
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A Dependently-Typed Linear π -Calculus in Agda
Luca Ciccone

luca.ciccone@unito.it
Università di Torino

Luca Padovani
luca.padovani@unito.it
Università di Torino

ABSTRACT

Session types have consolidated as a formalism for the specification
and static enforcement of communication protocols. Many different
theories of dependent session types have been proposed, some
enabling refined specifications on the content of messages, others
allowing the structure of the protocols to depend on data exchanged
in the protocol itself. In this work we continue a line of research
studying the foundations of binary session types. In particular, we
propose a variant of the linear π -calculus whose type structure
encompasses virtually all dependent session types using just two
type constructors: linear channel types and linear dependent pairs.
We use Agda not only to formalize the metatheory of the calculus
and obtain machine-checked proofs of type soundness, but also as
host language in which we implement data-dependent protocols.
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1 INTRODUCTION

Session type systems [17, 18] can statically andmodularly guarantee
the absence of communication errors in well-typed programs. Every
session type system revolves around the following key ideas. First,
it associates each endpoint of a communication channel – or session
– with a session type that specifies type and direction of messages
flowing through that endpoint. Second, the type system makes sure
that the session types associated with the endpoints of a session
describe complementary protocols so that an input/output action
performed on one of the endpoints is matched by a corresponding
counteraction on the other endpoint. This relation between session
types is often called duality. Finally, the type system checks that
the sequence of actions performed by a process on an endpoint
matches with the session type of the endpoint. To do so, it forbids
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simultaneous access to the same endpoint by concurrent processes.
As a consequence, session endpoints are treated as linearized re-
sources that can only be accessed by a single process at any given
time, although their ownership can be passed around through a
mechanism called delegation.

Considering the relevant applications of dependent types in the
description of data formats [10, 12, 22] and of protocols [3, 4, 11],
it is not surprising that they have drawn the attention of the ses-
sion type community as well, where they have led to a variety of
different dependent session type languages. For example, Toninho
et al. [31] and Griffith and Gunter [16] use dependent session types
to provide refined specifications on the content of exchanged mes-
sages. Toninho and Yoshida [32] study a dependent session type
theory where the structure of both types and processes may de-
pend on the content of messages. Thiemann and Vasconcelos [30]
propose a label-dependent variant of session types in which the
ability to describe branching protocols does not require dedicated
type constructors or communication primitives.

Except for the work of Thiemann and Vasconcelos, all the other
dependent session type systems follow a common pattern, by ex-
tending a non-dependent session type system with new or refined
constructs to express predicates on messages and/or dependencies
between messages and behaviors. Thiemann and Vasconcelos [30]
recognize that the increased expressiveness enabled by dependent
types can in fact be exploited to streamline the structure of session
types and reduce the number of type constructors that are neces-
sary to describe complex protocols. Our work aims at taking their
result one step further, by proposing a deconstruction of dependent
session types in terms of an arguably minimal set of orthogonal
features: linear channels and linear dependent pairs. We argue that
these two ingredients suffice to encode the structure of virtually
every known dependent session type for binary sessions.

The inspiration for our work comes from the encoding of bi-
nary sessions into the linear π -calculus [20] thoroughly studied by
Dardha et al. [6] and based on the following idea: a sequence of
communications occurring on a session endpoint can be encoded
as a sequence of one-shot communications on a chain of linear
channels. Unlike session endpoints, which can be used repeatedly –
albeit sequentially – for several communications, a linear channel
can be used only once. To model a long, structured conversation
using linear channels, the sender of a message pairs the payload
with a continuation, that is a new linear channel from which the rest
of the conversation proceeds. Even from this informal description it
is clear that (non-dependent) pairs play a major role in the encoding
studied by Dardha et al. [6]. Our main insight is that, by promoting
non-dependent pairs to dependent ones, not only we simplify some
aspects of their encoding, but we also encompass a broader range
of protocol specifications that includes dependent session types.

There are both theoretical and practical motivations that make
these encodings worth investigating. On the theoretical side, they
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deepen our understanding of the fundamental principles under-
lying session types. For example, they allow us to draw useful
connections between notions – think of subtyping – that may look
counterintuitive when defined on session types directly [13, 14],
but that are recognizable as folklore if explained in terms of their
encoding [6]. On the practical side, Padovani [24, 25] has shown
that working with encoded session types may enable session type
checking and inference in general-purpose programming languages
having no specific support for session types. Our work sets the stage
for a light implementation of dependent session types in Agda.

Summary of contributions. We define a dependently-typed ver-
sion of the linear π -calculus dubbed dlπ in which the structure of
communications may depend on the content of exchanged messages
in a strong sense. dlπ is stratified in a process layer used to model
communications and a functional layer used to compute not only
messages, but also data-dependent processes and types.

In line with some previous works [16, 31], we only describe
the process layer of dlπ leaving its functional layer mostly un-
specified. To substantiate our results, we provide a complete Agda
formalization of dlπ ’s metatheory and machine-checked proofs of
type soundness. A novel aspect of this formalization is that we inter-
twine dlπ and Agda so that we can write data-dependent processes
and types taking full advantage of Agda’s features.

Finally, we describe the systematic encoding of some representative
session type languages [17, 30, 31] into dlπ ’s types. This way, we
extend the results of Dardha et al. [6] to dependent session types
using a minimal, unifying model that encompasses a variety of
dependent session type systems.

Structure of the paper. We describe syntax and semantics of dlπ
in Section 2 and illustrate it through a series of examples in Section 3.
Although the examples are inspired to the encoding of binary ses-
sions in the linear π -calculus, they address scenarios in which the
structure of the protocol strongly depends on exchanged messages.
The dependent type system of dlπ is described in Section 4, where
we also formulate the main properties of well-typed processes. Sec-
tion 5 provides a bird’s eye view of the Agda formalization of dlπ ,
focusing on the definition of the key data types. We also show
the Agda implementation of some of the examples discussed in
Section 3. In Section 6 we show the encoding into dlπ ’s types of
three representative session type languages. We discuss related
work in more detail in Section 7 and conclude in Section 8. Ap-
pendix A provides additional examples and Agda code that could
not be accommodated in the main part of the paper. The full Agda
formalization of dlπ and of the encodings described in Section 6
can be downloaded from a public repository [5].

2 SYNTAX AND SEMANTICS

As anticipated in Section 1, dlπ consists of a functional layer in
which we express computations and a process layer in which we
express communications. We do not detail the function layer, from
which we inherit a setM of pure terms, ranged over by p and q. We
assume that M includes the unit value tt, the booleans true and
false, the natural numbers and that it is closed by pair construction.

The syntax of the process layer is shown in Table 1. We make
use of infinite sets C and X of channels and variables and we call

Domains a,b, c ∈ C channels
x,y, z ∈ X variables
u,v ∈ C ∪ X names
p,q ∈ M pure terms

Terms M,N ::= p pure term
| u name
| M,N pair

Processes P,Q ::= idle inaction
| u(x).P input
| u⟨M⟩ output
| let x,y = M in P pair splitting
| P | Q parallel composition
| (a)P restriction
| ∗P replication

Table 1: Syntax of dlπ .

names channels and variables without distinction. dlπ terms consist
of variables, pure terms, channels and pairs. Any pure term can
seamlessly flow from the functional layer to the process layer, where
it can be used for constructing messages. The flow of terms from
the process layer to the functional layer is also possible and useful,
but it requires more care. We illustrate it in Section 3 and discuss
the necessary precautions in Section 4.

By and large, dlπ processes are like π -calculus processes. We
write idle for the inactive process that performs no action. A process
of the form u(x).P waits for a message x from channel u and then
continues as P . A process of the form u⟨M⟩ sends a messageM on
channelu. For the sake of simplicity, we only consider asynchronous
communications, in which the output operation is not followed
by a continuation. Synchronous communication does not pose
substantial problems and is left out just because it is not used in
this work. Parallel composition, replication and name restriction
are standard. A process of the form let x,y = M in P inspects the
value M , which is supposed to be a pair, and then continues as
P where the first and second component of the pair have been
respectively bound to x and y. It is often the case that pair splitting
immediately follows an input prefix. For this reason, we define
u(x,y).P as syntactic sugar for u(z).let x,y = z in P for some z that
does not occur elsewhere.

The notions of free and bound names for expressions and pro-
cesses are standard, bearing in mind that the only binders are input
prefixes, channel restrictions and pair splitting. We write fn(P) for
the set of free names occurring in P .

One key aspect that is not self-evident from the syntax of dlπ
is that we use the functional layer not only as a language for ex-
pressing terms, but also as a language for computing processes
and types. In other words, any occurrence of the meta-variables
P and Q in Table 1 may stand for an expression of the functional
layer that computes a process. This mechanism allows us to com-
pute processes from data and is not fundamentally different from
monadic I/O as found in Haskell or Agda, where pure functions can
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Structural congruence P ≡ Q

s-par-idle
idle | P ≡ P

s-par-comm
P | Q ≡ Q | P

s-par-assoc
(P | Q) | R ≡ P | (Q | R)

s-new-idle
(a)idle ≡ idle

s-new-comm
(a)(b)P ≡ (b)(a)P

s-par-new
a < fn(Q)

(a)P | Q ≡ (a)(P | Q)

s-par-rep
∗P ≡ P | ∗P

Reduction P
α
−→ Q

r-com
a⟨M⟩ | a(x).P

a
−→ P{M/x}

r-struct
P ≡

α
−→≡ Q

P
α
−→ Q

r-let
let x,y = M,N in P

τ
−→ P{M,N /x,y}

r-new
P

α
−→ Q α , c

(c)P
α
−→ (c)Q

r-tau
P

c
−→ Q

(c)P
τ
−→ (c)Q

r-par
P

α
−→ Q

P | R
α
−→ Q | R

Table 2: Operational semantics of dlπ .

be used used to compute I/O actions with side effects [26]. We will
see examples of data-dependent processes starting from Section 3.

The operational semantics of dlπ is given in Table 2 in terms of
a structural congruence relation ≡ and a reduction relation

α
−→.

Structural congruence is standard. Axioms s-par-idle, s-par-
comm and s-par-assoc express commutativity and associativity of
parallel composition, idle acting as the identity. Axiom s-new-idle
removes/introduces unused channels, s-new-comm swaps restric-
tions and s-par-new expands/shrinks the scope of a restricted
channel. Finally, s-par-rep captures the standard meaning of a
replication ∗P as an unbounded availability of P ’s.

The reduction relation is labelled by actions which are either
channels or the special label τ indicating an internal computation
step. The label is necessary only to formulate and prove the sub-
ject reduction result (Theorem 4.3) and has no other operational
relevance.

Rule r-com is the synchronization between an output a⟨M⟩ and
an input prefix a(x).P on the same channel a, whereby x is replaced
byM in the continuation of the input prefix. We write P{M/x} for
the capture-avoiding substitution ofM for the free occurrences of
x in P . Rule r-let formalizes the semantics of splitting a pairM,N
and substitutingM and N for x and y in the continuation.

The remaining rules close reduction under parallel composition
(r-par), structural congruence (r-struct) and restrictions (r-new
and r-tau). In r-tau, a synchronization on channel c turns into an
internal reduction when crossing the restriction of c .

3 STRUCTURED CONVERSATIONS

We illustrate how to represent structured conversations in dlπ
through a series of examples that are directly inspired to the encod-
ing of binary sessions into the linear π -calculus [6].

3.1 Linear conversations

In a typical session calculus [17], a process like

u!1.u?(x).print!x (3.1)

describes a structured conversation where the session endpoint u is
first used to send a number and then to receive a response x , which
is then forwarded on another channel print. A peer process that
communicates successfully with this one is

u?(x).u!⟨x + 1⟩ (3.2)

which receives a number x from the session endpoint u and sends
its successor back on the same endpoint.

In general, the same session channel can be used for exchanging
an arbitrary number of messages. In sharp contrast, a linear channel
can be used for a single communication only, after which the chan-
nel is depleted and cannot be used again. To encode a structured
communication using linear channels, we pair the payload with
a fresh channel which is used for the subsequent communication.
For example, in dlπ we write (3.1) as P1(u) where

P1(u)
def
= (c)(u⟨1, c⟩ | c(x).print⟨x⟩) (3.3)

Before the payload 1 is sent on the linear channel u, a fresh
channel c is created and sent along with the payload. That is the
channel from which the response is expected. The reader may
be worried by the fact that the two communications which were
performed in sequence in (3.1) have become parallel activities in
(3.3). The reason why the flow of information – and therefore the
structure of the conversation – is the same in (3.1) and (3.3) is that
the input operation on c performed by P1(u) can only be completed
once the message u⟨1, c⟩ has been delivered, since that message is
the only place in which the other peer (to be discussed in a moment)
will find a reference to the new channel c . The use of fresh (linear)
channels is key in preserving the structure of the conversation.

Let us now look at the dlπ encoding of (3.2):

Q1(u)
def
= u(x,y).y⟨x + 1⟩ (3.4)

This process waits for a pair x,y from u and then sends the
successor of x on y. In this case the server does not create a fresh
channel to pair with the result x + 1, since no further communica-
tions are expected after this one. In general, though, the same idea
of creating fresh channels we have discussed for the client may also
apply here, if the conversation is supposed to continue.

3.2 Conversations with message predicates

As a simple variation of the scenario discussed in Section 3.1, con-
sider a conversation in which a client process sends a natural num-
ber n to a server process that computes its predecessor. Since the
predecessor function is only defined for strictly positive natural
numbers, the client is expected to send evidence of the fact that
n > 0 along with the number itself. For the sake of illustration,
we model this conversation so that the number n and the evidence
nzero(n) are transmitted as two subsequent messages. For the time
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being, we ignore the details about the structure of the term nzero(n)
and assume that properties like this one can be expressed in the
functional layer. In Section 5 we will see a concrete realization of
this example in Agda.

We can model the client process thus

P2(u)
def
= (b)(u⟨2,b⟩ | (c)(b⟨nzero(2), c⟩ | c(x).print⟨x⟩))

where we observe that each message sent to the server is paired
with a fresh channel used for the subsequent communication. As
before, we use parallel composition and rely on fresh channels to
ensure that the communications occur in the expected order, so that
the server receives nzero(2) only after 2 has already been received.
The server is defined as

Q2(u)
def
= u(x,v).v(y,w).w ⟨pred(x,y)⟩ (3.5)

where the function pred(x,y) computes x − 1 given a proof y that
x > 0. Note thaty states a property concerning amessage x received
earlier. At the type level, this will translate into the fact that x,v is
a dependent pair (see Section 4.7).

3.3 Conversations with branching points

A structured conversation may proceed along different paths de-
pending on a choice taken by one of the interacting processes. A
choice taken autonomously by a process but not communicated
to the peer would almost certainly result in chaos. For this reason,
any choice that affects the structure of subsequent communications
must be encoded and communicated in some form, for example as
a boolean value or as a label chosen from a known set.

In “traditional” session calculi – those not making use of de-
pendent types – the dependency between this boolean value or
label and the session type that describes the rest of the conver-
sation is handled by a dedicated construct precisely because the
type system would otherwise be unable to express this dependency.
Thiemann and Vasconcelos [30] observe that, in presence of richer
types, such dependency falls within the expressiveness of the type
system without requiring ad hoc constructs.

Consider a scenario in which a server is able to provide both
behaviors described earlier by Q1(u) and Q2(u). The server first
waits for a label that identifies the desired behavior. In this case, a
plain boolean value suffices to discriminate between the two possi-
bilities. After that, the server performs the operation corresponding
to the received label. We can model a persistent server with this
capabilities as the process

Q3
def
= ∗a(x,y).F (x,y) (3.6)

where F is a function (expressed in the functional layer) that, applied
to a boolean argument x and a channely, yields a process according
to the following equations:

F (true , y) = Q1(y)
F (false, y) = Q2(y)

Recall that the conversations carried out by Q1(y) and Q2(y)
have different structures (and different lengths). At the type level,
these differences translate into the fact that y has different types in
Q1(y) and Q2(y). Such differences can be reconciled if the pair x,y
received by Q3 in (3.6) is in fact a dependent pair, so that the type
of y depends on the value of x .

A client of Q3 first sends a boolean value indicating which oper-
ation it requests and then behaves accordingly. For example,

P31
def
= (c)(a⟨true, c⟩ | P1(c))

accomplishes the same task as P1 when composed with Q3 and

P32
def
= (c)(a⟨false, c⟩ | P2(c))

accomplishes the same task as P2. Considering that Q3 is a persis-
tent, the composition P31 | P32 | Q3 satisfies both clients with no
interferences from each other, despite the fact that they request
different operations with different conversation structures.

3.4 Variable-length conversations

Another common instance of conversation with data-dependent
structure is the exchange of a sequence of messages whose length
depends on some previous message. As an example, think of a
server that receives a number n and computes the product of the n
subsequent messages. We can model such server as the process

Q4
def
= ∗a(n,v).F (n,v, 1) (3.7)

where F is the function defined by the following equations

F (0 , v, z) = v ⟨z⟩
F (n + 1, v, z) = v(x,y).F (n,y, x ∗ z)

whose third argument z is used as accumulator for the result. When
n = 0, the channel v is used for sending back the result in the
accumulator. When n > 0, the channel v is used for receiving a
number x in the sequence along with another channel y that will
be used for the next communication.

A client that interacts with (3.7) to compute the factorial of a
number n could be defined thus:

P4
def
= (c)(a⟨n, c⟩ | G(n, c))

where G is the function defined by the following equations:

G(0 , v) = v(x).print⟨x⟩
G(n + 1, v) = (c)(v ⟨n + 1, c⟩ | G(n, c))

Note once again how G(n,v) uses v differently – for one input
or for one output – depending on whether n = 0 or not.

4 TYPE SYSTEM

4.1 Multiplicities

We use the multiplicities 0, 1 and ω for keeping track – approxi-
mately – of the number of times a channel is used according to a
given input/output capability. Specifically, 0 means that a channel
is never used, 1 that it is used exactly once and ω that it is used an
arbitrary number of times, possibly never. We define two operations
+ and · to “combine” and “scale” multiplicities, thus:

0 + σ = σ + 0 = σ

0 · σ = σ · 0 = 0
1 + 1 = ω

1 · σ = σ · 1 = σ

ω + σ = σ + ω = ω
ω · ω = ω

Note that ({0, 1,ω},+, ·) is a commutative semiring. When no
confusion may arise, we abbreviate σ · ρ as σρ.
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Domains A,B ∈ A pure types
σ, ρ ∈ {0, 1,ω} multiplicities

Types t, s ::= A pure type
| σ,ρ[t] channel type
| Σ(x : t)s linear dependent pair

Table 3: Syntax of types.

4.2 Types

Types are ranged over by t and s and their syntax is given in Table 3.
We inherit from the functional layer a set A of pure types ranged
over by A and B. We assume that A includes types such as ⊤ (the
unit type with just one constructor tt), Bool, N and dependent
pairs Σ(x : A)B as well. A channel type has the form σ,ρ[t] and
describes a channel that is used σ times for receiving and ρ times
for sending messages of type t . A linear dependent pair type has
the form Σ(x : t)s and describes pairs whose first component has
type t and whose second component has type s . Since the variable
x is bound in s , the type of the second component may depend on
the value of the first one in a way that will be made more precise
in Section 4.3. The “linear” qualification means that pairs having
this type can only be used once. In the following we write t × s for
linear non-dependent pair types, which are the degenerate case of
Σ(x : t)s when x does not occur in s .

We extend the operations + and · defined on multiplicities to
types in the following way:

A +A = A
σ1,ρ1 [t] + σ2,ρ2 [t] = σ1+σ2,ρ1+ρ2 [t]

σ · A = A
σ · ρ1,ρ2 [t] = σρ1,σρ2 [t]

Intuitively, a type t + s cumulates the uses of a channel that is
used according to t in some part of a program and according to s
in some other part of the same program. For example, the equation

1,0[t] + 0,1[t] = 1,1[t]

captures the fact that a channel that is used somewhere for receiving
a message of type t and somewhere else for sending a message of
type t is used once for sending and once for receiving a message of
type t overall. The equation holds precisely because the sentence
sounds like a tautology.

The operation σ · t yields the type of a resource of type t that is
used σ times. For example, the equivalence

ω · 1,0[t] = ω ,0[t]

captures the fact that using zero or more times a channel from
which a single message of type t is received is the same as using
the channel for receiving zero or more messages of type t . Note
that neither type combination nor type scaling affect the type of
messages exchanged through channels.

Unlike the operations + and · on multiplicities (Section 4.1), the
operations + and · on types are partial: neither is defined on linear
dependent pairs and + is undefined when combining types having
different shapes. Also, two channel types can be combined with +
only if they are used for exchanging messages of the same type.

We say that a type is unrestricted if it describes a resource that
can be discarded or used an arbitrary number of times and we say

that a type is linear otherwise. We can make this distinction precise
in terms of idempotency of +, thus:

Definition 4.1 (unrestricted and linear types). A type t is unre-
stricted if t = t + t and it is linear otherwise.

All pure types are unrestricted, just like channels types whose
multiplicities are 0 or ω. Note that channels with an unrestricted
type can be used for exchanging messages whose type is linear. The
type 1,1[t] is linear, since a channel with this type must be used once
for sending and once for receiving a message of type t . In general,
a channel type may specify different constraints on the number of
uses for each capability. For example, a channel with type ω ,1[t] is
used an unspecified number of times for receving messages of type
t , but it is used only once for sending a message of type t . Since
+ is undefined on linear dependent pairs, such pairs are strictly
linear resources that must be used once, either by sending them in
a message or by splitting them with a let.

All types of the form 0·t andω ·t are unrestricted.We occasionally
use these forms of scaling to enforce the fact that certain types are
unrestricted.

4.3 More on dependent pairs

Linear dependent pairs Σ(x : t)s belong to the process layer and
are not to be confused with pure dependent pairs Σ(x : A)B in the
functional layer. While the latter are a special case of the former,
the dependency expressed in linear dependent pairs is somewhat
unconventional. Let us see why.

We have said that every pure term is also a dlπ term (Section 2)
and that every pure type is also a dlπ type (Table 3). This flow of
terms and types from the functional layer to the process layer allows
us to take advantage of all the features provided by the functional
layer in the modeling and typing of processes. The flow of terms in
the other direction, from the process layer to the functional layer,
is also useful and doubly so. First, that is the mechanism we have
used in Section 3 for computing processes from messages. Second, we
use the same mechanism also for computing types from messages.
Nonetheless, there is a fundamental distinction between these two
uses of dlπ terms in the functional layer. When a dlπ term is used
to compute a process, our type system is able to track the uses of
the resources occurring in the term (most notably, channels) by
looking at the result of the computation. But in a dependent pair
Σ(x : t)s , where a dlπ term x may occur within a type s , we lose
control on whether and how x is used. In fact, we argue that it
makes no sense to consider a type s that depends on the identity of
channels possibly occurring in x .

To prevent these issues, we filter dlπ terms that are used in
types through a map ⟦·⟧ that “erases” all the channels occurring in
them. The map ⟦·⟧ is defined thus

⟦p⟧ = p ⟦x⟧ = x ⟦a⟧ = tt ⟦M,N⟧ = ⟦M⟧, ⟦N⟧
and identifies all channels with the uninformative value tt. The
pure term ⟦M⟧ corresponding toM is the view ofM as seen in the
functional layer, from which everything but the channels inM can
be accessed. The filtering on terms induces a filtering on types

⟦A⟧ = A ⟦σ,ρ[t]⟧ = ⊤ ⟦Σ(x : t)s⟧ = Σ(x : ⟦t⟧)⟦s⟧
that obliterates all channel types from a dlπ type.
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We can now refine the informal description of linear dependent
pairs given earlier. A type Σ(x : t)s describes those pairs M,N
such that M has type t and N has type s{⟦M⟧/x}. This way, the
channels possibly occurring inM are not duplicated as a result of
the substitution and their identity cannot affect the type of N .

4.4 Contexts

We use contexts to track the type of free names occurring in pro-
cesses and terms, hence to provide an abstract description of a pro-
cess behavior in terms of the resources it uses. A context Γ is a finite,
partial map from names to types written u1 : t1, . . . ,un : tn . We
write ∅ for the empty context, dom(Γ) for the domain of Γ, namely
for the (finite) set of names for which there is an association in Γ,
we write Γ(u) for the type associated with u in Γ when u ∈ dom(Γ)
and Γ,∆ for the union of Γ and ∆ when dom(Γ) ∩ dom(∆) = ∅.

We need to combine and scale contexts, pretty much like we
need to combine and scale types. Intuitively, the combination Γ +∆
accounts for the cumulated use of resources by two processes, one
described by Γ and the other described by ∆. Context composition
is the partial operation defined by the following equations:

Γ + ∆ = Γ,∆ if dom(Γ) ∩ dom(∆) = ∅

(u : t, Γ) + (u : s,∆) = (u : t + s), (Γ + ∆)

Note that Γ + ∆ is defined provided that all the names for which
there is an association in both Γ and ∆ have combinable types. In
this case, we have dom(Γ + ∆) = dom(Γ) ∪ dom(∆).

The scaling of Γ with respect to σ, written σ · Γ, provides an
abstract description of σ copies of a process described by Γ. Context
scaling is the partial operation defined by the equations

σ · ∅ = ∅

σ · (u : t, Γ) = (u : σ · t), (σ · Γ)

provided that every type in the range of Γ can be scaled by σ.
We extend to contexts the terminology introduced in Defini-

tion 4.1 for types. Specifically, we say that Γ is unrestricted if so are
all the types in its range. All contexts of the form 0 · Γ and ω · Γ are
unrestricted.

As we have discussed in Section 4.3, resources available in the
process layer should also be available in the functional layer of
dlπ , albeit in a filtered form. For this reason, the typing judgments
of dlπ will refer to a pair of contexts Ψ; Γ respectively describing
the resources available in the functional and those available in the
process layer. We say that Ψ is a pure context and we require Ψ to
agreewith Γ in the following sense: every resourceu ∈ dom(Γ)with
type Γ(u) available in the process layer is also available with type
Ψ(u) = ⟦Γ(u)⟧ in the functional layer. In general, Ψ may describe
more resources than those described by Γ. This can happen for two
reasons. First, the functional layer may provide resources – such
as library functions, built-in data types, etc. – that are not defined
within processes but that are nonetheless essential for building
and computing processes. Second, it could be the case that a linear
resource (e.g., a pair) contains data that is needed in the functional
layer, and yet the resource is not visible in Γ because it is already
used by another part of the process. In these cases, Ψ will contain
associations for linear resources that are in scope but not in dom(Γ)
(see the discussion on t-par later on).

Typing rules for terms Ψ; Γ ⊢ M : t

t-pure
Ψ ⊢ p : A

Ψ; 0 · Γ ⊢ p : A

t-name
Ψ; 0 · Γ,u : t ⊢ u : t

t-pair
Ψ; Γ ⊢ M : t Ψ;∆ ⊢ N : s{⟦M⟧/x}

Ψ; Γ + ∆ ⊢ M,N : Σ(x : t)s

Typing rules for processes Ψ; Γ ⊢ P

t-idle
Ψ; 0 · Γ ⊢ idle

t-input
Ψ; Γ ⊢ u : 1,0[t] Ψ, x : ⟦t⟧;∆, x : t ⊢ P

Ψ; Γ + ∆ ⊢ u(x).P

t-output
Ψ; Γ ⊢ u : 0,1[t] Ψ;∆ ⊢ M : t

Ψ; Γ + ∆ ⊢ u⟨M⟩

t-let
Ψ; Γ ⊢ M : Σ(x : t)s Ψ, x : ⟦t⟧,y : ⟦s⟧;∆, x : t,y : s ⊢ P

Ψ; Γ + ∆ ⊢ let x,y = M in P

t-par
Ψ; Γ ⊢ P Ψ;∆ ⊢ Q

Ψ; Γ + ∆ ⊢ P | Q

t-new
Ψ; Γ, c : σ,ρ[t] ⊢ P

Ψ; Γ ⊢ (c)P

t-rep
Ψ; Γ ⊢ P

Ψ;ω · Γ ⊢ ∗P

Table 4: Typing rules.

4.5 Typing rules

The typing rules for expressions and processes are shown in Table 4.
The former ones derive judgments of the formΨ; Γ ⊢ M : t meaning
thatM is well typed in Ψ; Γ and has type t . The latter ones derive
judgments of the form Ψ; Γ ⊢ P meaning that P is well typed in
Ψ; Γ. In both cases, we make the implicit assumption that Ψ agrees
with Γ. We now describe the rules in detail.

Axiom t-pure lifts a well-typed term in the functional layer
to the process layer. We do not detail how judgments Ψ ⊢ p : A
are derived, as they depend on the functional layer. Notice that
the context in which p is well typed has the form 0 · Γ, hence it
is unrestricted, recording the fact that p does not use any linear
resource.

Axiom t-name states that a name u (that is, a variable or a
channel) is well typed and has type t in a context that contains an
association u : t . The unused part of the context must have the
form 0 · Γ, recording the fact that no resource apart from u is used.

Rule t-pair states that ifM has type t and N has type s in which
x is a placeholder for M , then the pair M,N has type Σ(x : t)s .
There are two twists that set this rule apart from a conventional
introduction for dependent pairs. The first one is that we replace
⟦M⟧ – and not M – for x in s , as we have discussed in Section 4.3.
In addition, the contexts Γ and ∆ used for typing M and N are
combined in the conclusion of the rule, so as to cumulate the uses of
resources that occur in bothM and N . As an example, if the same
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channel occurs inM with type 0,1[t] and also in N with type 1,0[t],
then it occurs in the pairM,N with type 1,1[t].

Now on to the typing rules for processes. Axiom t-idle states
that, since the idle process performs no action and uses no resource,
it is well typed in an unrestricted context of the form 0 · Γ.

Rule t-input states that an input processes of the form u(x).P
is well typed if the name u has type 1,0[t] and the continuation P
is well typed in a context enriched with the association x : t . In
the continuation, the pure context is enriched with the association
x : ⟦t⟧ so that the pure part of the received message x is available
in the functional layer as well. The type of u indicates that u is a
channel used (here) for a single input operation of a message of
type t . The whole process is well typed in a context that combines
the resources used in both u and P .

Rule t-output deals with processes of the formu⟨M⟩. The name
u must have a type of the form 0,1[t], indicating that it is a channel
used (here) for a single output of a message M of type t . As we
have seen in other rules, the contexts used for typing u andM are
combined in the conclusion.

Rule t-let deals with processes of the form let x,y = M in P .
The termM must have a type of the form Σ(x : t)s and P must be
well typed in a context enriched with the associations for x and
y. Similarly to what we have seen in t-input, the pure context is
also enriched with associations for the same names, although their
types are the filtered versions of t and s .

Rules t-par and t-new handle parallel compositions and channel
restrictions in the expected way. t-par illustrates better than other
rules why Ψ may contain associations for resources that are in
scope but not visible in the context. A linear resource u used by
P will have an association in Γ but not in ∆. Yet, process Q may
refer to non-linear components of u through the pure context Ψ,
which is the same for P andQ . In t-new, we do not constrain in any
way the multiplicities σ and ρ occurring in the type of a restricted
channel, even though some combinations of σ and ρ may indicate
obvious flaws in the process. For example, restricted channels with
type 0,1[t] or 1,0[t] or 0,ω [t] suggest the presence of unmatched
input or output operations andmay cause deadlocks or yield orphan
messages. We ignore such issues in this paper since our type system
is not aimed at enforcing progress or other liveness properties [23].
Note also that, in t-new, the pure context is not enriched with an
association for the channel c . Since channels are mapped to the
constant tt in the functional layer, there is no need to augment the
pure context in this case.

Rule t-rep deals with replicated processes of the form ∗P . Since a
replicated process P is morally equivalent to an unbounded number
of copies of P running in parallel, the rule scales the context in
which P is well typed by ω. As a side effect, such context cannot
contain pairs, for which scaling is undefined.

4.6 Properties of well-typed processes

We summarize here the main properties of well-typed processes,
starting from the fact that structural congruence preserves typing.

Theorem 4.2. If Ψ; Γ ⊢ P and P ≡ Q , then Ψ; Γ ⊢ Q .

To formulate the property that typing is preserved also by reduc-
tions, we have to consider that the type associated with a channel
may change as the result of a communication taking place on that

channel. In particular, a linear channel can be used for a single
communication only. For this reason, the reduct Q of a process P
after a communication is well typed in a context that is related to
– though not necessarily the same as – the context in which P is
well typed. We express this relationship between contexts through
a relation

α
−→ defined by the following two axioms:

Γ
τ
−→ Γ Γ + c : 1,1[t]

c
−→ Γ

Unobservable actions do not change the context. A communica-
tion on a channel c is allowed provided that the channel is associated
with a channel type in which neither multiplicity is 0. The type of
the channel in the resulting context is suitably adjusted to account
for this communication. In particular, we have

c : 1,1[t]
c
−→ c : 0,0[t]

capturing the fact that a linear channel c is “consumed” and no
longer usable after a communication takes place on c . Subject re-
duction can now be formulated showing that all the reductions in
processes are simulated by matching reductions in contexts:

Theorem 4.3 (subject reduction). If Ψ; Γ ⊢ P and P
α
−→ Q ,

then there exists ∆ such that Γ
α
−→ ∆ and Ψ;∆ ⊢ Q .

The converse of Theorem 4.3, in which every reduction in a
context can be simulated by the process, does not hold in general
since the structure of the process may constrain the order in which
communications take place.

We now discuss a few safety properties guaranteed by the type
system, most of which are in fact corollaries of Theorem 4.3. First
of all, we can formulate communication safety as the property that
a message received from a channel has the expected type.

Proposition 4.4. If Ψ; Γ ⊢ u⟨M⟩ | u(x).P , then there exist t , Γ1
and Γ2 such that Ψ; Γ1 ⊢ M : t and Ψ; Γ2, x : t ⊢ P .

The next two results specifically concern linearity. The first one
states that a name that is not used by a well-typed process P – that
is, a name not occurring free in P – must have an unrestricted type.
In other words, the type system ensures that names with linear
types are not discarded without first being used.

Proposition 4.5. If Ψ; Γ,u : t ⊢ P and u < fn(P), then t = 0 · t .

The second result states that a channel on which a communica-
tion occurs has non-zero multiplicities in its type. In other words,
the type system ensures that channels whose type has 0 multiplici-
ties are not used for communications.

Proposition 4.6. If Ψ; Γ, c : σ,ρ[t] ⊢ P where σρ = 0 and P
α
−→

Q , then α , c .

Other properties of well-typed processes that hold for the linear
π -calculus [20], including race-freedom and partial confluence for
communications on linear channels, hold in dlπ too.

4.7 Examples

To give a flavor of the type system, we sketch the typing derivations
for the processesQ1 andQ2 in Section 3. To reduce clutter, we omit
from the judgments the pure context Ψ, whose precise content is
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inessential and can be partially guessed from the presented ele-
ments. Take t1

def
= 1,0[s] where s def

= N× 0,1[N]. The proof tree below
shows that Q1 is well typed in the context u : t1:

u : t1 ⊢ u : t1

z : s ⊢ z : s

y : 0,1[N] ⊢ y : 0,1[N]

functional layer

x : N ⊢ x + 1 : N

x : N,y : 0,1[N] ⊢ y⟨x + 1⟩

z : s ⊢ let x,y = z in y⟨x + 1⟩

u : t1 ⊢ u(z).let x,y = z in y⟨x + 1⟩
Note how the contexts are split so as to distribute the resources

where they are needed to type the process. The details of the typing
derivation for the judgment x : N ⊢ x + 1 : N depend on the type
system of the functional layer and are omitted.

We now show that the process Q2 in (3.5) is well typed in the
context u : t2 where

t2
def
=

1,0
[Σ(x : N) 1,0[(x > 0) × 0,1[N]]]

The dependent pair allows us to relate the number x received
from the channel and the proof that x > 0, which is received from
a different linear channel. We have the following derivation, in
which we have elided the applications of t-name and collapsed the
applications of t-in immediately followed by t-let:

...
u

...
v

...
z

functional layer

x : N,y : x > 0 ⊢ pred(x,y) : N

x : N,y : x > 0, z : 0,1[N] ⊢ z⟨pred(x,y)⟩

x : N,v : s ⊢ v(y, z).z⟨pred(x,y)⟩

u : t ⊢ u(x,v).v(y, z).z⟨pred(x,y)⟩
We postpone the typing derivations for the processes Q3 in (3.6)

and Q4 in (3.7) to the end of Section 5, where we will be able to
show them in full using Agda for computing processes and types.

5 AGDA FORMALIZATION

In this section we sketch an embedding of dlπ in Agda. We use
Agda not just as a tool for formalizing the metatheory of dlπ ,
but also as a particular instantiation of its functional layer. This
way, we can rely on a full-fledged, dependently-typed language
for computing processes and types. Space constraints force us to
discuss a slightly simplified version of the formalization and to focus
on the definition of the Agda data types we use for representing
types, contexts and processes. The rest of the formalization follows
in a fairly straightforward way once these data types are in place.
The full development is available in a public repository [5].

We begin with multiplicities, represented as a Mult data type
with 3 constructors corresponding to the elements 0, 1 and ω.

data Mult : Set where
#0 #1 #ω : Mult

Even though the operations + and · on multiplicities are easy to
implement as Agda functions, we find it more convenient to express
them as relations, for two different reasons. First, combination and
scaling are only partially defined for types and contexts, hence they
must be expressed as – or with the help of – relations for those
entities anyway. Using relations also for multiplicities allows us to

give a uniform presentation of these operations on all the entities
for which they make sense. In addition to that, multiplicities occur
in dlπ types, which in turn occur in contexts, which in turn occur
in the Agda type of terms and processes. Having functions that
compute indexes would force us to adopt heterogeneous notions of
equality that, in our experience, often result in unreasonably com-
plex Agda code. For this reason, we prefer working with relations
wherever possible.

We define two data types

data MScale : Mult →Mult → Set
data MSplit : Mult →Mult →Mult → Set

in such a way that MScale σ ρ is inhabited if and only if ρ = ωσ
and MSplit σ σ1 σ2 is inhabited if and only if σ = σ1 + σ2. Note
that the typing rules shown in Table 4 scale contexts, types and
multiplicities by 0 and ω, whereas withMScale we only consider
scaling by ω. It is simpler to provide ad hoc unary predicates to
expresses the properties t = 0 · t and Γ = 0 · Γ.

The Agda data type for representing dlπ types is an inductive-
recursive definition [9], since it refers to the ⟦·⟧ function that maps
dlπ types into the corresponding pure types. We have

mutual
data Type : Set1 where
Pure : Set→ Type
Chan : Mult→Mult → Type→ Type
Pair : (t : Type)→ (⟦ t ⟧ → Type) → Type

⟦_⟧ : Type→ Set
⟦ Pure A ⟧ = A
⟦ Chan _ _ _ ⟧ = ⊤

⟦ Pair t f ⟧ =
∑ ⟦ t ⟧ λ x → ⟦ f x ⟧

where the constructors of Type correspond to the three forms of
dlπ types (Table 3) and ⟦·⟧ is the filtering function defined in
Section 4.3 that maps dlπ types into Agda types. Note that Type
is in Set1 since its Pure constructor has a Set argument. In the full
development [5], Type is actually a sized type [1] and the Type
argument of Chan is a thunk to account for possibly infinite types.

We provide TScale and TSplit relations to express scaling and
splitting of types, along with a predicate TNull t that holds if and
only if 0 · t = t .

data TNull : Type→ Set1
data TScale : (t s : Type)→ ⟦ t ⟧ → ⟦ s ⟧ → Set1
data TSplit : (t t1 t2 : Type)→ ⟦ t ⟧ → ⟦ t1 ⟧ → ⟦ t2 ⟧→ Set1

The TScale and TSplit data types have way more indexes than
one would reasonably expect. As we will see shortly, whenever
we scale or split types, we are always in the position of saying
which pure term has its type being scaled or splitted. The additional
indexes in TScale and TSplit allow us to “cast” the pure term to the
types resulting from the scaling or the splitting. For example, an
Agda value of type TScale t s p q witnesses that s = ω · t and that
if p is a pure term of type ⟦t⟧, then q is the corresponding pure
term of type ⟦s⟧. Funnily enough, p and q are always equal, but
their types ⟦t⟧ and ⟦s⟧ may differ. It would be trivial to write a
casting function that, given a pure term of type ⟦t⟧, yields the same
pure term with type ⟦s⟧. The problem, once again, is that using
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such casting function for computing indexes leads to unmanageable
Agda code.

Following Benton et al. [2], Thiemann [29], Wadler and Kokke
[33], we use intrinsically typed terms and processes where names
are referenced through their de Brujin index. There is one key
difference with these works, though, which allows us to intertwine
the dlπ process layer and the Agda functional layer. Our contexts
are not just lists of types, as in the aforementioned works, but rather
lists of pairs t # p where t is a type and p is a pure term of type
⟦t⟧. These pure terms make sure that a context Γ, which is used
for typing dlπ terms and processes, agrees with the pure context Ψ
known by Agda, in the sense of Section 4.4. To better understand
the relevance of these pure terms, recall from Section 4.3 that the
filtering function ⟦·⟧ on dlπ terms is defined so that ⟦x⟧ = x . The x
on the left-hand side of this equation is a dlπ variable, whereas the
x on the right-hand side is an Agda variable. By storing a pair t # x
in a context, we associate a dlπ variable – which is represented
namelessy by the position of the pair in the context – not only with
its type t but also with its corresponding Agda variable x .

data Context : Set1 where
[] : Context
_#_::_ : (t : Type) → ⟦ t ⟧ → Context → Context

The CNull, CScale and CSplit data types play for contexts the
same roles that TNull, TScale and TSplit play for types. Specifically,
the predicate CNull Γ requires each type in Γ to satisfy TNull:

data CNull : Context → Set1 where
[] : CNull []
_::_ : ∀{ t p Γ }→ TNull t → CNull Γ → CNull (t # p :: Γ )

For CSplit Γ Γ1 Γ2, we provide constructors for either splitting
an entry of Γ according to TSplit or moving it into Γ1 through the L
constructor or into Γ2 through the R constructor:

data CSplit : Context → Context→ Context→ Set1 where
[] : CSplit [] [] []
_::_ : ∀{ t t1 t2 p p1 p2 Γ Γ1 Γ2 } →

TSplit t t1 t2 p p1 p2 → CSplit Γ Γ1 Γ2 →

CSplit (t # p :: Γ ) (t1 # p1 :: Γ1) (t2 # p2 :: Γ2)
L_ : ∀{ Γ Γ1 Γ2 t p }→ CSplit Γ Γ1 Γ2 →

CSplit (t # p :: Γ ) (t # p :: Γ1) Γ2
R_ : ∀{ Γ Γ1 Γ2 t p }→ CSplit Γ Γ1 Γ2 →

CSplit (t # p :: Γ ) Γ1 (t # p :: Γ2)

We now turn our attention to the representation of terms, start-
ing from names. A dlπ name is an Agda value of type Name k Γ t p
where k is de Brujin index of the name, t is its type in the context
Γ, and p is the pure term associated with the name. Keeping track
of the de Brujin index of a name in its Agda type is useful to infer
that two values of type Name actually refer to the same name. For
example, in the statement of Proposition 4.4 we have two occur-
rences of u which are used in two different ways, for sending and
for receiving a message. When we invert t-par, t-input and t-
output we can “only” infer that these occurrences of u correspond
to Agda values of type Name k Γ 0,1[t] tt and Name k ∆ 1,0[s] tt
respectively. We use the knowledge that the two names have the
same index k to prove t = s and therefore that Proposition 4.4 holds.

The Name data type is defined thus:

data Name : N→ Context→ (t : Type)→ ⟦ t ⟧→ Set1 where
here : ∀{ Γ t p }→ CNull Γ → Name zero (t # p :: Γ ) t p
next : ∀{ k Γ t s p q }→ TNull s → Name k Γ t p →

Name (suc k) (s # q :: Γ ) t p

The here constructor corresponds to the first name in a context,
so its index is 0. The next constructor corresponds to a name found
at position k in the remainder of the context, so its index is k + 1. In
both cases, the part of the context not concerning the name must
satisfy the condition 0 · Γ = Γ, as required by t-name.

A dlπ term is an Agda value of type Term Γ t p, where Γ is the
context in which the term is well typed, t is its type and p is the
corresponding pure term.

data Term : Context→ (t : Type)→ ⟦ t ⟧→ Set1 where
name : ∀{ k Γ t p }→ Name k Γ t p → Term Γ t p
pure : ∀{ Γ A } → CNull Γ → (p : A) → Term Γ (Pure A) p
pair : ∀{ Γ Γ1 Γ2 t f p q }→ CSplit Γ Γ1 Γ2 →

Term Γ1 t p → Term Γ2 (f p) q→ Term Γ (Pair t f) (p , q)

The constructors relate to the forms of dlπ terms (Table 1) and
their arguments match the premises of the typing rules (Table 4).
A pair requires two sub-terms respectively typed in Γ1 and Γ2 that
combine into Γ, as by the CSplit Γ Γ1 Γ2 argument. At last we can
appreciate the role of the pure term p attached to the Agda type
of terms, which is used here for computing the type (f p) of the
second component of the pair.

A dlπ process is an Agda value of type Process Γ, where Γ is the
context in which the process is well typed:

data Process : Context → Set1 where
Idle : ∀{ Γ }→ CNull Γ → Process Γ
Send : ∀{ Γ Γ1 Γ2 t p }→ CSplit Γ Γ1 Γ2 →

Term Γ1 (Chan #0 #1 t) _ → Term Γ2 t p→ Process Γ
Recv : ∀{ Γ Γ1 Γ2 t }→ CSplit Γ Γ1 Γ2 →

Term Γ1 (Chan #1 #0 t) _ →
((x : ⟦ t ⟧) → Process (t # x :: Γ2)) → Process Γ

Let : ∀{ Γ Γ1 Γ2 t f p q }→ CSplit Γ Γ1 Γ2 →

Term Γ1 (Pair t f) (p , q)→
((x : ⟦ t ⟧) (y : ⟦ f x ⟧) → Process (t # x :: f x # y :: Γ2))
→ Process Γ

Par : ∀{ Γ Γ1 Γ2 }→ CSplit Γ Γ1 Γ2 →

Process Γ1 → Process Γ2 → Process Γ
New : ∀{ Γ σ ρ t }→ Process (Chan σ ρ t # _ :: Γ )→ Process Γ
Rep : ∀{ Γ ∆ }→ CScale Γ ∆→ Process Γ → Process ∆

By now, most elements of this definition are self-explanatory.
The only feature that differs from the syntax of the calculus and
from the typing rules is the last argument in the Recv and Let
constructors, which is not just a value of type Process but is actually
a function that computes such value from one or two arguments x
and y, the variables being bound by the input prefix or by the let
form. As their type suggests, these arguments represent the pure
terms corresponding to the dlπ terms bound to x and y and are
used to populate the context of the continuation process. In the Let
constructor, note how the type f x of the second component of the
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pair is computed from the Agda variable corresponding to the first
component.

The full Agda development [5] formalizes the whole semantics
of dlπ , namely structural congruence ≡ and reduction

α
−→. As usual

in an intrinsically-typed language, both relations incorporate the
corresponding type-preservation results (Theorems 4.2 and 4.3),
from which the other properties stated in Section 4.6 follow.

We now revisit some of the examples discussed in Section 3,
showing how they are implemented in Agda. Recall that values of
type Process Γ are intrinsically-typed processes, so the terms we
see below actually correspond to typing derivations, not just to
processes. Starting from Q1 in (3.4), we have:

t1 : Type
t1 = Chan #1 #0 (Pair (Pure N) λ _→ Chan #0 #1 (Pure N))

Q1 : Process (t1 # _ :: [])
Q1 = Recv (L []) (name (here [])) λ _→

Let (L []) (name (here [])) λ x _ →
Send (R L []) (name (here [])) (pure (P :: []) (x + 1))

We use the L and R constructors to split the typing context
so as to distribute resources where they are needed. Note also the
function argument of Let, which gives access to themessage x being
received. The P constructor is a value of type TNull N, witnessing
that the type of x is unrestricted. For Q2 in (3.5) we have

t2 : Type
t2 = Chan #1 #0 (Pair (Pure N) λ x→

Chan #1 #0 (Pair (Pure (x . 0)) λ _→ Chan #0 #1 (Pure N)))

Q2 : Process (t2 # _ :: [])
Q2 = Recv (L []) (name (here [])) λ _→

Let (L []) (name (here [])) λ x _ →
Recv (R L []) (name (here [])) λ _→
Let (L R []) (name (here [])) λ y _ →
Send (R L R []) (name (here [])) (pure (P :: P :: []) (pred x y))

where
pred : (x : N) (y : x . 0)→ N
pred zero y = ⊥-elim (y refl)
pred (suc x) _ = x

where we use the function argument of the Pair constructor for
specifying the type x . 0 of the subsequent message.

In the case ofQ3 in (3.6), we have to patternmatch on the received
boolean value to compute both the type t3 and the process. In the
latter case, we must weaken the context in which Q1 and Q2 are
typed, since these processes expect only one name in their context,
whereas Q3 provides two, the first of which is the boolean value
which is used by neither Q1 nor Q2:

t3 : Type
t3 = Chan #ω #0 (Pair (Pure Bool) (λ b → if b then t1 else t2))

Q3 : Process (t3 # _ :: [])
Q3 = Rep (chan sc1 sc0 :: []) (

Recv (L []) (name (here [])) λ _ →
Let (L []) (name (here [])) λ { true _ → weaken Q1

; false _ → weaken Q2 })

The term chan sc1 sc0 scales the input multiplicity of the channel
used by the process from 1 to ω, to account for the fact that the
process is replicated.

In order to construct Q4 in (3.7), it is convenient to define an
auxiliary function f such that f n describes the exchange of the n
messages from the client to the server process and then the com-
munication of the result from the server back to the client:

f : N→ Type
f zero = Chan #0 #1 (Pure N)
f (suc n) = Chan #1 #0 (Pair (Pure N) λ _ → f n)

Now the server Q4 in (3.7) can be implemented thus:

t4 : Type
t4 = Chan #ω #0 (Pair (Pure N) f)

Q4 : Process (t4 # _ :: [])
Q4 = Rep (chan sc1 sc0 :: []) (

Recv (L []) (name (here [])) λ _ →
Let (L []) (name (here [])) λ n _ → weaken (F n 1))

where
F : (n : N) →∀{ p }→ N→ Process (f n # p :: [])
F zero z = Send (L []) (name (here [])) (pure [] z)
F (suc n) z = Recv (L []) (name (here [])) λ _→

Let (L []) (name (here [])) λ x _ →
weaken (F n (x ∗ z))

The interested reader will find the implementation of the client
processes Pi in Appendix A. It is clear from these examples that
writing even simple dlπ terms and processes in Agda is quite te-
dious. Preliminary results with an inference algorithm have shown
that most of the CNull and CSplit witnesses can be automatically
inferred as long as the programmer provides the type of bound chan-
nels and variables. We plan to finalize this algorithm in a future
update of the Agda formalization.

6 ENCODING DEPENDENT SESSION TYPES

In Section 3 we have seen a few examples of structured conver-
sations modeled in dlπ and in Sections 4 and 5 we have shown
how these conversation can be described in dlπ ’s type language.
In this section we take a more systematic approach to assess the
expressiveness of dlπ ’s type language. We consider three repre-
sentative session type languages [17, 30, 31] and define encoding
functions to compile them all into the type language of dlπ . For
the sake of uniformity, we make a few cosmetic adjustments to
the syntax of session types presented in the aforementioned works
while preserving their characterizing features. In all cases, we limit
ourselves to finite session types with binary choices and branches,
but our results extend easily to possibly infinite session types with
arbitrarily labelled choices.

Session types à la Honda [17] have been presented in the first
work on session types, their syntax is shown below:

T , S ::= end | ?m.T | !m.T | T & S | T ⊕ S
m ::= A | T

(6.1)

The type end describes endpoints that are not used anymore.
Input ?m.T and output !m.T describe session endpoints respectively
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used for receiving and sending a message of typem and then accord-
ing to T . Hereafter,m ranges over pure types A and over session
types themselves. BranchesT &S and choicesT ⊕S describe session
endpoints respectively used for receiving and sending a single bit of
information and then according to eitherT or S accordingly.Wewill
make the assumption that this information is encoded as a value of
type Bool, with true being the value for selectingT and false being
the value for selecting S . Although session types à la Honda are
not explicitly presented as dependent session types, branches and
choices are in fact a simple form of dependency whereby the type
of the endpoint after the communication depends on the boolean
value that is exchanged. This will be clear when we discuss the
encoding of session types into dlπ ’s types.

All theories of session types rely on some notion of duality that
plays a key role in the encodings we are about to discuss. The dual
of a session typeT , often denoted byT , is the session type obtained
from T by swapping inputs with outputs, choices with branches,
and leaving message types and end unchanged. For example, we
have (!m.end) ⊕ end = (?m.end) & end.

Dardha et al. [6] have shown how to encode session types in (6.1)
in terms of linear channels, non-dependent pairs and disjoint sums.
Below we rephrase their encoding as a function ⌊⌊·⌋⌋ that maps
session types into dlπ ’s types, using dependent pairs to subsume
both non-dependent pairs and disjoint sums:

⌊⌊end⌋⌋ = 0,0[⊤]
⌊⌊?m.T ⌋⌋ = 1,0[⌊⌊m⌋⌋ × ⌊⌊T ⌋⌋]

⌊⌊!m.T ⌋⌋ = 0,1
[⌊⌊m⌋⌋ × ⌊⌊T ⌋⌋]

⌊⌊T & S⌋⌋ = 1,0[Σ(x : Bool) if x then ⌊⌊T ⌋⌋ else ⌊⌊S⌋⌋]

⌊⌊T ⊕ S⌋⌋ =
0,1

[Σ(x : Bool) if x then ⌊⌊T ⌋⌋ else ⌊⌊S⌋⌋]

The encoding of end yields an unusable channel with null multi-
plicities. The encoding of an input ?m.T or an output !m.T yields
a linear channel used for receiving or sending a non-dependent
pair whose first component is the encoding ofm and whose second
component is another channel resulting from the encoding of T .
The encoding ofm yields either A or ⌊⌊T ⌋⌋, according to the shape
ofm. Note that the type of the second component of the pair in the
encoding of !m.T is not ⌊⌊T ⌋⌋ but rather ⌊⌊T ⌋⌋. The reason why dual-
ity is used here is that ⌊⌊T ⌋⌋ specifies how the second component of
the pair is used by the receiver of the pair, as opposed to ⌊⌊T ⌋⌋ which
describes the behavior of the sender of the pair. The encoding of a
branchT & S yields a linear channel used for receiving a dependent
pair whose first component is a boolean value x and whose second
component is (a term that reduces to) either ⌊⌊T ⌋⌋ or ⌊⌊S⌋⌋ depending
on the value of x . The if x then t else s on the right-hand side of
the equations is to be interpreted as a pure term of the functional
layer rather than a dlπ type constructor. The encoding of a choice
T ⊕ S follows a similar pattern. As for the encoding of outputs, here
too the encoded continuations are dualized.

Session types à la Toninho et al. [31] extend those shown in (6.1)
with existential and universal quantifiers, one dual to the other:

T , S ::= · · · | ∀x : A.T | ∃x : A.T (6.2)

The ∀ and ∃ quantifiers respectively correspond to input and
output operations that bind the exchanged message to a name that
can be used in the rest of the session type for describing properties

related to that message. Toninho et al. [31] consider for example

∀x : N.∀u : (x > 0).∃y : N.∃v : (y > 0).end

which describes the behavior of a process that receives a natural
number x and a proof u that x > 0 and sends back another natural
number y along with a proof v that y > 0.

The encoding function ⌊⌊·⌋⌋ can be extended with the equations

⌊⌊∀x : A.T ⌋⌋ = 1,0[Σ(x : A)⌊⌊T ⌋⌋]
⌊⌊∃x : A.T ⌋⌋ = 0,1

[Σ(x : A)⌊⌊T ⌋⌋]

to account for quantifiers in the expected way, again dualizing the
continuation session type for the output operation.

Thiemann and Vasconcelos [30] embrace the idea that branches
and choices are forms of dependent types and propose a stream-
lined session type language that features input/output actions akin
to quantified session types in (6.2) along with a case x of {T , S}
construct that reduces to either T or S depending on the value of x :

T , S ::= end | ?x :m.T | !x :m.S | case x of {T , S} (6.3)

As an example, the choice T ⊕ S in (6.1) can be expressed as
!x : Bool.case x of {T , S}. Also in this case the encoding is straight-
forward, with the case construct that naturally translates to a con-
ditional expression in the functional layer:

⌊⌊end⌋⌋ = 0,0[⊤]
⌊⌊?x :m.T ⌋⌋ = 1,0[Σ(x : ⌊⌊m⌋⌋)⌊⌊T ⌋⌋]

⌊⌊!x :m.T ⌋⌋ = 0,1
[Σ(x : ⌊⌊m⌋⌋)⌊⌊T ⌋⌋]

⌊⌊case x of {T , S}⌋⌋ = if x then ⌊⌊T ⌋⌋ else ⌊⌊S⌋⌋

Observe that none of the presented encodings is injective if we
consider dlπ types equals according to Agda’s propositional equal-
ity. For example, we have ⌊⌊?Bool.T ⌋⌋ = ⌊⌊T &T ⌋⌋ for session types à
la Honda, ⌊⌊?Bool.T ⌋⌋ = ⌊⌊T &T ⌋⌋ = ⌊⌊∀x : Bool.T ⌋⌋ for session types
à la Toninho et al. [31] and

⌊⌊?x : Bool.case x of {?y : N.T , ?y : N.S}⌋⌋
= ⌊⌊?x : Bool.?y : N.case x of {T , S}⌋⌋

for session types à la Thiemann and Vasconcelos. This is not entirely
surprising, since dlπ types describe communication protocols at
a rather low level of abstraction, but it also highlights that the
semantics of different constructs provided by these session type
languages overlap to some extent. In contrast, the encoding of
Dardha et al. [6], which relies on different low-level types for pairs
and sums, has been shown injective by Padovani [24]. This property
is useful for pretty-printing automatically inferred communication
protocols [21].

Another intriguing aspect of these encoding functions is their
interplay with duality. Duality plays a key role in all session type
theories and yet it is surprisingly subtle to define correctly [15]. In
part, this is because duality affects the whole structure of a session
type. Whenever a session type language is extended with new
forms, such as quantifiers in (6.2) or label case analysis in (6.3),
duality must be suitably extended as well. However, as observed
by Dardha et al. [6], duality turns into a much simpler relation
when we consider encoded session types and, using an appropriate
representation of channel types, it boils down to type equality [24]:

Proposition 6.1. Let σ,ρ[t] def
= ρ,σ[t]. Then ⌊⌊T ⌋⌋ = ⌊⌊T ⌋⌋.
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This property says that the encoding of the dual of T differs
from the encoding of T solely in the order of the multiplicities in
the top-level channel type constructor of ⌊⌊T ⌋⌋. As a consequence,
writing rich protocol specifications in encoded form in dlπ makes
it easier to use all the expressive power of the underlying functional
layer without worrying about duality. For example, one can mix-
and-match constructs from (6.2) and (6.3) to express branching
points that depend not on a label, but rather on a property between
messages. As an example, the type

1,0
[Σ(x : N)

1,0
[Σ(y : N) if x <b y then t else s]] (6.4)

describes a channel which is used for reading two natural numbers
x and y and then according to t or s depending on whether or not
x is smaller than y (<b : N → N → Bool is the builtin less-than
boolean function in Agda). The “dual” of (6.4) is described by a type
which is basically the same, but with the topmost multiplicities
swapped. Note that the protocol described by (6.4) can be expressed
somehow using the session type languages in (6.2) or (6.3), but in
both cases it must be patched so that the outcome of the comparison
x <b y is explicitly transmitted as a boolean value.

In [5] we give Agda formalizations of all the encodings ⌊⌊·⌋⌋ in
this section, each with a decoder ⌈⌈·⌉⌉ that is shown to be the inverse
of ⌊⌊·⌋⌋ when session types are considered up to bisimilarity.

7 RELATEDWORK

Dependent session types. The first theories of dependent session
types are those of Toninho et al. [31] and Griffith and Gunter [16].
These works augment session types with binders, thus allowing
for the specification of message predicates. Toninho and Yoshida
[32] present a full calculus combining functions and processes in
which the structure of both types and processes may depend on the
content of messages, as in ourwork. In particular, their session types
can describe a protocol such as (6.4) albeit with a more complex
type structure compared to our own (Table 3). Unlike Toninho
and Yoshida and aligning with Griffith and Gunter [16], Toninho
et al. [31], we leave the functional layer of dlπ unspecified, but we
contribute an Agda formalization of the calculus. Thiemann and
Vasconcelos [30] propose a full model of functions and processes
enabling a simplified form of dependency whereby the structure
of types and processes may depend on labels and possibly natural
numbers. They introduce a conditional context extension operator
that prevents dependencies on linear values and plays a similar role
of the filtering function ⟦·⟧ that erases channels.

Zhou [35] describes the theory and implementation of a refine-
ment session type systemwhere the type of messages can be refined
by predicates that specify their properties and relationships.

Dependent types for data formats and protocols. Oury and Swier-
stra [22] showcase the expressiveness of dependent types in de-
scribing cryptographic protocols and data formats. In particular,
our Type data type with dependent pairs has been inspired by their
definition of data formats using induction-recursion [9]. The works
of Bhatti et al. [3] and Brady and Hammond [4] advocate the use-
fulness of dependent types in the definition of (Embedded) Domain
Specific Languages (EDSLs) for the description of network protocols.
In particular, they show how dependent types capture precisely
the type of operations that change state-sensitive resources (e.g.

sockets) and enable specifications of data-sensitive protocols (e.g.
communication of checksums). Scalas et al. [28] use a blend of be-
havioral and dependent function types for the precise specification
of actor-based programs.

Formalizations of session type systems. Thiemann [29] gives the
first mechanized proof of a calculus of functions and sessions. His
type system distinguishes between types and session types, but
only non-dependent pairs are considered. de Muijnck-Hughes et al.
[7] describe an Idris EDSL where dependent types enable reason-
ing on value dependencies between exchanged messages. Zalakain
and Dardha [34] give another Agda formalization of the linear
π -calculus. They focus exclusively on the process layer and only
consider channel types, using typing with leftovers instead of con-
text splitting as we do. While context splitting relates more closely
with the model (Section 4) and other presentations of linear and
session calculi, leftovers allow for simpler mechanizations. Rouvoet
et al. [27] describe a technique inspired by separation logic to spec-
ify and verify in Agda interpreters using linear resources. Among
the case studies they discuss is a linearly-typed lambda calculus
with primitives for session communications.

Linear π -calculus. Our main source of inspiration is the work of
Dardha et al. [6], which emphasizes the role of pairs in the encoding
of sessions using linear channels. Dardha et al. show not only the
encoding of session types (as we do in Section 6), but also the
encoding of processes and prove an operational correspondence
between session-typed processes and encoded ones. We think that
all of these results extend to our calculus as well. The same encoding
is also discussed in earlier works by Kobayashi [19] and Demangeon
and Honda [8]. Padovani [24, 25] describes an OCaml library of
binary sessions which blends static session type inference with
dynamic linearity checking. Encoded session typesmakes it possible
to rely exclusively on OCaml’s type system.

8 CONCLUDING REMARKS

Linear channels combined with linear dependent pairs go a long
way in describing structured conversations that depend on the
content of messages in a strong sense. We have studied this combi-
nation in dlπ , a dependently-typed linear π -calculus that provides
a unifying model for a variety of dependent session type systems.

We have used Agda not only as the language in which we for-
malize the metatheory of dlπ , but also as a particular instance
of dlπ ’s functional layer from which we inherit the fundamental
machinery related to dependent pairs. The interplay between Agda
and the process layer of dlπ is mediated so as to prevent the flow
of channels from the process layer to the functional layer. This
mediation also prevents the specification of protocols that depend
on the identity of channels.

The Agda formalization of dlπ can form the basis for a light-
weight library implementation of dependent session types in Agda,
along the lines of similar libraries for other functional languages [24,
25]. Although the amount of annotations required for the typing of
processes appears intimidating (Section 5), preliminary results with
an inference algorithm have shown that these annotations can be
automatically synthesized in many cases. We plan to finalize these
developments in the near future.
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A SUPPLEMENT

In this appendix we show the code corresponding to the client processes P1–P4 described in Section 3. In general these processes are slightly
more intricate than the corresponding servers because they need to create new channels which must be suitably distributed among parallel
sub-processes.

Since these processes behave in a dual manner with respect to the corresponding servers, it is useful to define a dual-of function that
computes the “dual” of a dlπ type (see Proposition 6.1), so that we can reuse most of the structure already given in the types t1–t4 of
Section 5.

dual-of : Type → Type
dual-of (Chan σ ρ t) = Chan ρ σ t
dual-of t = t

Note that dual-of behaves as the identity on any type other than channel types. We add this case to dual-of just so that the function is
total. Starting from P1 in (3.3) we have

P1 : Process (dual-of t1 # _ :: [])
P1 = New (Par (chan sp01 sp10 :: L [])

(Send (R L []) (name (here [])) (pair (R []) (pure [] 2) (name (here []))))
(Recv (L []) (name (here [])) λ _→ Idle (P :: [])))

where spσρ is a witness for the relation MSplit (σ + ρ) σ ρ. Note that s1 differs from t1 (Section 5) solely for the topmost multiplicities. The
same will apply for all the types used by the client processes presented hereafter. Concerning P2 in Section 3.2 we have:

nzero : (n : N) → suc n . 0
nzero _ ()

P2 : Process (dual-of t2 # _ :: [])
P2 = New (Par (chan sp10 sp01 :: L [])

(Send (R L []) (name (here [])) (pair (R []) (pure [] 2) (name (here []))))
(New (Par (chan sp01 sp10 :: L [])

(Send (R L []) (name (here [])) (pair (R []) (pure [] (nzero 1)) (name (here []))))
(Recv (L []) (name (here [])) λ _→ Idle (P :: [])))))

For P31 and P32 in Section 3.3 we have:

P31 : Process (dual-of t3 # _ :: [])
P31 = New (Par (chan sp10 sp01 :: L [])

(Send (R L []) (name (here []))
(pair (R []) (pure [] true) (name (here []))))

P1)

P32 : Process (dual-of t3 # _ :: [])
P32 = New (Par (chan sp10 sp01 :: L [])

(Send (R L []) (name (here []))
(pair (R []) (pure [] false) (name (here []))))

P2)

Now the process composition at the end of Section 3.3 can be typed thus:

P3 : Process (Chan #0 #ω _ # _ :: [])
P3 = Par (chan sp00 sp11 :: []) P31 P32

C3 : Process (Chan #ω #ω _ # _ :: [])
C3 = Par (chan sp0ω spω0 :: []) P3 Q3

We conclude with the definition of P4 in Section 3.4:

G : (n : N)→∀{ p } → Process (dual-of (f n) # p :: [])
G zero = Recv (L []) (name (here [])) λ _→

Idle (P :: [])
G (suc zero) = New (Par (chan sp01 sp10 :: L [])

(Send (R L []) (name (here [])) (pair (R []) (pure [] 1) (name (here []))))
14
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(G 0))
G (suc (suc n)) = New (Par (chan sp10 sp01 :: L [])

(Send (R L []) (name (here [])) (pair (R []) (pure [] (suc (suc n))) (name (here []))))
(G (suc n)))

P4 : N→ Process (dual-of t4 # _ :: [])
P4 zero = New (

Par (chan sp01 sp10 :: L [])
(Send (R L []) (name (here [])) (pair (R []) (pure [] zero) (name (here []))))
(G 0)

)
P4 (suc n) = New (

Par (chan sp10 sp01 :: L [])
(Send (R L []) (name (here [])) (pair (R []) (pure [] (suc n)) (name (here []))))
(G (suc n))

)
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