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Abstract: Diets are currently characterized by elevated sugar intake, mainly due to the increased
consumption of processed sweetened foods and drinks during the last 40 years. Diet is the main
source of advanced glycation endproducts (AGEs). These are toxic compounds formed during the
Maillard reaction, which takes place both in vivo, in tissues and fluids under physiological conditions,
favored by sugar intake, and ex vivo during food preparation such as baking, cooking, frying or
storage. Protein glycation occurs slowly and continuously through life, driving AGE accumulation in
tissues during aging. For this reason, AGEs have been proposed as a risk factor in the pathogenesis
of diet-related diseases such as diabetes, insulin resistance, cardiovascular diseases, kidney injury,
and age-related and neurodegenerative diseases. AGEs are associated with an increase in oxidative
stress since they mediate the production of reactive oxygen species (ROS), increasing the intracellular
levels of hydrogen peroxide (H2O2), superoxide (O2

−), and nitric oxide (NO). The interaction of AGEs
with the receptor for AGEs (RAGE) enhances oxidative stress through ROS production by NADPH
oxidases inside the mitochondria. This affects mitochondrial function and ultimately influences cell
metabolism under various pathological conditions. This short review will summarize all evidence
that relates AGEs and ROS production, their relationship with diet-related diseases, as well as the
latest research about the use of natural compounds with antioxidant properties to prevent the harmful
effects of AGEs on health.
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1. Introduction: General Aspects of Advanced Glycation Endproducts

Advanced glycation endproducts (AGEs) are toxic compounds that are formed during the
spontaneous reaction initiated by a nucleophilic addition between the free amino group of a
protein, aminophospholipid or nucleic acid and the carbonyl group of a reducing sugar, called
the Maillard reaction (Figure 1). In this reaction, a reversible Schiff base is formed, which is then
spontaneously transformed at physiological pH and room temperature into an Amadori product after
some rearrangement. Then, these Amadori products can react following two different routes depending
on pH. At low pH values, enolization reactions take place to form 1,2-dicarbonyls, which can later
dehydrate to yield furfural derivatives. Otherwise, at high pH values, enolization reactions occur,
which produce 2,3-dicarbonyls that then dehydrate to yield reductones. Moreover, Amadori products
can also form α-dicarbonyls through oxidative fission or retro-aldol fragmentation. Dicarbonyls are
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very reactive compounds. All the generated carbonyls can undergo condensation with primary amines
to make melanoidins [1]. Then, AGEs can be formed by two different pathways: the irreversible
rearrangement of Amadori products through both oxidative and non-oxidative pathways and through
subsequent condensation reactions between dicarbonyls and the side-chain of lysine, cysteine, and
arginine residues [2].

Antioxidants 2020, 9, x FOR PEER REVIEW 2 of 20 

Dicarbonyls are very reactive compounds. All the generated carbonyls can undergo condensation 
with primary amines to make melanoidins [1]. Then, AGEs can be formed by two different pathways: 
the irreversible rearrangement of Amadori products through both oxidative and non-oxidative 
pathways and through subsequent condensation reactions between dicarbonyls and the side-chain 
of lysine, cysteine, and arginine residues [2]. 

 
Figure 1. Formation of advanced glycation endproducts (AGEs). During the Maillard reaction, the 
free amino group of a protein, aminophospholipid, or nucleic acid reacts with the carbonyl group of 
a reducing sugar, producing a Schiff base. This molecule, following some rearrangement, is 
spontaneously transformed into an Amadori product. Depending on pH, these products form 1,2-
dicarbonyls as 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), or methylglyoxal (MGO) or 
form 2,3-dicarbonyls such as 1-deoxyglucosone (1-DG). Then, dicarbonyls following condensation 
produce AGEs such as Nε-(carboxyethyl)lysine (CEL), Nε-(carboxymethyl)lysine (CML) or 
methylglyoxal-derived hydroimidazolone 1 (MG-H1). 
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Figure 1. Formation of advanced glycation endproducts (AGEs). During the Maillard reaction,
the free amino group of a protein, aminophospholipid, or nucleic acid reacts with the carbonyl
group of a reducing sugar, producing a Schiff base. This molecule, following some rearrangement,
is spontaneously transformed into an Amadori product. Depending on pH, these products
form 1,2-dicarbonyls as 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), or methylglyoxal
(MGO) or form 2,3-dicarbonyls such as 1-deoxyglucosone (1-DG). Then, dicarbonyls following
condensation produce AGEs such as Nε-(carboxyethyl)lysine (CEL), Nε-(carboxymethyl)lysine (CML)
or methylglyoxal-derived hydroimidazolone 1 (MG-H1).

Protein glycation takes place in vivo in tissues and fluids under physiological conditions. It is
a slow and continuous process that occurs throughout the lifespan, driving AGE accumulation in
tissues during aging [3]. Nevertheless, protein glycation can also take place ex vivo, since this reaction
occurs during food preparation such as baking, cooking, or frying as well as during storage [4]. High
temperatures and long cooking times favor glycation reactions [5].

Diet is the major source of AGEs in vivo because AGEs are exogenously introduced with the diet
and can also be produced endogenously from a diet with a high content of simple sugars, especially
fructose [6]. This sugar is the most common in the human diet due to the high-fructose syrups usually
added to processed foods and drinks as sweeteners. Furthermore, fructose is also 7.5-fold more reactive
than glucose [7]. However, even if glucose is less reactive, it still plays an essential role in protein
glycation since it can be transformed into fructose through the polyol pathway [8]. Furthermore, the
accumulation of AGEs both in plasma and tissues has been reported in animal models of high fructose
consumption, [9,10].

2. Advanced Glycation Endproducts Drive Cell Signaling and Inflammation

The action of AGEs is mediated via their receptors: AGE-R1/OST-48, AGE-R2/80K-H,
AGE-R3/galectin-3, LOX-1 [11], and CD36 [12], implicated in the capture, removal, and degradation of
AGEs, as well as the receptor for AGEs (RAGE); the latter is the most important and the most studied [13].

RAGE is a multiligand member of the immunoglobulin superfamily of type I cell surface molecules.
It is a pattern recognition receptor, expressed in different cell types such as fibroblasts, keratinocytes,
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monocytes, macrophages, lymphocytes, endothelial, smooth muscle, and dendritic cells as well as
neurons, glia, and chondrocytes [14]. It engages different ligands, not only AGEs, but also the
amyloid β peptide, S100/calgranulin protein, HMGB1, and LPS, ultimately leading to an alteration in
gene expression [15–18]. Recent studies have shown that Ne(carboxymethyl)lysine (CML) adducts
of proteins, the most frequent type of AGEs found in vivo, interact with RAGE to activate signal
transduction pathways [19,20], ultimately leading to the expression of proinflammatory genes [21].
Thus, it has been shown that treating cells with AGEs produces a rapid increase in both mRNA and
protein levels of RAGE [22] which is suppressed after pretreatment with the anti-RAGE antibody [23].

The interaction of AGEs with RAGE modulates transduction through ROS formation via NADPH
oxidases and mitochondria [24–27]. This initiates several signal transduction cascades that involve
p21RAS, p44/p42 mitogen-activated protein kinases (MAPK), PI3K-AKT, ERK1/2, JNK, p38, protein
kinase C (PKC), and NF-κB activation [14,25,28–36], finally resulting in the production of cytokines,
chemokines, and other proinflammatory molecules that induce inflammation [37–42], apoptosis, and
proliferation [43–48]. Among these molecules, IL-6, TNF-α, IL-1β, MCP-1, tissue factor (TF), and
VCAM-1 are upregulated by AGEs [22,27] (Figure 2).Antioxidants 2020, 9, x FOR PEER REVIEW 4 of 20 
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Figure 2. Molecular signaling pathways activated upon the interaction of advanced glycation
endproducts (AGEs) with their receptor (RAGE). AGEs interact with their receptor RAGE, increasing
the production of ROS by the NOX enzymes and the mitochondria, enhancing the activity of antioxidant
enzymes. ROS initiate several signal transduction cascades such as RAS/MEK/ERK, IP3K/AKT or
p38MAPK that lead to the activation of NF-κB that results in the activation of the NLRP-3 inflammasome
and the production of several cytokines, chemokines, and other proinflammatory factors, inducing
inflammation, apoptosis, and proliferation. The elevated production of O2

− and NO mediated by AGEs
and the upregulation of iNOS by NF-κB favor the production of ONOO− that conducts the inactivation
of proteins such as thioredoxin, impeding its anti-apoptotic and antioxidant functions.

AGE-RAGE interaction also results in an increased mRNA for heme oxygenase-1; it enhances the
nuclear translocation of NF-κB, increases both the expression of VCAM-1 and endothelial permeability,
and generates ROS by other mechanisms [25,49–51].
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NLRP3 inflammasome is discussed extensively as a novel cell stress signal [52]. It is a
cytosolic macromolecular complex composed of NLRP3, the adaptor protein ASC, caspase-1, and/or
caspase-11 [52]. There is solid evidence that AGEs can activate NLRP3 inflammasome via oxidative
and inflammatory stress [53–56]. There is an initial signal regulated by NF-κB for the transcription of
NLRP3 and pro-IL-1β. After that, there is a second signal that assembles the NLRP3 inflammasome,
leading to an increased protein level of cleaved caspase-1 and the maturation and secretion of the
pro-inflammatory cytokine IL-1β [22,52,57].

Moreover, it has been shown that the AGE/soluble RAGE (sRAGE) ratio could be a useful
biomarker for assessing the risk of developing certain diseases. Thus, an increased AGE/sRAGE ratio
is an indicator of an elevated disease risk [58].

Considering the relevance of proinflammatory and prooxidant pathways in the pathogenesis of
age-related diseases, AGEs are involved in relevant illnesses such as diabetes [59–61], insulin resistance,
cardiovascular diseases [62,63], chronic renal failure [64], and neurological disorders [65,66].

3. Reactive Oxygen Species/Reactive Nitrogen Species are Intermediary Signaling Molecules of
AGE Biological Activity

It has been described that AGEs can produce ROS by activating NADPH oxidases [67,68],
the mitochondrial respiratory chain, microsomal enzymes, xanthine oxidase, and arachidonic acid
pathways [69–71] by interacting with their receptor (Figure 2). There is considerable evidence
that ROS are generated upon interaction of AGEs with RAGE. Studies performed in endothelial
cells [25,34,49–51,72,73], macrophages [37], and cardiomyocytes [38] have identified an increase in
the intracellular levels of H2O2, O2

−, and NO, as well as a higher release of H2O2 after treatment
with AGEs by using redox fluorescence probes. Thus, the activation of the AGE-RAGE axis enhances
oxidative stress, affecting mitochondrial function and ultimately influencing cell metabolism under
various pathological conditions [74,75].

Treating the cells with glycated albumin also increases the production of superoxide anions in the
mitochondria. Furthermore, cells treated with AGEs showed an increase in basal oxygen consumption
and proton leak as well as a reduction in the maximal respiration, spare respiration capacity, and
non-mitochondrial respiration. This is in accordance with the tendency of AGEs to intensify proton
leak, which is a sign of mitochondrial damage [72,76].

Moreover, AGE production of ROS also enhances the expression [77] and the activities of
antioxidant enzymes such as catalase, GPx, and SOD1, although no differences are described for the
activity of SOD2. However, this increase in the antioxidant defenses appears to be depleted over
time [72,78], which implies an indirect effect more than a transcriptional modulation.

AGEs also produce oxidative modifications of proteins [79]. Thus, there is a production
of intracellular advanced oxidation protein products (AOPPs) in endothelial cells [72] and
macrophages [22] treated with AGEs.

ROS play an essential role in mediating the RAGE signal transduction. According to this, ROS
generated in the cellular milieu directly activate p21RAS [80,81], and in RAGE-bearing cells expressing
a mutant form of p21RAS, suppression of the activation of ERK1/2 upon exposure to AGEs was
found [31]. Furthermore, AGE-RAGE mediated activation of ERK1/2 kinases is enhanced in the
presence of glutathione depletion [31]. ROS are also necessary for sustaining the phosphorylation
of p38 [82] and JNK [83] caused by AGEs by inhibiting the inactivating phosphatases, allowing the
activation of NF-κB [37].

AGEs are also involved in the production of reactive nitrogen species (RNS). These species are
the reaction products of nitric oxide (NO) that is produced by nitric oxide synthases (NOS) and the
superoxide anion (O2

−) produced by NADPH oxidases [38]. Moreover, since O2
•– is enhanced by

activation of NADPH oxidases mediated by AGEs, the increase in NO• and O2
•– favors the production

of peroxynitrite (ONOO–). This is an oxidizing and nitrating molecule that inactivates functional
proteins [14,84]. NOS is inducible by cytokines (iNOS) so that the activation of NF-κB by AGEs finally
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produces an upregulation of iNOS, which can produce large amounts of NO [22,85–87] that leads to
the induction of nitrosative stress and an increase in the levels of ONOO− [88,89]. Furthermore, AGEs
can also downregulate endothelial NOS (eNOS) [90,91].

The NOS inhibitor L-NMMA does not reduce intracellular H2O2, which might be explained by a
lack of direct involvement of NO in the production of ROS by AGEs [26]. However, the uncoupling of
eNOS can produce O2

− instead of NO [92]. In experiments with the NOS inhibitor L-NAME, it was
shown that eNOS was a significant O2

− source in the presence of AGEs, which suggests that they could
uncouple eNOS by enhancing ONOO– production [24].

Regarding the nitration of proteins, it has been demonstrated that the activation of RAGE by
AGEs induces the production of ONOO−, thus modulating the nitration of thioredoxin and therefore
its inactivation (Figure 2). This brought, as a consequence, a loss in anti-apoptotic and antioxidant
function as well as a reduced cardiac protection function in a mice model of diabetic myocardial
ischemia-reperfusion injury. It has also been shown that upregulation of thioredoxin is able to inhibit
the expression of RAGE, suggesting crosstalk between RAGE and thioredoxin [93,94].

4. AGEs Produce Reactive Oxygen Species by a NOX-Mediated Mechanism

Regarding the AGE-mediated production of ROS, some studies have also shown the activation of
NADPH oxidases by AGEs in mesangial and endothelial cells [34,67,95]. There is an increase in the
mRNA levels of NOX1, NOX2, NOX4, and the NADPH oxidase subunit p22phox after treating cells
with AGEs [22,23,96].

AGE-mediated ROS production was inhibited after incubation with inhibitors of NADPH oxidases,
such as apocynin and DPI, antioxidant enzymes such as SOD and catalase or antioxidants such as
probucol and NAC. ROS production was also reduced by myxothiazol, an inhibitor of complex III of
the respiratory chain. These data support the role that NADPH oxidases and mitochondria play in
the intracellular production of ROS mediated by AGEs [23,24,26,72,95,96]. Moreover, when cells were
pretreated with anti-RAGE or soluble (sRAGE), the expression of NOX-1, NOX-2, and NOX-4 was
inhibited and hence, ROS production [23,24,26,97], thus confirming the role of the AGE-RAGE axis in
ROS generation by NADPH oxidases.

It has also been proposed that crosstalk exists between NADPH oxidases and mitochondria. In
that case, AGEs would trigger the production of O2

− by activating the NADPH oxidases. This O2
−

would stimulate the mitochondria to produce additional superoxide [72,98]. AGEs reduced the ratio of
the maximal respiration rate to a basal level and slightly increased the proton leak [72], which can
decrease the production of ROS in the mitochondria [99].

The pharmacological inhibition of NADPH oxidases not only inhibited ROS production but also
modulated the gene expression and transcription factor activation induced by AGEs. Thus, NADPH
oxidase inhibition by DPI inhibited the expression of E-selectin [34], and apocynin inhibited the
activation of NF-κB [38].

It has also been shown that the inhibition of NF-κB in cells treated with AGEs decreases the
production of ROS since it reverts the enhancement of NOX4 expression [24]. Moreover, AGEs have
also been associated with an increase in the activation of the transcription factor AP-1 [100,101] which
is also involved in the activity and expression of NADPH oxidases. Thus, the inhibition of AP-1 results
in a reduction of the angiotensin-II and TNF-α-dependent upregulation of NADPH oxidases and
p22phox promoter activity [35]. These effects can be explained since NF-κB regulates three subunits of
NADPH oxidase: gp91phox, p47phox, and p22phox [102–104], and AP-1 was implicated in the promoter
activity of p67phox and the regulation of p22phox expression [35,105].

5. Increasing Relevance of AGEs in Diet-Related Diseases and Associated Diabetic Pathologies

Diets are currently characterized by elevated sugar intake, mainly due to the increased consumption
of processed sweetened foods and drinks during the last 40 years [106]. Chronic hyperglycemia is
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associated with endogenous AGE formation and subsequent interaction with RAGE [3,107–109], which
results in the initiation of numerous signaling pathways.

According to data from the World Health Organization, in 2016, one of the leading causes
of mortality and morbidity worldwide was diabetes mellitus and its vascular complications such
as atherosclerosis, diabetic nephropathy, coronary artery disease, arterial stiffening, and diabetic
retinopathy [110]. Diabetes is characterized by high levels of circulating glucose [111] and increased
oxidative stress [112–114]. A positive correlation between oxidative stress markers and glycated
albumin levels has been described in patients with type 2 diabetes mellitus [96,115]. Moreover, the
long-term oxidative stress produced by AGEs may result in protein damage that finally leads to
endothelial dysfunction [116]. Thereby, the accumulation of AGEs has been related to diabetes and
also to its associated complications [117–126] (Figure 3). However, the molecular mechanisms and the
signaling pathways involved are yet to be clearly defined.
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the extracellular matrix.

As commented above, AGEs are also associated with diabetes complications, such as insulin
resistance. Hence, glycated albumin is found on the one hand to induce the expression of TNF-α,
which suppresses insulin signaling [127] and, on the other hand, to impair the PI3K pathway and
inhibit insulin-mediated glucose metabolism [128]. Furthermore, under hyperglycemic conditions,
insulin can be directly glycated, reducing its glucose-lowering potential [129,130]. In a study in which
non-obese mice were fed a diet enriched with methylglyoxal-modified albumin, there was an increase
in both inflammation and oxidative stress, as well as an insulin-resistant phenotype [131].

It has also been found that AGEs accumulate in atherosclerotic lesions, where it is described
that they contribute to endothelial dysfunction [132,133] and increase the expression of MCP-1, PAI-1,
ICAM-1, and VCAM-1 [134–136]. AGE-associated oxidative stress appears as a central element in the
pathology of atherosclerosis [137]. Moreover, AGEs decrease the expression of eNOS, diminishing
the synthesis of NO, which mediates some fundamental mechanisms in endothelial dysfunction and
atherosclerosis such as vasodilation or endothelial regeneration [138].

Moreover, a role for AGEs in diabetic nephropathy has been described. This diabetes complication
is associated with the loss of mesangial cells in the glomerulus. It has been demonstrated that AGEs
induce apoptosis and VEGF and MCP-1 expression in these cells, which contributes to an enhanced
vascular permeability and correlates with hyperfiltration, proteinuria, and inflammation of the renal
tissue [139].
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Finally, another well-known diabetic microvascular complication is diabetic retinopathy, which
is the major cause of acquired blindness. It is associated with the breakdown of the blood-retina
barrier since it can produce the development of macular edema, a principal cause for vision loss in
diabetes [140]. It has been demonstrated that this breakdown might be mediated by AGEs since they
induce the adhesion of leukocytes to the endothelial cells of the retina and also increase the expression
of ICAM-1 and DNA binding of NF-κB [141].

6. The Increasing Relevance of AGEs in Age-Associated Diseases

AGEs have been also associated with other important non-diabetes-related chronic disorders
as a causative factor. These illnesses are, among others, hypertension, chronic kidney disease, some
cardiovascular and pulmonary diseases, neurodegenerative disorders, and cancer (Figure 3).

Focusing on neurodegeneration, it must be highlighted that the brain is an organ that displays a
high susceptibility to oxidative stress since it has a high rate of oxygen consumption and relatively low
levels of antioxidants [142]. There is increasing evidence that oxidative stress plays an essential role
in the pathogenesis of neurodegenerative disorders [143]. Furthermore, oxidative stress contributes
to the formation of AGEs that, in turn, induce oxidative stress, forming a positive feedback loop
that drives oxidative damage in the brain [144]. For this reason, AGEs are recognized as important
players in the pathogenesis of several neurodegenerative disorders such as Alzheimer’s or Parkinson’s
diseases [145,146], but also Huntington’s disease, amyotrophic lateral sclerosis or Creutzfeldt-Jakob
disease [147,148].

Alzheimer’s disease is the most prevalent type of dementia in the elderly, who suffer a progressive
cognitive decline, compromising their functional abilities and thus affecting their life quality [65]. In this
pathological condition, the amyloid precursor protein has been found to be upregulated by AGEs [149],
increasing the levels of β-amyloid, which is the principal component of senile plaques. The aggregation
and deposition of β-amyloid are also accelerated by AGE-mediated crosslinking [150,151]. Moreover,
ApoE might also bind to elements of the senile plaques that are modified by AGEs [152]. Regarding
tau, its glycation has been showed to produce oxidative stress [153], and AGEs also contribute to the
hyperphosphorylation of tau through a RAGE-mediated GSK-3β activation that will finally aggregate
and form the neurofibrillary tangles [154].

Parkinson’s disease is the second most prevalent neurodegenerative disease [155]. It is
characterized by shaking, muscle stiffness, and achiness that produce a limitation in the movement [156].
In this disease, AGEs promote the formation of Lewy bodies that contain the neurofilament
α-synuclein [157]. AGEs have been found to induce the aggregation of α-synuclein, co-occurring with
oxidative stress and contributing to the pathogenesis of Parkinson’s disease [158–160].

Last but not least, in the last few years, the potential implication of AGEs in carcinogenesis
has drawn the attention of investigators, and the presence of AGEs has already been described in
several types of cancer [161–163]. Moreover, it has been found that the circulating levels of AGEs were
increased in patients with prostate cancer when compared with healthy patients, with the highest
levels of AGEs corresponding with high-grade prostate cancer patients, according to the Gleason
score [162,164,165].

In vitro studies have shown that AGEs promote growth, invasion, and migration of cancer cells in
prostate and breast cancer [166,167]. These effects might be due to an interaction with their receptor
RAGE, activating its signaling pathway since high levels of RAGE were found in tumors compared to
healthy tissue [162,164,168]. Furthermore, the role of RAGE in tumor proliferation, migration, and
invasion has been described [168,169], even though the molecular mechanism remains unknown
and a potential mediation of ROS cannot be discarded. Silencing RAGE as a therapeutic approach
produced in human prostate cancer cells an inhibition of the proliferation and a decrease in the levels of
prostate-specific antigen (PSA) [170]. Moreover, in a breast cancer cell line, treatment with metformin
suppressed the expression of RAGE and cell proliferation [171].
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Another implication of AGEs in cancer is related to their ability to modify the extracellular matrix
by establishing crosslinks that favor the invasion of cancer cells. Therefore, AGE-induced crosslinking
of fibronectin promotes matrix accumulation by increasing the stiffness of collagen. In addition, the
AGE-mediated crosslinking of collagen IV and laminin promotes the stiffening of the basal lamina
matrix [166,172].

7. Use of Natural Compounds as Therapeutic Strategies

Regarding the role that AGEs play in ROS production and hence oxidative stress, and since diet
is the main source of AGEs, the use of natural compounds with antioxidant properties is gaining
importance. Among them, polyphenols are the most widely studied (Table 1).

Table 1. List of some of the natural antioxidant compounds that have been used in the AGE field and
the AGE-related effect that they produce.

Molecule Type of
Compound Found in AGE-Related Effect References

Curcumin Hydrocinnamic
acid

Curcuma longa
plants

↓AGE accumulation
↓crosslinking of collagen
prevents AGE-induced increase in
NF-κB and VEGF

[173,174]

Catechin Flavanol Green tea ↓AGE formation [175–178]

Quercetin Flavonol Red onion, kale
↓AGE formation
suppresses dicarbonyls-induced
protein glycation

[178,179]

Kaempferol Flavonol Garlic ↓AGE formation
↓protein crosslinking [180]

Naringenin Flavanone Citrus fruits,
tomatoes

inhibits AGE formation
inhibits AGE-induced oxidative stress
and inflammation

[181]

Hesperetin Flavanone Lemons, sweet
oranges

↑glyoxalase-1
↓AGE formation
↓RAGE protein levels
inhibits AGE/RAGE axis

[182]

Apigenin Flavone Parsley, celery,
chamomile tea

inhibits AGE-induced ROS
production
↓RAGE protein levels

[183]

Genistein Isoflavone Lupin, fava beans,
soybeans

inhibits AGE formation
↓RAGE protein levels
↑glyoxalase-1 and 2

[184]

Hydroxytyrosol Phenylethanoid Olive leaves and
olive oil

↓AGE formation
↓protein carbonylation [185]

Resveratrol Stilbene Grapes, red wine,
berries, peanuts

↓AGE formation
↓protein carbonylation
↓AOPP

[186–188]

One of these natural compounds is curcumin, a phenolic acid, specifically a hydrocinnamic acid,
known for its antioxidant and anti-inflammatory properties [189]. It has been shown to reduce the
accumulation of AGEs and the crosslinking of collagen in diabetic rats [173]. It also scavenges ROS
and inhibits lipid peroxidation [174]. Furthermore, it inhibits NADPH oxidases [190] and prevents
the AGE-induced increase in NF-κB and VEGF [191]. It has also been described to reduce the levels
of blood glucose in type 2 diabetic mice [192], ameliorates diabetic nephropathy in rats [193], and
decrease hepatosteatosis and insulin resistance in fructose-fed mice [194,195].

Some other frequently used compounds are flavonoids. These polyphenols are classified in
different groups of compounds, such as flavanols. Among them, catechin, one of the main flavonoids
present in green tea, reduces the formation of AGEs in diabetic rats [175], due to its anti-glycation effects
dependent on its phenolic composition [176]. Catechins act as a free radical scavenger and prevent
lipid peroxidation [177,196]. Authors have also shown a protective role against the oxidation-induced
damage in erythrocytes in type 2 diabetes patients [197].
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Another group of flavonoids are flavonols that include quercetin, a compound present in many
foods and vegetables such as red onion or kale. It has been reported to inhibit the formation of AGEs in
a dose-dependent manner by trapping the dicarbonyls glyoxal and methylglyoxal and to suppress their
induced protein glycation [179]. Moreover, extracts from the leaves of the luobuma plant, enriched in
catechin, quercetin, and rutin, have antioxidant and anti-inflammatory properties [198] and can inhibit
lipid peroxidation and the formation of AGEs [178,199]. Other flavonols include kaempferol, found in
high amounts in garlic. It has the ability to inhibit the formation of AGEs as well as the crosslinking of
proteins [180].

In addition, we can also find flavonoids in citrus fruits and tomatoes, as the flavanone naringenin,
characterized by its antioxidant, anti-inflammatory, antidiabetic, and antiatherogenic properties [200].
Naringenin has also shown the capacity of inhibiting AGE formation and AGE-induced cellular
oxidative stress and inflammation, reducing the expression of genes such as TNF-α, IL-1β, and COX-2
as well as the production of ROS [181]. Another flavanone, hesperetin, the aglycone of the flavanone
hesperidin, present in lemons and sweet oranges, has been shown to upregulate glyoxalase-1 and to
inhibit the AGE/RAGE axis by decreasing the formation of AGEs as well as the protein levels of RAGE,
thus reducing inflammation and decreasing the levels of IL-1β and TNF-α [182].

Moreover, apigenin, belonging to the flavone group and mostly found in parsley, celery, and
chamomile tea, was found to suppress AGE-induced ROS production and decrease the levels
of proinflammatory cytokines and adhesion molecules. This effect was likely mediated by the
downregulation of RAGE, p-ERK 1/2, and NF-κB and a reduced NOX activity that subsequently led to
an upregulation of NRF2 and antioxidant defenses [183].

Furthermore, the isoflavone genistein, found in lupin, fava beans, and soybeans, has been very
recently tested in vivo. It has been shown to inhibit AGE formation, downregulate RAGE, and
upregulate the expression of glyoxalase-1 and 2 in mice fed a high-fat diet [184].

Another phenolic phytochemical, hydroxytyrosol, a phenylethanoid found in olive leaves and
olive oil, reduced the production of AGEs, showed a high methylglyoxal-trapping capacity, and
attenuated protein carbonylation in the hepatic cell line HepG2 [185].

Finally, some studies have been carried out using resveratrol. This is a non-flavonoid polyphenolic
compound present in grapes, red wine, berries, and peanuts. It has antioxidant, anti-inflammatory,
anti-aging, and cardioprotective characteristics [201]. It ameliorates hyperglycemia, hyperlipidemia,
and diabetic complications [202], mostly by activating SIRT-1 and AMPK [203]. A recent study
concluded that treatment with resveratrol decreases the levels of protein carbonyls, AOPPs, ROS, and
AGEs in plasma and the liver [186–188].

8. Conclusions

The implication of diet in AGE formation and the consequent role that AGEs play in oxidative
stress, inflammation, and protein modification are irrefutable. However, there are still so many
unanswered questions, and the molecular mechanisms by which AGEs participate in the pathogenesis
of such a wide variety of diseases have yet to be further studied. It has been proposed that dietary
AGE restriction and an increased dietary awareness could be useful in restraining AGE accumulation,
thus providing a potential approach for chronic disease prevention [204].

One of the main challenges to be confronted is the fact that AGEs are a heterogeneous group
of different molecules, with different chemical structures, and not all of them might exert the same
molecular effects. The immense majority of the studies published to date used glycated albumin or a
mixture of different AGEs to perform the experiments. These compounds were usually produced in
their laboratories following non-reproducible methodologies. Thus, results obtained between different
laboratories are hardly comparable.

In order to solve these difficulties, our group, as part of the European consortium SALIVAGES,
within the framework of the Joint Programming Initiative “A Healthy Diet for a Healthy Life”,
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investigates the preclinical characterization of AGEs and dicarbonyls to find out the relevance of
particular AGEs as novel biomarkers for diet-related diseases.

Author Contributions: All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by MINECO grant number MINECO-17-PCIN-2016-164 and by the
COFUND-ERA-HDHL ERANET Project, European and International Cooperation-Subprogram 3.2-Horizon 2020,
PNCDI III Program—Biomarkers for Nutrition and Health “Innovative technological approaches for validation of
salivary AGEs as novel biomarkers in evaluation of risk factors in diet-related diseases”, grant no 25/1.09.2017.

Conflicts of Interest: The authors declare no conflict of interest

References

1. Nursten, H. The Maillard Reaction: Chemistry, Biochemistry and Implications; The Royal Society of Chemistry:
Cambridge, UK, 2005.

2. Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced glycoxidation and
lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free Radic. Res.
2013, 47, 3–27. [CrossRef]

3. Vlassara, H.; Uribarri, J. Advanced glycation end products (AGE) and diabetes: Cause, effect, or both? Curr.
Diab. Rep. 2014, 14, 453. [CrossRef]

4. Poulsen, M.W.; Hedegaard, R.V.; Andersen, J.M.; de Courten, B.; Bügel, S.; Nielsen, J.; Skibsted, L.H.;
Dragsted, L.O. Advanced glycation endproducts in food and their effects on health. Food Chem. Toxicol. 2013,
60, 10–37. [CrossRef]

5. Vlassara, H.; Cai, W.; Tripp, E.; Pyzik, R.; Yee, K.; Goldberg, L.; Tansman, L.; Chen, X.; Mani, V.; Fayad, Z.A.;
et al. Oral AGE restriction ameliorates insulin resistance in obese individuals with the metabolic syndrome:
A randomised controlled trial. Diabetologia 2016, 59, 2181–2192. [CrossRef]

6. Aragno, M.; Mastrocola, R. Dietary sugars and endogenous formation of advanced glycation endproducts:
Emerging mechanisms of disease. Nutrients 2017, 9, 385. [CrossRef]

7. Bunn, H.F.; Higgins, P.J. Reaction of monosaccharides with proteins: Possible evolutionary significance.
Science 1981, 213, 222–224. [CrossRef]

8. Rippe, J.M.; Angelopoulos, T.J. Sucrose, high-fructose corn syrup, and fructose, their metabolism and
potential health effects: What do we really know? Adv. Nutr. 2013, 4, 236–245. [CrossRef]

9. Mastrocola, R.; Collino, M.; Rogazzo, M.; Medana, C.; Nigro, D.; Boccuzzi, G.; Aragno, M. Advanced glycation
end products promote hepatosteatosis by interfering with SCAP-SREBP pathway in fructose-drinking mice.
Am. J. Physiol. Liver Physiol. 2013, 305, G398–G407. [CrossRef]

10. Lee, O.; Bruce, W.R.; Dong, Q.; Bruce, J.; Mehta, R.; O’Brien, P.J. Fructose and carbonyl metabolites as
endogenous toxins. Chem. Biol. Interact. 2009, 178, 332–339. [CrossRef]

11. Jono, T.; Miyazaki, A.; Nagai, R.; Sawamura, T.; Kitamura, T.; Horiuchi, S. Lectin-like oxidized low density
lipoprotein receptor-1 (LOX-1) serves as an endothelial receptor for advanced glycation end products (AGE).
FEBS Lett. 2002, 511, 170–174. [CrossRef]

12. Ohgami, N.; Nagai, R.; Ikemoto, M.; Arai, H.; Kuniyasu, A.; Horiuchi, S.; Nakayama, H. CD36, a Member of
the Class B Scavenger Receptor Family, as a Receptor for Advanced Glycation End Products. J. Biol. Chem.
2001, 276, 3195–3202. [CrossRef] [PubMed]

13. Ramasamy, R.; Yan, S.F.; Schmidt, A.M. Receptor for AGE (RAGE): Signaling mechanisms in the pathogenesis
of diabetes and its complications. Ann. N. Y. Acad. Sci. 2011, 1243, 88–102. [CrossRef] [PubMed]

14. Ott, C.; Jacobs, K.; Haucke, E.; Navarrete Santos, A.; Grune, T.; Simm, A. Role of advanced glycation end
products in cellular signaling. Redox Biol. 2014, 2, 411–429. [CrossRef] [PubMed]

15. Neeper, M.; Schmidt, A.M.; Brett, J.; Yan, S.D.; Wang, F.; Pan, Y.C.; Elliston, K.; Stern, D.; Shaw, A. Cloning
and expression of a cell surface receptor for advanced glycosylation end products of proteins. J. Biol. Chem.
1992, 267, 14998–15004. [PubMed]

16. Schmidt, A.M.; Vianna, M.; Gerlach, M.; Brett, J.; Ryan, J.; Kao, J.; Esposito, C.; Hegarty, H.; Hurley, W.;
Clauss, M.; et al. Isolation and characterization of two binding proteins for advanced glycosylation end
products from bovine lung which are present on the endothelial cell surface. J. Biol. Chem. 1992, 267,
14987–14997.

http://dx.doi.org/10.3109/10715762.2013.815348
http://dx.doi.org/10.1007/s11892-013-0453-1
http://dx.doi.org/10.1016/j.fct.2013.06.052
http://dx.doi.org/10.1007/s00125-016-4053-x
http://dx.doi.org/10.3390/nu9040385
http://dx.doi.org/10.1126/science.12192669
http://dx.doi.org/10.3945/an.112.002824
http://dx.doi.org/10.1152/ajpgi.00450.2012
http://dx.doi.org/10.1016/j.cbi.2008.10.011
http://dx.doi.org/10.1016/S0014-5793(01)03325-7
http://dx.doi.org/10.1074/jbc.M006545200
http://www.ncbi.nlm.nih.gov/pubmed/11035013
http://dx.doi.org/10.1111/j.1749-6632.2011.06320.x
http://www.ncbi.nlm.nih.gov/pubmed/22211895
http://dx.doi.org/10.1016/j.redox.2013.12.016
http://www.ncbi.nlm.nih.gov/pubmed/24624331
http://www.ncbi.nlm.nih.gov/pubmed/1378843


Antioxidants 2020, 9, 142 11 of 20

17. Schmidt, A.M.; Yan, S.D.; Wautier, J.L.; Stern, D. Activation of receptor for advanced glycation end products:
A mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ. Res. 1999,
84, 489–497. [CrossRef]
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