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Abstract

Extremal length is a classical tool in 1-dimensional complex analy-

sis for building conformal invariants. We propose a higher-dimensional

generalization for complex manifolds and provide some ideas on how to

estimate and calculate it. We also show how to formulate certain natu-

ral geometric inequalities concerning moduli spaces in terms of a complex

analogue of the classical Riemannian notion of systole.

1 Introduction

Let D ⊆ C be an open domain. In the 1940s, Ahlfors and Beurling (building
upon previous ideas of Grötzsch) proposed the following method for constructing
conformal invariants. Choose a set of rectifiable curves Γ in D (with boundary
in D). Given any positive function ρ : D → R, i.e. conformal metric ρ2 · gstd on
D, set

l(Γ, ρ) := inf
γ∈Γ

∫

γ

ρ |dz|, A(ρ) :=

∫

D

ρ2dxdy

then define the extremal length of Γ as

µΓ := sup
ρ

(l(Γ, ρ))2

A(ρ)
. (1)

Here, we restrict our attention to those “admissible” ρ which induce a finite,
positive area A(ρ).

The result is a number in the interval [0,∞], but the possibility of extreme
values is reduced by the choice of quotient l2 /A, concocted to be scale invariant:
given a constant c > 0, it does not distinguish between ρ and cρ. Since the set
of conformal metrics is preserved under biholomorphisms φ : D → D′, one
automatically obtains µΓ = µΓ′ when Γ′ = φ(Γ). More generally, if we allow ρ
to have zeros we obtain µΓ ≤ µΓ′ for any φ holomorphic.
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These invariants allow one to classify and distinguish not only domains, e.g.
annuli, but also domains plus certain configurations of internal or boundary
points, e.g. quadrilaterals, incorporated through judicious choices of Γ. We
refer to [1] for details and examples. In this regard we emphasize that, given the
dependence on the class Γ, the natural context in which to apply this invariant
is when it is a priori possible to understand how such classes change under the
action of diffeomorphisms or maps. This might be achieved by choosing Γ to
be a homology class, or by tracking the configuration of boundary points that
define Γ. Another application arises when studying holomorphic structures,
already known to be different, on the same domain. In this case we can fix Γ
once and for all; the invariant then furnishes a parameter on the moduli space.

More generally, across the years, the concept of extremal length has found
a wide variety of applications. We again refer to [1] for further details.

Extremal volume. It is an interesting question to find an analogous “ex-
tremal volume” in higher dimensions. One quickly realizes that addressing this
question requires imposing, a priori, a strong subjective viewpoint on the whole
theory. In dimension 1, complex analysis is intimately intertwined with confor-
mal geometry. Extremal length relies on this ambiguity by measuring lengths
via metrics which are introduced using conformal factors governed by the un-
derlying complex structure. In higher dimensions there is no such relationship.
One must thus make a choice whether to prefer the complex-analytic or met-
ric viewpoint, each at the expense of the other. Our proposal is based on the
following Ansätze:

• The new construction should reduce to the classical one for domains in C.

• In n complex dimensions, curves should be replaced by submanifolds of
real dimension n.

• The new theory should be of a purely complex-analytic nature.

The first two conditions are (arguably!) uncontroversial. We achieve the third
by replacing conformal metrics with complex volume forms. Concerning this
point, an obvious metric-oriented alternative might be to work in terms of
Kähler metrics, thus adopting a strongly Riemannian, or perhaps symplectic,
viewpoint. We remark that some developments of extremal length, such as the
theory of quasi-conformal mappings, have been extended in higher dimensions
by adopting a metric point of view and completely dropping the complex struc-
ture, cf. [7]. One of our aims, however, cf. Sections 2 and 3, is to show that
the geometry of real vs. complex volume forms is sufficiently rich to generate
an interesting, purely complex-analytic theory, even without the use of metrics.

The result of our construction is a holomorphic invariant which depends only
the submanifold geometry of the ambient space, cf. Definition 2.2.

Further features. We wish to emphasize two more aspects of this construc-
tion.
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• Roughly speaking, our invariant depends only on the space of “totally
real” submanifolds, paying no attention to the more usual complex sub-
manifolds. It seems to us that totally real geometry encodes the complex
structure in a different way, and it seems worthwhile to further develop
its role within complex analysis.

• An alternative way of describing our construction, which better under-
lines the interplay between differential geometry and complex analysis, is
the following. It is the result of looking at the well-known geometry of
Calabi-Yau manifolds and special Lagrangian submanifolds [6] and strip-
ping away all metric and symplectic information, so as to expose its purely
holomorphic backbone. We then call upon the idea of extremal length to
repackage these ingredients in the form of invariants. The resulting con-
struction applies to any complex manifold.

Calculations. Of course, it is important that these invariants be calculable.
Recall the situation in dimension 1: the modulus is defined for any domain
D ⊆ C and any Γ, but in general one can only hope to approximate or bound
its value. In order to calculate it precisely, it is usually necessary to first apply
the Riemann mapping theorem, bringing D into some “standard form”, then
use special properties of this standard form to perform the calculations.

In higher dimensions there is no analogue of the Riemann mapping theorem.
Whatever the holomorphic invariant, the best one can thus probably hope for is
to calculate it in the case of manifolds with some special structure. In Section
4 we describe a model situation in which this is possible for our invariant, cf.
Theorem 4.4. In Section 5 we test this result on Reinhardt domains and elliptic
fibre bundles, also providing some comparisons with Calabi-Yau and special
Lagrangian geometry. In Section 6 we calculate the extremal volume of complex
tori with respect to any class of submanifolds defined by a homology class.

Complex systolic inequalities. Working with tori and their moduli spaces
suggests the following development. One of the simplest applications of the
concept of extremal length concerns geometric inequalities: the classical exam-
ple is a theorem of Loewner from 1949, concerning the relationship between
geodesics and area on Riemannian tori, which has a quick proof in terms of
extremal length. A more modern formulation of such inequalities is in terms of
systolic geometry. In complete analogy, in Section 7 we show that our concept of
extremal volume triggers a notion of complex systoles, cf. Definition 7.3. Theo-
rem 7.7 shows how a certain geometric feature of the moduli space of polarized
complex tori can be expressed in terms of a complex systolic inequality.

Acknowledgements. The question of how to define a higher-dimensional
analogue of extremal length was mentioned to me by Eric Bedford. The notion
presented here rests upon previous work on totally real submanifolds joint with
Jason Lotay. While thinking about geometric inequalities related to extremal
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volume and Theorem 7.7, I came across [4], which defines a more restrictive no-
tion of systoles for Calabi-Yau manifolds, and [5], which proves essentially the
same result as Theorem 7.7, but with no relation to extremal length and with a
focus on symplectic rather than complex geometry. I thus realized that systolic
geometry provides a natural context for such inequalities. Finally, I wish to
thank the organizers and participants of the conference “Complex Analysis and
Geometry - XXIV” in Levico Terme, Italy, where I first presented these ideas,
for interesting conversations.

2 Extremal volume

Let (M,J) be a complex manifold of complex dimension n. Let KM denote
the holomorphic line bundle of differential forms of type (n, 0) and let Ω be any
smooth section of KM . We then obtain the following data:

• Using complex conjugation we can construct the real 2n-form

ΩM := (−1)
n(n−1)

2

(
i

2

)n

Ω ∧ Ω̄ ∈ Λ2n(M ;R).

In local holomorphic coordinates, Ω = f(z, z̄) dz1 ∧ · · · ∧ dzn and ΩM =
|f |2dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn. If Ω is nowhere vanishing, KM is differ-
entiably trivial and ΩM is a real volume form on M , compatible with the
standard orientation on M induced by J .

• Let π ≤ TpM be an oriented plane of real dimension n. To define a n-form
on π it suffices to define its value on a positive basis v1, . . . , vn: the rest
follows from multi-linearity. Taking the norm of the value of Ω we thus
define a real n-form on π as follows:

Ωπ(v1, . . . , vn) := |Ω[p](v1, . . . , vn)|.

It vanishes in two cases: either when Ω[p] = 0, or when v1, . . . , vn are not
C-linearly independent, i.e. π contains a complex line.

Given an oriented submanifold L ⊆ M (possibly with boundary) of real
dimension n, we obtain a n-form ΩL on L by setting ΩL[p] := Ωπ where π = TpL,
for any p ∈ L. In general it is a C0-section of Λn(L;R).

Definition 2.1 We call A(Ω) :=
∫
M

ΩM ≥ 0 the Ω-volume of M . We call∫
L
ΩL ≥ 0 the Ω-volume of L, and L 7→

∫
L
ΩL the Ω-volume functional.

Given a set Λ of oriented submanifolds L ⊆ M (possibly with boundary) of
real dimension n, we let l(Λ,Ω) := infL∈Λ

∫
L
ΩL denote the infimum value of

the Ω-volume functional restricted to Λ.

Notice that any function eiθ : M → S1 defines a “rotated” complex form
Ω′ := eiθΩ: we will say that Ω, Ω′ are equivalent. The above constructions do
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not detect the difference between these forms: ΩM = Ω′
M and Ωπ = Ω′

π. In
particular, the Ω-volume depends only on the equivalence class of Ω.

We can now present our concept of extremal volume. The quantity l2 /A,
defined above, is an invariant of the triple (M,Ω,Λ). It is also invariant under
rescalings and rotations of Ω. To obtain an invariant depending only on (M,Λ)
we adopt the strategy used for extremal length.

Definition 2.2 We define the extremal volume of Λ as

µΛ := sup
Ω

(l(Λ,Ω))2

A(Ω)
,

where we restrict our attention to those “admissible” Ω such that 0 < A(Ω) < ∞.

Given any biholomorphism φ : M → M ′, choosing Λ′ = {φ(L) : L ∈ Λ} it is
clear that µΛ = µΛ′ .

We must check that the new invariant coincides with the classical one in the
case where M = D is a domain in C. In this case any Ω may be written as
Ω = f dz for some f : D → C and

∫
γ
ΩL =

∫
γ
|f ||dz|: writing ρ = |f |, it follows

that there is no difference between the admissible Ω used to define extremal
volume and the admissible, non-negative, ρ used to define extremal length.

Example. All definitions extend to sets Λ of rectifiable n-currents in M . Re-
call that any homology class α in M can be represented by rectifiable currents
(but not necessarily by smooth submanifolds). We will be particularly inter-
ested in the case where Λ is the set of rectifiable currents in α ∈ Hn(M ;Z) or
in α ∈ Hn(M ;R). The corresponding extremal volume will be denoted µα.

From now on we will not distinguish between submanifolds and currents.

Remark 2.3 If we replace J with −J , the orientation on M changes by (−1)n.

Also, (n, 0)-forms are swapped with (0, n)-forms and ΩM = (−1)n
2

ΩM , where
the LHS is the Ω-volume form on (M,−J) and the RHS is the Ω-volume form on
(M,J). It follows that the Ω-volume of (M,J) coincides with the Ω-volume of
(M,−J). The orientation on L is independent of that on M , and the Ω-volume
of L does not notice the difference between Ω, Ω. We conclude that extremal
volume is invariant also under anti-biholomorphisms.

Let −L denote L with the opposite orientation. Then Ω−L = −ΩL but each is
positive with respect to its own orientation so the Ω-volume of L is independent
of the orientation of L. Analogously, given Λ, let −Λ denote the same set of
submanifolds, each endowed with the opposite orientation. Then µΛ = µ−Λ.

3 Lower bounds for the extremal volume

We have mentioned that the notion of Ω-volume, thus of extremal volume,
depends only on the equivalence class of Ω, defined in terms of rotations.
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However, the choice of Ω also allows us to “organize” n-planes in TM , defin-
ing a “Grassmannian geometry” specifically sensitive to rotations. Understand-
ing this point will sometimes allow us to obtain lower bounds for the extremal
volume.

Let us denote by G the Grassmannian of non-oriented n-planes in TM , and
by G̃ the Grassmannian of oriented n-planes.

Definition 3.1 Let (M2n, J) be a complex manifold. Fix a smooth section Ω
of KM . An oriented n-plane π is Ω-special if Ωπ = Ω (restricted to π). We will

denote by SΩ ⊆ G̃ the Grassmannian of Ω-special planes in TM .
An oriented submanifold Ln ⊆ M is Ω-special if each TpL ∈ SΩ, i.e. ΩL ≡ Ω

(restricted to TL).

A n-plane is thus Ω-special (for some orientation) if Ω, on that plane, takes
real values, i.e. its imaginary part vanishes. Let us look into this more closely.

If Ω[p] = 0, any n-plane at that point is special with respect to any orienta-

tion, i.e. SΩ[p] = G̃[p]. If a plane at p contains complex lines, it is special with
respect to any orientation and any Ω, so it belongs to SΩ[p] for all Ω.

The special condition is thus of interest mainly in the case when Ω[p] 6= 0
and the oriented n-plane is totally real (TR), i.e. contains no complex lines.
We can then define a phase eiθ ∈ S1 such that Ωπ = eiθΩ and π is special if
and only if eiθ = 1: we say it is Ω-special totally real (STR).

Concerning oriented submanifolds, and assuming Ω never vanishes, we thus
notice two interesting situations at opposite extremes of the geometric spectrum.

On the one hand, assume L is complex (thus n is even). It is then special
for any Ω and ΩL ≡ 0, so

∫
L
ΩL = 0. In particular, for any Ω, a complex

submanifold minimizes the ΩL-volume when compared to any other oriented
n-submanifold. The same happens for any L whose tangent bundle contains
complex lines at each point.

On the other hand, assume L is totally real. We can then define a phase
function eiθ : L → S1 such that ΩL = eiθΩ. L is Ω-STR if the phase function
satisfies eiθ ≡ 1.

The latter situation extends the following well-known setup, cf. [6]. Re-
call that a Calabi-Yau manifold is a complex manifold (M,J, g,Ω) where g
is a Kähler Ricci-flat metric and Ω is a parallel (thus holomorphic) nowhere-
vanishing complex volume form. In this case submanifolds which are special
Lagrangian, i.e. simultaneously special and Lagrangian (thus TR) are a classi-
cal object of interest because they are “calibrated”, thus volume-miminizing in
their homology class.

We can extend this result to our non-metric context, also allowing non-TR
points. We remark that the following result might not seem credible until one
notices that any closed (n, 0)-form is automatically holomorphic: this rigidifies
Ω considerably so that, as a section of KM , it is uniquely defined by its values
on any open subset of M or indeed on any open subset of a TR submanifold.
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Proposition 3.2 Let Ω be closed, equivalently holomorphic. Then any Ω-
special submanifold L minimizes the Ω-volume functional within its homology
class α. In particular, l(α,Ω) =

∫
L
Ω.

Setting Λ := α, this implies the lower bound

µα ≥ (

∫

L

Ω)2/

∫

M

ΩM .

Proof: Let L′ be any oriented submanifold homologous to L. Using the fact
that all integrals are real, we obtain

∫

L

ΩL =

∫

L

Ω =

∫

L′

Ω =

∫

L′

Re(Ω) + i

∫

L′

Im(Ω)

=

∫

L′

Re(Ω) ≤
∫

L′

|Re(Ω)| ≤
∫

L′

|Ω| =
∫

L′

ΩL′ .

We note that equality holds exactly when L′ is also Ω-special.
To compute µα we must consider all admissible forms Ω′ but, since µα is

scale invariant, we can normalize them so that A(Ω′) = A(Ω). The lower bound
is then immediate. �

Recall that pluri-potential theory shows that, for any L TR, there exists a
small neighbourhood of L ⊆ M which is Stein: in particular, this neighbourhood
contains no compact complex n-submanifolds. If L is STR then the above
proposition proves that the homology class of L contains no such submanifolds.
More generally, the same is true for any special submanifold with positive ΩL-
volume.

Remark 3.3 When M is Calabi-Yau and L is special Lagrangian, Ω|TL = volL,
the induced Riemannian volume form on L. It follows that

∫
L
ΩL =

∫
L
Ω =∫

L
volL, i.e. the Ω-volume of L coincides with the Riemannian volume.

In order to emphasize the flexibility of our setting, we note that there exists
an analogous result for certain classes Λ of submanifolds with boundary.

Proposition 3.4 Let Σ be a complex submanifold in M . Choose a relative
homology class α ∈ Hn(M,Σ;Z) and let Λ denote the class of integral currents
in α.

Let Ω be closed, equivalently holomorphic. Then any Ω-special submani-
fold L ∈ Λ minimizes the Ω-volume functional restricted to Λ. In particular,
l(Λ,Ω) =

∫
L
Ω. This implies the lower bound

µΛ ≥ (

∫

L

Ω)2/

∫

M

ΩM .

To prove this result, choose any L′ ∈ Λ. Then L− L′ = ∂(T n+1) + S, where S
is an integral n-current contained in Σ. Since Ω vanishes on Σ, the same proof
used for Proposition 3.2 applies.

We remark that if Λ contains a TR submanifold L′, the assumption ∂L′ ⊆ Σ
implies that Σ must be a complex hypersurface.
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4 Calculation of the extremal volume

Proposition 3.2 provides, under appropriate conditions, a cohomological lower
bound for extremal volume. This bound depends on the complex structure.

We now want to find situations in which it is possible to calculate the ex-
tremal volume precisely. As mentioned, this is an issue even for extremal length.
One context in which the latter can be computed is the case of quadrilaterals,
because the Riemann mapping theorem allows us to restrict to the special case
of rectangles, which have the property of being fibred by segments parallel to
their sides. We generalize this situation as follows.

Assume M has the structure of a fibration over a n-dimensional smooth base
manifold B, with generic fibre L. Assuming L is oriented we can orient also B,
as follows. Choose a nowhere-vanishing volume form volM on M , positive with
respect to the orientation induced by J . Choose any b ∈ B and let Lb denote
the corresponding fibre in M . Let w1, . . . , wn be a basis for TbB. Any local
trivialization of the fibration allows us to lift the vectors wi to M , obtaining
vector fields w̃i defined along Lb which project to wi. Now choose any p ∈ Lb

and let v1, . . . , vn be a positive basis for TpLb. We say that the basis wi is

positive if (−1)
n(n−1)

2 volM (w̃1, . . . , w̃n, v1, . . . , vn) > 0. One can check that this
construction is independent of all choices.

We can build a n-form ΩB on B through the process of “vertical integration”
applied to ΩM : using the above notation,

ΩB[b](w1, . . . , wn) := (−1)
n(n−1)

2 ·
∫

Lb

ΩM (w̃1, . . . , w̃n, ·, . . . , ·) ∈ R.

Different choices of lifting differ only by vectors in TLb, but integrating over Lb

saturates these directions so ΩB is well-defined independently of this choice. It
is non-negative with respect to the above orientation of B, and has the property∫
B
ΩB =

∫
M

ΩM .

Remark 4.1 The orientation adopted in this section is irrelevant for the other
parts of the paper. It is chosen simply to be compatible with the basic example
(using compact notation)

M = R
2n → B = R

n, (x, y) 7→ x,

where M has the orientation induced from J and Ω = (−i)ndz so that each fibre,

endowed with the standard orientation, is Ω-STR. In this case (−1)
n(n−1)

2 ΩM =
dx ∧ dy, B has the standard orientation and ΩB[x](∂x) =

∫
Rn dy.

In particular, assume w1, . . . , wn is a positive basis for TbB. Set vi := Jwi.
Then Ω(v1, . . . , vn) > 0.

Applying a biholomorphism to M may invert the orientation on L, thus
change the orientation on B. For example, if M = C2 the biholomorphism
which exchanges the variables z1 and z2 on M also exchanges the variables
x1, x2 on the base B, thus changes its orientation.
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Now assume each fibre Lb is TR. In this case the spaces J(TpLb) define a
canonical complement of the spaces TpLb, so we obtain a canonical lift of wi

by prescribing w̃i ∈ J(TLb). In particular this implies that L is parallelizable:
each TpLb is canonically isomorphic to TbB via the map

TpLb → TbB, v 7→ w := π∗[p](−Jv). (2)

Given a basis wi of TbB, we will denote the corresponding vector fields on Lb,
defined via (2), by vi. Notice that −Jvi coincides with the canonical w̃i defined
above.

In this context, the process of vertical integration has an extra feature: given
that on each fibre Lb we already have the n-dimensional form Ω|TLb

, there must
exist a “density function” which relates it to the n-form we are integrating along
the fibre. Let us compute this function.

Lemma 4.2 Let Ω be a (n, 0)-form on M . Assume M admits a TR fibration.
Then, using the above notation, along each fibre Lb and for each basis w1, . . . , wn

of TpB,

(−1)
n(n−1)

2 · ΩM (w̃1, . . . , w̃n, ·, . . . , ·)|TLb
= Ω̄(v1, . . . , vn) · Ω|TLb

(·, . . . , ·).

It follows that, for each b ∈ B,

ΩB[b](w1, . . . , wn) =

∫

Lb

Ω̄(v1, . . . , vn) · Ω.

Proof: The claim is trivially true wherever Ω vanishes.
Assume Ω does not vanish. We may also assume that w̃i = −Jvi so it suffices

to prove

(−1)
n(n−1)

2 · ΩM (−Jv1, . . . ,−Jvn, a1, . . . , an) = Ω̄(v1, . . . , vn) · Ω(a1, . . . , an),

for any basis v1, . . . , vn of TpLb and vectors a1, . . . , an in TpLb. We can iden-
tify (TpM,J) with Cn so that TpLb corresponds to Rn, described by variables
y1, . . . , yn, and Ω coincides with eiθ(dz1 ∧ · · · ∧ dzn), for some θ. It follows that

(−1)
n(n−1)

2 · ΩM = dx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn. Let M ∈ GL(n,R) denote
the matrix whose columns contain the coordinates of vi in terms of the basis
∂y1, . . . , ∂yn. Then M also represents the coordinates of −Jvi in terms of ∂xj .
Let N ∈ gl(n,R) denote the matrix whose columns contain the coordinates of ai
in terms of ∂y1, . . . , ∂yn. Then the LHS in the above equation is det(M) det(N)
while the RHS is (−i)n det(M) in det(N), so they coincide. �

In other words, for each choice of w1, . . . , wn, ΩB(w1, . . . , wn) is the integral
average of the density function Ω̄(v1, . . . , vn).

Definition 4.3 Let Ω be a (n, 0)-form on M . A TR fibration is Ω-parallel if,
for each b ∈ B and using the parallelization defined in (2), the density function
Ω̄(v1, . . . , vn) : Lb → C is constant.
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This condition is independent of the particular basis wi used to define vi, but
does depend on the specific parallelization (2). In dimension 1 it is analogous
to the fact that parallel fibres have constant distance from each other.

Let us check how these various conditions interact. Assume that, for some
closed Ω, M admits a parallel STR fibration. If Ω vanishes at some point, the
parallel condition forces it to vanish along the whole fibre. Clearly, on this
fibre,

∫
Lb

Ω = 0. Since Ω is closed, the same holds for each fibre so Ω ≡ 0. If we
further assume that Ω is admissible, we reach a contradiction: it follows that Ω
must be nowhere vanishing, so KM is holomorphically trivial.

We can now show that, in appropriate circumstances, extremal volume is
a cohomological quantity (which depends on J). More specifically, the lower
bound found in Proposition 3.2 is actually an equality.

Theorem 4.4 Assume that, for some closed and admissible Ω, M admits a
parallel STR fibration (thus KM is holomorphically trivial), with generic fibre
L. Let α be the homology class of the fibres. Then

µα =

(∫
L
Ω
)2

∫
M

ΩM

.

Proof: Ω admissible implies that
∫
M

ΩM > 0. We already know that

µα ≥
(∫

L
Ω
)2

∫
M

ΩM

.

To prove the opposite inequality, choose any admissible Ω′. Up to rescaling
we can assume l(α,Ω′) =

∫
L
Ω, so

∫
Lb

|Ω′| ≥
∫
L
Ω for each fibre. Up to rotation

we can assume Ω′ = ρΩ, for some non-negative ρ : M → R: this allows us to
eliminate the norm, obtaining

∫
Lb

ρΩ ≥
∫
Lb

Ω thus
∫
Lb
(ρ− 1)Ω ≥ 0.

Since also
∫
Lb
(ρ− 1)2Ω ≥ 0, a simple algebraic manipulation now yields, for

each fibre, ∫

Lb

ρ2 Ω ≥
∫

Lb

Ω.

Choose a positive basis w1, . . . , wn for TbB. As in Remark 4.1, the correspond-
ing quantity Ω(v1, . . . , vn) is positive and coincides with the constant density
function Ω̄(v1, . . . , vn). Multiplying both sides of the above inequality by this
quantity and using Lemma 4.2, we find Ω′

B ≥ ΩB.
Let us now integrate over B, obtaining

∫
M

Ω′
M ≥

∫
M

ΩM . Inverting and
multiplying both sides by (l(α,Ω′))2, we find

µα ≤
(∫

L
Ω
)2

∫
M

ΩM

,

thus the result. �
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Observe that the strategy in this proof is the following. We first argue that
we can assume that the fibration is STR with respect to both forms Ω, Ω′. We
then want to show that if Ω′ increases the size of each fibre, compared to Ω, then
the induced form on B also increases. Setting f := ρ2 and g := Ω(v1, . . . , vn),
this boils down to the following abstract question: does

∫
f ≥

∫
1 imply

∫
fg ≥∫

g? (Equivalently, setting f̃ := f−1: does
∫
f̃ ≥ 0 imply

∫
f̃g ≥ 0?) In general

the answer is no, explaining the importance of the parallel condition.

Remark 4.5 Using the notation of (2), the hypotheses of Theorem 4.4 im-
ply that ΩB(w1, . . . , wn) = c · Ω(v1, . . . , vn) = c · |Ω(w̃1, . . . , w̃n)|, where c :=∫
L
Ω. Normalizing Ω so that c = 1, it follows that B is endowed with a

canonical volume form such that π is a volume-preserving submersion, ie π∗ :
(J(TpLb), |Ω|) → (TbB,ΩB) is an isomorphism for all p ∈ Lb. Given an STR
fibration, this property provides an alternative characterization of the parallel
condition.

In the situation of Theorem 4.4, the map α → µα has specific properties
in terms of the algebraic structure on homology. In particular, µ0 = 0 and
µλα = λ2µα. The following is also a simple consequence.

Corollary 4.6 Assume manifolds M1, M2 admit parallel STR fibrations with
respect to Ω1, Ω2 and classes α1, α2, as in Theorem 4.4. Then the product
manifold M1 ×M2 admits a parallel STR fibration with respect to π∗

1Ω1 ∧ π∗
2Ω2

and the class α1 × α2, where πi : M1 ×M2 → Mi denotes the projection maps.
Furthermore, µα1×α2 = µα1 · µα2 .

5 Examples

Theorem 4.4 raises the question of finding examples of manifolds equipped with a
parallel STR fibration. The simplest way to ensure the parallel assumption is via
an appropriate group action. Specifically, assume G acts holomorphically on M ,
preserves Ω, and its orbits are STR. The induced fibration is then automatically
parallel. We illustrate via the following example.

Reinhardt domains. A Reinhardt domain is an open subset of Cn invariant
under the standard action of (S1)n, i.e. the action of matrices M ∈ GL(n,C)
of diagonal form (eiθ1 , . . . , eiθn).

The simplest case is an annulus {r1 < |z| < r2} ⊆ C. Each circle |z| =
r (oriented counter-clockwise) is totally real, and special with respect to the
(well-defined, closed, not exact) (1, 0)-form Ω := −i(d log z). Let α denote the
homology class of any such circle. In order to calculate µα, it is convenient
to take advantage of its invariance under biholomorphisms. We thus change
coordinates,

w = t+ iθ 7→ z := expw
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identifying the annulus with (log r1, log r2) × S1 so that exp∗ Ω = −idw. It is
now clear that the annulus admits a fibration structure as in Theorem 4.4. It
follows that

µα =
(−i)2(2πi)2

2π(log r2 − log r1)
=

2π

log r2 − log r1
,

showing that extremal volume (in this case, extremal length) can be expressed
in terms of “logarithmic length”, i.e. length of the base space calculated with
respect to the logarithmic variable.

Corollary 4.6 shows how to calculate extremal volume for Reinhardt domains
given by products of annuli.

A general Reinhardt domain can be viewed as a bundle over a base space in
Rn, endowed with variables (|z1|, . . . , |zn|), with fibers given by the orbits of the
group action. The generic fiber is (S1)n, but the fiber over a point which has
some |zi| = 0 collapses to a lower-dimensional torus. We will focus on bounded
domains in which no collapsing occurs, i.e. the base space is relatively compact
in (R+)n. Changing coordinates via

(w1 = t1 + iθ1, . . . , wn = tn + iθn) 7→ (z1 := expw1, . . . , zn := expwn)

shows that the fibers are parallel STR with respect to the holomorphic (n, 0)-
form (−i)ndw1∧· · ·∧dwn. Let B ⊆ Rn, endowed with the variables (t1, . . . , tn),
denote the new base space and α denote the homology class of the fiber. Then

µα :=
(−i)2n(2πi)2n

(2π)n
∫
B

dt1 ∧ · · · ∧ dtn
=

(2π)n

vol(B)
,

where again vol(B) indicates the “logarithmic volume” of the original base space,
appropriately oriented.

The conclusion is that extremal volume provides a geometrically intuitive,
easy to calculate, biholomorphic invariant for our class of Reinhardt domains.

Remark 5.1 Consider the biholomorphisms φ : M → M ′ between Reinhardt
domains in (C∗)n which preserve the torus action in the following sense: any
g′ ∈ (S1)n acting on M ′ can be obtained as φ ◦ g ◦ φ−1 = g′, for some g ∈ (S1)n

acting on M , and viceversa. It is shown in [12] that such biholomorphisms are
generated by (i) dilations of the form (z1, . . . , zn) 7→ (a1z1, . . . , anzn), for some
ai ∈ C∗, (ii) maps of the form

(z1, . . . , zn) 7→ (za11
1 za21

2 . . . zan1
n , . . . , za1n

1 za2n
2 . . . zann

n ),

where (aij) ∈ GL(n,Z) and thus has determinant ±1. For these specific maps
it is simple to check that vol(B) is preserved, and thus defines an invariant
within this specific category. Our calculation shows that extremal volume offers
a natural generalization of this invariant to any complex manifold, and that it
is invariant under all biholomorphisms.

In Calabi-Yau geometry and Mirror Symmetry there is strong interest in
the existence and properties of special Lagrangian fibrations. Compared to our
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parallel STR fibrations, this imposes the stronger Lagrangian condition on the
fibres but no specific condition on the fibration. The following example shows
that these different assumptions, ie Lagrangian fibres and parallel fibration, are
independent.

A special Lagrangian fibration. Consider the fibration [6]

F : C3 → R
3, (z1, z2, z3) 7→ (|z1|2 − |z3|2, |z2|2 − |z3|2, Im(z1z2z3))

Each fibre Lb := F−1(b), b ∈ R3, is special Lagrangian. There is a group
G ≃ S1 × S1 acting holomorphically on C3 which preserves Ω := dz1 ∧ dz2 ∧ dz3

and the fibres, but the action is not transitive on the fibres. The Lagrangian
condition implies that J(TpLb) = (TpLb)

⊥ so it is generated by the gradient
vectors ∇F i. In the notation of (2) and letting vi denote the standard basis of
R3, one can explicitly calculate the appropriate linear combinations w̃i of ∇F i

such that dF (w̃i) = vi, then use this to show that this fibration is not parallel.
We remark that any special Lagrangian fibration π : M → B from a Calabi-

Yau manifold onto a Riemannian manifold B such that π is also a Riemannian
submersion, ie π∗ : (TpLb)

⊥ → TbB is an isometry for all p ∈ Lb, would be
parallel. This follows from Remark 4.5.

Special Lagrangian fibrations are known to be highly constrained both an-
alytically [11] and topologically. The following example shows that STR sub-
manifolds and fibrations can instead appear in infinite-dimensional families.
Analytically, an important difference between the two cases is that the STR
condition is non-elliptic. We refer to [10, 9] for a discussion of this fact in a
slightly different context. The example below also emphasizes that the parallel
condition is more subtle than might be apparent.

Elliptic fibre bundles. Choose a complex torus C/Λ, where Λ is the lattice
generated by {1, τ}. Let E be a holomorphic line bundle over the torus and let
E∗ denote E minus the zero section. Locally, we can identify the total space
of E∗ with C × C∗. Given two local charts with coordinates (z, w) and (ζ, η),
the transition functions are of the form (z, w) 7→ (z+λ, φ(z)w), for some λ ∈ Λ
and φ ∈ O∗. The differential form Ω := dz ∧ (−id logw) = −i(dz ∧ dw/w) on
C×C∗ is invariant under gluing. It follows that Ω is a well defined holomorphic
(2, 0)-form on the total space of E∗. Choose c > 1 and consider the action of
Z on C∗ defined by n · w := cnw. It induces an action on E∗ which preserves
Ω. Let M denote the quotient complex surface E∗/Z, again endowed with Ω.
It is a holomorphic fibre bundle over C/Λ with fibre isomorphic to the elliptic
curve C∗/Z ≃ C/Λ′, where Λ′ is the lattice generated by {log c, 2πi}. The group
action of C∗/Z endows M with a principal fibre bundle structure.

Assume E is topologically trivial. Choose any smooth section σ of E∗. Then,
for any fixed b := (s, t) with s ∈ [0, 1] and t ∈ [0, log c], (x, θ) 7→ et+iθ ·σ(x+ sτ)
defines a 2-dimensional torus Lb in M . Varying b, we obtain a fibration over the
torus B defined by the variables (s, t). Notice that if we fix b, x, the remaining
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variable θ parametrizes a TR circle in the complex fibre (E∗/Z)b. Varying
x ∈ [0, 1] generates a direction transverse to this fibre, so each torus Lb is
necessarily TR. Now choose b ∈ B and p ∈ Lb. In terms of local coordinates
(z, w) ∈ C×C∗, p = (x+sτ, et+iθσ(x+sτ)) and TpLb is generated by the vectors
v1 := (1, et+iθσx), v2 := (0, iet+iθσ), so Ω(v1, v2) = −idz(v1)dw(v2)/(e

t+iθσ) ≡
1. It follows that eachLb is STR, so we have obtained infinitely many (depending
on σ) STR torus fibrations of M over the same base space B.

In general however the above vectors are not of the form vi = J(w̃i) re-
quired by (2). Indeed, the projection map onto (s, t) is of the form (z, w) 7→
(πτ (z), log |w|) (up to the quotient operation in the torus B), where πτ calcu-
lates the second coordinate with respect to the basis {1, τ}. Linearizing it at p
and applying it to −iv1,−iv2 yields vectors in TbB which are not independent
of x, θ, ie of p ∈ Lb. It follows that the fact Ω(v1, v2) ≡ 1 does not prove that
these fibrations are parallel, and indeed they are not.

On the other hand one can show ([2], p. 197) that, whenever E is topolog-
ically trivial, M is a complex torus. We will show in Section 6, via a different
construction, that any such torus also admits parallel STR fibrations.

If E is not topologically trivial, the above construction produces examples
of “primary Kodaira surfaces”. Any such surface is non-Kähler. In this case
it is not clear if one can produce a global STR fibration. However, recall that
any S

1-bundle over S
1 is trivial. It follows that we can produce a section σ

of the unitary subbundle in E∗ (for some metric), restricted to the circle in
C/Λ parametrized by x 7→ (x+ sτ) (for any fixed s). We thus obtain a Ω-STR
torus as above, which we can use to obtain lower bounds for the corresponding
extremal volume µα as in Section 3.

6 Moduli spaces of complex tori

Another class of examples endowed with a group action is provided by complex
tori Cn/Λ. Here, Λ is a lattice in Cn = R2n of maximal rank, i.e. an additive
subgroup generated by 2n R-linearly independent vectors.

Compared to Reinhardt domains, this class has two important features: (i)
complex tori are Lie groups, so the group action here is much stronger, (ii) the
manifold is compact so, up to normalization, any holomorphic volume form is a
(constant) rotation of dz1 ∧ · · · ∧ dzn. It will thus suffice to focus on this form.
Our interest in this class stems from the fact that it will suggest a new twist to
the theory of extremal volume.

For n = 1, each integral homology class α ∈ H1(C/Λ;Z) can be represented
by a segment in C which connects 0 to an element of the lattice, so we can
identify H1(C/Λ;Z) ≃ Λ. Choose any such α ≃ λ = |λ|eiθ . The corresponding
closed curve in C/Λ is Ω-STR, where Ω = e−iθdz is closed. By translation we
obtain a parallel STR fibration of C/Λ.

More generally, any integral homology class α ∈ Hn(C
n/Λ;Z) can be rep-

resented by a subtorus generated by n R-linearly independent vectors in the
lattice. The subtorus is TR if the vectors are C-linearly independent. As above,
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it is then automatically STR for an appropriate choice of closed (constant) Ω.
Notice that, in order to properly define the base space B, one should keep in
mind that the fibres may wrap multiple times around the torus.

The corresponding µα can be calculated using Theorem 4.4 and rotation-
invariance of the relevant quantities. We summarize as follows.

Corollary 6.1 The extremal volume of any class α represented by a TR subtorus
L in Cn/Λ can be explicitly calculated in terms of the standard volume form
Ω = dz1 ∧ · · · ∧ dzn. Specifically,

µα =
(
∫
L
|Ω|)2∫

M
ΩM

.

For all other classes, µα = 0.

Remark 6.2 Recall that generic complex tori do not admit complex submani-
folds. On the other hand, any Λ admits a complex basis, thus a TR subtorus. It
follows that some µα is always non-trivial. This highlights the usefulness, in the
context of non-algebraic manifolds, of an invariant based on TR, rather than
complex, submanifolds.

Since µα is biholomorphically invariant, we can make use of the known clas-
sification results for complex tori in order to simplify the presentation of the
torus. Studying these moduli spaces of complex tori raises also a new question,
which is foundational for Section 7.

Question: How does extremal volume behave with respect to variations of J?

The 1-dimensional case, explained below, is classical: a certain upper bound
is uniform with respect to the complex structure. Lemma 6.4 will provide an
analogue in higher dimensions.

Dimension 1. Recall that any holomorphic map f : C/Λ1 → C/Λ2 lifts to
an affine holomorphic function f̃(z) = z0z + z1 : C → C. Up to translations on
C/Λ2 we may assume f̃(z) = z0z. The map f is a biholomorphism if and only
if f̃(Λ1) = Λ2, i.e. Λ2 = z0 · Λ1 for some z0 ∈ C∗. For example, assume Λ2 is
obtained via reflection of Λ1 across R. The corresponding tori are then generally
only complex-conjugate, not biholomorphic, unless Λ1 is invariant under this
reflection.

The moduli spaceM of complex tori can now be built as follows. Any lattice
Λ in C = R2 can be identified with an orbit of the right action of GL(2,Z) on
the Stiefel space L(R2) ≃ GL(2,R) of linear bases on R

2. As seen above,
biholomorphic tori are obtained via complex multiplication, which induces the
left action of C∗ on L(R2). The moduli space of complex tori is thus the double
quotient

M = GL(1,C)\GL(2,R)/GL(2,Z).
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This space becomes more concrete if we choose a “canonical” Λ in each biholo-
morphic equivalence class. It is well known that such Λ can be defined via bases
of the form {1, τ}, where τ belongs to the domain D ⊆ C defined by the con-
ditions Im τ > 0, |Re τ | ≤ 1/2 and |τ | ≥ 1. In particular, any τ ∈ D has the
property Im(τ) = |τ | sin θ ≥

√
3/2. Up to appropriate identifications along the

boundary, this domain exactly parametrizes M.
For example, consider the torus corresponding to τ = x + iy ∈ D, i.e.

generated by {1, τ}. As seen above, the conjugate torus is generated by {1, x−
iy}. The basis {1,−x+iy} generates the same lattice: we thus see that this torus
corresponds to τ ′ = −x + iy ∈ D. In summary, all such pairs τ , τ ′ correspond
to complex conjugate tori (not biholomorphic unless x = 0).

Given any complex torus, we can now express any of its extremal lengths in
terms of τ . For example, let α ∈ H1 be the class of the segment ending in 1. The
corresponding subtorus is STR with respect to Ω = dz. Let us apply Theorem
4.4 (or Corollary 6.1), noticing that

∫
M

ΩM is simply the Euclidean area of the
fundamental domain generated by 1, τ . We thus obtain, for all complex tori,
the uniform bound

µα =
1

|τ | sin θ ≤ 2√
3
. (3)

Analogously, let α′ ∈ H1 be generated by the segment ending in τ . The cor-
responding subtorus is STR with respect to Ω′ = e−iθdz. As above, we find
µα′ = |τ |/ sin θ.

Notice: the complex parameter τ and the real parameters arising from ex-
tremal length provide different invariants for complex tori. One can ask the
following question: does extremal length provide a complete set of invariants?
With the above two choices of reference classes, we have reconstructed τ up
to the ambiguity between θ and π − θ so the answer is yes, up to complex
conjugation. According to Remark 2.3, this is the best we can hope for.

Higher dimensions. The fundamental facts concerning complex tori Cn/Λ
are similar. Any biholomorphism lifts to a complex affine transformation of
Cn, and the full moduli space can be identified with the double quotient of
the Stiefel space GL(n,C)\GL(2n,R)/GL(2n,Z). The natural topology of this
space is however not Hausdorff, so one generally prefers to restrict to special
subclasses.

Let us consider the class of principally polarized abelian varieties, i.e. com-
plex tori (Cn/Λ, ω) endowed with a symplectic structure ω with the following
property: there exists some basis of Λ of the form {v1, . . . , vn, Jv1, . . . , Jvn}
with respect to which the matrix of ω has the standard form

ω ≃
(

O I
−I O

)
.

In particular ω is integral on Λ, so these tori are projective. Two such tori
are equivalent if they are related by a biholomorphism which also preserves the
symplectic structures. They are parametrized, up to equivalence, by lattices of
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the form Zn + τ · Zn, where τ = A+ iB ∈ GL(n,C) is a complex matrix in the
Siegel domain defined by the conditions At = A, Bt = B, B positive definite.
Two such lattices, corresponding to τ and τ ′, define the same polarized tori if
τ and τ ′ are in the same orbit of a certain action of Sp(2n,Z) on the Siegel
domain.

A fundamental domain D for this action is known. We are interested in
the fact, cf. [8] Section 1.3 Lemma 2, that any τ ∈ D satisfies a uniform
lower bound det(B) ≥ c(n). Choose α ∈ Hn(Cn/Λ;Z) represented by the
subtorus defined by Zn. It is STR with respect to Ω = dz1 ∧ · · · ∧ dzn, and
∫
M

ΩM = det

(
I A
0 B

)
. Theorem 4.4 (or Corollary 6.1) now yields a uniform

upper bound of the form

µα =
1∫

M
ΩM

=
1

det(B)
≤ d(n).

Remark 6.3 The subtorus defined by Zn is actually special Lagrangian with
respect to the polarization on Cn/Λ.

For our purposes, the polarization serves only to help define a useful mod-
uli space, so the above classification is finer than necessary. Forgetting the
symplectic structure, we will be content with the following summary.

Lemma 6.4 There exists d = d(n) such that any complex torus Cn/Λ which
admits a principal polarization contains a TR torus whose homology class α ∈
Hn(C

n/Λ;Z) has positive extremal volume and satisfies

µα =
1∫

M
ΩM

=
1

det(B)
≤ d. (4)

Notice that any non-TR subtorus will yield an extremal volume with value
zero. Forgoing this trivial case, the lemma shows that the set of positive values
attained by the extremal volume cannot uniformly “float off” to infinity, as J
varies in this moduli space.

7 Complex systolic inequalities

Up to here we have presented extremal volume as a tool for extracting informa-
tion from a given complex manifold. The previous section suggests however that
it can also be used to encode information regarding moduli spaces. Specifically,
(3) and (4) show that certain bounds on the geometry of the fundamental do-
main can be expressed in terms of extremal volume. In the 1-dimensional case
there exists a classical alternative way of formulating bounds such as (3) using
the language of “systolic geometry”. Reviewing this concept will suggest a no-
tion of “complex systolic geometry”, thus providing an analogous reformulation
of (4). The definition will require only the lower bounds provided in Section 3.
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Riemannian systolic geometry. Let M be a compact m-dimensional differ-
entiable manifold. Given a Riemannian metric g on M , one defines the systole
s(g) of (M, g) to be the smallest length of all non-contractible curves in M .
One can show that such a minimizing curve exists; it is necessarily a geodesic.
In higher dimensions this notion is usually generalized via homology classes:
the k-systole sk(g) is the smallest k-volume amoung all k-dimensional cycles
representing any non-zero class in Hk(M ;Z). Roughly speaking, the restriction
to non-zero classes eliminates values arising from submanifolds generated by
possible “bubbles” in the metric, but having no topological significance.

The main point of systolic geometry is to relate the values of these k-systoles,
for various k and g. The simplest case concerns the relation between s(g) and
sm(g), i.e. the volume of (M, g). Let us consider the case m = 2.

In two dimensions, given a compact surface M , systolic geometry establishes
inequalities of the form

sup
g

s(g)2∫
M

volg
≤ c, (5)

for some constant c = c(M), as g varies amoung all metrics on M .
An upper bound of this type should not be taken for granted. Roughly

speaking, it says that the area of M is uniformly controlled by the length of its
shortest non-contractible geodesic, in the sense that

∫
M

volg ≥ d · s(g)2, where
d is independent of g. In particular, on a topological level this basically implies
that the manifold is in some sense “generated” by non-contractible curves, oth-
erwise these curves could not hope to control the total area. This is clearly false
for M = S2, which has no non-contractible curves.

We remark that one can also think of (5) as a boundaryless analogue of the
classical isoperimetric problem, but notice that inequalities of the form (5) are
opposite those which appear in isoperimetric problems.

In m dimensions the analogous inequality would be s(g)m/
∫
M

volg ≤ c.
Again, examples of the form M = S

1 × S
2 show that such upper bounds, uni-

form with respect to g, are in general impossible unless M has special topolog-
ical properties. From this point of view, the aim of systolic geometry is to use
Riemannian metrics to obtain information on the topology of a given differen-
tiable manifold. The lack of such bounds corresponds to the notion of “systolic
freedom”, and reveals interesting connections between systolic inequalities and
algebraic topology. We refer to [3] for a gentle introduction to systolic geometry
and for further references.

Loewner’s theorem. The quantities appearing in (1) and (5) are very sim-
ilar, though the former is more restrictive regarding the class of metrics. This
implies that extremal length can provide a useful tool for systolic geometry.

The case M = S
1 × S

1 is a well known example. In 1949, Loewner showed
that such M satisfies the systolic inequality (5). This can be proved as follows.

Any Riemannian metric g on M defines a notion of π/2-rotation, so it de-
fines a complex structure J which is integrable for dimensional reasons. The
Riemann-Roch theorem implies that (M,J) is biholomorphic to a torus of the
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form C/Λ, for some Λ, and g corresponds to ρ2gstd, for some ρ. As in Section 6,
we may assume that Λ is generated by {1, τ}. Using α as in (3), by definition
s(g) ≤ l(α, ρ dz) so

s(g)2∫
M

volg
≤ (l(α1, ρ dz))

2

∫
M

ρ2dxdy
≤ µα ≤ 2√

3
.

The systolic inequality (5) follows, with c = 2/
√
3.

In other words, Loewner’s result is the Riemannian version of a holomor-
phic fact concerning the moduli space of tori. The Riemannian formulation (5)
contains basically the same information as the holomorphic formulation (3).

Remark 7.1 As is usual for extremal length, (3) is formulated in terms of a
specific homology class α, defined in terms of a “canonical”, but still somewhat
arbitrary, choice of fundamental domain for the moduli space. The systolic
inequality (5) provides a more intrinsic, coordinate-free, formulation of a geo-
metric property of the moduli space. The class α could alternatively be defined as
the minimizer of the extremal length functional on (non-zero) homology, bridg-
ing this difference.

Complex systolic geometry. We have already mentioned that, in higher
dimensions, our notion of extremal volume has no Riemannian content. A direct
analogy with the 1-dimensional situation and Loewner’s theorem is thus not
possible. In the spirit of Remark 7.1, however, the following notion of complex
systolic geometry offers a canonical, geometric, reformulation of bounds such as
(4), applicable to any complex manifold admitting holomorphic volume forms.

Lemma 7.2 Assume Ω is closed and not identically zero. Let Ω′ := eiθΩ, for
some function eiθ : M → S1. Then Ω′ is closed if and only if θ is constant.

Proof: Since Ω is closed and of type (n, 0), we find

dΩ′ = ieiθdθ ∧ Ω = ieiθ∂̄θ ∧ Ω.

The right hand side vanishes if and only if either Ω = 0 or ∂̄θ = 0. Ω can only
vanish in isolated points. At all other points θ is a real-valued holomorphic
function, thus it is constant. By continuity, it is constant on M . �

Definition 7.3 Let M be a differentiable manifold. Let J be an integrable com-
plex structure on M and Ω be a closed (thus holomorphic) (n, 0)-form, not iden-
tically zero.

Let Hn(Ω) ⊆ Hn(M ;Z) denote the set of all homology classes α containing
a eiθΩ-STR representative L, for some constant θ.

If Hn(Ω) is not empty, we define the (J,Ω)-systole s(J,Ω) of M to be the
smallest value of

∫
L
ΩL amoung all L representing any α ∈ Hn(Ω). Equivalently

(using the fact that extremal volume is rotation-invariant),

s(J,Ω) := inf{l(α,Ω) : α ∈ Hn(Ω)}.

19



If Hn(Ω) is empty, we set s(J,Ω) := ∞.
Let M be a fixed moduli space of integrable complex structures on M . We

define the extremal complex systole of M as

σM := sup
(J,Ω)

s(J,Ω)2∫
M

ΩM

,

where J ∈ M and Ω is a closed (n, 0)-form, not identically zero.

The quantities s(J,Ω), σM are thus the “relaxed” forms of l(α,Ω), µα, with
fewer restrictions on α, J .

The logic underlying this definition is as follows. (i) In the proof of Loewner’s
theorem, g corresponds to a pair (J,Ω). In this sense, s(J,Ω) is the higher-
dimensional complex analogue of the Riemannian systole s(g) and the inequality
σM ≤ c is the complex analogue of the Riemannian systolic inequality (5).
(ii) Lemma 7.5 shows that the restriction to closed Ω ensures that s(J,Ω) is
positive (rather than non-negative). (iii) Including different phases implies that
the complex systole is rotation-invariant, as is true for the extremal volume.
This allows comparisons between these two quantities. Lemma 7.2 guarantees
that it suffices to concentrate on constant phases.

Remark 7.4 It follows from Remark 2.3 that if L is Ω-special, then −L is
(−Ω)-special.

Notice also that submanifolds which are STR with respect to different phases
cannot belong to the same homology class. Indeed, assume there exist an Ω-
special submanifold L and an (eiθΩ)-special submanifold L′ in the same homol-
ogy class α. Then

∫
L
ΩL =

∫
L
Ω =

∫
L′

Ω = e−iθ
∫
L′

eiθΩ = e−iθ
∫
L′

ΩL′ . Since

both
∫
L
ΩL and

∫
L′

ΩL′ are real and positive, it follows that eiθ = 1.

Lemma 7.5 For any (J,Ω) as in Definition 7.3, the complex systole s(J,Ω) is
strictly positive.

Proof: Since Hn(M ;Z) is a finitely generated Abelian group, the subgroup
generated by Hn(Ω) is also finitely generated. Let α1, . . . , αm be generators of
this subgroup. Since each αj is a finite linear combination of elements in Hn(Ω),
up to increasing the number of generators we may assume that each αj ∈ Hn(Ω).
It follows that each αj is represented by a eiθjΩ-STR submanifold Lj . Rotation-
invariance and Proposition 3.2 show that l(αj ,Ω) = l(αj , e

iθjΩ) =
∫
Lj

eiθjΩ,

which is positive because Ω is holomorphic, thus has only isolated zeroes. The
systole s(J,Ω) thus coincides with the minimum value of a finite set of positive
numbers. �

Remark 7.6 A variation of Definition 7.3 might include in Hn(Ω) all classes
α represented by a eiθΩ-special submanifold L, for some constant θ, adding the
additional condition

∫
L
ΩL > 0. This variation includes submanifolds which

are not necessarily TR but excludes complex submanifolds (which are trivially
special). The analogue of Lemma 7.5 would again lead to a strictly positive
systole.
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We can now reformulate Lemma 6.4 as a complex systolic inequality, freeing
it from any particular homology class or coordinate system.

Theorem 7.7 Let M = S1 × · · · × S1 be the smooth 2n-dimensional torus. Let
M be the moduli space of principally polarized complex structures on M . There
exists d = d(n) such that

σM ≤ d.

Proof: Given any J such that (M,J) = Cn/Λ admits a principal polarization,
we may choose Ω = dz1 ∧ · · · ∧ dzn. Choose α as in Lemma 6.4, represented by
an Ω-STR subtorus L. By definition, s(J,Ω) ≤

∫
L
ΩL =

∫
L
Ω so

s(J,Ω)2∫
M

ΩM

≤ (
∫
L
Ω)2∫

M
ΩM

= µα ≤ d,

where d is as in Lemma 6.4. Since this holds for all J , we obtain the desired
result. �

Roughly speaking this shows that, for all J ∈ M and all holomorphic volume
forms, the complex volume of M is uniformly controlled by the complex volume
of its smallest STR submanifold.

Remark 7.8 A notion of complex systole in the restricted, strongly Rieman-
nian, context of Calabi-Yau manifolds appears in [4], cf. Definition 1.1, where
the author minimizes an analogue of the Ω-volume only amoung special La-
grangian submanifolds. This definition is then used in [5], whose Theorem 4.2
is similar to our Theorem 7.7 but relies on the special fact that any complex
torus is a Calabi-Yau manifold. The main focus of these papers is orthogonal to
ours: they study symplectic geometry, Fukaya categories and Bridgeland stability
conditions.
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