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Abstract: Reactive oxygen species (ROS) are central effectors of inflammation and play a key
role in cell signaling. Previous reports have described an association between oxidative events
and the modulation of innate immunity. However, the role of redox signaling in adaptive immunity is
still not well understood. This work is based on a novel investigation of diamide, a specific oxidant of
sulfhydryl groups, and it is the first performed in purified T cell tyrosine phosphorylation signaling.
Our data show that ex vivo T cells respond to –SH group oxidation with a distinctive tyrosine
phosphorylation response and that these events elicit specific cellular responses. The expression
of two essential T-cell receptors, CD25 and CD62L, and T-cell cytokine release is also affected in
a specific way. Experiments with Syk inhibitors indicate a major contribution of this kinase in these
phenomena. This pilot work confirms the presence of crosstalk between oxidation of cysteine residues
and tyrosine phosphorylation changes, resulting in a series of functional events in freshly isolated
T cells. Our experiments show a novel role of Syk inhibitors in applying their anti-inflammatory
action through the inhibition of a ROS-generated reaction.
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1. Introduction

ROS have been known as markers of cellular stress for long time. However, they can act as second
messengers in the intracellular signaling and can potentially activate and control a multiplicity of
function in different cell type [1–5]. Numerous reports have focused on the redox regulation of
the immune system. Particularly, thiol groups oxidation appears to be strongly influenced by reactive
oxygen species (ROS) generating a cellular response [6–8].

Thus, ROS need to interact with molecular sensors, usually cysteine residues, that through
the formation of a reversible disulphide bond sense the redox changes and activate intracellular
signalling pathways through the formation of a reversible disulfide bond [9,10]. The sulfenyl moiety is
present in cysteine residues and can form a disulfide bond with another thiol moiety. The phenomenon
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is transient since both sulfenyl moiety and disulfide bond can be reduced by various endogenous
antioxidants in cells. For this particular transient and reversible nature, the cysteine oxidation is now
considered as a post-translational modification [11,12].

This assumption is validated by the fact that a large number of proteins involved in cell signaling
pathways contains critical thiol groups whose oxidation alters their activity [13,14]. Nevertheless,
a decent number of works have been recently published on the mechanisms of redox regulation in
different hemopoietic and immune models [15–17].

Studies on erythrocyte membrane stability [18–20] revealed that oxidation induces a phosphorylation
response that specifically involves 2 tyrosine residues located in the cytoplasmic domain of band 3 protein.
It has been also described how several hemolytic disorders are related to the increase in membranes with
oxidative phenomena, such as β-thalassemia [21,22], G6PD deficiency [23,24], sickle-cell anemia [25–27],
malaria-infected RBCs [28–30], and also Alzheimer’s disease [31], Parkinson’s disease [32], Crohn’s
disease [33,34], and cardiovascular diseases [35,36].

Also, various immune cell populations including T and NK cell subsets have been analyzed in regard
to their sensitivity toward ROS. In particular, T cells may be considered one of the important targets
for investigations on oxidative signaling in pathological condition [37,38]. Autoimmune diseases with
a chronic inflammation component are characterized by a strong production of ROS and leukocytes
recruitment [39–41]. Many reports have shown that oxidative stress in this kind of cells is not only
associated with cancer but also represents an important immune escape mechanism in autoimmune diseases
associated with chronic inflammation [42,43]. Systemic lupus erythematosus (SLE) [44], rheumatoid
arthritis [45], and allergies [46] are among the most notable examples of immune alterations related to
oxidative conditions in which T cells are involved.

The complex effects of ROS on T cells have been studied with numerous experimental models,
that had included H2O2 exposure or co-culture with monocytes/macrophages [47–50]. Tumor-associated
macrophages (used as ROS source) and H2O2 or diamide were co-cultured in T cells causing a decreased
CD3 zeta chain expression of the TCR [50,51]. Moreover, T cells by macrophages isolated from metastatic
lymph nodes from patients with malignant melanoma or by LPS-stimulated monocytes showed a CD16
decline [47]. H2O2 treated Jurkat T cells suggested the connection of redox-effectors in several cell
functions as protein degradation, metabolism, cytoskeleton regulation and signaling [52]. A report
in 2009 has showed that Treg cells differ from other T-cell subclasses. Indeed, treatment with H2O2

high concentrations, usually highly noxious for CD4 + T cells, did not affect Treg cells demonstrating
a specific resistance to ROS-induced cell death [53]. Also, ROS function as mediators for recruiting
leukocytes to wounded areas. Src family kinase (SFK), Lyn was revealed to react to ROS. Yoo et al.
discovered that this kinase is elicited by wound-derived H2O2 and induce leukocyte chemotactic
movement to the wounds. Lyn appears to be the direct target by H2O2 oxidation of Cys466 [39,54,55].
These studies show that it is useful to investigate the kinases and phosphatases and their role
as biosensors in oxidative conditions [56]. Published reports are focused on the notion that the major
targets of ROS involve protein tyrosine phosphatases (PTPs) and the oxidation of their cys residues
provoking their activity inhibition [57,58]. One of this study showed that SH2 domain protein tyrosine
phospatase-2 (SHP-2) is affected by ROS in platelets leading to its inactivation and direct activation by
Tyr phosphorylation of the spleen tyrosine kinase (Syk) and other tyrosine kinases of TCR. Nevertheless,
we published our findings on Jurkat T cells which respond to –SH group oxidation with specific
tyrosine phosphorylation events. Experiments with spleen tyrosine kinase (Syk) inhibitors showed
upstream participation of Syk in these responses [59].

Here we report for the first time an ex vivo study on isolated T cells from healthy donors aimed to
monitor the phosphorylation response to a temporary redox stress induced by diamide in the presence
or absence of Syk Inhibitors (Figure 1). We explicitly performed experiments using this oxidant reagent
as oxidant agent in order to evade the complexity of other models (e.g., co-cultures) or applying
H2O2 since it is quickly degraded and provokes radical formation reacting in an unpredictable way.
On the contrary, diamide specifically and reversibly oxidizes –SH groups [60,61]. We also investigated



Sensors 2020, 20, 466 3 of 17

the functional role of the Syk kinase and the expression of the essential T cell CD25 and CD62L receptors
with the main T cell cytokines in our ex vivo model. Our findings also showed that Syk inhibitors can
stop the response initiated by ROS implying that their anti-inflammatory action involves adaptive
immunity via T-cell modulation.

2. Materials and Methods

2.1. Human T Cells from Donors

Experiments were performed isolating T lymphocytes from male healthy donor buffy coat.
This study was conducted in accordance with Good Clinical Practice guidelines and the Declaration
of Helsinki. Peripheral blood leucocytes (PBLs) were purified by density gradient centrifugation,
using the separation medium HISTOPAQUE 1077 (Sigma-Aldrich, St. Louis, MO, USA) according
to Böyum method. T cells were isolated using high affinity CD4+ T-cell enrichment columns (R&D
Systems, Minneapolis, MN, USA). Subjects have given their written informed consent. The study
protocol has been approved by the Research Institute’s Committee of University of Sassari on human
research. After isolation, T cells viability was evaluated with trypan blue assay and cells were
maintained in RPMI 1640 supplemented with 10% (v/v) heat-inactivated FBS, 20 mM HEPES, 10 mL/L
penicillin/streptomycin at 37 ◦C. Cell suspensions were left for at least 12 h at 37 ◦C to allow recovery
from stress because of the purification procedures. For our investigations, 8 × 105/mL T cells were
resuspended at the in fresh medium.

2.2. T Lymphocytes Activation

T lymphocytes from blood donors were activated with incubation of anti-CD3 (4 µg/mL) and anti
CD28 (4 µg/mL). All the T cell samples were activated in the present study. We specified in the legends
when they were not activated.

2.3. Syk Inhibitors

Pre-incubation with 5 µM Syk inhibitors II (Calbiochem, San Diego, CA, USA) was performed
for 1 h at 37 ◦C previous oxidant treatments. Phosphate buffer saline (PBS) wash was applied prior to
the oxidant treatment.

2.4. Oxidant Agent

Diamide is an exclusive –SH group oxidant agent [43]. T cell transient oxidation was induced by
exposure with Diamide (Sigma-Aldrich, St. Louis, MO, USA) that was first tested in dose response
and 0.3 mM concentration was chosen for our experiments. Viability of the cells was examined by
trypan blue dye exclusion test (Sigma-Aldrich, St. Louis, MO, USA). Time course of the incubated T
Cells were performed at 37 ◦C. After treatment, cells were washed four times with PBS (150× g, 10 min).

2.5. MTT Reduction Test

0.3 mM diamide in RPMI 1640 was administered at distinctive times to the T cell samples
in 96-well plate (Corning, NY, USA) in order to establish reduction activity. Next, 5 mg/mL
Thiazolyl blue tetrazolium bromide (MTT, Sigma-Aldrich, St. Louis, MO, USA) was incubated
for 4 h. After the incubation, the medium was replaced with 0.3 mL MTT solvent solution (4 mM
HCl, 0.1% Nondet P-40 in isopropanol) in order to solubilize the converted dye. Microplate reader
(Biorad, Hercules, CA, USA) was used to measure the absorbance at 570 nm. The reduction activity is
showed as percentage of the compared control.

2.6. Electrophoresis and Immunoblotting

DC protein assay (Biorad, Hercules, CA, USA) was performed to the samples after the experimental
incubations in order to quantify the total protein amount. Samples were then solubilized in Laemmli
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buffer with 2% betamercaptoethanol and heated at 95 ◦C (5 min). Solubilized protein samples were
loaded (30µg) and run in SDS-PAGE. Next, the proteins were transferred to nitrocellulose membranes by
western blot analysis. Membranes were blocked in PBS/Tween. 1:2000 Anti-phosphotyrosine antibody
(Santa Cruz, CA, USA) was used. Secondary rabbit antibody conjugated to infrared fluorescent dyes
excitable at 800 nm (IRDye 800CW, Licor, Lincoln, NE, USA) was incubated at 1:25,000 for 1 h and then
washed. In order to visualize the antigens, 800 nm laser scanner (Odyssey, Licor, Lincoln, NE, USA)
was used. Quantitative analysis of proteins on the membranes was performed by ImageJ (USA).

2.7. Membrane Receptor and Intracellular Analysis

Flow analysis was carried out to quantity expression of CD25 (IL-2 receptor) and CD62L
(L-Selectine) surface receptors. Antibodies for each marker were purchased from BD Biosciences
(Mountain View, CA, USA) and incubated for the analysis with FACS CANTO (BD Biosciences,
Mountain View, CA, USA). FlowJo software (BD Biosciences, Mountain View, CA, USA) was used for
the analysis of the results. To analyze the oxidation-related DNA damage status, CD 4+ T cells were
isolated and treated or untreated as previously described with Syk Inhibitors for 1 h before the incubation
with diamide (0.3 mM) started. Untreated cells were used as a control. After the incubation with diamide,
cells were harvested and washed twice with PBS. To perform the intracellular staining, cells were
incubated with the 1X Fix/Perm buffer (eBioscience, San Diego, CA, USA) for 30 min at RT, washed with
PBS, resuspended in 1X permeabilization buffer (eBioscience, San Diego, CA, USA), and incubated with
the mouse anti-human p-Histone H2A.X antibody (1:200, Santa Cruz Biotechnology, Dallas, TX, USA)
for 20 min and then incubated with the secondary antibody FITC-goat anti-mouse IgG (1:200 Clone:
Poly4053, Biolegend, San Diego, CA, USA) for 20 min at RT in the dark. After incubation, cells where
washed twice with PBS and analyzed by flow cytometry FACS CANTO (BD Biosciences, Mountain
View, CA, USA). Experimental data analysis was performed with FlowJo software (BD Biosciences,
Mountain View, CA, USA).

2.8. Cytokines Analysis

After the 0.3 mM diamide and Syk inhibitors incubation supernatants were stored for
analysis. Cytokines bead array (CBA) human, Th1/Th2, cytokine kit (BD Biosciences, Mountain
View, CA, USA) following the manufacturer protocol was used in order to quantify IL2, IFNγ,
and TNFα. The experiments were carried out using the FACS CANTO (BD Biosciences, Mountain
View, CA, USA). Experimental data analysis was performed with the FCAP Array software, version 3.0
(BD Biosciences, Mountain View, CA, USA).

2.9. Statistical Analysis

GraphPad Prism software was used to perform all the statistical analysis and significance was
measured by unpaired t-test and Mann-Whitney U test and the two-way or one-way analysis of
variance (ANOVA). A p value less than 0.05 was considered significant.

3. Results

3.1. Diamide Does Not Affect T Cell Viability

Diamide is a specific –SH group oxidant that, forming intermediate thiyl radicals, mainly generates
reversible disulfide bonds. Its concentration was chosen to observe those changes avoiding cell toxicity.
Experiments with purified human T cells were performed in order to clarify the phenomena observed
with Jurkat T cell line [59]. After purification from healthy donor blood, T cells were treated with
0.3 mM diamide (Figure 1). Figure 2 shows the treatment does not affect cell viability over time.
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Figure 1. General experimental plan of the study. Buffy coat with peripheral blood leukocytes were 
extracted from healthy donors. T cells were obtained by Ficoll/Histopaque centrifugation and 
subsequent column purification. They were left 24 h before to be treated with activators/diamide/syk 
inhibitors. 

 
Figure 2. Trypan blue viability assay. Trypan blue assay of isolated T cells at different time points 
(from 15 min to 240 min) of 0.3 mM diamide oxidation. Viability is expressed as percent of total cell 
number (%). p value of the viability time points was found to be statistically non-significant (N = 3). 

3.2. Diamide Oxidation Affects the Tyr Phosphorylation of T Cell Proteins 

As described previously [59], we found a molecular and functional relationship between SH 
group oxidation and Tyr phosphorylation in Jurkat cells. We here investigated if this mechanism is 
maintained in purified primary T cells. Studies on CD4+ T cells were performed under activation 
conditions. After stimulation with AntiCD3/AntiCD28 antibodies, T cells were treated with diamide. 
Tyrosine phosphorylation changes at different incubation times (15, 30, 60, and 120 min) were 
measured. We observed a phosphorylation peak after 60 min incubation (Figure 3A,B) that decreased 
at 120 min. Of note, those changes are similar to the response observed in Jurkat cells and 
erythrocytes, which display the lowest GSH levels after 30 min and restore basal GSH levels within 
60 min [23,59]. 
  

Figure 1. General experimental plan of the study. Buffy coat with peripheral blood leukocytes were
extracted from healthy donors. T cells were obtained by Ficoll/Histopaque centrifugation and subsequent
column purification. They were left 24 h before to be treated with activators/diamide/syk inhibitors.
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Figure 2. Trypan blue viability assay. Trypan blue assay of isolated T cells at different time points
(from 15 min to 240 min) of 0.3 mM diamide oxidation. Viability is expressed as percent of total cell
number (%). p value of the viability time points was found to be statistically non-significant (N = 3).

3.2. Diamide Oxidation Affects the Tyr Phosphorylation of T Cell Proteins

As described previously [59], we found a molecular and functional relationship between SH
group oxidation and Tyr phosphorylation in Jurkat cells. We here investigated if this mechanism is
maintained in purified primary T cells. Studies on CD4+ T cells were performed under activation
conditions. After stimulation with AntiCD3/AntiCD28 antibodies, T cells were treated with diamide.
Tyrosine phosphorylation changes at different incubation times (15, 30, 60, and 120 min) were
measured. We observed a phosphorylation peak after 60 min incubation (Figure 3A,B) that decreased
at 120 min. Of note, those changes are similar to the response observed in Jurkat cells and erythrocytes,
which display the lowest GSH levels after 30 min and restore basal GSH levels within 60 min [23,59].
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3.3. Oxidation and Tyr Phosphorylation Have Same Time Course

The level of oxidation in activated CD4+ T cells was quantified by MTT test applying the same time
course (from 0 to 120 min); in order to confirm that oxidation is related to the observed phosphorylation
phenomena. Primary T cells treated with 0.3 mM diamide present highest level of oxidation at 60 min
(Figure 4). Again, the transient nature of these changes is shown by the following increase of MTT
reduction signal at 120 min.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 18 

 

3.3. Oxidation and Tyr Phosphorylation Have Same Time Course 

The level of oxidation in activated CD4+ T cells was quantified by MTT test applying the same 
time course (from 0 to 120 min); in order to confirm that oxidation is related to the observed 
phosphorylation phenomena. Primary T cells treated with 0.3 mM diamide present highest level of 
oxidation at 60 min (Figure 4). Again, the transient nature of these changes is shown by the following 
increase of MTT reduction signal at 120 min. 

 
Figure 3. T cells tyrosine phosphorylation under oxidative condition. (A) Western blots of anti-
phosphotyrosine T cells total proteins treated with 0.3 mM diamide. Beta-actin loading control is 
showed. (B) Quantification of tyrosine phosphorylation levels was performed by IR fluorescence 
detection (Odyssey, Licor, USA). *** (p < 0.001) indicate the incubation time that determines a 
statistically significant change between samples measured by student T-test (N = 3). 

Figure 3. T cells tyrosine phosphorylation under oxidative condition. (A) Western blots of anti-phosphotyrosine
T cells total proteins treated with 0.3 mM diamide. Beta-actin loading control is showed. (B) Quantification of
tyrosine phosphorylation levels was performed by IR fluorescence detection (Odyssey, Licor, USA). *** (p < 0.001)
indicate the incubation time that determines a statistically significant change between samples measured by
student T-test (N = 3).

3.4. Syk is Involved in Tyrosine Phosphorylation Changes in Activated T Cells under Oxidative Condition

It is well-known that Syk is expressed in primary T cells and plays a key role as a stress sensor.
Activated T cells were pre-treated with Syk inhibitors and then exposed to oxidative conditions with
0.3 mM diamide. Figure 5A,B shows the comparison between the patterns of T cell proteins incubated.
This experiment showed that Syk appears to be involved in tyrosine phosphorylation cascade since
pre-incubation with Syk inhibitors strongly inhibits the tyrosine phosphorylation signal. Interestingly,
detection of histone H2AX phosphorylation on Ser-139 that is known as an indicator of DNA damage
(DNA double-strand breaks) [62–64] showed that the peak of the DNA damage was at 1-h diamide
exposure coherently with our phosphorylation data and then decrease. Surprisingly, Syk inhibitors
showed a protective action to the DNA breakage (Figure S1 (Supplementary Materials)).
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120 min). Beta-actin loading control is showed. (B) Quantification of tyrosine phosphorylation levels
was performed by IR fluorescence detection (Odyssey, Licor, Lincoln, NE, USA) of antiphosphotyrosine
Western blots and expressed as fluorescence arbitrary units (N = 3).

3.5. CD25 and CD62L are Affected by Diamide Treatment and Syk Inhibition in Purified T Cells

Next, we sought to investigate the functional activity between SH group oxidation and Syk
inhibition through flow cytometry quantification analysis of membrane marker (CD69, CD25,
and CD62L) expression (gating strategy in Figure S2 (Supplementary Materials)). After the treatment,
CD69 was not affected by the treatment (data not shown). Moreover, T cells after isolation had a high
rate of purity (99%) as showed in Supplemental Figure S2.

3.6. Surface Expression of IL-2R Receptor

Treatment with 0.3 mM diamide triggered a decrease of CD25 expression in the activated T cells
at 1 h of exposure (see Figure 6A1,A2). Moreover, the diamide treatment in the non-activated
cells induced a slight CD25 increase (Figure S3 (Supplementary Materials)). The incubation of Syk
inhibitors had a stronger effect since it synergistically reduced the percentage of cells (Figure 6A3,A4)
and the mean fluorescence intensity signal of CD25 (Figure 6B) at the same time point in presence of
diamide (see control without diamide in Figure S4 (Supplementary Materials)).Sensors 2020, 20, x FOR PEER REVIEW 9 of 18 
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Sensors 2020, 20, 466 9 of 17

Samples were incubated surface-CD25 and analyzed by Flow cytometry (N = 3). (A1) Anti-human CD25
flow representative density plot of untreated cells. (A2) Anti-human CD25 flow representative density
plot of T cells exposed to 0.3 mM diamide. (A3) Anti-human CD25 flow representative density plot of
T cells exposed to 0.3 mM diamide and incubated with Syk inhibitor. Medians are showed. p values
which were statistically significant are shown (* p < 0.05). Values are plotted as mean ± error standard
(A4). Data are the percentage of total cell population (%). (B) Samples were incubated with human
surface anti-CD25 and analyzed by Flow cytometry. Comparison of MFIs between diamide-treated
T cell samples in presence versus absence of Syk inhibitors incubation.

3.7. Surface Expression of L-Selectin

Activated T cells showed high expression of CD62L both in control and 1-h oxidation samples
(Figure 7A1,A2). Surprisingly Syk inhibitors had the effect to dramatically decrease the expression of
L-Selectin (Figure 7A3,A4,B) (see control without diamide in Figure S4 (Supplementary Materials)).Sensors 2020, 20, x FOR PEER REVIEW 10 of 18 
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Figure 7. Expression of T cells CD62L receptor after treatment with diamide and Syk inhibitors.
Cells exposed to 0.3 mM diamide with/out 5 µM Syk inhibitors (Syk i) at 60 minutes incubation time.
Samples were incubated surface-CD62L and analyzed by Flow cytometry (N = 3). (A1) Anti-human
CD62L flow representative density plot of untreated cells. (A2) Anti-human CD62L flow representative
density plot of T cells exposed to 0.3 mM diamide. (A3) Anti-human CD62L flow representative density
plot of T cells exposed to 0.3 mM diamide and incubated with Syk inhibitor. Medians are showed.
p values which were statistically significant are shown (* p < 0.05). Values are plotted as mean ± error
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standard (A4). Data are the percentage of total cell population (%). (B) Samples were incubated
with human surface anti-CD62L and analyzed by Flow cytometry. Comparison of MFIs between
diamide-treated T cell samples in presence versus absence of Syk inhibitors incubation.

3.8. SH Group Oxidation and Syk Inhibition Activity on Cytokine Release

We next measured by FACS analysis a specific set of cytokines (Figure S5, Supplementary Materials).
Diamide exposure provoked an increased release trend of IFNγ, IL2 and TNF. Syk inhibition strongly
reduced the effects of diamide in basal and 60 min samples (see 60 min samples in Figure S5,
Supplementary Materials).

4. Discussion

ROS have long been identified as markers of cellular stress [65]. Oxidant high concentrations in
inflammation outbreaks and their possible functions in immune cells are relevant to better understand
the physiopathology of various disorders. Still studies on autoimmune diseases associated with chronic
inflammation and characterized by a strong production of ROS and T cell recruitment can be considered
a good model to better understand the role of oxidation in diseases [37]. Indeed, ROS play a key role in
the onset of rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) [44,66]. However, it has
been nowadays acknowledged that ROS are not only associated with stress/pathological conditions
but also the temporary and low amounts of ROS are important contributors to physiological signaling
pathways implicated in cell growth, controlled cell death, migration, and T cell activation [38,67,68].
T lymphocytes can sense stress condition [69] and are subject to oxidative stress in the inflammation
occurring under different pathological states [70,71], but recently evidences indicate the involvement of
ROS in T-cell activation and proliferation [72,73]. In this line, the role of redox sensitive NFkB and Nrf2
transcription factors in T cell activation has been already demonstrated [74,75]. However, limited
information is still available on the regulatory mechanisms of ROS in T cell. Indeed, the mechanisms
of redox signaling are incompletely understood, beyond the inhibition of some protein tyrosine
phosphatases (PTPs) containing a regulatory cysteine residue in their catalytic domain [58,76].

ROS need to interact with protein sensors to generate a cellular response. Usually they are cysteine
residues-based effectors that can sense the redox changes and trigger intracellular signalling pathways
through the formation of a reversible disulphide bridge [77]. The regulatory cysteine residues of some
PTPs display a relatively low reactivity (1000-fold lower than GSH) to oxidants [58]. PTPs should
therefore be inactivated only at very high concentrations of ROS since the occurrence of high intracellular
concentration of GSH. Consequently, these mechanisms could involve kinases that are required to
elicit specific phosphorylation pathways. Since protein tyrosine phosphorylation is nearly invariably
involved in the T-cell regulatory response to various stimuli [78], we performed a study on the protein
Tyr phosphorylation changes after treating primary T cells with a reversible thiol group reagent
at non-cytotoxic concentrations (Figures 1 and 2).

We previously published that the Jurkat T cell line can sense the cysteine-specific transient
oxidation generating a phosphorylation cascade where the Syk kinase has a pivotal role [59]. Syk has
been demonstrated to be reversibly activated by –SH reagents B and T cells [59,79]. It should be also
noticed that the accessibility of the cysteine residues located in the catalytic site of PTPs displays
a lower reactivity than GSH, therefore ROS should be efficiently buffered by GSH before inhibiting
PTPs [6]. Therefore, more sensitive ROS sensors like the Syk kinase should be required to trigger
intracellular signaling. In this work we have observed for the first time in fresh isolated CD4+ T cells
from healthy donors that the reversible –SH group oxidation induced a transient increase of protein
Tyr phosphorylation, providing an indication in which the oxidation of effector cysteine residues
may induce a specific cell response. As mentioned above, our Secchi et al. investigations [59] were
based on Jurkat T cells, that are definitely a useful tool for immunological explorations but may have
the limit to not represent what actually occur from a physiological view point. Therefore, the main
innovation of our investigation is showing the crosstalk between the two posttranslational modifications
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(Tyr phosphorylation and Cys oxidation) and the ROS-biosensor Syk role are physiological events
since present and active in human freshly-purified human T cells (Figure S2 (Supplementary Materials)).
This is quite important from a biological and clinical point of view because it defines that redox
regulation by Cys oxidation as a biological phenomenon that generally occurs in CD4+ T cells in
physiological and pathological condition. Activated T cells were treated with diamide, a specific –SH
oxidant reagent, and their tyrosine signal reached at peak at 60 min and then decreased (Figure 3).
MTT reduction assay validates the parallelism of these molecular events where the treatment of
diamide showed a temporary decrease of the metabolic activity (almost half reductive activity is
compromised) and tyrosine phosphorylation peak. Interestingly, those changes were reversed by
Syk inhibitors (Figures 4 and 5 and Figure S4 (Supplementary Materials)). Inhibitors of Syk kinase
have been developed over the last fifteen years able to block lymphocyte functions with possible
applications in the treatment of several immune diseases [80]. They were described as drugs against
the activation of other effectors such as JAK and MAPK [81]. A molecule in this class is the fostamatinib
(R788); prodrug of R406 that we used in our investigation. To date, many clinical trials on R788
have been completed and some have already evaluated its safety and efficacy for the RA treatment.
The trials denoted that fostamatinib is an effective therapeutic medicine administered to patients with
over 24 weeks [82]. Our experiments showed a central role of Syk kinase in the T-cell response to redox
stress indicating it has a key role upstream of the Tyr phosphorylation cascade. Interestingly and in line
with our findings, Syk inhibition showed a protective action to the ROS induced DNA damage indicating
its essential role to the signaling triggered by thiol oxidation (Figure S1, Supplementary Materials).
Next, we performed a further investigation on a set of T-cell receptor and cytokines. The study indicated
that specific functions respond differently to redox stress. Interestingly diamide oxidation affected
the IL2 receptor (CD25) but not the L-Selectin (CD62L) (Figures 6A and 7A). The CD25 downregulation
may be due to the pleiotropic effect of the redox signaling: it is important to stress that the IL2 cytokine
secretion is known to be decreased by oxidation [83,84] therefore it is plausible that concomitant decline
in IL-2 secretion indirectly downregulated CD25 by the loss of the typical self-stimulatory IL2-IL2R
action in T cells [85]. On the other hand, SH groups oxidation and Syk inhibition lack of effects on CD69
expression. We also observed efficiency of Syk inhibitors in turning down both receptors in a significant
way (Figures 6B and 7B). In particular CD62L was almost blocked (Figure 7A4). L-Selectin expression
on naive CD4+ T cells is required for their efficient recirculation and compartmentalization between
blood and lymph nodes. This data provides new insights into the mechanisms underlying Syk
inhibitors anti-inflammatory activity since its action in decreasing L-selectin expression may have direct
consequences on the T-cell recruitment and transmigration through the endothelial layer into tissues in
early stages of inflammatory processes. Moreover TNF, IFNγ, and IL2 cytokines analysis (Figure S5,
Supplementary Materials) showed a positive trend in correspondence of the maximal –SH group
oxidation and Tyr phosphorylation responses. This cytokine trend disappeared in presence of Syk
inhibition. In conclusion this work shows for the first time the reversible oxidation of sulfidryl groups
induces a transient and very complex protein Tyr phosphorylation response in purified human T cells,
as described in Figure 8A. This response may be mediated by a direct activation of Syk kinase and/or
the known capability of ROS to inhibit PTPs. Syk inhibition efficiently reverted the phosphorylation
response and provoked specific cellular changes establishing a possible causal linkage (Figure 8B).
For the functional interpretation of the results, it should be also pointed out that our study has been
conducted on purified T cells from blood donors, but the effects of ROS may be largely modulated by
additional regulatory signals occurring in a variety of physiological and pathological situations that
accompany the production of ROS.
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BSA bovine serum albumin
CD16 cluster of differentiation 16
CD25 cluster of differentiation 25
CD3 cluster of differentiation 3
CD62L L-selectin
Cys cysteine
DIA diamide
DMSO dimethyl sulfoxide
FA fluoroacetic acid
FACS fluorescence-activated cell sorting
FBS fetal bovine serum
G6PD glucose-6-phosphate dehydrogenase
GAPDH glyceraldehyde 3-phosphate dehydrogenase
GSH glutathione
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H2O2 hydrogen peroxide
IL2 interleukin 2
IL-2R interleukin 2 Receptor
JAK janus kinase
STAT signal transducer and activator of transcription
JNK/ERK c-jun N-terminal kinase/extracellular-signal-regulated kinase
JUNK c-jun N-terminal kinases
LPS lipopolysaccharide
Lyn lyrosine-protein kinase
MHC II major histocompatibility complex II
MTT thiazolyl blue tetrazolium bromide
NF-KB nuclear factor kappa-light-chain-enhancer of activated B cells
Nrf2 NF-E2-related factor 2
p38-MAPK p38-mitogen-activated protein kinase
PBLs peripheral blood leucocytes
PBS phosphate buffer saline
PTPs protein tyrosine phosphatases
RA rheumatoid arthritis
RBCs red blood cells
ROS reactive oxygen species
SDS sodium dodecyl sulfate
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
SFK Src family kinase
SH2 domain src homology 2 domain
SHP-2 SH2 domain protein tyrosine phosphatase-2
SLE systemic lupus erythematosus
Syk spleen tyrosine kinase
SykI Syk inhibitors II
TCR T cell receptor
TNF tumor necrosis factor
Treg regulatory t cells
Tyr tyrosine
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