
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A Dependently-Typed Linear π -Calculus in Agda
Luca Ciccone

luca.ciccone@unito.it
Università di Torino

Luca Padovani
luca.padovani@unito.it
Università di Torino

ABSTRACT

Session types have consolidated as a formalism for the specification
and static enforcement of communication protocols. Many different
theories of dependent session types have been proposed, some
enabling refined specifications on the content of messages, others
allowing the structure of the protocols to depend on data exchanged
in the protocol itself. In this work we continue a line of research
studying the foundations of binary session types. In particular, we
propose a variant of the linear π -calculus whose type structure
encompasses virtually all dependent session types using just two
type constructors: linear channel types and linear dependent pairs.
We use Agda not only to formalize the metatheory of the calculus
and obtain machine-checked proofs of type soundness, but also as
host language in which we implement data-dependent protocols.

CCS CONCEPTS

• Theory of computation→ Process calculi; Type structures;
Program specifications; Program analysis.

KEYWORDS

linear π -calculus, dependent session types, binary sessions, Agda
ACM Reference Format:

Luca Ciccone and Luca Padovani. 2018. A Dependently-Typed Linear π -
Calculus in Agda. In Woodstock ’18: ACM Symposium on Neural Gaze Detec-
tion, June 03–05, 2018, Woodstock, NY . ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Session type systems [17, 18] can statically andmodularly guarantee
the absence of communication errors in well-typed programs. Every
session type system revolves around the following key ideas. First,
it associates each endpoint of a communication channel – or session
– with a session type that specifies type and direction of messages
flowing through that endpoint. Second, the type system makes sure
that the session types associated with the endpoints of a session
describe complementary protocols so that an input/output action
performed on one of the endpoints is matched by a corresponding
counteraction on the other endpoint. This relation between session
types is often called duality. Finally, the type system checks that
the sequence of actions performed by a process on an endpoint
matches with the session type of the endpoint. To do so, it forbids

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

simultaneous access to the same endpoint by concurrent processes.
As a consequence, session endpoints are treated as linearized re-
sources that can only be accessed by a single process at any given
time, although their ownership can be passed around through a
mechanism called delegation.

Considering the relevant applications of dependent types in the
description of data formats [10, 12, 22] and of protocols [3, 4, 11],
it is not surprising that they have drawn the attention of the ses-
sion type community as well, where they have led to a variety of
different dependent session type languages. For example, Toninho
et al. [31] and Griffith and Gunter [16] use dependent session types
to provide refined specifications on the content of exchanged mes-
sages. Toninho and Yoshida [32] study a dependent session type
theory where the structure of both types and processes may de-
pend on the content of messages. Thiemann and Vasconcelos [30]
propose a label-dependent variant of session types in which the
ability to describe branching protocols does not require dedicated
type constructors or communication primitives.

Except for the work of Thiemann and Vasconcelos, all the other
dependent session type systems follow a common pattern, by ex-
tending a non-dependent session type system with new or refined
constructs to express predicates on messages and/or dependencies
between messages and behaviors. Thiemann and Vasconcelos [30]
recognize that the increased expressiveness enabled by dependent
types can in fact be exploited to streamline the structure of session
types and reduce the number of type constructors that are neces-
sary to describe complex protocols. Our work aims at taking their
result one step further, by proposing a deconstruction of dependent
session types in terms of an arguably minimal set of orthogonal
features: linear channels and linear dependent pairs. We argue that
these two ingredients suffice to encode the structure of virtually
every known dependent session type for binary sessions.

The inspiration for our work comes from the encoding of bi-
nary sessions into the linear π -calculus [20] thoroughly studied by
Dardha et al. [6] and based on the following idea: a sequence of
communications occurring on a session endpoint can be encoded
as a sequence of one-shot communications on a chain of linear
channels. Unlike session endpoints, which can be used repeatedly –
albeit sequentially – for several communications, a linear channel
can be used only once. To model a long, structured conversation
using linear channels, the sender of a message pairs the payload
with a continuation, that is a new linear channel from which the rest
of the conversation proceeds. Even from this informal description it
is clear that (non-dependent) pairs play a major role in the encoding
studied by Dardha et al. [6]. Our main insight is that, by promoting
non-dependent pairs to dependent ones, not only we simplify some
aspects of their encoding, but we also encompass a broader range
of protocol specifications that includes dependent session types.

There are both theoretical and practical motivations that make
these encodings worth investigating. On the theoretical side, they

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/326908775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Woodstock ’18, June 03–05, 2018, Woodstock, NY Luca Ciccone and Luca Padovani

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

deepen our understanding of the fundamental principles under-
lying session types. For example, they allow us to draw useful
connections between notions – think of subtyping – that may look
counterintuitive when defined on session types directly [13, 14],
but that are recognizable as folklore if explained in terms of their
encoding [6]. On the practical side, Padovani [24, 25] has shown
that working with encoded session types may enable session type
checking and inference in general-purpose programming languages
having no specific support for session types. Our work sets the stage
for a light implementation of dependent session types in Agda.

Summary of contributions. We define a dependently-typed ver-
sion of the linear π -calculus dubbed dlπ in which the structure of
communications may depend on the content of exchanged messages
in a strong sense. dlπ is stratified in a process layer used to model
communications and a functional layer used to compute not only
messages, but also data-dependent processes and types.

In line with some previous works [16, 31], we only describe
the process layer of dlπ leaving its functional layer mostly un-
specified. To substantiate our results, we provide a complete Agda
formalization of dlπ ’s metatheory and machine-checked proofs of
type soundness. A novel aspect of this formalization is that we inter-
twine dlπ and Agda so that we can write data-dependent processes
and types taking full advantage of Agda’s features.

Finally, we describe the systematic encoding of some representative
session type languages [17, 30, 31] into dlπ ’s types. This way, we
extend the results of Dardha et al. [6] to dependent session types
using a minimal, unifying model that encompasses a variety of
dependent session type systems.

Structure of the paper. We describe syntax and semantics of dlπ
in Section 2 and illustrate it through a series of examples in Section 3.
Although the examples are inspired to the encoding of binary ses-
sions in the linear π -calculus, they address scenarios in which the
structure of the protocol strongly depends on exchanged messages.
The dependent type system of dlπ is described in Section 4, where
we also formulate the main properties of well-typed processes. Sec-
tion 5 provides a bird’s eye view of the Agda formalization of dlπ ,
focusing on the definition of the key data types. We also show
the Agda implementation of some of the examples discussed in
Section 3. In Section 6 we show the encoding into dlπ ’s types of
three representative session type languages. We discuss related
work in more detail in Section 7 and conclude in Section 8. Ap-
pendix A provides additional examples and Agda code that could
not be accommodated in the main part of the paper. The full Agda
formalization of dlπ and of the encodings described in Section 6
can be downloaded from a public repository [5].

2 SYNTAX AND SEMANTICS

As anticipated in Section 1, dlπ consists of a functional layer in
which we express computations and a process layer in which we
express communications. We do not detail the function layer, from
which we inherit a setM of pure terms, ranged over by p and q. We
assume that M includes the unit value tt, the booleans true and
false, the natural numbers and that it is closed by pair construction.

The syntax of the process layer is shown in Table 1. We make
use of infinite sets C and X of channels and variables and we call

Domains a,b, c ∈ C channels
x,y, z ∈ X variables
u,v ∈ C ∪ X names
p,q ∈ M pure terms

Terms M,N ::= p pure term
| u name
| M,N pair

Processes P,Q ::= idle inaction
| u(x).P input
| u⟨M⟩ output
| let x,y = M in P pair splitting
| P | Q parallel composition
| (a)P restriction
| ∗P replication

Table 1: Syntax of dlπ .

names channels and variables without distinction. dlπ terms consist
of variables, pure terms, channels and pairs. Any pure term can
seamlessly flow from the functional layer to the process layer, where
it can be used for constructing messages. The flow of terms from
the process layer to the functional layer is also possible and useful,
but it requires more care. We illustrate it in Section 3 and discuss
the necessary precautions in Section 4.

By and large, dlπ processes are like π -calculus processes. We
write idle for the inactive process that performs no action. A process
of the form u(x).P waits for a message x from channel u and then
continues as P . A process of the form u⟨M⟩ sends a messageM on
channelu. For the sake of simplicity, we only consider asynchronous
communications, in which the output operation is not followed
by a continuation. Synchronous communication does not pose
substantial problems and is left out just because it is not used in
this work. Parallel composition, replication and name restriction
are standard. A process of the form let x,y = M in P inspects the
value M , which is supposed to be a pair, and then continues as
P where the first and second component of the pair have been
respectively bound to x and y. It is often the case that pair splitting
immediately follows an input prefix. For this reason, we define
u(x,y).P as syntactic sugar for u(z).let x,y = z in P for some z that
does not occur elsewhere.

The notions of free and bound names for expressions and pro-
cesses are standard, bearing in mind that the only binders are input
prefixes, channel restrictions and pair splitting. We write fn(P) for
the set of free names occurring in P .

One key aspect that is not self-evident from the syntax of dlπ
is that we use the functional layer not only as a language for ex-
pressing terms, but also as a language for computing processes
and types. In other words, any occurrence of the meta-variables
P and Q in Table 1 may stand for an expression of the functional
layer that computes a process. This mechanism allows us to com-
pute processes from data and is not fundamentally different from
monadic I/O as found in Haskell or Agda, where pure functions can

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

A Dependently-Typed Linear π -Calculus in Agda Woodstock ’18, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Structural congruence P ≡ Q

s-par-idle
idle | P ≡ P

s-par-comm
P | Q ≡ Q | P

s-par-assoc
(P | Q) | R ≡ P | (Q | R)

s-new-idle
(a)idle ≡ idle

s-new-comm
(a)(b)P ≡ (b)(a)P

s-par-new
a < fn(Q)

(a)P | Q ≡ (a)(P | Q)

s-par-rep
∗P ≡ P | ∗P

Reduction P
α
−→ Q

r-com
a⟨M⟩ | a(x).P

a
−→ P{M/x}

r-struct
P ≡

α
−→≡ Q

P
α
−→ Q

r-let
let x,y = M,N in P

τ
−→ P{M,N /x,y}

r-new
P

α
−→ Q α , c

(c)P
α
−→ (c)Q

r-tau
P

c
−→ Q

(c)P
τ
−→ (c)Q

r-par
P

α
−→ Q

P | R
α
−→ Q | R

Table 2: Operational semantics of dlπ .

be used used to compute I/O actions with side effects [26]. We will
see examples of data-dependent processes starting from Section 3.

The operational semantics of dlπ is given in Table 2 in terms of
a structural congruence relation ≡ and a reduction relation

α
−→.

Structural congruence is standard. Axioms s-par-idle, s-par-
comm and s-par-assoc express commutativity and associativity of
parallel composition, idle acting as the identity. Axiom s-new-idle
removes/introduces unused channels, s-new-comm swaps restric-
tions and s-par-new expands/shrinks the scope of a restricted
channel. Finally, s-par-rep captures the standard meaning of a
replication ∗P as an unbounded availability of P ’s.

The reduction relation is labelled by actions which are either
channels or the special label τ indicating an internal computation
step. The label is necessary only to formulate and prove the sub-
ject reduction result (Theorem 4.3) and has no other operational
relevance.

Rule r-com is the synchronization between an output a⟨M⟩ and
an input prefix a(x).P on the same channel a, whereby x is replaced
byM in the continuation of the input prefix. We write P{M/x} for
the capture-avoiding substitution ofM for the free occurrences of
x in P . Rule r-let formalizes the semantics of splitting a pairM,N
and substitutingM and N for x and y in the continuation.

The remaining rules close reduction under parallel composition
(r-par), structural congruence (r-struct) and restrictions (r-new
and r-tau). In r-tau, a synchronization on channel c turns into an
internal reduction when crossing the restriction of c .

3 STRUCTURED CONVERSATIONS

We illustrate how to represent structured conversations in dlπ
through a series of examples that are directly inspired to the encod-
ing of binary sessions into the linear π -calculus [6].

3.1 Linear conversations

In a typical session calculus [17], a process like

u!1.u?(x).print!x (3.1)

describes a structured conversation where the session endpoint u is
first used to send a number and then to receive a response x , which
is then forwarded on another channel print. A peer process that
communicates successfully with this one is

u?(x).u!⟨x + 1⟩ (3.2)

which receives a number x from the session endpoint u and sends
its successor back on the same endpoint.

In general, the same session channel can be used for exchanging
an arbitrary number of messages. In sharp contrast, a linear channel
can be used for a single communication only, after which the chan-
nel is depleted and cannot be used again. To encode a structured
communication using linear channels, we pair the payload with
a fresh channel which is used for the subsequent communication.
For example, in dlπ we write (3.1) as P1(u) where

P1(u)
def
= (c)(u⟨1, c⟩ | c(x).print⟨x⟩) (3.3)

Before the payload 1 is sent on the linear channel u, a fresh
channel c is created and sent along with the payload. That is the
channel from which the response is expected. The reader may
be worried by the fact that the two communications which were
performed in sequence in (3.1) have become parallel activities in
(3.3). The reason why the flow of information – and therefore the
structure of the conversation – is the same in (3.1) and (3.3) is that
the input operation on c performed by P1(u) can only be completed
once the message u⟨1, c⟩ has been delivered, since that message is
the only place in which the other peer (to be discussed in a moment)
will find a reference to the new channel c . The use of fresh (linear)
channels is key in preserving the structure of the conversation.

Let us now look at the dlπ encoding of (3.2):

Q1(u)
def
= u(x,y).y⟨x + 1⟩ (3.4)

This process waits for a pair x,y from u and then sends the
successor of x on y. In this case the server does not create a fresh
channel to pair with the result x + 1, since no further communica-
tions are expected after this one. In general, though, the same idea
of creating fresh channels we have discussed for the client may also
apply here, if the conversation is supposed to continue.

3.2 Conversations with message predicates

As a simple variation of the scenario discussed in Section 3.1, con-
sider a conversation in which a client process sends a natural num-
ber n to a server process that computes its predecessor. Since the
predecessor function is only defined for strictly positive natural
numbers, the client is expected to send evidence of the fact that
n > 0 along with the number itself. For the sake of illustration,
we model this conversation so that the number n and the evidence
nzero(n) are transmitted as two subsequent messages. For the time

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Woodstock ’18, June 03–05, 2018, Woodstock, NY Luca Ciccone and Luca Padovani

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

being, we ignore the details about the structure of the term nzero(n)
and assume that properties like this one can be expressed in the
functional layer. In Section 5 we will see a concrete realization of
this example in Agda.

We can model the client process thus

P2(u)
def
= (b)(u⟨2,b⟩ | (c)(b⟨nzero(2), c⟩ | c(x).print⟨x⟩))

where we observe that each message sent to the server is paired
with a fresh channel used for the subsequent communication. As
before, we use parallel composition and rely on fresh channels to
ensure that the communications occur in the expected order, so that
the server receives nzero(2) only after 2 has already been received.
The server is defined as

Q2(u)
def
= u(x,v).v(y,w).w ⟨pred(x,y)⟩ (3.5)

where the function pred(x,y) computes x − 1 given a proof y that
x > 0. Note thaty states a property concerning amessage x received
earlier. At the type level, this will translate into the fact that x,v is
a dependent pair (see Section 4.7).

3.3 Conversations with branching points

A structured conversation may proceed along different paths de-
pending on a choice taken by one of the interacting processes. A
choice taken autonomously by a process but not communicated
to the peer would almost certainly result in chaos. For this reason,
any choice that affects the structure of subsequent communications
must be encoded and communicated in some form, for example as
a boolean value or as a label chosen from a known set.

In “traditional” session calculi – those not making use of de-
pendent types – the dependency between this boolean value or
label and the session type that describes the rest of the conver-
sation is handled by a dedicated construct precisely because the
type system would otherwise be unable to express this dependency.
Thiemann and Vasconcelos [30] observe that, in presence of richer
types, such dependency falls within the expressiveness of the type
system without requiring ad hoc constructs.

Consider a scenario in which a server is able to provide both
behaviors described earlier by Q1(u) and Q2(u). The server first
waits for a label that identifies the desired behavior. In this case, a
plain boolean value suffices to discriminate between the two possi-
bilities. After that, the server performs the operation corresponding
to the received label. We can model a persistent server with this
capabilities as the process

Q3
def
= ∗a(x,y).F (x,y) (3.6)

where F is a function (expressed in the functional layer) that, applied
to a boolean argument x and a channely, yields a process according
to the following equations:

F (true , y) = Q1(y)
F (false, y) = Q2(y)

Recall that the conversations carried out by Q1(y) and Q2(y)
have different structures (and different lengths). At the type level,
these differences translate into the fact that y has different types in
Q1(y) and Q2(y). Such differences can be reconciled if the pair x,y
received by Q3 in (3.6) is in fact a dependent pair, so that the type
of y depends on the value of x .

A client of Q3 first sends a boolean value indicating which oper-
ation it requests and then behaves accordingly. For example,

P31
def
= (c)(a⟨true, c⟩ | P1(c))

accomplishes the same task as P1 when composed with Q3 and

P32
def
= (c)(a⟨false, c⟩ | P2(c))

accomplishes the same task as P2. Considering that Q3 is a persis-
tent, the composition P31 | P32 | Q3 satisfies both clients with no
interferences from each other, despite the fact that they request
different operations with different conversation structures.

3.4 Variable-length conversations

Another common instance of conversation with data-dependent
structure is the exchange of a sequence of messages whose length
depends on some previous message. As an example, think of a
server that receives a number n and computes the product of the n
subsequent messages. We can model such server as the process

Q4
def
= ∗a(n,v).F (n,v, 1) (3.7)

where F is the function defined by the following equations

F (0 , v, z) = v ⟨z⟩
F (n + 1, v, z) = v(x,y).F (n,y, x ∗ z)

whose third argument z is used as accumulator for the result. When
n = 0, the channel v is used for sending back the result in the
accumulator. When n > 0, the channel v is used for receiving a
number x in the sequence along with another channel y that will
be used for the next communication.

A client that interacts with (3.7) to compute the factorial of a
number n could be defined thus:

P4
def
= (c)(a⟨n, c⟩ | G(n, c))

where G is the function defined by the following equations:

G(0 , v) = v(x).print⟨x⟩
G(n + 1, v) = (c)(v ⟨n + 1, c⟩ | G(n, c))

Note once again how G(n,v) uses v differently – for one input
or for one output – depending on whether n = 0 or not.

4 TYPE SYSTEM

4.1 Multiplicities

We use the multiplicities 0, 1 and ω for keeping track – approxi-
mately – of the number of times a channel is used according to a
given input/output capability. Specifically, 0 means that a channel
is never used, 1 that it is used exactly once and ω that it is used an
arbitrary number of times, possibly never. We define two operations
+ and · to “combine” and “scale” multiplicities, thus:

0 + σ = σ + 0 = σ

0 · σ = σ · 0 = 0
1 + 1 = ω

1 · σ = σ · 1 = σ

ω + σ = σ + ω = ω
ω · ω = ω

Note that ({0, 1,ω},+, ·) is a commutative semiring. When no
confusion may arise, we abbreviate σ · ρ as σρ.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

A Dependently-Typed Linear π -Calculus in Agda Woodstock ’18, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Domains A,B ∈ A pure types
σ, ρ ∈ {0, 1,ω} multiplicities

Types t, s ::= A pure type
| σ,ρ[t] channel type
| Σ(x : t)s linear dependent pair

Table 3: Syntax of types.

4.2 Types

Types are ranged over by t and s and their syntax is given in Table 3.
We inherit from the functional layer a set A of pure types ranged
over by A and B. We assume that A includes types such as ⊤ (the
unit type with just one constructor tt), Bool, N and dependent
pairs Σ(x : A)B as well. A channel type has the form σ,ρ[t] and
describes a channel that is used σ times for receiving and ρ times
for sending messages of type t . A linear dependent pair type has
the form Σ(x : t)s and describes pairs whose first component has
type t and whose second component has type s . Since the variable
x is bound in s , the type of the second component may depend on
the value of the first one in a way that will be made more precise
in Section 4.3. The “linear” qualification means that pairs having
this type can only be used once. In the following we write t × s for
linear non-dependent pair types, which are the degenerate case of
Σ(x : t)s when x does not occur in s .

We extend the operations + and · defined on multiplicities to
types in the following way:

A +A = A
σ1,ρ1 [t] + σ2,ρ2 [t] = σ1+σ2,ρ1+ρ2 [t]

σ · A = A
σ · ρ1,ρ2 [t] = σρ1,σρ2 [t]

Intuitively, a type t + s cumulates the uses of a channel that is
used according to t in some part of a program and according to s
in some other part of the same program. For example, the equation

1,0[t] + 0,1[t] = 1,1[t]

captures the fact that a channel that is used somewhere for receiving
a message of type t and somewhere else for sending a message of
type t is used once for sending and once for receiving a message of
type t overall. The equation holds precisely because the sentence
sounds like a tautology.

The operation σ · t yields the type of a resource of type t that is
used σ times. For example, the equivalence

ω · 1,0[t] = ω ,0[t]

captures the fact that using zero or more times a channel from
which a single message of type t is received is the same as using
the channel for receiving zero or more messages of type t . Note
that neither type combination nor type scaling affect the type of
messages exchanged through channels.

Unlike the operations + and · on multiplicities (Section 4.1), the
operations + and · on types are partial: neither is defined on linear
dependent pairs and + is undefined when combining types having
different shapes. Also, two channel types can be combined with +
only if they are used for exchanging messages of the same type.

We say that a type is unrestricted if it describes a resource that
can be discarded or used an arbitrary number of times and we say

that a type is linear otherwise. We can make this distinction precise
in terms of idempotency of +, thus:

Definition 4.1 (unrestricted and linear types). A type t is unre-
stricted if t = t + t and it is linear otherwise.

All pure types are unrestricted, just like channels types whose
multiplicities are 0 or ω. Note that channels with an unrestricted
type can be used for exchanging messages whose type is linear. The
type 1,1[t] is linear, since a channel with this type must be used once
for sending and once for receiving a message of type t . In general,
a channel type may specify different constraints on the number of
uses for each capability. For example, a channel with type ω ,1[t] is
used an unspecified number of times for receving messages of type
t , but it is used only once for sending a message of type t . Since
+ is undefined on linear dependent pairs, such pairs are strictly
linear resources that must be used once, either by sending them in
a message or by splitting them with a let.

All types of the form 0·t andω ·t are unrestricted.We occasionally
use these forms of scaling to enforce the fact that certain types are
unrestricted.

4.3 More on dependent pairs

Linear dependent pairs Σ(x : t)s belong to the process layer and
are not to be confused with pure dependent pairs Σ(x : A)B in the
functional layer. While the latter are a special case of the former,
the dependency expressed in linear dependent pairs is somewhat
unconventional. Let us see why.

We have said that every pure term is also a dlπ term (Section 2)
and that every pure type is also a dlπ type (Table 3). This flow of
terms and types from the functional layer to the process layer allows
us to take advantage of all the features provided by the functional
layer in the modeling and typing of processes. The flow of terms in
the other direction, from the process layer to the functional layer,
is also useful and doubly so. First, that is the mechanism we have
used in Section 3 for computing processes from messages. Second, we
use the same mechanism also for computing types from messages.
Nonetheless, there is a fundamental distinction between these two
uses of dlπ terms in the functional layer. When a dlπ term is used
to compute a process, our type system is able to track the uses of
the resources occurring in the term (most notably, channels) by
looking at the result of the computation. But in a dependent pair
Σ(x : t)s , where a dlπ term x may occur within a type s , we lose
control on whether and how x is used. In fact, we argue that it
makes no sense to consider a type s that depends on the identity of
channels possibly occurring in x .

To prevent these issues, we filter dlπ terms that are used in
types through a map ⟦·⟧ that “erases” all the channels occurring in
them. The map ⟦·⟧ is defined thus

⟦p⟧ = p ⟦x⟧ = x ⟦a⟧ = tt ⟦M,N⟧ = ⟦M⟧, ⟦N⟧
and identifies all channels with the uninformative value tt. The
pure term ⟦M⟧ corresponding toM is the view ofM as seen in the
functional layer, from which everything but the channels inM can
be accessed. The filtering on terms induces a filtering on types

⟦A⟧ = A ⟦σ,ρ[t]⟧ = ⊤ ⟦Σ(x : t)s⟧ = Σ(x : ⟦t⟧)⟦s⟧
that obliterates all channel types from a dlπ type.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Woodstock ’18, June 03–05, 2018, Woodstock, NY Luca Ciccone and Luca Padovani

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

We can now refine the informal description of linear dependent
pairs given earlier. A type Σ(x : t)s describes those pairs M,N
such that M has type t and N has type s{⟦M⟧/x}. This way, the
channels possibly occurring inM are not duplicated as a result of
the substitution and their identity cannot affect the type of N .

4.4 Contexts

We use contexts to track the type of free names occurring in pro-
cesses and terms, hence to provide an abstract description of a pro-
cess behavior in terms of the resources it uses. A context Γ is a finite,
partial map from names to types written u1 : t1, . . . ,un : tn . We
write ∅ for the empty context, dom(Γ) for the domain of Γ, namely
for the (finite) set of names for which there is an association in Γ,
we write Γ(u) for the type associated with u in Γ when u ∈ dom(Γ)
and Γ,∆ for the union of Γ and ∆ when dom(Γ) ∩ dom(∆) = ∅.

We need to combine and scale contexts, pretty much like we
need to combine and scale types. Intuitively, the combination Γ +∆
accounts for the cumulated use of resources by two processes, one
described by Γ and the other described by ∆. Context composition
is the partial operation defined by the following equations:

Γ + ∆ = Γ,∆ if dom(Γ) ∩ dom(∆) = ∅

(u : t, Γ) + (u : s,∆) = (u : t + s), (Γ + ∆)

Note that Γ + ∆ is defined provided that all the names for which
there is an association in both Γ and ∆ have combinable types. In
this case, we have dom(Γ + ∆) = dom(Γ) ∪ dom(∆).

The scaling of Γ with respect to σ, written σ · Γ, provides an
abstract description of σ copies of a process described by Γ. Context
scaling is the partial operation defined by the equations

σ · ∅ = ∅

σ · (u : t, Γ) = (u : σ · t), (σ · Γ)

provided that every type in the range of Γ can be scaled by σ.
We extend to contexts the terminology introduced in Defini-

tion 4.1 for types. Specifically, we say that Γ is unrestricted if so are
all the types in its range. All contexts of the form 0 · Γ and ω · Γ are
unrestricted.

As we have discussed in Section 4.3, resources available in the
process layer should also be available in the functional layer of
dlπ , albeit in a filtered form. For this reason, the typing judgments
of dlπ will refer to a pair of contexts Ψ; Γ respectively describing
the resources available in the functional and those available in the
process layer. We say that Ψ is a pure context and we require Ψ to
agreewith Γ in the following sense: every resourceu ∈ dom(Γ)with
type Γ(u) available in the process layer is also available with type
Ψ(u) = ⟦Γ(u)⟧ in the functional layer. In general, Ψ may describe
more resources than those described by Γ. This can happen for two
reasons. First, the functional layer may provide resources – such
as library functions, built-in data types, etc. – that are not defined
within processes but that are nonetheless essential for building
and computing processes. Second, it could be the case that a linear
resource (e.g., a pair) contains data that is needed in the functional
layer, and yet the resource is not visible in Γ because it is already
used by another part of the process. In these cases, Ψ will contain
associations for linear resources that are in scope but not in dom(Γ)
(see the discussion on t-par later on).

Typing rules for terms Ψ; Γ ⊢ M : t

t-pure
Ψ ⊢ p : A

Ψ; 0 · Γ ⊢ p : A

t-name
Ψ; 0 · Γ,u : t ⊢ u : t

t-pair
Ψ; Γ ⊢ M : t Ψ;∆ ⊢ N : s{⟦M⟧/x}

Ψ; Γ + ∆ ⊢ M,N : Σ(x : t)s

Typing rules for processes Ψ; Γ ⊢ P

t-idle
Ψ; 0 · Γ ⊢ idle

t-input
Ψ; Γ ⊢ u : 1,0[t] Ψ, x : ⟦t⟧;∆, x : t ⊢ P

Ψ; Γ + ∆ ⊢ u(x).P

t-output
Ψ; Γ ⊢ u : 0,1[t] Ψ;∆ ⊢ M : t

Ψ; Γ + ∆ ⊢ u⟨M⟩

t-let
Ψ; Γ ⊢ M : Σ(x : t)s Ψ, x : ⟦t⟧,y : ⟦s⟧;∆, x : t,y : s ⊢ P

Ψ; Γ + ∆ ⊢ let x,y = M in P

t-par
Ψ; Γ ⊢ P Ψ;∆ ⊢ Q

Ψ; Γ + ∆ ⊢ P | Q

t-new
Ψ; Γ, c : σ,ρ[t] ⊢ P

Ψ; Γ ⊢ (c)P

t-rep
Ψ; Γ ⊢ P

Ψ;ω · Γ ⊢ ∗P

Table 4: Typing rules.

4.5 Typing rules

The typing rules for expressions and processes are shown in Table 4.
The former ones derive judgments of the formΨ; Γ ⊢ M : t meaning
thatM is well typed in Ψ; Γ and has type t . The latter ones derive
judgments of the form Ψ; Γ ⊢ P meaning that P is well typed in
Ψ; Γ. In both cases, we make the implicit assumption that Ψ agrees
with Γ. We now describe the rules in detail.

Axiom t-pure lifts a well-typed term in the functional layer
to the process layer. We do not detail how judgments Ψ ⊢ p : A
are derived, as they depend on the functional layer. Notice that
the context in which p is well typed has the form 0 · Γ, hence it
is unrestricted, recording the fact that p does not use any linear
resource.

Axiom t-name states that a name u (that is, a variable or a
channel) is well typed and has type t in a context that contains an
association u : t . The unused part of the context must have the
form 0 · Γ, recording the fact that no resource apart from u is used.

Rule t-pair states that ifM has type t and N has type s in which
x is a placeholder for M , then the pair M,N has type Σ(x : t)s .
There are two twists that set this rule apart from a conventional
introduction for dependent pairs. The first one is that we replace
⟦M⟧ – and not M – for x in s , as we have discussed in Section 4.3.
In addition, the contexts Γ and ∆ used for typing M and N are
combined in the conclusion of the rule, so as to cumulate the uses of
resources that occur in bothM and N . As an example, if the same

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

A Dependently-Typed Linear π -Calculus in Agda Woodstock ’18, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

channel occurs inM with type 0,1[t] and also in N with type 1,0[t],
then it occurs in the pairM,N with type 1,1[t].

Now on to the typing rules for processes. Axiom t-idle states
that, since the idle process performs no action and uses no resource,
it is well typed in an unrestricted context of the form 0 · Γ.

Rule t-input states that an input processes of the form u(x).P
is well typed if the name u has type 1,0[t] and the continuation P
is well typed in a context enriched with the association x : t . In
the continuation, the pure context is enriched with the association
x : ⟦t⟧ so that the pure part of the received message x is available
in the functional layer as well. The type of u indicates that u is a
channel used (here) for a single input operation of a message of
type t . The whole process is well typed in a context that combines
the resources used in both u and P .

Rule t-output deals with processes of the formu⟨M⟩. The name
u must have a type of the form 0,1[t], indicating that it is a channel
used (here) for a single output of a message M of type t . As we
have seen in other rules, the contexts used for typing u andM are
combined in the conclusion.

Rule t-let deals with processes of the form let x,y = M in P .
The termM must have a type of the form Σ(x : t)s and P must be
well typed in a context enriched with the associations for x and
y. Similarly to what we have seen in t-input, the pure context is
also enriched with associations for the same names, although their
types are the filtered versions of t and s .

Rules t-par and t-new handle parallel compositions and channel
restrictions in the expected way. t-par illustrates better than other
rules why Ψ may contain associations for resources that are in
scope but not visible in the context. A linear resource u used by
P will have an association in Γ but not in ∆. Yet, process Q may
refer to non-linear components of u through the pure context Ψ,
which is the same for P andQ . In t-new, we do not constrain in any
way the multiplicities σ and ρ occurring in the type of a restricted
channel, even though some combinations of σ and ρ may indicate
obvious flaws in the process. For example, restricted channels with
type 0,1[t] or 1,0[t] or 0,ω [t] suggest the presence of unmatched
input or output operations andmay cause deadlocks or yield orphan
messages. We ignore such issues in this paper since our type system
is not aimed at enforcing progress or other liveness properties [23].
Note also that, in t-new, the pure context is not enriched with an
association for the channel c . Since channels are mapped to the
constant tt in the functional layer, there is no need to augment the
pure context in this case.

Rule t-rep deals with replicated processes of the form ∗P . Since a
replicated process P is morally equivalent to an unbounded number
of copies of P running in parallel, the rule scales the context in
which P is well typed by ω. As a side effect, such context cannot
contain pairs, for which scaling is undefined.

4.6 Properties of well-typed processes

We summarize here the main properties of well-typed processes,
starting from the fact that structural congruence preserves typing.

Theorem 4.2. If Ψ; Γ ⊢ P and P ≡ Q , then Ψ; Γ ⊢ Q .

To formulate the property that typing is preserved also by reduc-
tions, we have to consider that the type associated with a channel
may change as the result of a communication taking place on that

channel. In particular, a linear channel can be used for a single
communication only. For this reason, the reduct Q of a process P
after a communication is well typed in a context that is related to
– though not necessarily the same as – the context in which P is
well typed. We express this relationship between contexts through
a relation

α
−→ defined by the following two axioms:

Γ
τ
−→ Γ Γ + c : 1,1[t]

c
−→ Γ

Unobservable actions do not change the context. A communica-
tion on a channel c is allowed provided that the channel is associated
with a channel type in which neither multiplicity is 0. The type of
the channel in the resulting context is suitably adjusted to account
for this communication. In particular, we have

c : 1,1[t]
c
−→ c : 0,0[t]

capturing the fact that a linear channel c is “consumed” and no
longer usable after a communication takes place on c . Subject re-
duction can now be formulated showing that all the reductions in
processes are simulated by matching reductions in contexts:

Theorem 4.3 (subject reduction). If Ψ; Γ ⊢ P and P
α
−→ Q ,

then there exists ∆ such that Γ
α
−→ ∆ and Ψ;∆ ⊢ Q .

The converse of Theorem 4.3, in which every reduction in a
context can be simulated by the process, does not hold in general
since the structure of the process may constrain the order in which
communications take place.

We now discuss a few safety properties guaranteed by the type
system, most of which are in fact corollaries of Theorem 4.3. First
of all, we can formulate communication safety as the property that
a message received from a channel has the expected type.

Proposition 4.4. If Ψ; Γ ⊢ u⟨M⟩ | u(x).P , then there exist t , Γ1
and Γ2 such that Ψ; Γ1 ⊢ M : t and Ψ; Γ2, x : t ⊢ P .

The next two results specifically concern linearity. The first one
states that a name that is not used by a well-typed process P – that
is, a name not occurring free in P – must have an unrestricted type.
In other words, the type system ensures that names with linear
types are not discarded without first being used.

Proposition 4.5. If Ψ; Γ,u : t ⊢ P and u < fn(P), then t = 0 · t .

The second result states that a channel on which a communica-
tion occurs has non-zero multiplicities in its type. In other words,
the type system ensures that channels whose type has 0 multiplici-
ties are not used for communications.

Proposition 4.6. If Ψ; Γ, c : σ,ρ[t] ⊢ P where σρ = 0 and P
α
−→

Q , then α , c .

Other properties of well-typed processes that hold for the linear
π -calculus [20], including race-freedom and partial confluence for
communications on linear channels, hold in dlπ too.

4.7 Examples

To give a flavor of the type system, we sketch the typing derivations
for the processesQ1 andQ2 in Section 3. To reduce clutter, we omit
from the judgments the pure context Ψ, whose precise content is

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Woodstock ’18, June 03–05, 2018, Woodstock, NY Luca Ciccone and Luca Padovani

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

inessential and can be partially guessed from the presented ele-
ments. Take t1

def
= 1,0[s] where s def

= N× 0,1[N]. The proof tree below
shows that Q1 is well typed in the context u : t1:

u : t1 ⊢ u : t1

z : s ⊢ z : s

y : 0,1[N] ⊢ y : 0,1[N]

functional layer

x : N ⊢ x + 1 : N

x : N,y : 0,1[N] ⊢ y⟨x + 1⟩

z : s ⊢ let x,y = z in y⟨x + 1⟩

u : t1 ⊢ u(z).let x,y = z in y⟨x + 1⟩
Note how the contexts are split so as to distribute the resources

where they are needed to type the process. The details of the typing
derivation for the judgment x : N ⊢ x + 1 : N depend on the type
system of the functional layer and are omitted.

We now show that the process Q2 in (3.5) is well typed in the
context u : t2 where

t2
def
=

1,0
[Σ(x : N) 1,0[(x > 0) × 0,1[N]]]

The dependent pair allows us to relate the number x received
from the channel and the proof that x > 0, which is received from
a different linear channel. We have the following derivation, in
which we have elided the applications of t-name and collapsed the
applications of t-in immediately followed by t-let:

...
u

...
v

...
z

functional layer

x : N,y : x > 0 ⊢ pred(x,y) : N

x : N,y : x > 0, z : 0,1[N] ⊢ z⟨pred(x,y)⟩

x : N,v : s ⊢ v(y, z).z⟨pred(x,y)⟩

u : t ⊢ u(x,v).v(y, z).z⟨pred(x,y)⟩
We postpone the typing derivations for the processes Q3 in (3.6)

and Q4 in (3.7) to the end of Section 5, where we will be able to
show them in full using Agda for computing processes and types.

5 AGDA FORMALIZATION

In this section we sketch an embedding of dlπ in Agda. We use
Agda not just as a tool for formalizing the metatheory of dlπ ,
but also as a particular instantiation of its functional layer. This
way, we can rely on a full-fledged, dependently-typed language
for computing processes and types. Space constraints force us to
discuss a slightly simplified version of the formalization and to focus
on the definition of the Agda data types we use for representing
types, contexts and processes. The rest of the formalization follows
in a fairly straightforward way once these data types are in place.
The full development is available in a public repository [5].

We begin with multiplicities, represented as a Mult data type
with 3 constructors corresponding to the elements 0, 1 and ω.

data Mult : Set where
#0 #1 #ω : Mult

Even though the operations + and · on multiplicities are easy to
implement as Agda functions, we find it more convenient to express
them as relations, for two different reasons. First, combination and
scaling are only partially defined for types and contexts, hence they
must be expressed as – or with the help of – relations for those
entities anyway. Using relations also for multiplicities allows us to

give a uniform presentation of these operations on all the entities
for which they make sense. In addition to that, multiplicities occur
in dlπ types, which in turn occur in contexts, which in turn occur
in the Agda type of terms and processes. Having functions that
compute indexes would force us to adopt heterogeneous notions of
equality that, in our experience, often result in unreasonably com-
plex Agda code. For this reason, we prefer working with relations
wherever possible.

We define two data types

data MScale : Mult →Mult → Set
data MSplit : Mult →Mult →Mult → Set

in such a way that MScale σ ρ is inhabited if and only if ρ = ωσ
and MSplit σ σ1 σ2 is inhabited if and only if σ = σ1 + σ2. Note
that the typing rules shown in Table 4 scale contexts, types and
multiplicities by 0 and ω, whereas withMScale we only consider
scaling by ω. It is simpler to provide ad hoc unary predicates to
expresses the properties t = 0 · t and Γ = 0 · Γ.

The Agda data type for representing dlπ types is an inductive-
recursive definition [9], since it refers to the ⟦·⟧ function that maps
dlπ types into the corresponding pure types. We have

mutual
data Type : Set1 where
Pure : Set→ Type
Chan : Mult→Mult → Type→ Type
Pair : (t : Type)→ (⟦ t ⟧ → Type) → Type

⟦_⟧ : Type→ Set
⟦ Pure A ⟧ = A
⟦ Chan _ _ _ ⟧ = ⊤

⟦ Pair t f ⟧ =
∑ ⟦ t ⟧ λ x → ⟦ f x ⟧

where the constructors of Type correspond to the three forms of
dlπ types (Table 3) and ⟦·⟧ is the filtering function defined in
Section 4.3 that maps dlπ types into Agda types. Note that Type
is in Set1 since its Pure constructor has a Set argument. In the full
development [5], Type is actually a sized type [1] and the Type
argument of Chan is a thunk to account for possibly infinite types.

We provide TScale and TSplit relations to express scaling and
splitting of types, along with a predicate TNull t that holds if and
only if 0 · t = t .

data TNull : Type→ Set1
data TScale : (t s : Type)→ ⟦ t ⟧ → ⟦ s ⟧ → Set1
data TSplit : (t t1 t2 : Type)→ ⟦ t ⟧ → ⟦ t1 ⟧ → ⟦ t2 ⟧→ Set1

The TScale and TSplit data types have way more indexes than
one would reasonably expect. As we will see shortly, whenever
we scale or split types, we are always in the position of saying
which pure term has its type being scaled or splitted. The additional
indexes in TScale and TSplit allow us to “cast” the pure term to the
types resulting from the scaling or the splitting. For example, an
Agda value of type TScale t s p q witnesses that s = ω · t and that
if p is a pure term of type ⟦t⟧, then q is the corresponding pure
term of type ⟦s⟧. Funnily enough, p and q are always equal, but
their types ⟦t⟧ and ⟦s⟧ may differ. It would be trivial to write a
casting function that, given a pure term of type ⟦t⟧, yields the same
pure term with type ⟦s⟧. The problem, once again, is that using

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

A Dependently-Typed Linear π -Calculus in Agda Woodstock ’18, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

such casting function for computing indexes leads to unmanageable
Agda code.

Following Benton et al. [2], Thiemann [29], Wadler and Kokke
[33], we use intrinsically typed terms and processes where names
are referenced through their de Brujin index. There is one key
difference with these works, though, which allows us to intertwine
the dlπ process layer and the Agda functional layer. Our contexts
are not just lists of types, as in the aforementioned works, but rather
lists of pairs t # p where t is a type and p is a pure term of type
⟦t⟧. These pure terms make sure that a context Γ, which is used
for typing dlπ terms and processes, agrees with the pure context Ψ
known by Agda, in the sense of Section 4.4. To better understand
the relevance of these pure terms, recall from Section 4.3 that the
filtering function ⟦·⟧ on dlπ terms is defined so that ⟦x⟧ = x . The x
on the left-hand side of this equation is a dlπ variable, whereas the
x on the right-hand side is an Agda variable. By storing a pair t # x
in a context, we associate a dlπ variable – which is represented
namelessy by the position of the pair in the context – not only with
its type t but also with its corresponding Agda variable x .

data Context : Set1 where
[] : Context
#::_ : (t : Type) → ⟦ t ⟧ → Context → Context

The CNull, CScale and CSplit data types play for contexts the
same roles that TNull, TScale and TSplit play for types. Specifically,
the predicate CNull Γ requires each type in Γ to satisfy TNull:

data CNull : Context → Set1 where
[] : CNull []
:: : ∀{ t p Γ }→ TNull t → CNull Γ → CNull (t # p :: Γ)

For CSplit Γ Γ1 Γ2, we provide constructors for either splitting
an entry of Γ according to TSplit or moving it into Γ1 through the L
constructor or into Γ2 through the R constructor:

data CSplit : Context → Context→ Context→ Set1 where
[] : CSplit [] [] []
:: : ∀{ t t1 t2 p p1 p2 Γ Γ1 Γ2 } →

TSplit t t1 t2 p p1 p2 → CSplit Γ Γ1 Γ2 →

CSplit (t # p :: Γ) (t1 # p1 :: Γ1) (t2 # p2 :: Γ2)
L_ : ∀{ Γ Γ1 Γ2 t p }→ CSplit Γ Γ1 Γ2 →

CSplit (t # p :: Γ) (t # p :: Γ1) Γ2
R_ : ∀{ Γ Γ1 Γ2 t p }→ CSplit Γ Γ1 Γ2 →

CSplit (t # p :: Γ) Γ1 (t # p :: Γ2)

We now turn our attention to the representation of terms, start-
ing from names. A dlπ name is an Agda value of type Name k Γ t p
where k is de Brujin index of the name, t is its type in the context
Γ, and p is the pure term associated with the name. Keeping track
of the de Brujin index of a name in its Agda type is useful to infer
that two values of type Name actually refer to the same name. For
example, in the statement of Proposition 4.4 we have two occur-
rences of u which are used in two different ways, for sending and
for receiving a message. When we invert t-par, t-input and t-
output we can “only” infer that these occurrences of u correspond
to Agda values of type Name k Γ 0,1[t] tt and Name k ∆ 1,0[s] tt
respectively. We use the knowledge that the two names have the
same index k to prove t = s and therefore that Proposition 4.4 holds.

The Name data type is defined thus:

data Name : N→ Context→ (t : Type)→ ⟦ t ⟧→ Set1 where
here : ∀{ Γ t p }→ CNull Γ → Name zero (t # p :: Γ) t p
next : ∀{ k Γ t s p q }→ TNull s → Name k Γ t p →

Name (suc k) (s # q :: Γ) t p

The here constructor corresponds to the first name in a context,
so its index is 0. The next constructor corresponds to a name found
at position k in the remainder of the context, so its index is k + 1. In
both cases, the part of the context not concerning the name must
satisfy the condition 0 · Γ = Γ, as required by t-name.

A dlπ term is an Agda value of type Term Γ t p, where Γ is the
context in which the term is well typed, t is its type and p is the
corresponding pure term.

data Term : Context→ (t : Type)→ ⟦ t ⟧→ Set1 where
name : ∀{ k Γ t p }→ Name k Γ t p → Term Γ t p
pure : ∀{ Γ A } → CNull Γ → (p : A) → Term Γ (Pure A) p
pair : ∀{ Γ Γ1 Γ2 t f p q }→ CSplit Γ Γ1 Γ2 →

Term Γ1 t p → Term Γ2 (f p) q→ Term Γ (Pair t f) (p , q)

The constructors relate to the forms of dlπ terms (Table 1) and
their arguments match the premises of the typing rules (Table 4).
A pair requires two sub-terms respectively typed in Γ1 and Γ2 that
combine into Γ, as by the CSplit Γ Γ1 Γ2 argument. At last we can
appreciate the role of the pure term p attached to the Agda type
of terms, which is used here for computing the type (f p) of the
second component of the pair.

A dlπ process is an Agda value of type Process Γ, where Γ is the
context in which the process is well typed:

data Process : Context → Set1 where
Idle : ∀{ Γ }→ CNull Γ → Process Γ
Send : ∀{ Γ Γ1 Γ2 t p }→ CSplit Γ Γ1 Γ2 →

Term Γ1 (Chan #0 #1 t) _ → Term Γ2 t p→ Process Γ
Recv : ∀{ Γ Γ1 Γ2 t }→ CSplit Γ Γ1 Γ2 →

Term Γ1 (Chan #1 #0 t) _ →
((x : ⟦ t ⟧) → Process (t # x :: Γ2)) → Process Γ

Let : ∀{ Γ Γ1 Γ2 t f p q }→ CSplit Γ Γ1 Γ2 →

Term Γ1 (Pair t f) (p , q)→
((x : ⟦ t ⟧) (y : ⟦ f x ⟧) → Process (t # x :: f x # y :: Γ2))
→ Process Γ

Par : ∀{ Γ Γ1 Γ2 }→ CSplit Γ Γ1 Γ2 →

Process Γ1 → Process Γ2 → Process Γ
New : ∀{ Γ σ ρ t }→ Process (Chan σ ρ t # _ :: Γ)→ Process Γ
Rep : ∀{ Γ ∆ }→ CScale Γ ∆→ Process Γ → Process ∆

By now, most elements of this definition are self-explanatory.
The only feature that differs from the syntax of the calculus and
from the typing rules is the last argument in the Recv and Let
constructors, which is not just a value of type Process but is actually
a function that computes such value from one or two arguments x
and y, the variables being bound by the input prefix or by the let
form. As their type suggests, these arguments represent the pure
terms corresponding to the dlπ terms bound to x and y and are
used to populate the context of the continuation process. In the Let
constructor, note how the type f x of the second component of the

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Woodstock ’18, June 03–05, 2018, Woodstock, NY Luca Ciccone and Luca Padovani

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

pair is computed from the Agda variable corresponding to the first
component.

The full Agda development [5] formalizes the whole semantics
of dlπ , namely structural congruence ≡ and reduction

α
−→. As usual

in an intrinsically-typed language, both relations incorporate the
corresponding type-preservation results (Theorems 4.2 and 4.3),
from which the other properties stated in Section 4.6 follow.

We now revisit some of the examples discussed in Section 3,
showing how they are implemented in Agda. Recall that values of
type Process Γ are intrinsically-typed processes, so the terms we
see below actually correspond to typing derivations, not just to
processes. Starting from Q1 in (3.4), we have:

t1 : Type
t1 = Chan #1 #0 (Pair (Pure N) λ _→ Chan #0 #1 (Pure N))

Q1 : Process (t1 # _ :: [])
Q1 = Recv (L []) (name (here [])) λ _→

Let (L []) (name (here [])) λ x _ →
Send (R L []) (name (here [])) (pure (P :: []) (x + 1))

We use the L and R constructors to split the typing context
so as to distribute resources where they are needed. Note also the
function argument of Let, which gives access to themessage x being
received. The P constructor is a value of type TNull N, witnessing
that the type of x is unrestricted. For Q2 in (3.5) we have

t2 : Type
t2 = Chan #1 #0 (Pair (Pure N) λ x→

Chan #1 #0 (Pair (Pure (x . 0)) λ _→ Chan #0 #1 (Pure N)))

Q2 : Process (t2 # _ :: [])
Q2 = Recv (L []) (name (here [])) λ _→

Let (L []) (name (here [])) λ x _ →
Recv (R L []) (name (here [])) λ _→
Let (L R []) (name (here [])) λ y _ →
Send (R L R []) (name (here [])) (pure (P :: P :: []) (pred x y))

where
pred : (x : N) (y : x . 0)→ N
pred zero y = ⊥-elim (y refl)
pred (suc x) _ = x

where we use the function argument of the Pair constructor for
specifying the type x . 0 of the subsequent message.

In the case ofQ3 in (3.6), we have to patternmatch on the received
boolean value to compute both the type t3 and the process. In the
latter case, we must weaken the context in which Q1 and Q2 are
typed, since these processes expect only one name in their context,
whereas Q3 provides two, the first of which is the boolean value
which is used by neither Q1 nor Q2:

t3 : Type
t3 = Chan #ω #0 (Pair (Pure Bool) (λ b → if b then t1 else t2))

Q3 : Process (t3 # _ :: [])
Q3 = Rep (chan sc1 sc0 :: []) (

Recv (L []) (name (here [])) λ _ →
Let (L []) (name (here [])) λ { true _ → weaken Q1

; false _ → weaken Q2 })

The term chan sc1 sc0 scales the input multiplicity of the channel
used by the process from 1 to ω, to account for the fact that the
process is replicated.

In order to construct Q4 in (3.7), it is convenient to define an
auxiliary function f such that f n describes the exchange of the n
messages from the client to the server process and then the com-
munication of the result from the server back to the client:

f : N→ Type
f zero = Chan #0 #1 (Pure N)
f (suc n) = Chan #1 #0 (Pair (Pure N) λ _ → f n)

Now the server Q4 in (3.7) can be implemented thus:

t4 : Type
t4 = Chan #ω #0 (Pair (Pure N) f)

Q4 : Process (t4 # _ :: [])
Q4 = Rep (chan sc1 sc0 :: []) (

Recv (L []) (name (here [])) λ _ →
Let (L []) (name (here [])) λ n _ → weaken (F n 1))

where
F : (n : N) →∀{ p }→ N→ Process (f n # p :: [])
F zero z = Send (L []) (name (here [])) (pure [] z)
F (suc n) z = Recv (L []) (name (here [])) λ _→

Let (L []) (name (here [])) λ x _ →
weaken (F n (x ∗ z))

The interested reader will find the implementation of the client
processes Pi in Appendix A. It is clear from these examples that
writing even simple dlπ terms and processes in Agda is quite te-
dious. Preliminary results with an inference algorithm have shown
that most of the CNull and CSplit witnesses can be automatically
inferred as long as the programmer provides the type of bound chan-
nels and variables. We plan to finalize this algorithm in a future
update of the Agda formalization.

6 ENCODING DEPENDENT SESSION TYPES

In Section 3 we have seen a few examples of structured conver-
sations modeled in dlπ and in Sections 4 and 5 we have shown
how these conversation can be described in dlπ ’s type language.
In this section we take a more systematic approach to assess the
expressiveness of dlπ ’s type language. We consider three repre-
sentative session type languages [17, 30, 31] and define encoding
functions to compile them all into the type language of dlπ . For
the sake of uniformity, we make a few cosmetic adjustments to
the syntax of session types presented in the aforementioned works
while preserving their characterizing features. In all cases, we limit
ourselves to finite session types with binary choices and branches,
but our results extend easily to possibly infinite session types with
arbitrarily labelled choices.

Session types à la Honda [17] have been presented in the first
work on session types, their syntax is shown below:

T , S ::= end | ?m.T | !m.T | T & S | T ⊕ S
m ::= A | T

(6.1)

The type end describes endpoints that are not used anymore.
Input ?m.T and output !m.T describe session endpoints respectively

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

A Dependently-Typed Linear π -Calculus in Agda Woodstock ’18, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

used for receiving and sending a message of typem and then accord-
ing to T . Hereafter,m ranges over pure types A and over session
types themselves. BranchesT &S and choicesT ⊕S describe session
endpoints respectively used for receiving and sending a single bit of
information and then according to eitherT or S accordingly.Wewill
make the assumption that this information is encoded as a value of
type Bool, with true being the value for selectingT and false being
the value for selecting S . Although session types à la Honda are
not explicitly presented as dependent session types, branches and
choices are in fact a simple form of dependency whereby the type
of the endpoint after the communication depends on the boolean
value that is exchanged. This will be clear when we discuss the
encoding of session types into dlπ ’s types.

All theories of session types rely on some notion of duality that
plays a key role in the encodings we are about to discuss. The dual
of a session typeT , often denoted byT , is the session type obtained
from T by swapping inputs with outputs, choices with branches,
and leaving message types and end unchanged. For example, we
have (!m.end) ⊕ end = (?m.end) & end.

Dardha et al. [6] have shown how to encode session types in (6.1)
in terms of linear channels, non-dependent pairs and disjoint sums.
Below we rephrase their encoding as a function ⌊⌊·⌋⌋ that maps
session types into dlπ ’s types, using dependent pairs to subsume
both non-dependent pairs and disjoint sums:

⌊⌊end⌋⌋ = 0,0[⊤]
⌊⌊?m.T ⌋⌋ = 1,0[⌊⌊m⌋⌋ × ⌊⌊T ⌋⌋]

⌊⌊!m.T ⌋⌋ = 0,1
[⌊⌊m⌋⌋ × ⌊⌊T ⌋⌋]

⌊⌊T & S⌋⌋ = 1,0[Σ(x : Bool) if x then ⌊⌊T ⌋⌋ else ⌊⌊S⌋⌋]

⌊⌊T ⊕ S⌋⌋ =
0,1

[Σ(x : Bool) if x then ⌊⌊T ⌋⌋ else ⌊⌊S⌋⌋]

The encoding of end yields an unusable channel with null multi-
plicities. The encoding of an input ?m.T or an output !m.T yields
a linear channel used for receiving or sending a non-dependent
pair whose first component is the encoding ofm and whose second
component is another channel resulting from the encoding of T .
The encoding ofm yields either A or ⌊⌊T ⌋⌋, according to the shape
ofm. Note that the type of the second component of the pair in the
encoding of !m.T is not ⌊⌊T ⌋⌋ but rather ⌊⌊T ⌋⌋. The reason why dual-
ity is used here is that ⌊⌊T ⌋⌋ specifies how the second component of
the pair is used by the receiver of the pair, as opposed to ⌊⌊T ⌋⌋ which
describes the behavior of the sender of the pair. The encoding of a
branchT & S yields a linear channel used for receiving a dependent
pair whose first component is a boolean value x and whose second
component is (a term that reduces to) either ⌊⌊T ⌋⌋ or ⌊⌊S⌋⌋ depending
on the value of x . The if x then t else s on the right-hand side of
the equations is to be interpreted as a pure term of the functional
layer rather than a dlπ type constructor. The encoding of a choice
T ⊕ S follows a similar pattern. As for the encoding of outputs, here
too the encoded continuations are dualized.

Session types à la Toninho et al. [31] extend those shown in (6.1)
with existential and universal quantifiers, one dual to the other:

T , S ::= · · · | ∀x : A.T | ∃x : A.T (6.2)

The ∀ and ∃ quantifiers respectively correspond to input and
output operations that bind the exchanged message to a name that
can be used in the rest of the session type for describing properties

related to that message. Toninho et al. [31] consider for example

∀x : N.∀u : (x > 0).∃y : N.∃v : (y > 0).end

which describes the behavior of a process that receives a natural
number x and a proof u that x > 0 and sends back another natural
number y along with a proof v that y > 0.

The encoding function ⌊⌊·⌋⌋ can be extended with the equations

⌊⌊∀x : A.T ⌋⌋ = 1,0[Σ(x : A)⌊⌊T ⌋⌋]
⌊⌊∃x : A.T ⌋⌋ = 0,1

[Σ(x : A)⌊⌊T ⌋⌋]

to account for quantifiers in the expected way, again dualizing the
continuation session type for the output operation.

Thiemann and Vasconcelos [30] embrace the idea that branches
and choices are forms of dependent types and propose a stream-
lined session type language that features input/output actions akin
to quantified session types in (6.2) along with a case x of {T , S}
construct that reduces to either T or S depending on the value of x :

T , S ::= end | ?x :m.T | !x :m.S | case x of {T , S} (6.3)

As an example, the choice T ⊕ S in (6.1) can be expressed as
!x : Bool.case x of {T , S}. Also in this case the encoding is straight-
forward, with the case construct that naturally translates to a con-
ditional expression in the functional layer:

⌊⌊end⌋⌋ = 0,0[⊤]
⌊⌊?x :m.T ⌋⌋ = 1,0[Σ(x : ⌊⌊m⌋⌋)⌊⌊T ⌋⌋]

⌊⌊!x :m.T ⌋⌋ = 0,1
[Σ(x : ⌊⌊m⌋⌋)⌊⌊T ⌋⌋]

⌊⌊case x of {T , S}⌋⌋ = if x then ⌊⌊T ⌋⌋ else ⌊⌊S⌋⌋

Observe that none of the presented encodings is injective if we
consider dlπ types equals according to Agda’s propositional equal-
ity. For example, we have ⌊⌊?Bool.T ⌋⌋ = ⌊⌊T &T ⌋⌋ for session types à
la Honda, ⌊⌊?Bool.T ⌋⌋ = ⌊⌊T &T ⌋⌋ = ⌊⌊∀x : Bool.T ⌋⌋ for session types
à la Toninho et al. [31] and

⌊⌊?x : Bool.case x of {?y : N.T , ?y : N.S}⌋⌋
= ⌊⌊?x : Bool.?y : N.case x of {T , S}⌋⌋

for session types à la Thiemann and Vasconcelos. This is not entirely
surprising, since dlπ types describe communication protocols at
a rather low level of abstraction, but it also highlights that the
semantics of different constructs provided by these session type
languages overlap to some extent. In contrast, the encoding of
Dardha et al. [6], which relies on different low-level types for pairs
and sums, has been shown injective by Padovani [24]. This property
is useful for pretty-printing automatically inferred communication
protocols [21].

Another intriguing aspect of these encoding functions is their
interplay with duality. Duality plays a key role in all session type
theories and yet it is surprisingly subtle to define correctly [15]. In
part, this is because duality affects the whole structure of a session
type. Whenever a session type language is extended with new
forms, such as quantifiers in (6.2) or label case analysis in (6.3),
duality must be suitably extended as well. However, as observed
by Dardha et al. [6], duality turns into a much simpler relation
when we consider encoded session types and, using an appropriate
representation of channel types, it boils down to type equality [24]:

Proposition 6.1. Let σ,ρ[t] def
= ρ,σ[t]. Then ⌊⌊T ⌋⌋ = ⌊⌊T ⌋⌋.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Woodstock ’18, June 03–05, 2018, Woodstock, NY Luca Ciccone and Luca Padovani

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

This property says that the encoding of the dual of T differs
from the encoding of T solely in the order of the multiplicities in
the top-level channel type constructor of ⌊⌊T ⌋⌋. As a consequence,
writing rich protocol specifications in encoded form in dlπ makes
it easier to use all the expressive power of the underlying functional
layer without worrying about duality. For example, one can mix-
and-match constructs from (6.2) and (6.3) to express branching
points that depend not on a label, but rather on a property between
messages. As an example, the type

1,0
[Σ(x : N)

1,0
[Σ(y : N) if x <b y then t else s]] (6.4)

describes a channel which is used for reading two natural numbers
x and y and then according to t or s depending on whether or not
x is smaller than y (<b : N → N → Bool is the builtin less-than
boolean function in Agda). The “dual” of (6.4) is described by a type
which is basically the same, but with the topmost multiplicities
swapped. Note that the protocol described by (6.4) can be expressed
somehow using the session type languages in (6.2) or (6.3), but in
both cases it must be patched so that the outcome of the comparison
x <b y is explicitly transmitted as a boolean value.

In [5] we give Agda formalizations of all the encodings ⌊⌊·⌋⌋ in
this section, each with a decoder ⌈⌈·⌉⌉ that is shown to be the inverse
of ⌊⌊·⌋⌋ when session types are considered up to bisimilarity.

7 RELATEDWORK

Dependent session types. The first theories of dependent session
types are those of Toninho et al. [31] and Griffith and Gunter [16].
These works augment session types with binders, thus allowing
for the specification of message predicates. Toninho and Yoshida
[32] present a full calculus combining functions and processes in
which the structure of both types and processes may depend on the
content of messages, as in ourwork. In particular, their session types
can describe a protocol such as (6.4) albeit with a more complex
type structure compared to our own (Table 3). Unlike Toninho
and Yoshida and aligning with Griffith and Gunter [16], Toninho
et al. [31], we leave the functional layer of dlπ unspecified, but we
contribute an Agda formalization of the calculus. Thiemann and
Vasconcelos [30] propose a full model of functions and processes
enabling a simplified form of dependency whereby the structure
of types and processes may depend on labels and possibly natural
numbers. They introduce a conditional context extension operator
that prevents dependencies on linear values and plays a similar role
of the filtering function ⟦·⟧ that erases channels.

Zhou [35] describes the theory and implementation of a refine-
ment session type systemwhere the type of messages can be refined
by predicates that specify their properties and relationships.

Dependent types for data formats and protocols. Oury and Swier-
stra [22] showcase the expressiveness of dependent types in de-
scribing cryptographic protocols and data formats. In particular,
our Type data type with dependent pairs has been inspired by their
definition of data formats using induction-recursion [9]. The works
of Bhatti et al. [3] and Brady and Hammond [4] advocate the use-
fulness of dependent types in the definition of (Embedded) Domain
Specific Languages (EDSLs) for the description of network protocols.
In particular, they show how dependent types capture precisely
the type of operations that change state-sensitive resources (e.g.

sockets) and enable specifications of data-sensitive protocols (e.g.
communication of checksums). Scalas et al. [28] use a blend of be-
havioral and dependent function types for the precise specification
of actor-based programs.

Formalizations of session type systems. Thiemann [29] gives the
first mechanized proof of a calculus of functions and sessions. His
type system distinguishes between types and session types, but
only non-dependent pairs are considered. de Muijnck-Hughes et al.
[7] describe an Idris EDSL where dependent types enable reason-
ing on value dependencies between exchanged messages. Zalakain
and Dardha [34] give another Agda formalization of the linear
π -calculus. They focus exclusively on the process layer and only
consider channel types, using typing with leftovers instead of con-
text splitting as we do. While context splitting relates more closely
with the model (Section 4) and other presentations of linear and
session calculi, leftovers allow for simpler mechanizations. Rouvoet
et al. [27] describe a technique inspired by separation logic to spec-
ify and verify in Agda interpreters using linear resources. Among
the case studies they discuss is a linearly-typed lambda calculus
with primitives for session communications.

Linear π -calculus. Our main source of inspiration is the work of
Dardha et al. [6], which emphasizes the role of pairs in the encoding
of sessions using linear channels. Dardha et al. show not only the
encoding of session types (as we do in Section 6), but also the
encoding of processes and prove an operational correspondence
between session-typed processes and encoded ones. We think that
all of these results extend to our calculus as well. The same encoding
is also discussed in earlier works by Kobayashi [19] and Demangeon
and Honda [8]. Padovani [24, 25] describes an OCaml library of
binary sessions which blends static session type inference with
dynamic linearity checking. Encoded session typesmakes it possible
to rely exclusively on OCaml’s type system.

8 CONCLUDING REMARKS

Linear channels combined with linear dependent pairs go a long
way in describing structured conversations that depend on the
content of messages in a strong sense. We have studied this combi-
nation in dlπ , a dependently-typed linear π -calculus that provides
a unifying model for a variety of dependent session type systems.

We have used Agda not only as the language in which we for-
malize the metatheory of dlπ , but also as a particular instance
of dlπ ’s functional layer from which we inherit the fundamental
machinery related to dependent pairs. The interplay between Agda
and the process layer of dlπ is mediated so as to prevent the flow
of channels from the process layer to the functional layer. This
mediation also prevents the specification of protocols that depend
on the identity of channels.

The Agda formalization of dlπ can form the basis for a light-
weight library implementation of dependent session types in Agda,
along the lines of similar libraries for other functional languages [24,
25]. Although the amount of annotations required for the typing of
processes appears intimidating (Section 5), preliminary results with
an inference algorithm have shown that these annotations can be
automatically synthesized in many cases. We plan to finalize these
developments in the near future.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

A Dependently-Typed Linear π -Calculus in Agda Woodstock ’18, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

REFERENCES

[1] Andreas Abel. 2010. MiniAgda: Integrating Sized and Dependent Types. In
Partiality and Recursion in Interactive Theorem Provers, PAR@ITP 2010, Edinburgh,
UK, July 15, 2010 (EPiC Series), Ekaterina Komendantskaya, Ana Bove, and Milad
Niqui (Eds.), Vol. 5. EasyChair, 18–32. https://arxiv.org/pdf/1012.4896.pdf

[2] Nick Benton, Chung-Kil Hur, Andrew Kennedy, and Conor McBride. 2012.
Strongly Typed Term Representations in Coq. J. Autom. Reasoning 49, 2 (2012),
141–159. https://doi.org/10.1007/s10817-011-9219-0

[3] Saleem Bhatti, Edwin Brady, Kevin Hammond, and JamesMcKinna. 2009. Domain
Specific Languages (DSLs) for Network Protocols (Position Paper). In 29th IEEE
International Conference on Distributed Computing Systems Workshops (ICDCS
2009 Workshops), 22-26 June 2009, Montreal, Québec, Canada. IEEE Computer
Society, 208–213. https://doi.org/10.1109/ICDCSW.2009.64

[4] Edwin Brady and Kevin Hammond. 2010. Correct-by-Construction Concurrency:
Using Dependent Types to Verify Implementations of Effectful Resource Usage
Protocols. Fundam. Inform. 102, 2 (2010), 145–176. https://doi.org/10.3233/FI-
2010-303

[5] Luca Ciccone and Luca Padovani. 2020. DependentLinearPi. Università di
Torino. Retrieved May 22, 2020 from https://gitlab.di.unito.it/luca.padovani/
DependentLinearPi

[6] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2017. Session types
revisited. Inf. Comput. 256 (2017), 253–286. https://doi.org/10.1016/j.ic.2017.06.002

[7] Jan de Muijnck-Hughes, Edwin Brady, and Wim Vanderbauwhede. 2019. Value-
Dependent Session Design in a Dependently Typed Language. In Proceedings
Programming Language Approaches to Concurrency- and Communication-cEntric
Software, PLACES@ETAPS 2019, Prague, Czech Republic, 7th April 2019 (EPTCS),
Francisco Martins and Dominic Orchard (Eds.), Vol. 291. Open Publishing Asso-
ciation, 47–59. https://doi.org/10.4204/EPTCS.291.5

[8] Romain Demangeon and Kohei Honda. 2011. Full Abstraction in a Subtyped pi-
Calculus with Linear Types. In Proceedings of CONCUR’11 (LNCS 6901). Springer,
280–296.

[9] Peter Dybjer. 2000. A General Formulation of Simultaneous Inductive-Recursive
Definitions in Type Theory. J. Symb. Log. 65, 2 (2000), 525–549. https://doi.org/
10.2307/2586554

[10] Kathleen Fisher, Yitzhak Mandelbaum, and David Walker. 2010. The next 700
data description languages. J. ACM 57, 2 (2010), 10:1–10:51. https://doi.org/10.
1145/1667053.1667059

[11] Simon Fowler. 2014. Verified Networking using Dependent Types. University of St
Andrews. http://simonjf.com/writing/bsc-dissertation.pdf BSc Dissertation.

[12] Simon Fowler and Edwin Brady. 2013. Dependent Types for Safe and Secure
Web Programming. In Proceedings of the 25th Symposium on Implementation and
Application of Functional Languages, Nijmegen, The Netherlands, August 28-30,
2013, Rinus Plasmeijer (Ed.). ACM, 49. https://doi.org/10.1145/2620678.2620683

[13] Simon J. Gay. 2016. Subtyping Supports Safe Session Substitution. In A List of
Successes That Can Change the World - Essays Dedicated to Philip Wadler on the
Occasion of His 60th Birthday (Lecture Notes in Computer Science), Sam Lindley,
Conor McBride, Philip W. Trinder, and Donald Sannella (Eds.), Vol. 9600. Springer,
95–108. https://doi.org/10.1007/978-3-319-30936-1_5

[14] Simon J. Gay and Malcolm Hole. 2005. Subtyping for session types in the pi
calculus. Acta Inf. 42, 2-3 (2005), 191–225. https://doi.org/10.1007/s00236-005-
0177-z

[15] Simon J. Gay, Peter Thiemann, and Vasco T. Vasconcelos. 2020. Duality of
Session Types: The Final Cut. In Proceedings of the 12th International Workshop on
Programming Language Approaches to Concurrency- and Communication-cEntric
Software, PLACES@ETAPS 2020, Dublin, Ireland, 26th April 2020 (EPTCS), Stephanie
Balzer and Luca Padovani (Eds.), Vol. 314. Open Publishing Association, 23–33.
https://doi.org/10.4204/EPTCS.314.3

[16] Dennis Griffith and Elsa L. Gunter. 2013. LiquidPi: Inferrable Dependent Session
Types. In NASA Formal Methods, 5th International Symposium, NFM 2013, Moffett
Field, CA, USA, May 14-16, 2013. Proceedings (Lecture Notes in Computer Science),
Guillaume Brat, Neha Rungta, and Arnaud Venet (Eds.), Vol. 7871. Springer,
185–197. https://doi.org/10.1007/978-3-642-38088-4_13

[17] Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR ’93, 4th Inter-
national Conference on Concurrency Theory, Hildesheim, Germany, August 23-26,
1993, Proceedings (Lecture Notes in Computer Science), Eike Best (Ed.), Vol. 715.
Springer, 509–523. https://doi.org/10.1007/3-540-57208-2_35

[18] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone,
Pierre-Malo Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio
Tuosto, Hugo Torres Vieira, and Gianluigi Zavattaro. 2016. Foundations of Session
Types and Behavioural Contracts. ACM Comput. Surv. 49, 1 (2016), 3:1–3:36.
https://doi.org/10.1145/2873052

[19] Naoki Kobayashi. 2002. Type Systems for Concurrent Programs. In 10th An-
niversary Colloquium of UNU/IIST (LNCS 2757). Springer, 439–453. Extended
version available at http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-
extended.pdf.

[20] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. 1999. Linearity
and the pi-calculus. ACM Trans. Program. Lang. Syst. 21, 5 (1999), 914–947.

https://doi.org/10.1145/330249.330251
[21] Hernán Melgratti and Luca Padovani. 2017. An OCaml Implementation of Binary

Sessions. River Publishers, 243–263. http://riverpublishers.com/downloadchapter.
php?file=RP_9788793519817C11.pdf

[22] Nicolas Oury and Wouter Swierstra. 2008. The power of Pi. In Proceeding of the
13th ACM SIGPLAN international conference on Functional programming, ICFP
2008, Victoria, BC, Canada, September 20-28, 2008, James Hook and Peter Thiemann
(Eds.). ACM, 39–50. https://doi.org/10.1145/1411204.1411213

[23] Luca Padovani. 2014. Deadlock and lock freedom in the linear π -calculus.
In Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18,
2014, Thomas A. Henzinger and Dale Miller (Eds.). ACM, 72:1–72:10. https:
//doi.org/10.1145/2603088.2603116

[24] Luca Padovani. 2017. A simple library implementation of binary sessions. J.
Funct. Program. 27 (2017), e4. https://doi.org/10.1017/S0956796816000289

[25] Luca Padovani. 2019. Context-Free Session Type Inference. ACM Trans. Program.
Lang. Syst. 41, 2 (2019), 9:1–9:37. https://doi.org/10.1145/3229062

[26] Simon Peyton Jones. 2001. Tackling the awkward squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell. IOS Press, 47–96.
https://www.microsoft.com/en-us/research/publication/tackling-awkward-
squad-monadic-inputoutput-concurrency-exceptions-foreign-language-calls-
haskell/

[27] Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. 2020.
Intrinsically-typed definitional interpreters for linear, session-typed languages.
In Proceedings of the 9th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, Jasmin
Blanchette and Catalin Hritcu (Eds.). ACM, 284–298. https://doi.org/10.1145/
3372885.3373818

[28] Alceste Scalas, Nobuko Yoshida, and Elias Benussi. 2019. Verifying message-
passing programs with dependent behavioural types. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen
Fisher (Eds.). ACM, 502–516. https://doi.org/10.1145/3314221.3322484

[29] Peter Thiemann. 2019. Intrinsically-Typed Mechanized Semantics for Session
Types. In Proceedings of the 21st International Symposium on Principles and Prac-
tice of Programming Languages, PPDP 2019, Porto, Portugal, October 7-9, 2019,
Ekaterina Komendantskaya (Ed.). ACM, 19:1–19:15. https://doi.org/10.1145/
3354166.3354184

[30] Peter Thiemann and Vasco T. Vasconcelos. 2020. Label-dependent session types.
Proc. ACM Program. Lang. 4, POPL (2020), 67:1–67:29. https://doi.org/10.1145/
3371135

[31] Bernardo Toninho, Luís Caires, and Frank Pfenning. 2011. Dependent session
types via intuitionistic linear type theory. In Proceedings of the 13th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Programming,
July 20-22, 2011, Odense, Denmark, Peter Schneider-Kamp and Michael Hanus
(Eds.). ACM, 161–172. https://doi.org/10.1145/2003476.2003499

[32] Bernardo Toninho and Nobuko Yoshida. 2018. Depending on Session-Typed
Processes. In Foundations of Software Science and Computation Structures - 21st
International Conference, FOSSACS 2018, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April
14-20, 2018, Proceedings (Lecture Notes in Computer Science), Christel Baier and
Ugo Dal Lago (Eds.), Vol. 10803. Springer, 128–145. https://doi.org/10.1007/978-
3-319-89366-2_7

[33] Philip Wadler and Wen Kokke. 2019. Programming Language Foundations in
Agda. Available at http://plfa.inf.ed.ac.uk/.

[34] Uma Zalakain and Ornela Dardha. 2020. Typing the linear pi calculus in Agda. Uni-
versity of Glasgow. RetrievedMay 25, 2020 from https://github.com/umazalakain/
typing-linear-pi

[35] Fangyi Zhou. 2019. Refinement Session Types. Imperial College London.
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/
computing/public/1819-ug-projects/ZhouF-Refinement-Session-Types.pdf BSc
Dissertation.

13

https://arxiv.org/pdf/1012.4896.pdf
https://doi.org/10.1007/s10817-011-9219-0
https://doi.org/10.1109/ICDCSW.2009.64
https://doi.org/10.3233/FI-2010-303
https://doi.org/10.3233/FI-2010-303
https://gitlab.di.unito.it/luca.padovani/DependentLinearPi
https://gitlab.di.unito.it/luca.padovani/DependentLinearPi
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.4204/EPTCS.291.5
https://doi.org/10.2307/2586554
https://doi.org/10.2307/2586554
https://doi.org/10.1145/1667053.1667059
https://doi.org/10.1145/1667053.1667059
http://simonjf.com/writing/bsc-dissertation.pdf
https://doi.org/10.1145/2620678.2620683
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.1007/978-3-642-38088-4_13
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1145/2873052
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
https://doi.org/10.1145/330249.330251
http://riverpublishers.com/downloadchapter.php?file=RP_9788793519817C11.pdf
http://riverpublishers.com/downloadchapter.php?file=RP_9788793519817C11.pdf
https://doi.org/10.1145/1411204.1411213
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.1145/3229062
https://www.microsoft.com/en-us/research/publication/tackling-awkward-squad-monadic-inputoutput-concurrency-exceptions-foreign-language-calls-haskell/
https://www.microsoft.com/en-us/research/publication/tackling-awkward-squad-monadic-inputoutput-concurrency-exceptions-foreign-language-calls-haskell/
https://www.microsoft.com/en-us/research/publication/tackling-awkward-squad-monadic-inputoutput-concurrency-exceptions-foreign-language-calls-haskell/
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/3314221.3322484
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/3371135
https://doi.org/10.1145/3371135
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1007/978-3-319-89366-2_7
https://doi.org/10.1007/978-3-319-89366-2_7
http://plfa.inf.ed.ac.uk/
https://github.com/umazalakain/typing-linear-pi
https://github.com/umazalakain/typing-linear-pi
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1819-ug-projects/ZhouF-Refinement-Session-Types.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1819-ug-projects/ZhouF-Refinement-Session-Types.pdf

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Woodstock ’18, June 03–05, 2018, Woodstock, NY Luca Ciccone and Luca Padovani

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

A SUPPLEMENT

In this appendix we show the code corresponding to the client processes P1–P4 described in Section 3. In general these processes are slightly
more intricate than the corresponding servers because they need to create new channels which must be suitably distributed among parallel
sub-processes.

Since these processes behave in a dual manner with respect to the corresponding servers, it is useful to define a dual-of function that
computes the “dual” of a dlπ type (see Proposition 6.1), so that we can reuse most of the structure already given in the types t1–t4 of
Section 5.

dual-of : Type → Type
dual-of (Chan σ ρ t) = Chan ρ σ t
dual-of t = t

Note that dual-of behaves as the identity on any type other than channel types. We add this case to dual-of just so that the function is
total. Starting from P1 in (3.3) we have

P1 : Process (dual-of t1 # _ :: [])
P1 = New (Par (chan sp01 sp10 :: L [])

(Send (R L []) (name (here [])) (pair (R []) (pure [] 2) (name (here []))))
(Recv (L []) (name (here [])) λ _→ Idle (P :: [])))

where spσρ is a witness for the relation MSplit (σ + ρ) σ ρ. Note that s1 differs from t1 (Section 5) solely for the topmost multiplicities. The
same will apply for all the types used by the client processes presented hereafter. Concerning P2 in Section 3.2 we have:

nzero : (n : N) → suc n . 0
nzero _ ()

P2 : Process (dual-of t2 # _ :: [])
P2 = New (Par (chan sp10 sp01 :: L [])

(Send (R L []) (name (here [])) (pair (R []) (pure [] 2) (name (here []))))
(New (Par (chan sp01 sp10 :: L [])

(Send (R L []) (name (here [])) (pair (R []) (pure [] (nzero 1)) (name (here []))))
(Recv (L []) (name (here [])) λ _→ Idle (P :: [])))))

For P31 and P32 in Section 3.3 we have:

P31 : Process (dual-of t3 # _ :: [])
P31 = New (Par (chan sp10 sp01 :: L [])

(Send (R L []) (name (here []))
(pair (R []) (pure [] true) (name (here []))))

P1)

P32 : Process (dual-of t3 # _ :: [])
P32 = New (Par (chan sp10 sp01 :: L [])

(Send (R L []) (name (here []))
(pair (R []) (pure [] false) (name (here []))))

P2)

Now the process composition at the end of Section 3.3 can be typed thus:

P3 : Process (Chan #0 #ω _ # _ :: [])
P3 = Par (chan sp00 sp11 :: []) P31 P32

C3 : Process (Chan #ω #ω _ # _ :: [])
C3 = Par (chan sp0ω spω0 :: []) P3 Q3

We conclude with the definition of P4 in Section 3.4:

G : (n : N)→∀{ p } → Process (dual-of (f n) # p :: [])
G zero = Recv (L []) (name (here [])) λ _→

Idle (P :: [])
G (suc zero) = New (Par (chan sp01 sp10 :: L [])

(Send (R L []) (name (here [])) (pair (R []) (pure [] 1) (name (here []))))
14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

A Dependently-Typed Linear π -Calculus in Agda Woodstock ’18, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

(G 0))
G (suc (suc n)) = New (Par (chan sp10 sp01 :: L [])

(Send (R L []) (name (here [])) (pair (R []) (pure [] (suc (suc n))) (name (here []))))
(G (suc n)))

P4 : N→ Process (dual-of t4 # _ :: [])
P4 zero = New (

Par (chan sp01 sp10 :: L [])
(Send (R L []) (name (here [])) (pair (R []) (pure [] zero) (name (here []))))
(G 0)

)
P4 (suc n) = New (

Par (chan sp10 sp01 :: L [])
(Send (R L []) (name (here [])) (pair (R []) (pure [] (suc n)) (name (here []))))
(G (suc n))

)

15

	Abstract
	1 Introduction
	2 SYNTAX AND SEMANTICS
	3 STRUCTURED CONVERSATIONS
	3.1 Linear conversations
	3.2 Conversations with message predicates
	3.3 Conversations with branching points
	3.4 Variable-length conversations

	4 Type System
	4.1 Multiplicities
	4.2 Types
	4.3 More on dependent pairs
	4.4 Contexts
	4.5 Typing rules
	4.6 Properties of well-typed processes
	4.7 Examples

	5 Agda Formalization
	6 Encoding dependent session types
	7 RELATED WORK
	8 Concluding Remarks
	References
	A Supplement

