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Abstract 

The onco-suppressor p53 is a transcription factor that regulates a wide spectrum of genes involved 

in various cellular functions including apoptosis, cell cycle arrest, senescence, autophagy, DNA 

repair and angiogenesis. p53 and NF-κB generally have opposing effects in cancer cells. While p53 

activity is associated with apoptosis induction, the stimulation of NF-κB has been demonstrated to 

promote resistance to programmed cell death. Although the transcription factor NF-κB family is 

considered as the master regulator of cancer development and maintenance, it has been mainly 

studied in relation to its ability to regulate p53. This has revealed the importance of the crosstalk 

between NF-κB, p53 and other crucial cell signaling pathways. This review analyzes the various 

mechanisms by which NF-κB regulates the activity of p53 and the role of p53 on NF-κB activity.  

 

Introduction 

The transcription factor p53 is one of the most studied tumor suppressors in almost all cancer types 

[1,2]. p53 pathway is activated by DNA damage, hypoxia or other stressors and it mainly induces 

cell cycle arrest,apoptosis and cellular senescence in response to these stimuli.  

In addition to these responses, the p53 pathway regulate also bioenergetic balancing, inflammation 

and epithelial-mesenchymal transition (EMT). Finally, p53 activation influences a set of proteins 

that can be directly involved in DNA damage repair process. For this reason, its activity is severely 

compromised in virtually every tumor for mutations in the p53 gene or by reversible inactivation 

[3]. The NF-κB family of transcription factors comprises five DNA-binding proteins with a central 

function in the regulator of immune response [4–6]. NF-κB proteins are frequently hyper-activated 

in cancer, where promote chronic inflammation, in turn favoring tumor development and chemo-

resistance [7]. The crosstalk between p53 and NF-κB transcription factors has been extensively 

studied and it has been proved to have a key role in tumorigenesis [8–10].  
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Because the activation of NF-κB generally inhibits p53 function and vice versa, their relationship 

seems to be antagonistic [8,9]. However, their reciprocal regulation can have different outputs 

related to the context. For example, it has been shown that p53 regulation requires an intact NF-κB 

site in its promoter and that NF-κB induction by TNFα, or transient expression of the p65 subunit of 

NF-κB, activates p53 expression [11].  Moreover, in some cases p53 and NF-κB can cooperate in 

the regulation of apoptosis [12]. On the contrary, NF-κB can induce the expression of the E3 

ubiquitin ligase Mdm2, thereby negatively regulating p53 stability and leading to p53 degradation 

through a ubiquitin-dependent mechanism [13]. The relationship between p53 and NF-κB can 

influence several important pathways in cancer cells: tumor cell metabolism, pro-inflammatory 

activity, DNA damage, mitochondrial function and ATP production [14,15]. Various mechanisms 

able to control NF-κB on p53 activity are indeed able to cooperate in different conditions. Here, we 

discuss some specific examples where NF-κB/p53 crosstalk can affect tumor cell properties.  

 

NF-κB and p53 crosstalk regulates tumor metabolism  

RelA a member of NF-κB transcription factor family has been demonstrated to be involved in cell 

metabolism. In particular, Mauro et al. showed that knock down of RelA in mouse embryonic 

fibroblasts (MEFs) recapitulates Warburg effect by enhancing glucose consumption and lactate 

production in normal culture conditions [16]. These effects are mediated in part by p53 activation, 

which in turn up-regulates several genes including glucose transporters (GLUT1, GLUT3, GLUT4) 

and SCO2, a subunit of the mitochondrial cytochrome C oxidase (COX) complex. These data 

identify NF-κB–p53 axis as a bioenergetic pathway [16]. However, NF-κB and more specifically 

RelA were also observed to have an opposite role, promoting glycolysis in a p53-null background 

through the up-regulation of GLUT3. This suggests the possible existence of antithetic mechanisms 

mediated by NF-κB in the regulation of glucose metabolism, in a p53-dependent or –independent 

way [17].  
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Interestingly, p53/NF-κB-mediated metabolic regulation can also have a role in normal tissue 

protection under chemotherapy treatment [18]. In particular, it has been observed that low doses of 

arsenic in non-transformed cells can induce the concomitant suppression of p53 and activation of 

NF-κB. This shift in turn induces glycolysis and provides cells an effective protection against 

cytotoxic chemotherapy (Figure 1). 

NF-κB and p53 crosstalk regulates mitochondria 

In addition to the role of p53 and NF-κB in the control of aerobic glycolysis, a direct involvement 

of p53 in the regulation of NF-κB in mitochondrial activity has also been proposed. Indeed, together 

with other NF-κB subunits such as IκBα, RelA has been identified among mitochondrial proteins 

[19,20]. During tumor progression, p53 loss removes an important control on NF-κB/RelA 

regulation of mitochondrial function. In particular, in a p53-null context, NF-κB/RelA translocates 

into the mitochondria and is recruited to the mitochondrial genome where it represses mitochondrial 

gene expression and consequently oxygen consumption and cellular ATP production. p53 is able to 

prevent NF-κB/RelA mitochondrial localization by inhibiting its interaction with Mortalin, thereby 

increasing mitochondrial energy production [21]. On the contrary, in the case of mitochondrial 

dysfunction due to alterations in mitochondrial DNA, the accumulation of intracellular calcium 

leads to the up-regulation and activation of NF-κB [22]. In turn, NF-κB signaling reduces the 

expression of p53 and protects tumor cells from apoptosis. (Figure 1) 

 

NF-κB and p53 crosstalk regulates apoptotic response  

The p53 tumor suppressor is involved in multiple central cellular processes, but one of its most 

important roles is the induction of apoptosis in response to DNA damage or other stressors [23]. For 

this reason, most tumors are characterized by loss of function mutations within the p53 gene or 

regulatory defects in its induction. The re-activation or introduction of p53 induce apoptosis in 

many cellular tumor models and provide a potentially effective cancer therapy [24]. Another crucial  
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protein that can modulate apoptotic response is the NF-κB transcription factor family, that can both 

protect from, or in other situations contribute to, apoptosis [25]. These two pathways can be closely 

linked and in particular, one of the mechanisms promoting apoptosis in tumor cells can involve the 

downregulation of NF-κB by p53. For instance, p53 over-expression in human colon cancer cells 

suppresses NF-κB activity, presumably by enhancing cytoplasmic IκBα expression and activating 

the apoptotic program [26]. Similarly, p53 represses RelA/NF-κB activity by disrupting the 

complex or reducing RelA/ NF-κB binding to κB DNA sites. Also in this scenario, modulation of 

RelA/NF-κB activity by p53 results in induction of programmed cell death [27]. In contrast, 

induction of p53 in osteorsacoma Saos-2 cells increases NF-κB DNA-binding activity, 

demonstrating a clear correlation between the ability of p53 to activate apoptosis and the activation 

of NF-κB. Therefore, in this setting inhibition of NF-κB may reduce the therapeutic response [12]. 

Oppositely, NF-κB also plays an essential role in the activation of p53 allowing to promote the pro-

apoptotic signaling in response to doxycycline. In this context, NF-κB reduces HDM2 activity and 

induces p53 phosphorylation at Ser-20. These results in the activation and stabilization of p53, 

which in turn promotes the expression of p53-regulated pro-apoptotic genes, such as Puma and 

p21waf1 [28]. Moreover, NF-κB was also observed to have a role in promoting apoptosis both in a 

p53−/− or p53+/+ cells, after arsenic treatment [29]. Another mechanism by which p53 and RelA/p65 

can regulate apoptotic response is through the intervention of other partners. This is the case of 

protein iASPP. After some apoptotic stimuli, iASPP can be cleaved in two fragments able to 

interact with p53 and p65 proteins. Binding with iASPP reduces the transcriptional activity both of 

p53 and p65, suggesting a novel negative or positive regulator mechanism of the apoptotic process 

[30]. Therefore, the evaluation of NF-κB/p53 interconnection in apoptosis regulation, could provide 

a potential new direction for cancer treatment. (Figure 1). 

 

NF-κB and p53 crosstalk regulates pro-inflammatory gene responses 
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The NF-κB pathway is well known as a central mediator of innate- and adaptive-immune responses 

and inflammation [31,32]. Pro-inflammatory stimuli activate the canonical pathway, typically 

characterized by hyper-phosphorylation of IκBα proteins and their proteasome-mediated 

degradation. As a consequence, NF-κB subunits are released and translocate into the nucleus, 

leading to the activation of hundreds of genes involved in proliferation, migration, survival or 

antagonizing cell regulators, including the tumor suppressor p53 [32,33]. This chain of events, and 

in particular the mutual antagonism between NF-κB and p53 pathways, induces a chronic 

inflammatory status, frequently involved in the progression of several types of cancer [33]. More in 

detail, NF-κB can interfere with p53 activity by different mechanisms. For example, NF-κB can up-

regulate the p53 inhibitor MDM2 [34]. Alternatively, IKKB while activating NF-κB through 

phosphorylation of IκB, also alters p53 stability through its post-translational modification [35]. p53 

acts also as a regulator of NF-κB repression by the glucocorticoid receptor, suggesting that 

nonfunctional p53 may correlate to the impaired glucocorticoid repression of inflammation [36]. 

Finally, IKKα mediates phosphorylation of the coactivator p300/CBP, rendering it a preferential 

partner of NF-κB instead of p53, inhibiting p53 functions [13]. All these mechanisms mediated by 

NF-κB activation, interfere with p53 protective functions, thereby favoring an inflammatory 

condition and promoting cellular transformation processes. On the other hand, can act as a mediator 

of the glucocorticoid receptor repressive function. Moreover, it has been observed that inactivation 

of HIF-P4Hs, an hydroxylase regulating HIF1α stability, increases p53 stability and activity [37]. In 

turn, p53 negatively regulates NF-κB signaling, impairing the pro-inflammatory response. 

However, recent findings also suggest a possible agonistic role of NF-κB and p53 in the regulation 

of pro-inflammatory response. In particular, NF-κB and p53 were found to co-regulate the 

expression of pro-inflammatory genes, including cytokines and chemokines, in healthy and tumor-

associated (TAM) macrophages [15]. Mechanistically, in normal or tumor microenvironment, 

stressors (such as DNA-damaging agents or Nutlin-3) activate NF-κB and p53 pathways in 

macrophages, stimulating the activation of both transcription factors in the promoter of target genes, 
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like IL-6 and CXCL1, inducing their expression and consequently a pro-inflammatory and 

potentially pro-tumorigenic effect. Therefore, despite tightly interconnected in the inflammatory 

response, NF-κB and p53 pathways can behave in a mutual antagonistic or agonistic way, 

dependently on the stimulus and cellular context, whose full vision is far to be complete (Figure 1). 

NF-κB and p53 crosstalk regulates senescence 

The transcription factor NF-κB family consists of five transcription factors including RELA (p65), 

RELB (RelB), REL (c-Rel), NFKB1 (NF-κB1) and NFKB2 (NF-κB2) [38,39]. In addition to the 

well-known function of NF-κB/RelA with respect to p53, also the NF-κB2/RelB pathway can 

interact with the activity of p53. Indeed, it has been demonstrated that NF-κB2/RelB, the 

component of the alternative NF-κB pathway, suppresses senescence through inhibition of p53 

activity. Specifically, Iannetti and colleagues using primary human fibroblasts, demonstrated that 

NF-κB2/RelB regulates Rb activity and consequently EZH2 expression, which in turn controls the 

stability of p21WAF1 and p53 in primary human fibroblasts [40] (Figure 1). 

NF-κB and p53 crosstalk regulates epithelial-to-mesenchymal transition  

The process of epithelial-to-mesenchymal transition (EMT) plays a critical role in tumor invasion 

and metastatization [41,42]. While NF-κB pathway plays a pivotal role in promoting EMT, on the 

contrary, p53 has been demonstrated to suppress it [43,44]. Indeed, NF-κB and p53 cooperate 

antagonistically in the modulation of this process. In particular, Yuan Lin and colleagues 

demonstrated that p53 mutational status modulates the NF-κB-mediated EMT. More in detail, in 

head and neck squamous cell carcinoma (HNSCC), p65 over-expression promotes EMT only in the 

case of a functional wild type p53. Conversely, in HNSCC with a p53 loss of function, the re-

introduction of p65 not significantly alters the expression of EMT markers, whereas they are 

induced by p65 silencing. Thereby, these findings showed the critical role of p53 in mediating the 

outcome of NF-κB signaling on EMT [45] (Figure 1). 

NF-κB and p53 crosstalk regulates autophagy 
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The NF-κB activity has also been associated with p53-mediated activation of autophagy. It has 

been described in gastric cancer cells MKN-45, that treatment with Trichosanthin induces 

autophagy in concomitance with the up-regulation of NF-κB and p53, through a mechanism 

dependent on the generation of ROS [46]. On the contrary, another study showed that the inhibition 

of NF-κB with SN50 is capable of inducing autophagy, through p53 induction. In particular, 

inhibition of the translocation into the nucleus of NF-κB induces an increase in p53 level, which in 

turn promotes the expression of the pro-autophagic protein DRAM [47]. Thereby, further 

investigations of the relationship between autophagy and NF-κB/ p53 crosstalk are required and 

they could unveil new therapies for cancer treatment. (Figure 1). 

NF-κB and p53 crosstalk regulates DNA Damage Response 

p53 is well known to play a fundamental role in mediating DNA Damage Response (DDR), 

promoting DNA repair or eventually cell cycle arrest, senescence and apoptosis [48]. However, 

recent evidences suggest a strong interconnection between p53 and NF-κB pathways in mediating 

the response to DNA breaks. For example, reactive oxygen species (ROS)-mediated DDR induces 

NF-κB p65/RelA nuclear translocation in lung cancer cells [49]. In turn, NF-κB signaling controls 

p53 levels after ROS induction, indeed NF-κB inhibition induces an up-regulation of p53 and 

exacerbates H2O2-induced apoptosis [49]. Furthermore, Poly (ADP-ribose) polymerase (PARP), a 

key player in the DDR, is able to induce NF-κB signaling in head and neck cancer cells with low 

p53 expression [50]. Consequently, treatment with the PARP inhibitor Olaparib decreases NF-κB 

levels, through a mechanism dependent on p53 up-regulation [50]. Another important mediator of 

DDR is the DNA sensing adaptor STING [51]. In detail, DNA damage-induced PARP-1 and ATM 

signaling results in the assembly of an alternative STING complex involving an active p53. In turn 

this complex is able to induce the activation of NF-κB and a specific transcriptional program, 

promoting the innate immune response following DNA damage [51]. Moreover, bioinformatics 

analyses suggested the existence of a strong and dynamic transcriptional network involving ATM, 

p53, NF-κB and Wip1 phosphatase, implied in the regulation of DDR [52,53]. On the other hand, 
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DNA damage in myeloid leukemia cells can promote NF-κB activation in a p53-independent 

manner, stimulating the expression of the tumor suppressor p21 and inducing terminal 

differentiation. (Figure 1) [54].  

Crosstalk between NF-κB and mutant p53 

p53 mutations are very common in cancer. Some of these mutations induce a p53 down-regulation 

or decreasing its activity. Instead, others mutations can induce oncogenic properties of p53 and 

favor the promotion of cancer [55]. It has been demonstrated that mutant p53 is associated with a 

NF-κB-increasing activity. For example, p53-R175H, -R273H, the two of the most common p53 

mutants, and p53-D281G found in human lung cancer cells regulate NF-κB2 expression. 

Unfortunately, the mechanism by which p53 induces NF-κB2 and the exact function of NF-κB2 are 

still unclear. Probably, as suggest by authors, the activation of NF-κB2 is involved in cellular 

survival and in the response to chemotherapy [56]. Similarly, mutant p53 activated anti‐apoptotic 

NF‐κB, together with the activation of the ERK pathway, in human melanoma cell lines [57]. In 

addition, it has also been proposed that mutant p53 can enhances nuclear accumulation of NF-κB 

activation in response to TNFα stimulation. Conversely, down-regulation of mutant p53 sensitizes 

cells to TNFα-induced apoptosis [58]. Finally, the increase in NF-κB activation following the 

presence of mutated p53 was also demonstrated by Cooks and colleagues, which also attribute it a 

possible role in the pathogenesis of colorectal cancer. Specifically, mutated p53 perpetuates NF-κB 

activation through its prolonged stabilization on κB sites. Furthermore, NF-κB activation induces 

inflammatory cytokine and a general chronic inflammatory state, which in turn is associated with 

DNA damage and genome instability. These effects could augments the capacity of cancer cells to 

enforce the invasiveness of colon carcinoma and to evade apoptosis [59].  

Transcriptional crosstalk between NF-κB and p53  

The transcriptional regulation of p53 occurs at many levels and involves both the promoters of 

target genes and some intron sequences [60]. Moreover, it has been shown that p53 promoter 
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sequence is responsive to p53 itself, however in this sequence  a predicted NF-κB-binding site has 

also been observed [11,61]. This direct evidence suggests that NF-κB can be considered a 

transcriptional inductor of p53. Indeed, NF-κB was found to recognize the κB sites in the p53 

promoter and to activate its expression. Accordingly, under certain stimuli NF-κB activation occurs 

simultaneously with the induction of p53. For example, treatment with daunomycin induces the 

expression of both p53 and NF-κB. In particular, the activation of p53 in response to daunomycin is 

evident both in terms of p53 mRNA and protein levels and it is induced by the binding of p50/p65 

heterodimers to the κB site of p53 promoter [62]. A common inducer of both NF-κB and p53 is the 

tumor necrosis factor alpha (TNF-α), a cytokine involved in inflammatory and immune responses. 

TNFα induces phosphorylation and dissociation of IκBα from the NF-κB complex and 

consequently its translocation into the nucleus [63]. Moreover, TNFα is able to induce a p65-

mediated activation of the p53 promoter in HeLa cells [11]. Finally, stressors such as U.V. 

irradiation can induce the activation of NF-κB and in turn NF-κB is able to activate p53 

transcriptionally. 

The transcriptional crosstalk between NF-κB and p53 can involve also specific epigenetic 

modulators. Specifically, different chemotherapeutic agents are able to promote a Class I Histone 

Deacetylase (HDAC I) -dependent co-induction of both p53 and NF-κB [64]. Accordingly, Class I 

HDAC inhibitors attenuate p53 and NF-κB signaling, interfering with their crosstalk [64]. 

Furthermore, the H3K36me2 demethylase JMJD5 is an epigenetic remodeler promoting cancer cell 

proliferation and migration [65]. It was recently observed in oral squamous cell carcinoma that 

JMJD5 knockdown up-regulates p53 and interferes with NF-κB expression, impairing tumor 

migration and invasion [66]. Conversely, JMJD5 over-expression decreases p53 and increases NF-

κB levels, promoting malignant progression and metastatization. (Figure 2) [66].  
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Post-transcriptional crosstalk between NF-κB and p53  

MicroRNAs (miRNAs) are an abundant and conserved class of non-coding RNAs that modulate 

gene function by binding the 3′ untranslated region (3′UTR) of target mRNAs [67]. In B cell 

lymphoma miR-124 directly targets nuclear factor-κB (NF-κB) p65 and this repression results in the 

down-modulation of two important oncogenes: MYC and BCL-2. Interestingly, the miR-124 

promoter includes a functional p53 binding site. Thus, the wild type p53 but not its mutant 

counterpart, directly modulates miR-124 expression that in turn, post-transcriptionally suppresses 

p65 and consequently MYC and BCL2 [68]. A pivotal antagonist role of p53 and NF-κB on 

miRNA function has been showed in cervical carcinoma. In this tumor type, the two TFs directly 

modulate the following miRNAs: miR-100, miR-146a and miR-150. However, while NF-κB 

p65/RelA induces these miRNAs, p53 represses all of them, providing additional support of the 

opposite functional crosstalk of both TFs in cancer pathogenesis [69]. Similarly, in lung cancer, p53 

modulates miR-506 levels that in turn directly represses NF-κB p65, a down-modulation that in this 

context results in ROS accumulation and in the consequent reduction of cell viability [70]. A 

different post-transcriptional interplay has been proposed in malignant melanoma and in papillary 

thyroid cancer.  In both tumor types mutant BRAF acts in association with the SP1/NF-κB complex 

to promote the aberrant expression of the oncomiR miR-3151, that directly targets p53 and other 

members of the pathway [71]. More recently, in colorectal cancer a novel crosstalk has been 

showed. In this tumor Prostaglandin E2 induces miR-675-5p expression with the contribution of 

NF-κB and other oncogenic pathways. Again, upon induction, miR-675-5p exerts its oncogenic 

potential by suppressing p53 by binding its 3’UTR [72]. Overall, all these finding reveals a complex 

interplay among microRNAs, the NF-κB pathway and p53 function in tumorigenesis. (Figure 2) 

Long non-coding RNA modulates NF-κB/p53 crosstalk 

Many evidence suggests a roles of long non-coding RNA (lncRNA) in cancer [73]. Among the 

annotate cancer-associated lncRNAs, lncRNA 00607 has an important role in regulating the 
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p53/NF-κB network. Functionally, lncRNA 00607 is downmodulated in hepatocellular carcinoma 

(HCC). Furthermore, over-expression of lncRNA 00607 inhibits proliferation and enhances 

apoptosis in HCC both in vitro and in vivo. Mechanistically, lncRNA 00607 is able to bind p65 

promoter and to reduce its transcription, while promotes p53 expression at protein and mRNA 

levels [74].  

Deciphering the role of lncRNAs in cancer, it has been demonstrated that lncRNA activator of 

enhanced domain (LED) and LOC285194 are involved in p53 regulation. To this end, after 

treatment with 1-hydroxy-1-norresistomycin, both LED and LOC285194 induce p53 expression, 

suppress proliferation and promote apoptosis in hepatocellular carcinoma. Concomitantly, LED and 

LOC285194 inhibit the expression of NF-κB. (Figure 2) [75]. 

 

Room for direct interactions between NF-κB and p53 protein 

All the interactions described above are mostly consequences of the transcriptional events favored 

by NF-κB and/or p53 [76]. It is however worth to note that p53 protein may physically interact with 

NF-κB family members. In particular, p53 was shown to binds to IκBα, the NF-κB inhibitor, [77–

81] as we have reviewed [82], suggesting a sort of regulator mechanism of NF-κB pathway on p53. 

Similarly, NF-κB, and specifically RelA/p65, can interact with p53 family member. Indeed, it has 

been that MDM2, a major negative regulator of p53, can act as a direct negative regulator also of 

NF-κB by binding and inhibiting RelA/p65 [83]. It is demonstrated that probably, mutated p53 

directly interacts with NF-κB [84].  The interactome of NF-κB family members is substantially 

expanding overtime [85], and may eventually identify novel mechanisms able to modulate p53 

activities at protein level. 

 

Concluding remarks 
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The crosstalk between p53 and NF-κB has a key role in the pathogenesis of most tumors. The 

relationship between these two transcription factors is fundamental in the regulation of important 

mechanisms during all stages of tumorigenesis and is involved in the regulation of many cancer cell 

properties, including altered metabolism, apoptosis deregulation, chronic inflammation and 

metastatization. This interconnection appears to be opposite in some circumstances, while in other 

cases can converge in the same signaling pathway. This contraposition of agonistic and antagonistic 

mechanisms is often related to the different context or system in which the crosstalk between p53 

and NF-κB acts. Also, the final results of the NF-κB/p53 interplay may also depend on the 

complexity of transcriptional mechanisms and protein-protein interactions. Indeed, the 

contradictions proposed by the different studies can be difficult to take in full considerations. The 

purpose of this review has been to summarize the principal molecular mechanisms regulating the 

cross-signaling between p53 and NF-κB and how this can reciprocally influence the activation of 

their own pathways. Finally, the study and the comprehension of the complex signal network 

between p53 and NF-κB could contribute to the development of new therapeutic approaches, based 

on their reciprocal regulation. 
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FIGURE LEGENDS: 

Figure 1: NF-κB and p53 crosstalk in regulating pathways 
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The scheme depicts the multiple mechanisms of p53/NF-κB control the activity several pathway; 

See text for details and references. 

 

Figure 2: Transcriptional and post transcriptional crosstalk between NF-κB and p53  

Principal transcriptional and post-transcriptional mechanisms responsible for NF-κB/p53 regulation. 

See text for details and references. 
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