant energy values of energy when com-
pared with other sorting algorithms, as demonstrated in [24].
Moreover, these algorithms have the worst complexity order
among the most popular sorting algorithms. On top of all that,
sorting algorithms are well-known and, thus, make it easier to
understand the experiments and their results.

The algorithms were implemented to sort values stored
in a Vector, in an ArrayList and in a LinkedList.
They receive as input a parameter n, which consists of the
number of elements that will be sorted, and a parameter type,
which indicates the type of the data structure to be used. The
values were stored in reverse order, to force the worst com-
plexity case and maximise the energy consumption to obtain
considerable results. The experiments were performed with
n being 1500 and, as known, the sorting algorithms involved
in this experiments have complexity O(n2), and added to the
impact of energy measurement annotations, a long time of
execution was required to collect significant results. To per-
form the experimental phase, the extended LoTuS tool has
been used to include the possibility of representing costs in
transitions and enable analyses about these costs, such as the
cost of travelling a given path. The experiments were carried
out using a PC with processor Core i5 3 GHz, with 16 GB of
RAM running only the experiments and the Linux kernel base
processes.

The LTS models presented in figures 1, 2 and 3 repre-
sent the behaviour models of Bubble Sort, Insertion Sort and
Selection Sort algorithms, respectively. The energy values
in the transitions consist of an average value from 10 exe-
cutions of the respective algorithm and are represented in
Watts (W). Highlighted transitions are the only ones with
significant energy consumption values, which are related to
methods add(), get() and set(). The remaining tran-
sitions represent variable declarations blocks, beginning of
loop or decision structures, where the energy cost is deri-

1Data for these experiments can be found at 〈https://github.com/
VeriTesEnergyLab〉

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.75/83 • 2020

https://github.com/VeriTesEnergyLab
https://github.com/VeriTesEnergyLab

Experiments on Model-Based Software Energy Consumption Analysis Involving Sorting Algorithms

Algorithm 1: Code annotation example.

initialisation;
beforeA← jRAPL before(...);
for condition do

forCounter++;
[block code];
beforeB← jRAPL before(...);
if condition then

ifCounter++;
[block code];

afterB← jRAPL after(...);
consumptionB← consumptionB + (afterB - beforeB);

afterA← jRAPL after(...);
consumptionA← afterA - beforeA;
//Compute the difference between the measurements;
averageConsumptionB← consumptionB ÷ ifCounter;
averageConsumptionA← (consumptionA - consumptionB) ÷ forCounter;

sive and, for this reason, are not represented in the model.
When a user informs an argument type=1, the algorithm ex-
ecutes the opt1 path, which performs the sorting operations
with a Vector structure; for type=2, opt2 is executed, using
an ArrayList structure; and the last option is type=3 to
execute opt3 path, which consists in executing the sorting
algorithm with a LinkedList structure.

As mentioned before, the LoTuS tool has been extended to
enable analyses about a given path represented by an execution
trace. With this functionality, it is possible to select a path
to observe a specific property, such as the energy cost of an
iteration in a particular data structure. These analyses can be
observed in Table 1. Note that costs are small because the
traces represent single paths executed by the program.

Table 2 contains the average total cost for 10 executions
of the algorithms for each structure. It shows the impact on
energy consumption of changing the storage structure, where
the LinkedList structure has the highest energy consump-
tion and the ArrayList has the lowest. As described in
[21] and shown in their results2, the ArrayList has the
lowest energy consumption for add() and set() methods,
while Vector has the lowest energy consumption for get()
method. The LinkedList structure has the highest energy
cost for all methods.

3.3 Discussion
The experiments presented here show the possibility of under-
standing software behaviour energy consumption through the
use of a combination of an energy measurement tool and LTS
analysis. Based on this information, it becomes possible to
argue that the ArrayList is the best data structure for the
sorting algorithms involved in this work in terms of energy
efficiency, when one considers the structures involved in the

2〈https://greenlab.di.uminho.pt/collections/〉

experiments. The results also show the potential of this ap-
proach to provide support for the creation and evolution of
energy-efficient software.

Although the sorting algorithms analysed have complexity
O(n2), it is visible through the obtained results that the Bubble
Sort algorithm demands a higher energy consumption than
Insertion Sort and Selection Sort algorithms, consuming in
some cases the double of energy. Hence, it demonstrates that
there is not a strong correlation between time complexity and
energy consumption. This result alone fosters our goal of
investigating further an idea of energy complexity an how it
compares to time and space complexity.

This work studied specifically some of the most popular
and costly sorting algorithms, but the methodology employed
to execute the experiments can be applied in other areas and,
following, we present some of these areas where energy con-
sumption can be a concern:

• Energy Optimisation: The techniques and software
presented here can be an interesting application to opti-
mise software during development or evolution with the
goal of improving energy efficiency. With this, it is pos-
sible to discover and visualise what specific behaviours
cause inefficiency on energy consumption, thus allow-
ing that developers to achieve energy-efficient software;

• Refactoring: Refactoring is used to improve the source
code organisation through the applications of modifica-
tions in code structure without affecting the software
behaviour [25]. Applying the energy analysis, it is
possible to evaluate the impact of these code transfor-
mations on the energy consumption providing to the
developer information that is used to make the best
choice during the refactoring process;

• Mobile Applications: Improving the energy consump-

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.76/83 • 2020

https://greenlab.di.uminho.pt/collections/

Experiments on Model-Based Software Energy Consumption Analysis Involving Sorting Algorithms

Figure 1. Modelling of Bubble Sort performed in LoTuS tool.

tion of mobile applications, consequently the battery
life is improved and, the methodology employed in
this work can be used to identify the most costly be-
haviours and decrease the energy consumption of these
applications.

• Embedded Systems: In particular, embedded systems
are systems where hardware and software are combined
and, this causes that the amount of available energy
be used for both type of components. As is the case
of mobile applications, embedded systems many times
have limited battery to execute their functions. With the
help of simulators of architecture and microprocessors,
it is possible to evaluate the impact of replacing not
only source code parts but also hardware components
to check the influence of different settings in energy
consumption;

• Self-adaptative Systems: Self-adaptive systems are
able to adjust their behaviour or structure in response
to their perception of the environment and the system
itself [26]. Using the energy consumption feedback,
it is possible to generate adjustments in the system
to induce an adaptation strategy that reduces energy
consumption.

We were confronted with some questions during the ex-
perimental phase, such as:

• How to define the abstraction level of the software be-
haviour during the model construction. As our mod-
elling approach supports different levels of abstraction,
finding the appropriate level for each type of analysis is
some times not trivial. We are still not sure whether it
would be possible to have models involving elements
with different levels of abstraction, so that energy anal-
ysis could be better customised;

• How to model loop and nested structures and realise
their energy measurement to perform better analyses.
As energy costs may vary with each new iteration, ac-
count for this variation could improve precision, but
it is still unclear how to model this. Nested structures
can be modelled as one whole structure or as separate
sequentially executed structures. It will require further
investigation on what is the better option and whether
we should support both, as they may be applied in dif-
ferent scenarios;

• How to measuring with precision the impact of energy
annotations in source code, which makes the software
take more time to execute and, consequently, increases
the time to perform the experiments.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.77/83 • 2020

Experiments on Model-Based Software Energy Consumption Analysis Involving Sorting Algorithms

Figure 2. Modelling of Insertion Sort performed in LoTuS tool.

Table 1. Costs of paths for each data structure.
Algorithm Structure Execution Trace Cost (W)

Bubble Sort
Vector 0-1-1-2-3-4-5-6-4-3 0.00016811
ArrayList 0-7-7-8-9-10-11-12-10-9 0.00016679
LinkedList 0-13-13-14-15-16-17-18-16-15 0.00017744

Insertion Sort
Vector 0-1-1-2-3-4-5-7-5-6-3 0.00023724
ArrayList 0-8-8-9-10-11-12-14-12-13-10 0.00024710
LinkedList 0-15-15-16-17-18-19-21-19-20-17 0.00025133

Selection Sort
Vector 0-1-1-2-3-4-5-6-5-7-3 0.00011344
ArrayList 0-8-8-9-10-11-12-13-12-14-10 0.00011170
LinkedList 0-15-15-16-17-18-19-20-19-21-17 0.00012570

4. Related Work
In this section, we describe some related work. We focus on
two groups of work: previous studies involving behaviour
models to represent energy costs and other research on how to
analyse energy consumption. We do not report on approaches
or tools for energy measurement because it is not our objective
to propose a new way of doing that. Rather, we assume energy
costs will be collected using one of the available tools and
concentrate on how to extract the most from these data.

4.1 Energy Models
In [27], software energy consumption is described as be-
havioural contracts based on Power Consumption Automata
(PCA). Properties written in terms of weighted linear temporal
logic with freeze quantifiers are proposed to analyse the mod-
els. However, no example concrete example of usage of such

model and logic was presented. Moreover, PCA describes the
system in terms of power states, whereas we describe software
behaviour and enhance it with energy information.

Considering energy-cost modelling, some other approaches,
such as [28] [29], model energy costs using Markov chains
and use PRISM [22] to run quantitative analyses based on
probabilistic information. In the approach described in [28]
the costs/rewards feature of PRISM is used to assign costs
to states/transitions. A limitation of the aforementioned ap-
proaches is that analyses about paths are not supported, due
to the type of logic adopted to describe properties. Hence,
questions that either require producing sequences of actions
or evaluating specific executions (e.g., the most/least costly
behaviour) could not be easily executed, if at all. Another
problem of using PRISM is the lack of model visualisation,
which can not only help construct the model, but also make it

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.78/83 • 2020

Experiments on Model-Based Software Energy Consumption Analysis Involving Sorting Algorithms

Figure 3. Modelling of Selection Sort performed in LoTuS tool.

easier to identify what could be modified to enhance energy
efficiency.

4.2 Energy Consumption Analysis
Software energy consumption research has so far been fo-
cused on measuring energy costs. The work described in
[4] concentrated on detecting excessive or anomalous energy
consumption in software, focused on optimising the energy
consumption in IT resources knowing how much power an ap-
plication is consuming. Analyses have been conducted on the
influence of data structures on energy consumption [21] [30]
[31], introducing a methodology to optimise Java programs
and decrease its energy consumption replacing data structures
for a more energy-efficient alternative. The research presented
in [32] described the development process of a profiler for
measuring the energy consumption of source code points. In
[33], critical energy areas were identified using a statistical
method to associate responsibility for energy consumption to
source code components. There have also been studies focus-
ing on estimating energy costs with the goal of optimising
and extending battery life in embedded systems [34] [35] and
mobile devices [36] [37] [38], such in [39], where a study was
performed to find alternative colours palette in user interfaces
of mobile applications to optimise energy consumption while
using consistent colours with respect to the original colour
pallet. Nevertheless, none of the above studies employs a
model as basis for their analyses, which limits their analysis

capacity, since abstractions enable analyses that could not be
or would be very difficult to be carried out directly on the
actual software.

Some studies show how to curtail energy consumption
during software development: this is done by using a search-
based modification of the software system as an instance of
Genetic Improvement. In this metric, it is sought to adapt the
program and generate some related versions that hold some
properties and improve others [40].

The work presented in [41] show how some decisions
during the software development process can influence the
energy cost. In their experiments, they performed energy mea-
surements of various Java Application Programming Interface
(API), evaluate for operations like file reading, file copy, file
compression, and file decompression. Through this study,
they found out that using APIs with different buffer sizes it is
possible to save energy. Regarding user decisions, the work
described in [42] shows how a software consumes more or
less energy depending on user requirements and choices.

The impact of energy costs in software development has
been studied [38] [43]. In [43], they checked a new way for
aligning software design to energy consumption and is shown
empirically in some different software implementations. For
this experimentation, they used design patterns, which is a
way of evaluating how implementation decisions can influence
energy usage. The work of [38] exploits the consumption in
different algorithms of machine learning on smartphones con-

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.79/83 • 2020

Experiments on Model-Based Software Energy Consumption Analysis Involving Sorting Algorithms

Table 2. Average total cost for each algorithm executed with each data structure.
Algorithm Structure Total Consumption (W)

Bubble Sort
Vector 249.49515
ArrayList 246.32837
LinkedList 258.02736

Insertion Sort
Vector 123.96702
ArrayList 124.29720
LinkedList 130.98218

Selection Sort
Vector 123.51673
ArrayList 120.90212
LinkedList 126.06802

sidering aspects such as dataset size, number of data attributes,
etc.

Many techniques have been created to get lower energy
consumption from software systems. One of these techniques
studied how to use data structures for energy efficiency [21]
[30] and android language [44], as well as has been studied
how different programming languages affect the final energy
consumption, be it in mobile or desktop applications [18]
[45] [46]. Some work [47] [36] seek to anticipate how much
operations will be spent in software systems.

None of the above studies combines the measurement of
energy with behaviour models. The experiments and anal-
yses performed in our work demonstrated the possibility of
combination of these approaches, providing to the user a way
to improve their software behaviour when the goal is energy
efficiency.

5. Conclusions and Future Work
With the performed experiments, it was possible to investigate
how the combination of an energy measurement tool and
an LTS-analysis tool works and how this combination can
help developers produce and evolve energy-efficient software,
providing a visualisation of the software behaviour and the
energy consumption of the source code parts with a granularity
that can be defined by the user.

We intend, as future work, to investigate whether this
approach is the most suitable for energy-consumption analysis,
developing other experiments, in particular involving multiple
components. In the context of multi-component systems,
the total energy consumption should account for the energy
consumed by all of its components. How interactions of
these components affect energy costs and how replacing one
component by another may impact energy costs will a subject
of study.

Concerning the measurement of energy consumption of
sorting algorithms, we intend to compare all the popular sort-
ing algorithms, such Quicksort, Heapsort, Merge Sort, Shell-
sort and others with different storage structures and different
number of elements to be sorted, investing more time on the
experiments an perform the analysis of more energy proper-
ties.

We would like to evaluate and analyse different levels of

abstraction in the LTS model. Although associating energy
costs to method executions seems natural, it may be necessary
to work with specific code elements, such as iteration blocks,
selection blocks, etc. Moreover, we have to investigate how to
represent energy costs regarding nested blocks and iterations.

When the subject is software energy efficiency, a question
comes up: a quick execution of a program means to have an
energy-efficient program? Some studies such as [12], [48],
and [49] say that substituting energy optimisation by perfor-
mance optimisation is insufficient and some times incorrect.
In [50] a study was performed with the objective to relate
energy consumption, time of execution and memory and they
affirm that energy consumption does not depend only on the
execution time. On the other hand, the study described in [51]
supports that energy and time are directly related. Therefore, a
possible analysis would be whether time-efficient algorithms
are also energy-efficient algorithms. This could lead to the
definition of energy complexity classes and create a new as-
pect related to software development that could be considered
when comparing different solutions.

Finally, we plan to combine energy costs with probabilis-
tic behaviour, enabling a developer to discover what is the
probability of executing the most/least costly behaviours and
decide whether it is worth - or necessary - to make some
change in the their code to improve software efficiency. We
will also study whether it is possible to provide some rec-
ommendations on how a developer should carry out these
necessary changes. In addition to all that, the use of a model
extraction approach, such as [23], could ease the modelling
effort, thus making it easier to adopt energy analysis as part
of a software development process. However, we would have
to determine how to combine a extracted models with the
collected energy information.

Acknowledgements
This work is partially supported by CNPq/Brazil under the
grant Universal 131260/2019-7.

Author contributions
Danilo S. Alves: Carrying out the experiments and paper writ-
ing.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.80/83 • 2020

Experiments on Model-Based Software Energy Consumption Analysis Involving Sorting Algorithms

Oseias A. Ferreira: Carrying out the experiments and paper
writing.
Lucio M. Duarte: Paper writing and revision.
Davi Silva: Carrying out the experiments.
Paulo H. Maia: Paper revision.

References
[1] KHALID, H.; SHIHAB, E.; AL. et. What Do Mobile
App Users Complain About? IEEE Software, v. 32, n. 3, p.
70–77, May 2015.

[2] PINTO, G.; CASTOR, F. Energy efficiency: A new con-
cern for application software developers. CACM, ACM, New
York, NY, USA, v. 60, n. 12, p. 68–75, December 2017.

[3] ALBERS, S. Energy-efficient algorithms. CACM, ACM,
New York, NY, USA, v. 53, n. 5, p. 86–96, maio
2010. Disponı́vel em: 〈http://doi.acm.org/10.1145/1735223.
1735245〉.
[4] SINGH, V. K.; DUTTA, K.; AL. et. Estimating the en-
ergy consumption of executing software processes. In: Green-
Com, iThings and CPSCom 2013. [S.l.: s.n.], 2013. p. 94–101.

[5] KULKARNI, P. et al. Fast searches for effective opti-
mization phase sequences. SIGPLAN Not., ACM, New York,
NY, USA, v. 39, n. 6, p. 171–182, jun. 2004. Disponı́vel em:
〈http://doi.acm.org/10.1145/996893.996863〉.
[6] KOOMEY, J. G. Worldwide electricity used in data cen-
ters. Environmental research letters, IOP Publishing, v. 3, n. 3,
p. 034008, 2008.

[7] WHITNEY, J.; DELFORGE, P. Data center efficiency
assessment. Issue paper on NRDC (The Natural Resource
Defense Council), 2014.

[8] DORN, J. et al. Automatically exploring tradeoffs be-
tween software output fidelity and energy costs. IEEE Transac-
tions on Software Engineering, IEEE, v. 45, n. 3, p. 219–236,
2017.

[9] HUANG, C.; TSAO, S. Minimizing energy consumption
of embedded systems via optimal code layout. IEEE Transac-
tions on Computers, v. 61, n. 8, p. 1127–1139, Aug 2012.

[10] RAGHUNATHAN, V. et al. Energy-aware wireless sys-
tems with adaptive power-fidelity tradeoffs. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, v. 13,
n. 2, p. 211–225, Feb 2005.

[11] CHAI, Q. et al. Empowering Designers to Estimate
Function-Level Power for Developing Green Applications.
In: Proceedings - 2013 International Conference on Cloud
and Service Computing, CSC 2013. [S.l.: s.n.], 2013. p. 57–
62.

[12] PANG, C. et al. What do programmers know about soft-
ware energy consumption? IEEE Software, IEEE, v. 33, n. 3,
p. 83–89, 2015.

[13] MANOTAS, I.; POLLOCK, L.; CLAUSE, J. Seeds:
a software engineer’s energy-optimization decision support
framework. In: ACM. Proceedings of the 36th International
Conference on Software Engineering. [S.l.], 2014. p. 503–514.

[14] DUARTE, L. M. et al. A model-based framework for
the analysis of software energy consumption. In: ACM. Pro-
ceedings of the XXXIII Brazilian Symposium on Software
Engineering. [S.l.], 2019. p. 67–72.

[15] LIU, K.; PINTO, G.; AL. et. Data-oriented characteriza-
tion of application-level energy optimization. In: EGYED, A.;
SCHAEFER, I. (Ed.). Fundamental Approaches to Software
Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg,
2015. p. 316–331.

[16] KELLER, R. M. Formal Verification of Parallel Pro-
grams. CACM, v. 19, n. 7, p. 371–384, July 1976.

[17] BARBOSA, D. M. et al. Lotus@Runtime: A Tool for
Runtime Monitoring and Verification of Self-adaptive Sys-
tems. In: Proceedings of the 12th International Symposium
on Software Engineering for Adaptive and Self-Managing Sys-
tems. Piscataway, NJ, USA: IEEE Press, 2017. (SEAMS ’17),
p. 24–30. Disponı́vel em: 〈https://doi.org/10.1109/SEAMS.
2017.18〉.
[18] LI, D.; HALFOND, W. G. J. An Investigation into
Energy-saving Programming Practices for Android Smart-
phone App Development. In: Proceedings of the 3rd In-
ternational Workshop on Green and Sustainable Software.
New York, NY, USA: ACM, 2014. (GREENS 2014), p.
46–53. Disponı́vel em: 〈http://doi.acm.org/10.1145/2593743.
2593750〉.
[19] BINKERT, N.; BECKMANN, B.; AL. et. The Gem5
Simulator. SIGARCH Comput. Archit. News, ACM, New York,
NY, USA, v. 39, n. 2, p. 1–7, ago. 2011.

[20] LI, S. et al. McPAT: An Integrated Power, Area, and
Timing Modeling Framework for Multicore and Manycore
Architectures. In: 2009 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). [S.l.: s.n.], 2009.
p. 469–480.

[21] PEREIRA, R.; COUTO, M.; AL. et. The influence of
the Java collection framework on overall energy consumption.
In: ACM. Proceedings of the 5th International Workshop on
Green and Sustainable Software. [S.l.], 2016. p. 15–21.

[22] KWIATKOWSKA, M.; NORMAN, G.; AL. et. PRISM:
Probabilistic symbolic model checker. In: KEMPER, P. (Ed.).
Proc. of the Tools Session of Aachen 2001 Intl Multiconference
on Measurement, Modelling and Evaluation of Computer-
Communication Systems. [S.l.: s.n.], 2001. p. 7–12. Available
as Technical Report 760/2001, University of Dortmund.

[23] DUARTE, L. M.; KRAMER, J.; AL. et. Using contexts
to extract models from code. Software and Systems Modeling,
v. 16, n. 2, p. 523–557, 2017.

[24] BUNSE, C. et al. Exploring the energy consumption of
data sorting algorithms in embedded and mobile environments.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.81/83 • 2020

http://doi.acm.org/10.1145/1735223.1735245
http://doi.acm.org/10.1145/1735223.1735245
http://doi.acm.org/10.1145/996893.996863
https://doi.org/10.1109/SEAMS.2017.18
https://doi.org/10.1109/SEAMS.2017.18
http://doi.acm.org/10.1145/2593743.2593750
http://doi.acm.org/10.1145/2593743.2593750

Experiments on Model-Based Software Energy Consumption Analysis Involving Sorting Algorithms

In: IEEE. 2009 Tenth International Conference on Mobile
Data Management: Systems, Services and Middleware. [S.l.],
2009. p. 600–607.

[25] FOWLER, M. Refactoring: improving the design of ex-
isting code. [S.l.]: Addison-Wesley Professional, 2018.

[26] CHENG, B. H. et al. Software engineering for self-
adaptive systems: A research roadmap. In: Software engi-
neering for self-adaptive systems. [S.l.]: Springer, 2009. p.
1–26.

[27] NAKAJIMA, S. Model checking of energy consumption
behavior. In: CARDIN, M.-A. et al. (Ed.). Complex Systems
Design & Management Asia. Cham: Springer International
Publishing, 2015. p. 3–14.

[28] BAIER, C.; DUBSLAFF, C. et al. Probabilistic model
checking for energy-utility analysis. In: . Horizons of the
Mind. A Tribute to Prakash Panangaden: Essays Dedicated
to Prakash Panangaden on the Occasion of His 60th Birthday.
Cham: Springer International Publishing, 2014. p. 96–123.
Disponı́vel em: 〈https://doi.org/10.1007/978-3-319-06880-0
5〉.
[29] DUBSLAFF, C.; KLÜPPELHOLZ, S.; BAIER, C. Prob-
abilistic model checking for energy analysis in software prod-
uct lines. In: MODULARITY ’14. New York, NY, USA: ACM,
2014. (MODULARITY ’14), p. 169–180. Disponı́vel em:
〈http://doi.acm.org/10.1145/2577080.2577095〉.
[30] HASAN, S. et al. Energy profiles of java collections
classes. In: ACM. 2016 IEEE/ACM 38th International Con-
ference on Software Engineering (ICSE). [S.l.], 2016. p. 225–
236.

[31] OLIVEIRA, W.; OLIVEIRA, R.; AL. et. Recommending
energy-efficient java collections. In: IEEE PRESS. MSR 2019.
[S.l.], 2019. p. 160–170.

[32] SCHUBERT, S. et al. Profiling software for energy con-
sumption. In: 2012 IEEE International Conference on Green
Computing and Communications. [S.l.: s.n.], 2012. p. 515–
522.

[33] PEREIRA, R. Locating energy hotspots in source code.
In: 39th International Conference on Software Engineering
(ICSE 2017). [S.l.: s.n.], 2017. p. 88–90.

[34] BRANDOLESE, C. et al. The impact of source code
transformations on software power and energy consumption.
Journal of Circuits, Systems, and Computers, World Scientific,
v. 11, n. 05, p. 477–502, 2002.

[35] JAYASEELAN, R.; MITRA, T.; LI, X. Estimating the
worst-case energy consumption of embedded software. In:
IEEE. 12th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’06). [S.l.], 2006. p. 81–90.

[36] HAO, S. et al. Estimating mobile application energy con-
sumption using program analysis. In: IEEE PRESS. 35th In-
ternational Conference on Software Engineering (ICSE 2013).
[S.l.], 2013. p. 92–101.

[37] COUTO, M. et al. Detecting anomalous energy consump-
tion in android applications. In: SPRINGER. Brazilian Sym-
posium on Programming Languages. [S.l.], 2014. p. 77–91.

[38] MCINTOSH, A.; HASSAN, S.; HINDLE, A. What can
android mobile app developers do about the energy consump-
tion of machine learning? Empirical Software Engineering,
Springer, v. 24, n. 2, p. 562–601, 2019.

[39] LINARES-VÁSQUEZ, M. et al. Optimizing energy con-
sumption of GUIs in Android apps: a multi-objective ap-
proach. In: ACM. Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering. [S.l.], 2015. p. 143–
154.

[40] PETKE, J. et al. Genetic improvement of software: A
comprehensive survey. IEEE Transactions on Evolutionary
Computation, v. 22, n. 3, p. 415–432, June 2018.

[41] SINGH, J.; NAIK, K.; MAHINTHAN, V. Impact of
developer choices on energy consumption of software on
servers. Procedia Computer Science, Elsevier, v. 62, p. 385–
394, 2015.

[42] ZHANG, C.; HINDLE, A.; GERMAN, D. M. The im-
pact of user choice on energy consumption. IEEE software,
IEEE, v. 31, n. 3, p. 69–75, 2014.

[43] SAHIN, C. et al. Initial explorations on design pattern
energy usage. In: 2012 First International Workshop on Green
and Sustainable Software (GREENS). [S.l.: s.n.], 2012. p. 55–
61.

[44] OLIVEIRA, W.; OLIVEIRA, R.; CASTOR, F. A study
on the energy consumption of android app development ap-
proaches. In: 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR). [S.l.: s.n.], 2017. p.
42–52.

[45] LINARES-VÁSQUEZ, M. et al. Mining energy-greedy
api usage patterns in android apps: An empirical study. In:
Proceedings of the 11th Working Conference on Mining Soft-
ware Repositories. New York, NY, USA: ACM, 2014. (MSR
2014), p. 2–11. Disponı́vel em: 〈http://doi.acm.org/10.1145/
2597073.2597085〉.
[46] PEREIRA, R. et al. Helping programmers improve the
energy efficiency of source code. In: Proceedings of the 39th
International Conference on Software Engineering Compan-
ion. Piscataway, NJ, USA: IEEE Press, 2017. (ICSE-C ’17),
p. 238–240. Disponı́vel em: 〈https://doi.org/10.1109/ICSE-C.
2017.80〉.
[47] COUTO, M. et al. Products go green: Worst-case energy
consumption in software product lines. In: ACM. Proceedings
of the 21st International Systems and Software Product Line
Conference-Volume A. [S.l.], 2017. p. 84–93.

[48] LIMA, L. G. et al. Haskell in green land: Analyzing the
energy behavior of a purely functional language. In: IEEE.
2016 IEEE 23rd international conference on Software Analy-
sis, Evolution, and Reengineering (SANER). [S.l.], 2016. v. 1,
p. 517–528.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.82/83 • 2020

https://doi.org/10.1007/978-3-319-06880-0_5
https://doi.org/10.1007/978-3-319-06880-0_5
http://doi.acm.org/10.1145/2577080.2577095
http://doi.acm.org/10.1145/2597073.2597085
http://doi.acm.org/10.1145/2597073.2597085
https://doi.org/10.1109/ICSE-C.2017.80
https://doi.org/10.1109/ICSE-C.2017.80

Experiments on Model-Based Software Energy Consumption Analysis Involving Sorting Algorithms

[49] PINTO, G.; CASTOR, F.; LIU, Y. D. Understanding
energy behaviors of thread management constructs. In: ACM.
ACM SIGPLAN Notices. [S.l.], 2014. v. 49, n. 10, p. 345–360.

[50] PEREIRA, R. et al. Energy efficiency across program-
ming languages: How do energy, time, and memory relate? In:
ACM. Proceedings of the 10th ACM SIGPLAN International

Conference on Software Language Engineering. [S.l.], 2017.
p. 256–267.

[51] YUKI, T.; RAJOPADHYE, S. Folklore confirmed: Com-
piling for speed = compiling for energy. In: SPRINGER. Inter-
national Workshop on Languages and Compilers for Parallel
Computing. [S.l.], 2013. p. 169–184.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 27 • N. 3 • p.83/83 • 2020

	Introduction
	Introduction
	Background
	Collecting Energy Information
	Modelling Energy
	Analysing Energy Consumption

	Experiments and Results
	Methodology
	Results
	Discussion

	Related Work
	Energy Models
	Energy Consumption Analysis

	Conclusions and Future Work
	References

