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Abstract

Similarity is one of the most straightforward ways to relate objects and guide the human

perception of the world. It has an important role in many areas, such as Information

Retrieval, Natural Language Processing, Semantic Web and Recommender Systems.

To help applications in these areas achieve satisfying results when finding similar con-

cepts, it is important to simulate human perception of similarity and assess which sim-

ilarity measure is the most adequate.

We propose Sigmoid similarity, a feature-based semantic similarity measure on

instances in a specific ontology, as an improvement of Dice measure. We performed

two separate evaluations with real evaluators. The first evaluation includes 137 subjects

and 25 pairs of concepts in the recipes domain and the second one includes 147 subjects

and 30 pairs of concepts in the drinks domain. To the best of our knowledge these are

some of the most extensive evaluations in the field.

We also explored the performance of some hierarchy-based approaches and showed

that feature-based approaches outperform them on two specific ontologies we tested.

In addition, we tried to incorporate hierarchy-based information into our measures and

concluded it is not worth complicating the measures only based on features with addi-

tional information since they perform comparably.
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instances
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1. Introduction

Similarity is one of the main guiding principles which humans use to categorise the

objects surrounding them. While in psychology the focus is on how people organise

and classify objects, in computer science similarity plays a fundamental role in infor-

mation processing and finds its application in many areas from Artificial Intelligence5

to Cognitive Science, from Natural Language Processing to Recommender Systems.

Semantic similarity can be employed in many areas, such as text mining, dialogue sys-

tems, Web page retrieval, image retrieval from the Web, machine translation, ontology

mapping, word-sense disambiguation, and item recommendation, to name just a few.

Due to the widespread usage and relevance of semantic similarity, its accurate calcu-10

lation which closely mirrors human judgement brings improvements in the above and

many other areas.

Usually, semantic similarity measures have been tested on WordNet [12]. WordNet

is a taxonomic hierarchy of natural language terms developed at Princeton University.

The concepts are organised in synsets, which group words with similar meaning. More15

general terms are found at the top of the underlying hierarchy, whereas more specific

terms are found at the bottom. Two important datasets used to test similarity measures

on WordNet are the ones proposed by Rubenstein and Goodenough [29] and Miller

and Charles [20]. These datasets are manually composed and contain rated lists of

domain-independent pairs of words.20

However, with the diffusion of ontologies as knowledge representation structures

in many areas, there is a need to find similar and related objects in specific domain

ontologies used in various applications, rather than just testing the similarity of con-

cepts in WordNet. In these cases, the features of domain objects play an important role

in their description, along with the underlying hierarchy which organises the concepts25

into more general and more specific concepts. The experiments with feature-based

and hierarchy-based semantic similarity measures on specific domain ontologies are

rare and do not have conclusive results [24, 36]. Hence, we decided to carry out some

experiments with Dice feature-based similarity measure on two specific domain ontolo-

gies. For our first experiment, we chose the domain of recipes and used the slightly30
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modified Wikitaaable dataset1 previously used in [7]. For our second experiment, we

chose the domain of drinks, developed previously by our research team for different

purposes. It should be noted that it is difficult to find a publicly available ontology

with defined properties, which is an important requirement for testing our approach.

In addition, the domains which could be tested with non-expert users are very limited,35

since the users should be able to evaluate the similarity of all (or at least most of) the

pairs proposed in the test. This is the reason we could not have used any of the medical

ontologies available, since in medical domain only expert evaluators can be used for

evaluation purposes.

There are many different similarity measures around. It is not very clear which40

measure is the most suitable in a given situation and comparative studies are rare [21,

30]. Above all, the evaluation of the measures with users is limited often to very few

participants. On the contrary, our experiments involve 137 and 147 real evaluators

respectively, which is a significant number of participants compared to other studies.

Thus, we aimed to gain more insight into the behaviour of Wu and Palmer’s [34]45

and Li’s [18] hierarchy-based measures, as well as Dice feature-based similarity mea-

sure for ontology instances calculated from property-value pairs for compared objects.

This led us to propose Sigmoid similarity measure as a feature-based counterpart of

Li’s measure. Sigmoid measure could be applied in other domains where common and

distinctive features of domain concepts are available. Also, we tried to combine Dice50

and Sigmoid similarity measures with hierarchy based approaches.

Our aim was to avoid any dependency on the weighting parameters which mark the

contribution of each feature (known also as relevance factors). These parameters can

be tuned for each single domain, but we wanted to test the contribution of each feature

with its equal share.55

The main contributions of this work are the following:

1. a concrete proposal for a new feature-based similarity measure, which could take

underlying hierarchy into account;

2. new datasets which can be used for the evaluation of feature-based similarity

1http://wikitaaable.loria.fr/rdf/
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measures, as well as an extensive evaluation using real human subjects.60

The paper is organised as follows. In Section 2 we provide the background on the

basic concepts we use in our work. In Section 3, we provide some details about the

semantic similarity measures we will be dealing with: feature-based semantic similar-

ity measures and hierarchy-based semantic similarity measures. For the sake of com-

pleteness we also give some background on Information Content similarity measures,65

although we will not be dealing with them in this paper. In Section 4 we see how Dice

feature-based measure corresponds to Wu and Palmer’s [34] hierarchy-based measure

and propose Sigmoid measure as a new feature-based similarity measure which cor-

responds to Li’s [18] hierarchy-based measure. We also give details of the variations

of each of these similarity measures which might include or not the hierarchy-based70

similarity. The results of our extensive evaluation are reported in Section 5 followed

by a Section 6 which summarises some additional works which exploit feature-based

semantic similarity measures. In Section 7 we draw some conclusions and point some

directions for future work.

2. Background on semantic knowledge representation75

This section provides a background on the main notions used in this work.

2.1. Conceptual hierarchies

A conceptual hierarchy provides a taxonomy (a tree or a lattice) of concepts organ-

ised using the partial order IS-A relation, which specialises more general classes into

more specific classes [3, 33]. The IS-A relation is asymmetric and transitive and de-80

fines a hierarchical structure of the ontology, enabling the inheritance of characteristics

from parent classes to descendant classes. W.r.t. similarity calculation, it enables the

employment of hierarchy-based approaches.

2.2. Ontologies

Ontologies enable explicit specification of domain elements and their properties,85

hierarchical organisation of domain elements, exact description of any existing rela-

tionships between them and employment of rigorous reasoning mechanisms. An ontol-
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ogy can be seen as a “formal, explicit specification of a shared conceptualisation” [13].

They are expressed with standard formats and languages (e.g., OWL.2), which allow

for extensibility and re-usability.90

Two layers can be identified in an ontology: the ontology definition layer which

contains the classes which describe the concepts in the domain, and the instance layer

which contains all the distinct individuals in the domain.

The relations between resources are defined by means of properties. Two types of

properties exist:95

(i) object properties linking individuals among themselves;

(ii) data type properties linking individuals and data type values.3

In this work, we only considered object properties, since the treatment of data type

properties (such as literal values) requires further semantic analysis.

Instances in the ontology (also called individuals) describe concrete individuals.100

They are defined with individual axioms which provide their class memberships (prop-

erty rdf:type), individual identities and values for their properties. All the properties

of instances are inherited from the classes to which the instances belong . A specific

value is associated to each property and some properties can have more than one value.

Properties of instances enable the employment of feature-based similarity measures for105

ontology instances.

3. Semantic similarity measures

In this section we give some details of the three main categories of semantic simi-

larity measures, namely those that are hierarchy-based, feature-based and information

content-based. As a result of trying to improve and combine the above approaches,110

many hybrid similarity measures were born. In our experiments we only dealt with Wu

and Palmer’s and Li’s hierarchy-based measures and with Dice feature-based measure

2http://www.w3.org/TR/owl-ref
3In OWL, there is also the notion of annotation property (owl:AnnotationProperty) and ontology property

(owl:OntologyProperty), used in OWL DL.
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and their combinations. We include information-content-based measures for the sake

of completeness only .

3.1. Hierarchy-based similarity measures115

Hierarchy-based or distance-based similarity measures use the underlying concep-

tual hierarchy directly and calculate the distance between concepts by calculating the

number of edges or the number of nodes which have to be traversed in order to reach

one concept from another. The hierarchy-based measure was first introduced by Rada

et al. in [25] as a simple shortest path connecting the compared concepts and was the120

basis for the development of many measures of semantic similarity. A discussion and

comparison with information content-based approaches can be found in [5]. In this

section we give more details about three hierarchy-based measures: Wu and Palmer’s

measure [34], Li’s measure [18] and Leacock and Chodorow’s measure [17].

3.1.1. Wu and Palmer’s similarity measure125

Wu and Palmer’s similarity measure [34] is based on the depths in the hierarchy

of the two words being compared and on the depth of their common subsumer, which

characterises their commonalities. If we denote by c the first subsuming node for the

two compared nodes a and b, their similarity is calculated as follows:

simWP(a, b) =
2Nc

Na + Nb
. (1)

Nn is the number of nodes along the path from the node n to the root.

This measure can also be expressed as a function of distances between nodes as

follows:

simWP(a, b) =
2dist(c, r)

dist(a, r) + dist(b, r)
. (2)

dist(n, r) is the distance of n from the root, again calculated as the shortest path length

between the two nodes.

If we write dist(a, r) = dist(a, c) + dist(c, r) and dist(b, r) = dist(b, c) + dist(c, r)

this equation becomes:

simWP(a, b) =
2dist(c, r)

dist(a, b) + 2dist(c, r)
. (3)
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In [34] this measure was used in lexical selection problems in machine translation

where the performance of inexact matches based on verb meanings is evaluated.130

3.1.2. Li’s similarity measure

Li et al. [18] proposed an approach for calculating the similarity between sentences

which uses semantic information and word order information in the sentence. Similar-

ity of singular words is calculated using the shortest path length between words (dist)

and the depth of their common subsumer (h) as follows:

simL(a, b) = e−αdist(a,b) eβh − e−βh

eβh + e−βh =
e2βh − 1

(e2βh + 1)eαdist(a,b) . (4)

where α ∈ [0, 1], β ∈ (0, 1] are parameters which control the contribution of shortest

path length and depth, respectively. As β → ∞, the depth of a word in the semantic

nets is not considered. Their optimal values depend on the knowledge base used and

for WordNet they are α = 0.2 and β = 0.45. For the proposed benchmark dataset, the135

optimal values are α = 0.2 and β = 0.6 (obtained experimentally). If the words a and b

belong to the same synset then dist(a, b) = 0, if they do not belong to the same synset

but the synsets for a and b contain one or more common words, then dist(a, b) =

1 and for the remaining cases the actual path length between a and b is calculated.

This measure was introduced for purely theoretical purposes, as an improvement of the140

existing similarity measures.

3.1.3. Leacock and Chodorow’s similarity measure

For the sake of completeness we would also provide details of Leacock and Chodorow’s

similarity measure [17] which was originally used for word sense disambiguation in a

local context classifier. The most similar nouns from the training set are substituted for

the ambiguous ones in testing. In order to calculate the distances between words, the

authors use the normalised path length in WordNet [12] between all the senses of the

compared words and measure the path length in nodes:

simLC(a, b) = − log
( N p
2max

)
. (5)

N p is the number of nodes in the path p from a to b, whereas max is the maximum

depth of the hierarchy. The distance between two words belonging to the same synset
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is 1.145

If we want to express this measure as a function of distances between nodes we

obtain the following formula:

simLC(a, b) = − log
(
dist(a, b)

2max

)
. (6)

dist(a, b) is the distance between a and b calculated as the shortest path length between

these two nodes.

The disadvantage of this similarity measure is that many pairs of non-similar words

are estimated as similar, due to the equal edge lengths in their hierarchy.

3.2. Information content-based similarity measures150

The measures seen above work on single knowledge structures and they do not

need external sources for similarity calculation. In this section we present the most

important approach which uses an external corpus to compute the similarity. The foun-

dational work on information content-based similarity is due to Resnik [26, 27]. His

approach is based on the fact that the more abstract classes provide less information

content, whereas more concrete and detailed classes lower down in the hierarchy are

more informative. The closest class that subsumes two compared classes, called a most

informative subsumer is the class which provides the shared information for both, and

measures their similarity. In order to calculate the information content of a concept in

a IS-A taxonomy, Resnik turns to an external text corpus and calculates the probability

of occurrence of the class in this corpus as its relative frequency (each word in the text

corpus is counted as an occurrence of each class that contains it). The information

content of a class in a taxonomy is given by the negative logarithm of the probability

of occurrence of the class in a text corpus as follows:

simR(a, b) = maxc∈S (a,b)[− log p(C)] (7)

where p(c) is the probability of encountering an instance of concept c, and S (a, b) is the

set of all concepts that subsume a and b. According to Resnik this approach performs

better than hierarchy-based approaches, based on human similarity judgements as a

benchmark. He used this similarity measure to resolve the problems of ambiguity in

natural language.155
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3.3. Feature-based similarity measures

The calculation of similarity based on properties goes back to Tversky’s work

on Features of Similarity [32] where similarity between two objects O1 and O2 is a

function of their common and distinctive features:

simT (O1,O2) =
α(ψ(O1) ∩ ψ(O2))

β(ψ(O1) \ ψ(O2)) + γ(ψ(O2) \ ψ(O1)) + α(ψ(O1) ∩ ψ(O2))
. (8)

In the formula above ψ(O) describes all the relevant features of the object O, and160

α, β, γ ∈ R are constants which allow for different treatment of the various compo-

nents. For α = 1 common features of the two objects have maximal importance. For

β = γ non-directional similarity measure is obtained. Depending on the values for

α, β, γ, we obtain the following variations of Tversky similarity:

• Jaccard or Tanimoto similarity for α = β = γ = 1;165

• Dice or Sørensen similarity for α = 1 and β = γ = 0.5.

Hence, in Jaccard and Dice case, the above formula becomes:

simJ(O1,O2) =
(ψ(O1) ∩ ψ(O2))

(ψ(O1) \ ψ(O2)) + (ψ(O2) \ ψ(O1)) + (ψ(O1) ∩ ψ(O2))
. (9)

simD(O1,O2) =
2(ψ(O1) ∩ ψ(O2))

(ψ(O1) \ ψ(O2)) + (ψ(O2) \ ψ(O1)) + 2(ψ(O1) ∩ ψ(O2))
. (10)

In our setting, we will use the following notation:

• common features of O1 and O2: cf(O1,O2) = ψ(O1) ∩ ψ(O2),

• distinctive features of O1: df(O1) = ψ(O1) \ ψ(O2) and170

• distinctive features of O2: df(O2) = ψ(O2) \ ψ(O1).

In order to calculate the above similarities for domain objects O1 and O2, we need

to calculate for each property p they have in common, how much it contributes to

common features of O1 and O2, distinctive features of O1 and distinctive features of

O2, respectively. We denote these values by cfp, df1p and df2p.175

Hence, we have to compare the property-value pairs between instances for each

property they have in common. We will include in common features the cases when
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the two objects have the same value for the given property p. We will include in

distinctive features of each object the cases when the two objects have different values

for the given property p.180

We consider equal the properties defined with owl:EquivalentProperty. Repeating

the above process for each property O1 and O2 have in common, we obtain all common

and distinctive features of O1 and O2:

cf(O1,O2) = Σn
i=1cfpi (O1,O2)

df(O1) = Σn
i=1df

1
pi

(O1) df(O2) = Σn
i=1df

2
pi

(O2)

where n is the number of common properties defined for O1 and O2. Then the above

similarity measures become:

Jaccard similarity:

simJ(O1,O2) =
cf(O1,O2)

df(O1) + df(O2) + cf(O1,O2)
(11)

Dice similarity:

simD(O1,O2) =
2cf(O1,O2)

df(O1) + df(O2) + 2cf(O1,O2)
(12)

3.3.1. Mathematical properties

Here we provide some basic mathematical properties of Dice similarity measure

which we will address in the rest of the paper.185

1. Boundaries

∀O1,O2, 0 ≤ simD(O1,O2) ≤ 1.

2. Maximal similarity

If O1 ≡ O2, then simD(O1,O2) = 1.

3. Commutativity190

∀O1,O2, simD(O1,O2) = simD(O2,O1).

4. Monotonicity

If cf(O1,O2) ≤ cf(O1,O3) and df(O1) = df(O2), then simD(O1,O2) ≤ simD(O1,O3).

If cf(O1,O2) ≤ cf(O1,O3) and df(O2) = df(O3), then simD(O1,O3) ≤ simD(O2,O3).
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3.4. Advantages and disadvantages of various similarity measures195

Since they only depend on the underlying hierarchy of the domain ontology, the

hierarchy-based similarity measures are fairly simple and require a low computational

cost. The known problem with hierarchy-based similarity measures is that all the edges

in the hierarchy are considered to be of the same length, so many similarity values are

not correct. The accuracy of these measures have been surpassed by more complex200

approaches which exploit additional semantic information.

The problem with Resnik’s similarity measure is the excessive information content

value of many polysemous words (i.e. word senses not taken into account) and multi-

worded synsets. Also, the information content values are not calculated for individual

words but for synsets, hence the synsets containing commonly occurring ambiguous205

words would have excessive information content values. To deal with the problem

of excessive information content value of many polysemous words, Resnik proposes

weighted word similarity which takes into account all senses of the words being com-

pared.

The main problem with information content-based similarity measures is their de-210

pendence on external corpora for the calculation of term frequencies. This requires

disambiguation and annotation of terms in the corpus, very often done manually, hence

affecting the applicability of this approach to large corpora. Also, with the change of

corpora or the ontology, the term frequencies have to be recalculated. One step towards

mitigating this problem was the introduction of intrinsic computation of information215

content [31] as we will see in Section 6. The methods based on intrinsic information

content outperform corpora-relying approaches.

In this work, we particularly focus on feature-based and hierarchy-based similar-

ity measures since they do not require external knowledge sources for their application,

rather they rely solely on the domain ontology. Feature-based similarity measures eval-220

uate both common and distinctive features of compared objects, hence exploiting more

semantic information than hierarchy-based approaches. But this information is not al-

ways available and thus the applicability and accuracy of these measures is hindered.

Feature-based similarity measures can also be applied in cross-ontology settings.
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4. Converting hierarchy-based similarity measures into feature-based similarity225

measures

In this section we would look more closely into the relationship between hierarchy-

based similarity measures and feature-based similarity measures. Let us start from Wu

and Palmer’s similarity measure [34].

As we have seen, the formula for Wu and Palmer’s measure can be written as

simWP(O1,O2) =
2dist(O3,R)

dist(O1,O2) + 2dist(O3,R)
. (13)

where O1 and O2 are the compared instances, O3 is their common subsumer and R is

the root of the hierarchy. If we consider the distance between instances O1 and O2 as

their distinctive feature and the distance from instance O3 to the root as the common

feature of O1 and O2 we would obtain the formula:

simD(O1,O2) =
2cf(O1,O2)

df(O1) + df(O2) + 2cf(O1,O2)
(14)

As we can see, this is exactly the Dice formula. Thus, the Dice similarity measure230

corresponds to Wu and Palmer’s similarity measure.

4.1. Sigmoid similarity

In this section we will try to find the hierarchy-based similarity measure which

corresponds to Li’s similarity measure [18]. Since the similarity measure increases

with the increasing number of common features, common features can be taken as an

argument of the sigmoid function. Furthermore, the similarity values should decrease

with the increasing number of distinctive features, hence the distinctive features should

be an argument of the negative sigmoid function translated by 1. Thus we obtained the

following function:

simS (O1,O2) =
ecf(O1,O2) − 1
ecf(O1,O2) + 1

(1 −
edf(O1)+df(O2) − 1
edf(O1)+df(O2) + 1

)

=
2(ecf(O1,O2) − 1)

(ecf(O1,O2) + 1)(edf(O1)+df(O2) + 1)

(15)

This result is similar to just taking the distinctive features as an argument to inverse

exponential function since these two functions have similar graphs and behaviours for
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arguments greater than 0. But the exponential in the denominator increases very fast,

so the similarity values were getting extremely small very quickly. Hence we decided

to leave just the distinctive features in the denominator. Adding 1 prevents the case

of the division with zero when there are no distinctive features among the compared

objects. Also, we need to divide by 2 so that the final result is in the interval [0, 1).

Hence, the final Sigmoid similarity has the following formula:

simS (O1,O2) =
ecf(O1,O2) − 1

(ecf(O1,O2) + 1)(df(O1) + df(O2) + 1)
(16)

4.1.1. Mathematical properties

Here we report some basic mathematical properties of Sigmoid similarity measure.

1. Boundaries235

∀O1,O2, 0 ≤ simS (O1,O2) ≤ 1.

2. Maximal similarity

If O1 ≡ O2, then simS (O1,O2) = 1, since df(O1) = 0 and df(O2) = 0 and the

function S (x) =
ex − 1
ex + 1

tends to 1 when x tends to infinity.

3. Commutativity240

∀O1,O2, simS (O1,O2) = simS (O2,O1).

4. Monotonicity

If cf(O1,O2) ≤ cf(O1,O3) and df(O1) = df(O2), then simS (O1,O2) ≤ simS (O1,O3).

If cf(O1,O2) ≤ cf(O1,O3) and df(O2) = df(O3), then simS (O1,O3) ≤ simS (O2,O3).

Hence, the values of Sigmoid similarity measure belong to [0, 1) and the maxi-245

mal value is obtained when the compared objects do not have any distinctive features.

Commutativity and monotonicity are straightforward.

Next, we will see how we tried to include the hierarchical information into these

measures.

The basic question we wanted to answer with these experiments was how much the250

actual hierarchical information contributes to the similarity of two objects and if this in-

formation can be simulated by properties. Basically, the hierarchical information could

be either integrated into the measures by considering the rdf:type property (basic

measures) or it could be integrated into the measures by excluding the rdf:type prop-
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erty and including the hierarchical information in some different way. We also tried to255

see how including both would affect the performance. We decided to distinguish the

following two variations for Dice and Sigmoid measures:

V1: the measures without considering the property rdf:type but including the hier-

archical information in the feature-based similarity formula. In this case, since

the greater distance between two objects means that they are less similar, we de-

cided that the distance between objects counts as their distinctive feature. In the

following formulae dist(O1,O2) is the number of edges along the path connect-

ing O1 and O2 and max is the maximum depth of the class hierarchy.

simDnth(O1,O2) =
2cf(O1,O2)

df(O1) + df(O2) + 2cf(O1,O2) +
dist(O1,O2)

2max

(17)

simS nth(O1,O2) =
2(ecf(O1,O2) − 1)

(ecf(O1,O2) + 1)(df(O1) + df(O2) + 1 +
dist(O1,O2)

2max )
(18)

V2: the original measures considering the property rdf:type and including the hi-

erarchical information in the feature-based similarity formula. This approach

counts the hierarchical information twice in a way but in two subtle ways. In-260

cluding the property rdf:type takes into account all the objects which are of the

same recipe type, whereas including the hierarchical information accounts for

the distance between the compared objects. These measures (simDh and simS h)

showed slightly better performance results with respect to the original measures,

as we will see in Section 5. But, in our opinion, the improvement in performance265

does not justify the increased complexity and execution times of the proposed

variants.

Let us illustrate our ideas with some simple examples. In the recipe domain, all

the recipes could be instances of the class Recipe or there could exist an underlying

hierarchy of recipe types and each recipe could be an instance of its corresponding270

recipe type. In our case, instead of having all the recipes be instances of DishType,

we made the recipes instances of various dish types, such as BreadDish, CakeDish,

PastaDish etc. This choice has the following consequences:

• instead of having the same values for the property rdf:type for all the dishes,

we can distinguish them according to various values for the property rdf:type;275
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• in case we want to take the hierarchical information into account, we can cal-

culate the distance between various dishes, rather than assume that they all have

the same similarity, since they all have the same parent. Since we deal with the

instances in the ontology, we decided to consider them “descendants” of their

classes, otherwise the instances of one class would all be equal.280

5. Evaluation

The most commonly used datasets to test similarity measures are the ones proposed

by Rubenstein and Goodenough in [29] and Miller and Charles in [20]. Rubenstein and

Goodenough’s experiment dates back to 1965. They asked 51 native English speakers

to assess the similarity of 65 English noun pairs on a scale from 0 (semantically un-285

related) to 4 (highly related). Miller and Charles’ experiment in 1991 considered a

subset of 30 noun pairs and their similarity was reassessed by 38 undergraduate stu-

dents. The correlation w.r.t Rubenstein and Goodenough results was 0.97. Resnik [27]

repeated the same experiment in 1995 with 10 subjects. The correlation w.r.t. Miller

and Charles results was 0.96. Finally, Pirró [23] repeated the experiments in 2009 with290

101 participants, both English and non-English native speakers. His average correla-

tion w.r.t. Rubenstein and Goodenough was 0.97, and 0.95 w.r.t. Miller and Charles.

We can see that similarity judgements by various groups of people over a long period

of time remain stable.

All the experiments cited above [29, 20, 27, 23] were dealing with common En-295

glish nouns and the correlation with these results was mostly used to test similarity

measures on WordNet [12]. But our focus is different. We wanted to experiment with

the similarity measures on specific domain ontologies, which represents more complex

entities. We needed data representation where features of domain objects are explicitly

provided, which is not the case with WordNet.300

Our experiment was conducted with the goal of evaluating the feature-based sim-

ilarity of instances and its comparison with hierarchy-based approaches. In our first

experiment we evaluated our approach in the domain of recipes using the slightly mod-
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ified Wikitaaable dataset4 used in [7]. In our second experiment we evaluated our

approach in the drinks domain using an ontology developed previously by our research305

team. We assumed that both datasets represent information known by a wide range of

people, without the need to be an expert in order to assess the similarity of the pro-

posed domain items. The datasets used in our experiments are available here:

http://www.di.unito.it/ lombardi/SimilarityTest/

5.1. Hypotheses310

We wanted to verify that:

H1: feature-based similarity measures perform better than hierarchy-based approaches;

H2: Sigmoid measure obtained by converting Li’s hierarchy-based measure into feature-

based measure shows better performance than Dice feature-based measure;

H3: hierarchical information is encoded better with features than with underlying315

hierarchy;

H4: combining the hierarchy and feature-based approach beyond linear combination

further improves the feature-based similarity measures.

5.2. Subjects

A total of 137 people (60 female and 77 male, average age 30) took part in the first320

test and 147 (65 female and 82 male, average age 32) took part in the second test.

The subjects were selected among authors’ colleagues and among the second and

third year undergraduate students at the Faculty of Philosophy at the University of

Torino, Italy. The participants were recruited according to an availability sampling

strategy.5 All the participants were native Italian speakers. Following other similar325

studies in the literature [29, 20] we only focused on native speakers, rather than on

their age. A different population sample could have led to different results, but the

4http://wikitaaable.loria.fr/rdf/
5Although a more suitable way to obtain a representative sample is random sampling, this strategy is

time consuming and not financially justifiable. Hence, much research is based on samples obtained through

non-random selection, such as the availability sampling, i.e. a sampling of convenience, based on subjects

available to the researcher, often used when the population source is not completely defined.
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choice of the domains was based on our decision to maximise the understanding of the

domain items by all the sample users. Hence, in our opinion, a different population

sample would not have affected the results significantly.330

5.3. Materials

We designed two experiments to test our hypotheses.

In the first experiment, we designed a web questionnaire with 25 pairs of recipes,

chosen from Wikitaaable dataset, covering a range of recipes which we expected to be

judged as very similar to not similar at all. The original recipes from the dataset were335

translated to Italian. The original dataset contains 1666 recipes. The properties defined

for the recipes are the following: rdf:type, can be eaten as, has ingredient,

suitable for diet, not suitable for diet and has origin. This dataset pro-

vided us with a good setting to test our approach. We only made the following slight

modifications: in the original ontology all the recipes were instances of Recipe class,340

whereas we needed to use the hierarchical structure of the ontology to test hierarchy-

based similarity measures, as well as incorporate the hierarchical information into our

measures, hence we made the recipes instances of various Dish Type classes. In the

original ontology rdf:type is a property, whereas in our case, we used it once as a

property and once as an underlying hierarchical information. 1 shows the basic Wik-345

itaaable taxonomy of recipes, but only including the top categories and the ones from

which we used the instances to test our approach. The properties are omitted for clarity.

The main dish type classes are: RollDish, CrepeDish, SoupAndStuffDish,

BakedGoodDish, BeverageDish, PancakeDish, MousseDish, SweetDish, SaladDish,

SaltedDish, SauceDish, WaffleDish, PreserveDish, SpecialDietDish. The350

recipes we used in our evaluation did not belong to all recipe groups, since the com-

plexity of the test would have been too high and we would have obtained random

answers from the users.

In the second experiment, we again used a web questionnaire, this time containing

30 pairs of drinks chosen from the ontology describing drinks. The original ontology355

has 148 classes, with the main drink classes being: Water, AlcoholicBeverage,

DrinkInACup, PlantOriginDrink and SoftDrink. The properties defined for the
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DISH TYPE

BAKED GOOD

BREAD

BISCUIT

SALTED

CAKE

CASSEROLE

CREPE

MOUSSE

PANCAKE

MEATPIE

ROLL

SALTED SAUCE

SEA FOOD

STEW

SAUCE

WAFFLE

SWEET

SOUP & STUFF

SOUP

RICE

PASTA

SALAD

FROZEN DESSERT

VEGETABLE

SPECIAL DIET DISH

PRESERVE

Figure 1: Recipe taxonomy

drinks are the following: has alcoholic content, has caloric content, has

ingredient, is sparkling, is suitable for and rdf:type. Figure 2 shows the

basic taxonomy of drinks, again only including the main categories and omitting the360

properties.

In each experiment the participants were asked to asses the similarity of these 25

pairs (respectively 30 pairs) by anonymously assigning them a similarity value on the

scale from 1 to 10 (1 meaning not similar at all, 10 meaning very similar). The ordering

of pairs was random. The users’ similarity values were then turned into the values365

from the [0, 1] interval to make them match the similarity values produced by various

algorithms.

In each experiment, the participant group P was divided into two groups: P1 was

used as a reference group and P2 was used as a control group to measure the correlation

of judgements among human subjects, as in [26]. We experimented with different370

partitions of P1 and P2 and obtained similar results.

In this paper we considered the following feature-based similarity measures:

1. Dice similarity simD;
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Figure 2: Drinks taxonomy

2. Sigmoid similarity simS ;

For the comparison, we considered the following hierarchy-based similarity mea-375

sures:

1. Wu and Palmer’s similarity simWP;

2. Li’s similarity simL.

3. Leacock and Chodorow’s similarity simLC;

For each of the feature-based measures, we considered the following variants:380

V1. the measure without the rdf:type property but combined with underlying hier-

archy (measures simDnthand simS nth);

V2. the measure with the rdf:type property combined with underlying hierarchy

(measures simDhand simS h).

5.4. Measures385

We used the Spearman rank correlation coefficient ρ to measure the accuracy of

similarity judgement.

The Spearman rank correlation coefficient measures statistical dependence between

two ranked variables. It actually describes the relationship between two variables us-
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MEASURE execution time

(in seconds)

Wu and Palmer 0.225

Li et al. 0.267

Leacock and Chodorow 0.413

Dice 0.028

Sigmoid 0.007

Table 1: Execution time for the Recipes ontology

MEASURE execution time

(in seconds)

Wu and Palmer 0.047

Li et al. 0.064

Leacock and Chodorow 0.061

Dice 0.018

Sigmoid 0.003

Table 2: Execution time for the Drinks ontology

ing a monotonic function. It is equal to the Pearson correlation between the ranked

variables. For a sample of size n, the two sets of values X = {x1, . . . , xn} and Y =

{y1, . . . , yn} are converted to ranks {r(x1), . . . , r(xn)} and {r(yi), . . . , r(yn)} and then the

Pearson coefficient is calculated as follows:

ρ =
Σn

i=1(r(xi) − r(x))(r(yi) − r(y))√
Σn

i=1(r(xi) − r(x)2(r(yi) − r(y))2

where r(x) and r(y) are the sample means of the two sets of ranked values. The value

of Spearman coefficient ranges from +1 (indicating a strong similar rank) to −1 (indi-

cating a strong dissimilar rank). Value 0 means there is no correlation.390

5.5. Implementation and performance

The test software to compare the different measures has been developed in Java,

using the Apache Jena library to extract data from the ontology. The test has been

performed on a MacBook Pro with a 2.66 GHz Intel Core i7 processor and 8 GB 1067

MHz DDR3 RAM. Tables 1 and 2 show the execution times for the different mea-395

sures obtained in the Recipes and the Drinks experiments, respectively. In both cases,

feature-based approaches significantly outperform hierarchy-based ones. A possible

explanation for this could be that hierarchy-based approaches need to traverse the hi-

erarchy to calculate the distance between two nodes, while feature-based ones simply

need to extract properties and their values for the two nodes.400
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MEASURE ρ

P1 - P2 0.945

Wu and Palmer 0.585

Li et al. 0.576

Leacock and Chodorow 0.583

Table 3: Recipes - P1 - P2 and edge-based

MEASURE ρ

Dice 0.633

Sigmoid 0.664

Table 4: Recipes - base case

MEASURE ρ

Dice no t. + h. 0.614

Sigmoid no t. + h. 0.583

Table 5: Recipes - base case without rdf:type

with hierarchy

MEASURE ρ

Dice + h. 0.643

Sigmoid + h. 0.664

Table 6: Recipes - base case with hierarchy

5.6. Results and discussion

For the first experiment (Recipes) Table 3 reports the Spearman rank correlation

between the reference group P1 and control group P2, as well as the Spearman rank

correlation between the participant group P and the hierarchy-based approaches. Ta-

bles 4, 5, 6 report the Spearman rank correlation between each of the above measures405

and the participant group P for the base case and for the 2 variations introduced in

Section 4. The best performing measure in each group is reported in bold.

For the second experiment (Drinks) Table 7 reports the Spearman rank correlation

between the reference group P1 and control group P2, as well as the Spearman rank

correlation between the participant group P and the hierarchy-based approaches. Ta-410

bles 8, 9, 10 report the Spearman rank correlation between each of the above measures

and the participant group P for the base case and for the 2 variations introduced in

Section 4.

5.6.1. Participants group and the hierarchy-based approaches

The correlation for both experiments with the human subjects, i.e. the comparison415

of the two groups of participants (row P1-P2), is 0.945 (respectively 0.977) and similar
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MEASURE ρ

P1 - P2 0.977

Wu and Palmer 0.891

Li et al. 0.781

Leacock and Chodorow 0.680

Table 7: Drinks - P1 - P2 and edge-based

MEASURE ρ

Dice 0.876

Sigmoid 0.900

Table 8: Drinks - base case

MEASURE ρ

Dice no t. + h. 0.888

Sigmoid no t. + h. 0.900

Table 9: Drinks - base case without rdf:type

with hierarchy

MEASURE ρ

Dice + h. 0.861

Sigmoid + h. 0.900

Table 10: Drinks - base case with hierarchy

to the one reported in [26]. From this good correlation we can conclude that the par-

ticipants’ responses were coherent among themselves in both experiments and that we

can trust the human ratings.

Furthermore, w.r.t. the correlation of participants group with hierarchy-based ap-420

proaches we can see that in the first experiment (Recipes) with hierarchy-based ap-

proaches we obtained similar results for all three measures (the best one being Wu and

Palmer’s measure) and they all have a relatively weak positive correlation with the hu-

man judgement. In the second experiment (Drinks) the performance is better (the best

one again being Wu and Palmer’s measure).425

This can be explained with the fact that the underlying hierarchy in the ontology of

drinks is better designed to mirror human categorisation than the ontology of recipes

(which was indeed flat at the beginning and to which we performed only minimal

changes to obtain the main categories of recipes). But it also shows how dependant the

measure is on the ontology design.430
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5.6.2. Base case for feature-based similarities and the comparison with hierarchy-

based approaches

Tables 4 and 8 show the results for the base case for Dice similarity measure simD

and Sigmoid similarity measure simS (proposed in Section 4) in both experiments,

where the property rdf:type was included in the calculations and no further hier-435

archical information was taken into account. From these two tables we can see that

in each experiment Sigmoid measure simS performs consistently better than Dice mea-

sure. This confirms our hypothesis H2.

Furthermore, in the first experiment (Recipes) both feature-based measures in Ta-

ble 4 perform better than the hierarchy-based measures from Table 3. In the second440

experiment (Drinks) both feature-based measures in Table 8 perform better than Lea-

cock and Chodorow’s measure and Li et al.’s measure and simS performs better even

than Wu and Palmer’s measure.

This shows that we can obtain better similarity results by considering properties

for instances in an ontology, rather than hierarchy underlying the ontology. This con-445

firms our hypothesis H1 that the feature-based similarity shows better performance

than hierarchy-based approaches. Often, other proposed methods in the literature do

not surpass Li’s measure, even when they surpass other hierarchy-based methods. On

both of our datasets, the best performing hierarchy-based similarity measure is Wu and

Palmer’s measure. But all feature-based measures in the first experiment and some of450

the measures in the second experiment surpass Wu and Palmer’s measure and all sur-

pass the other two hierarchy-based measures. This means that properties play a more

important role than the underlying hierarchy when describing ontological instances and

their mutual similarity.

5.6.3. Substituting rdf:type with hierarchical information455

Tables 5 and 9 show the results for the 2 similarity measures in both experiments,

where the property rdf:type was excluded from the calculations and where we tried

to simulate this information with hierarchical information. We tried to incorporate

the hierarchy-based similarity by including the normalised distance between concepts

(calculated as dist

2 max ) in the feature-based formulae as a part of distinctive features.460
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In the first experiment (Recipes), better results are obtained by the simple base mea-

sure, hence by using rdf:type instead of hierarchical information (Table 4), whereas

in the second experiment (Drinks) results are comparable when using the base case

(Table 8) or when using hierarchical information without rdf:type (Table 9).

This confirms our hypothesis H3 that hierarchical information is encoded better465

with features than with underlying hierarchy.

5.6.4. Including both, rdf:type and hierarchical information

Finally, we wanted to combine hierarchical information with features to see if the

similarity values could be improved. A simple linear combination of feature-based

similarity and hierarchy-based similarity would not yield better results, since hierarchy-470

based similarity would just decrease the correlation. Hence, we included the hierarchy

information as in the above. The results are reported in Table 6 and Table 10.

In the first experiment (Recipes) we obtained small improvements for the basic

measures, whereas in the second experiment (Drinks) the Sigmoid measure simS h shows

equal performance and no improvement appears for Dice measure simD.475

Hence, w.r.t. the hypothesis H4 we can conclude that combining the hierarchy

and feature-based approach beyond linear combination provides good correlation with

human judgement but sometimes better results are obtained without incorporating the

underlying hierarchy. This means that combining the hierarchy and feature-based ap-

proaches does not justify the increased complexity and execution time of the obtained480

measures.

5.6.5. Concluding considerations

We can see that in both domains, the consistently best performing measure is the

Sigmoid similarity simS . In the domain of Recipes simS brings the improvement of

4.9% w.r.t. simD for the base case, whereas in the domain of Drinks we obtained the485

improvement of 2.74%.

In both cases very small additional improvement is obtained by considering the

underlying hierarchy together with rdf:type. Hence, there is little benefit in adding

this additional information to the basic similarity measures.
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Also, in both cases, there is an improvement w.r.t. the best hierarchy-based measure490

(Wu and Palmer): 13.5% in the case of Recipes and 1.01% in the case of Drinks. This

again shows how dependant the hierarchy-based similarity measures are on the design

of the underlying conceptual hierarchy.

We can see that even with relatively small number of properties defined for the

concepts in the ontology, the feature-based similarity outperforms hierarchy-based ap-495

proaches. Of course, the number of defined properties plays an important role in se-

mantic similarity calculation.

The dataset used also plays an important role in the similarity calculations. To

the best of our knowledge, the datasets used in this work include significantly higher

number of participants than many works in the field. Usually, the similarity measures500

are tested on WordNet [12], but we are providing the community with yet another rich

dataset to experiment with.

We summarise here our main findings as the responses to our hypotheses.

H1: Dice feature-based similarity measure performs better than hierarchy-based ap-

proaches.505

H2: Sigmoid similarity measure simS improves the performance of Dice similarity

measure simD by 4.9% in the domain of recipes and of 2.74% in the domain of

drinks.

H3: We cannot conclude if the hierarchical information is encoded better with fea-

tures than with underlying hierarchy.510

H4: Combining the hierarchy and feature-based approach beyond linear combination

further improves Dice similarity and Sigmoid similarity measures but to a very

small degree, hence it is questionable if these modifications are worth the higher

complexity and execution time.

5.7. Comparison with the performance on WordNet515

Since most of the similarity measures in the literature have been tested on WordNet,

we include here the comparison of our results with the corresponding results provided

in Sánchez et al. [30]. We include only the results for Miller and Charles’ dataset [20],

since the ones for Rubenstein and Goodenough’s dataset [29] are not always avail-
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MEASURE WordNet Wikitaaable Drinks

Leacock and Chodorow 0.74 0.603 0.754

Wu and Palmer 0.74 0.630 0.882

Li et al. 0.82 0.627 0.857

Tversky/Dice 0.73 0.746 0.872

Dice + hierarchy (no type) N/A 0.688 0.903

Dice + hierarchy (with type) N/A 0.748 0.874

Sigmoid N/A 0.758 0.832

Sigmoid + hierarchy (no type) N/A 0.714 0.856

Sigmoid + hierarchy (with type) N/A 0.761 0.819

Table 11: Comparison with WordNet regarding correlation

able (see Table 11). To this aim, we calculated the Pearson correlation coefficient for520

our measures, so that we can compare them with the rest of the measures which used

correlation.

We can see that the hierarchy-based measures (Leacock and Chodorow, Wu and

Palmer and Li et al.) perform better on WordNet than on Wikitaaable dataset but the

performance is better on the Drinks dataset. This is due to the hierarchical structure of525

Wikitaaable and Drinks datasets. The hierarchy in Wikitaaable is rather shallow, hence

the information obtained from the underlying conceptual hierarchy is not so rich. On

the other hand, the Drinks ontology has a deeper underlying hierarchy and provides

more precise information. We can see that Tversky’s/Dice similarity measure performs

slightly better on Wikitaaable dataset and decisively better on Drinks dataset, since530

there are more properties defined for the concepts. We include also the results for

Dice + hierarchy (with and without type), Sigmoid and Sigmoid + hierarchy (with and

without type).

6. Related work

In this section we give a brief summary of related work dealing with feature-based535

similarity in different domains and with different purpose . These approaches calculate
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feature-based similarity in different ways, starting from Tversky similarity measure but

taking into account different aspects w.r.t. us (antecedent classes, descendant classes

etc., whereas we compare property-value pairs). We include these works here to have

a more complete picture of feature-based similarity measures. We did not test these540

measures since the scope of our work was to evaluate the performance of Tversky (more

precisely Dice) similarity measure and Sigmoid similarity measure (as an improvement

of Dice similarity) calculating them from property-value pairs for compared objects.

Also, some of these measures are not applicable in our context. For example, we

cannot calculate the number of descendant classes since we deal with instances in the545

ontology.

An interesting approach to feature-based similarity calculation is given by Pirrò [23]

and Pirrò and Euzenat [24]. Both works translate the feature-based model into infor-

mation content (IC) model, with a slightly different formulation of Tversky’s formula

where Tversky’s function describing the saliency of the features is substituted by the550

information content of the concepts. In [23] Intrinsic Information Content iIC, intro-

duced in [31], is used taking into account the number of subconcepts of a concept and

a total number of concepts in a domain. In [24] Extended Information Content EIC

is used instead of iIC where iIC is combined with EIC as a average iIC for all the

concepts connected to a certain concept with different relations. Both approaches use555

the underlying ontology structure directly, where all the defined semantic relations are

used, rather than relying on an external corpus. Their new similarity measure called

FaITH is based on this novel framework. Also, this new IC calculation can be used to

rewrite the existing similarity measures in order to calculate relatedness, in addition to

similarity.560

Sánchez et al. [30] also introduce a new feature-based approach for calculating

ontology-based semantic similarity based on taxonomical features. They evaluate the

semantic distance between concepts by considering as features the set of concepts that

subsume each of them. Practically, the degree of disjunction between their feature sets

(non-common subsumers) model the distance between concepts, whereas the degree of565

overlap (common subsumers) models their similarity. The problem with this approach

is that if the input ontology is not deep enough or built with enough taxonomical de-
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tails or it does not consider multiple inheritance, the knowledge needed for similarity

calculation might be scarce. The authors also provide a detailed survey of most of the

ontology-based approaches and compare their performance on WordNet 2.0. From this570

analysis they draw important conclusions about the advantages and limitations of these

approaches and give directions on their possible usage. A slightly different version of

this measure was used by Batet, Sánchez and Valls [2] on SNOMED CT ontology to

evaluate the similarity of medical terms.

Rodrı́guez and Egenhofer [28] and Petrakis et al. [21] propose similar measures575

for calculating semantic similarity based on matching of their synonym sets, semantic

neighbourhoods (semantic relations among classes) and features which are classified

into parts, functions and attributes. This enables separate treatment of these particular

class descriptions and introduction of specific weights which would reflect their im-

portance in different contexts. In [28] these similarities are calculated using Tversky’s580

formula, where parameters in the denominator are calculated taking into account the

depth of the hierarchies of different ontologies. Synonym sets and semantic neighbour-

hoods are useful when detecting equivalent or most similar classes across ontologies.

Features are useful when detecting similar but not equivalent classes. Petrakis et al. [21]

eliminate the need for the parameters in the denominator in Tversky’s formula, hence585

they do not rely on the depth of the corresponding ontologies. This leads to matching

based only on common words for synset similarity calculation. Also, set similarities

are calculated per relationship type. Finally, their similarity does not have weights for

different similarity components. The novelty of their work is the application of this

and various other similarity measures to MeSH ontology (Medical Subject Headings).590

Both methods can be used for cross-ontology similarity calculation.

An interesting approach is investigated by Coletti et al. [6], who propose to consider

weights which can be interpreted as the significance (positive or negative) of groups of

attributes. They take into account the significance values of different features and their

mutual interactions or degree of contribution to similarity.595

In recent years, novel paradigms have been proposed to compute semantic similar-

ity based on different ontologies.

An important work on feature-based similarity regarding ontological concepts is
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described by Zadeh and Reformat [36]. They start from Tversky’s assumption that

similarity is determined by common and distinctive features of the compared objects600

and consider the relations between concepts as their features. They linearly combine

two similarities. The first similarity is obtained from direct connections between two

objects, as well as common features shared between both concepts (in this case the

similarity between relations is calculated using Wu and Palmer’s measure [34]). The

second similarity is based on distinctive features of each object. Their approach can605

be used to calculate similarity at the class level, as well as the similarity of instances.

Furthermore, it is possible to take into account only specific relations which leads to

context-aware similarity. The problem is that the proposed method is assessed only on

4 pairs of concepts

Yang et al. [35] propose a new similarity measure combining both super concepts610

and their common specificity feature. The common specificity feature considers the

depth of the Least Common Subsumer (LCS) of two concepts and the depth of the

ontology to obtain a more accurate similarity between concepts. Multiple inheritance

is taken into account by all superconcepts of the evaluated concepts. The proposed

measure has been evaluated using two datasets of biomedical term pairs scored for615

similarity by human experts and exploiting the standard medical ontology SNOMED

CT as the input ontology. They compare the correlation obtained by their measure with

human scores against other measures.

A semantic similarity measure for OWL objects introduced by Hau, Lee and Dar-

lington [14] is based on Lin’s information theoretic similarity measure [19]. They620

compare semantic description of two services and define their semantic similarity as

a ratio between the shared and total information of the two objects. The semantic

description of an object is defined using its description sets which contain all the state-

ments (triples) describing the given object and their information content is based on

their “inferencibility”, i.e. the number of new RDF statements that can be generated625

by applying a certain set of inference rules to the predicate. They use their measure to

determine the similarity of semantic services annotated with OWL ontologies.

Lastra-Dı́az et al. [16] advance a proposal for an efficient and scalable represen-

tation model for taxonomies (called PosetHERep) together with a new semantic mea-

29



sures library based on this model and implemented in Java (called Half-Edge Semantic630

Measures Library or HESML). Most ontology-based semantic similarity measures are

implemented, as well as Information Content (IC) models.

Similarity can find many applications is Recommender Systems. Di Noia et al. [10]

developed a content-based movie recommender system based on Linked Open Data

(LOD) in which they adapt a vector space model (VSM) approach to compute similar-635

ities between RDF resources. Their assumption is that two movies are similar if they

have features in common. The whole RDF graph is represented as a 3-dimensional

matrix where each slice refers to one property in the ontology and for each property

the similarity between two movies is calculated using their cosine similarity.

Piao and Breslin [22] start from the basic concept of Linked Data Semantic Dis-640

tance (LDSD) for calculating the distance between resources and extend it in various

directions to develop various semantic distance measures: by including the number

of connected resources via a link, by employing different normalization strategies and

by using a statistical approach for calculating the semantic distance between two re-

sources. The proposed measures were evaluated in the context of a LOD-based recom-645

mender system which provides the top-N recommendations.

Another area of application of similarity measures is information retrieval. For

example, Uma Devi and Meera Gandhi [9] propose a novel semantic similarity measure

based on a domain ontology, that brings out a more accurate relationship between the

two words for the retrieval of resources in a more meaningful and accurate way. They650

start from a Bag of Words and extend it by referring to an ontology in order to include

the terms that are related to the original ones. Then they compute Cosine Similarity

among the extended concepts and calculate the mean of the similarity values computed

in all the iterations. The performance analysis in terms of Precision and Recall for

traditional search and semantic similarity search is high compared to the traditional655

search.

Similarity among concepts can be also automatically learned. Similarity learning

is an area of supervised machine learning, closely related to regression and classifica-

tion, where the goal is to learn from examples a similarity function that measures how

similar or related two objects are. Similarity learning is used in information retrieval660
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to rank items, in face identification and in recommender systems. Moreover, many

machine learning approaches rely on some similarity metric. This includes unsuper-

vised learning such as clustering, which groups together close or similar objects, or

supervised approaches like K-nearest neighbour algorithm. Metric learning has been

proposed as a preprocessing step for many of these approaches. Automatic learning of665

similarity among concepts in an ontology is used especially for ontology mapping (also

known as ontology alignment, or ontology matching) [11], the process of determining

correspondence between ontology concepts. This is necessary for integrating heteroge-

neous databases, developed independently with their own data vocabulary or different

domain ontologies. There are several works which have exploited machine learning670

techniques towards ontology alignment. Ichisse [15] organised the ontology mapping

problem into a standard machine learning framework, exploiting multiple concept sim-

ilarity measures (i.e, synset-based, Wu and Palmer, description-based, Lin). In [8]

David proposes a multi-strategy learning to obtain similar instances of hierarchies to

extract similar concepts using Naı̈ve Bayes (NB) technique. In [1], following a param-675

eter optimisation process on SVM, DT and neural networks (NN) classifiers, an initial

alignment was carried out. Then the user’s feedback was used to improve the overall

performance. All these works considered concepts belonging to different ontologies

while we concentrated on concepts in a same ontology.

7. Conclusions and future work680

In this work we present Sigmoid feature-based similarity measure based on prop-

erties defined in an ontology. Sigmoid similarity measure is an improvement of Dice

feature-based similarity measure and it corresponds to Li’s hierarchy-based similarity

measure.

We evaluated Sigmoid and Dice measures on a slightly modified Wikitaaable685

dataset in the domain of recipes and on a Drinks ontology designed by our researchers

previously. Our first evaluation included 137 subjects and 25 pairs of concepts and

our second evaluation included 147 subjects and 30 pairs of concepts. This is a sig-

nificant number of real evaluators compared with other evaluations in the literature. In
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the domain of Recipes Sigmoid similarity brings the improvement of 4.9% w.r.t. Dice690

similarity, whereas in the domain of Drinks we obtained the improvement of 2.74%.

These values can be thought of as good results for similarity measures field.

We also evaluated 3 hierarchy-based measures (Wu and Palmer, Leacock and Chodorow

and Li) on the same datasets. Our conclusion is that feature-based measures perform

better than the hierarchy-based approaches.695

We further proposed two variations of Dice and Sigmoid measures, to see how

much the underlying hierarchical information contributes to accurate similarity mea-

surement. We came to the conclusion that the underlying hierarchical information does

provide some additional information when calculating similarity. However, the im-

proved performance is very small, so it might not be worth adding the complexity to700

the similarity calculation.

In terms of future work, it would be interesting to see how the similarity measures

would perform in the presence of more properties or on a different dataset. MeSH

and SNOWMED are some possible candidate datasets, although in these cases expert

opinion would be needed. Also, it would be interesting to add hierarchical structure705

among property values. For example, in the present approach we consider Fusilli

and Spaghetti two different domain items (hence, two different property values). But

Fusilli and Spaghetti are both descendants of Pasta so they could be considered

as “almost” the same values for properties.

Moreover, in this work we only consider object type properties. Taking data type710

properties, such as literals, into account might be an interesting area for future investi-

gation. In this case, it would be necessary to determine when two literal values can be

considered equal.

In addition, similar experiments can be applied to linked open data [4] or any other

data structure where the objects are described by means of their properties.715
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