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Highlights

 Cholesterol is linked to oxidative stress- and inflammation-related diseases

 Enzymatic and non-enzymatic cholesterol oxidation leads to bioactive oxysterols 

 Lipidomics is a powerful technique for oxysterol analysis in biological specimens

 Lipidomics data may associate oxysterols with cholesterol-related pathologies



Graphical abstract legend

Cholesterol is a fundamental lipid in the development and physiological function of mammals, 

thus alterations of its plasma and tissue levels, due to incorrect diet or aberrant metabolism, are 

associated with several chronic diseases, many of which are characterized by activation of 

oxidative stress and inflammation. As a consequence of cholesterol enzymatic and non-enzymatic 

oxidation, a wide spectrum of compounds, named oxysterols, are produced. These molecules are 

provided with powerful biological activities, and are likely the actual mediators of many of the 

cholesterol pathophysiological effects. Their application as biomarkers in complex biological 

specimens is therefore gaining increasing attention. For this purpose, the most powerful approach 

can be offered by highly sensitive and selective lipidomics techniques.  
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Abstract

High amounts of cholesterol have been definitely associated with the pathogenesis of several 

diseases, including metabolic and neurodegenerative disorders, cardiovascular diseases, and cancer. 

In all these pathologies the exacerbation of pro-oxidant and inflammatory responses is a consistent 

feature. In this scenario, species derived from enzymatic and non-enzymatic cholesterol oxidation, 

namely oxysterols, are strongly suspected to play a primary role. The consideration of these 

bioactive lipids is therefore helpful in investigating pathological mechanisms and may also acquire 

clinical value for the diagnosis and treatment of the disease. For this purpose and considering that a 

great number of oxysterols may be present together in the body, the employment of lipidomics 

technology certainly represents a powerful strategy for the simultaneous detection and 

characterization of these compounds in biological specimens. In this review we will discuss the 

applicability of lipidomics approach in the study of the association between oxysterols and diseases. 
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Abbreviations: 3β-HCA, 3β-hydroxycholest-5-enoic acid; 3-K4, 3-ketocholest-4-ene; 3-K7, 3-

ketocholest-7-ene; 3-KD, 3-ketocholesta-4,6-diene; 4α-HC, 4α-hydroxycholesterol; 4β-HC, 4β-

hydroxycholesterol; 4α-OH-7-DHC, 4α-hydroxy-7-dehydrocholesterol; 4β-OH-7-DHC, 4β-

hydroxy-7-dehydrocholesterol; 5α,6α-EPOX, 5α,6α-epoxycholesterol; 5α,6β-diHC, 5α,6β-

dihydroxycholesterol; 5β,6β-EPOX, 5β,6β-epoxycholesterol; 7-DHC, 7-dehydrocholesterol; 7-KC, 

7-ketocholesterol; 7-KD, 7-ketocholesta-3,5-diene; 7α-HC, 7α-hydroxycholesterol; 7α-HCO, 7α-

hydroxy-4-cholesten-3-one; 7α-HOCA, 7α-hydroxy-3-oxo-4-cholestenoic acid; 7α,12α-diHCO, 

7α,12α-dihydroxycholest-4-en-3-one; 7α,12α-diHC, 7α,12α-dihydroxycholesterol; 7α,25-diHC, 

7α,25-dihydroxycholesterol; 7α,27-diHC, 7α,27-dihydroxycholesterol; 7α,27-diHCO, 7α,27-

dihydroxycholest-4-en-3-one; 22-HC, 22-hydroxycholesterol; 24S-HC, 24S-hydroxycholesterol; 

24-OH-7-DHC, 24-hydroxy-7-dehydrocholesterol; 24-OH-8-DHC, 24-hydroxy-8-

dehydrocholesterol; 24S,25-EPOX, 24S,25-epoxycholesterol; 25-HC, 25-hydroxycholesterol; 25-

OH-8-DHC, 25-hydroxy-8-dehydrocholesterol; 27-HC, 27-hydroxycholesterol; 27-OH-8-DHC, 27-

hydroxy-8-dehydrocholesterol; Aβ, amyloid β; AD, Alzheimer’s disease; ALS, amyotrophic lateral 

sclerosis; AMD, age-related macular degeneration; APCI, atmospheric pressure chemical 

ionization; BC, breast cancer; BBB, blood-brain barrier; ChEH, cholesterol-5,6-epoxide hydrolase; 

CSF. cerebrospinal fluid; CVD, cardiovascular disease; CTX, cerebrotendinous xanthomatosis; 

CYP2αA1, sterol 27-hydroxylase; DHCEO, 3β,5α-dihydroxycholest-7-en-6-one; ESI, electrospray 

ionization; HD, Huntington’s disease; LC, liquid chromatography; LXR, liver X receptor; GC, gas 

chromatography; HPLC, high-performance LC; IR, insulin resistance; MCI, mild cognitive 

impairment; MetS, metabolic syndrome; MRM, multiple reaction monitoring; MS, mass 

spectrometry; MS/MS, tandem mass spectrometry; MSdis, multiple sclerosis; MSn, multistage 

fragmentation; NAFLD, non-alcoholic fatty liver disease; NPC, Niemann-Pick type C disease; 

OCDO, 6-oxo-cholestan-3β,5α-diol; PD, Parkinson’s disease; PDA, photodiode array; ROS, 

reactive oxygen species; SLO, Smith-Lemli-Opitz  syndrome; SPE, solid phase extraction; TRIOL, 

cholestane-3β,5α,6β-triol; UPLC, ultra-performance LC.

1. Introduction
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Cholesterol is an essential lipid in mammals, where it represents a main component of cell 

membranes and a precursor/intermediate for the biosynthesis of a great number of fundamental 

molecules, namely bile acids, all steroid hormones and vitamin D. Besides its endogenous 

production, it may derive from the dietary intake of food of animal origin [1]. 

Cholesterol oxidation, either enzymatic or non-enzymatic (i.e. autoxidation), gives rise to a wide 

class of compounds, named oxysterols, which are characterized by the presence of one or more 

oxygen containing functional groups in the sterol ring and/or in the side-chain. Nowadays, a large 

bulk of literature points to oxysterols as very important molecules in human pathophysiology [1,2]. 

They are not only involved in some of the cholesterol-dependent metabolic routes (e.g. the bile acid 

precursors 7α-hydroxycholesterol, 7α-HC, and 27-hydroxycholesterol, 27-HC), but also contribute 

to cholesterol homeostasis by mediating its turn-over in the body (e.g. 24S-hydroxycholesterol, 

24S-HC, and 27-HC), or acting as signaling molecules in the regulation of some enzymes 

responsible for cholesterol synthesis and conversion (e.g. 3-hydroxy-3-methylglutaryl coenzyme A 

reductase, acyl coenzyme A: cholesterol acyltransferase, neutral cholesteryl ester hydrolase) [3, 4].  

Moreover, oxysterols seem to affect some fundamental pathways in embryonic and tissue 

development, including neurogenesis [4,5], and to contribute to the host defense against viral 

infections [6]. 

On the other hand, increasing evidence correlates oxysterols to the onset and progression of several 

pathologies including cancer and metabolic, neurodegenerative, and cardiovascular diseases. In 

some cases, inherited abnormalities in cholesterol metabolism are the cause of the pathological 

condition, but frequently this is the consequence of an exacerbated oxidative stress in which a 

sustained production of reactive oxygen species (ROS) enhances cholesterol oxidation, and 

contributes to chronic inflammation [7]. 

As the consequence of the multiplicity of mechanisms responsible for the oxysterol presence in the 

body, enzymatic and autoxidative processes plus food intake, oxysterol mixtures, rather than single 

compounds, are actually found in biological fluids and organs. For this reason, oxysterol 

characterization appears extremely challenging, but the recent advances in lipidomics point to this 

approach as a powerful tool for the study of these compounds.

Here we deemed useful to focus on the most recent and interesting literature in which a 

pathophysiological role of oxysterols is supported by means of lipidomics, highlighting the 

potential outcomes of their monitoring as biomarkers in the diagnosis and treatment of diseases. 
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2. Oxysterol lipidomics: analytical background 

The interest roused by oxysterols as molecules provided with significant biological activity has led 

the research effort to develop analytical methods suitable for their characterization, as more in-

depth overviewed elsewhere in the present special issue. 

In this connection, some factors are worth to be considered. Firstly, oxysterol amounts in biological 

fluids and tissues are usually very low, even in pathological conditions. The employment of 

advanced liquid chromatography- and gas chromatography-mass spectrometry (LC-MS and GC-

MS) techniques, in particular the implementation of protocols for analyte derivatization, have much 

improved oxysterol identification and quantification. Of note, the effectiveness of these procedures 

for quantitative measurement strictly relies on the proper use of internal standards, such as 

deuterated oxysterols, otherwise only approximate or semi-quantitative estimates are possible [8]. 

Moreover, the presence in the biological matrices of several other compounds, in particular high 

amounts of cholesterol, can be source of errors thus negatively affecting the reliability of oxysterol 

measurement. Before final determination, specimens should undergo solvent extraction and solid 

phase extraction (SPE), thus enabling isolation of oxysterols from other species, including lipids, 

and at the same time favoring their enrichment in the samples. Of note, analyses might include 

cholesterol whose comparison to oxysterols could be informative to understand the extent of 

oxidative modifications. On the other hand, cholesterol is easily prone to autoxidation and its 

presence may lead to overestimation of oxysterol amounts. To avoid that, the addition of 

antioxidants (e.g. butylated hydroxytoluene) is absolutely required and samples must be always 

collected, stored and processed at cold temperature, with limited exposition to light and air. 

Moreover, since biological oxysterols mainly exist as fatty acid esters, saponification by means of 

alkaline hydrolysis is often included for a reliable quantification of their total amount. Of note, this 

step represents another important cause of oxidative modification or decomposition that could affect 

the final result [9-11].

Despite all these limitations, a broad range of oxysterols together with other steroid compounds 

have been reported to be successfully analyzable in a single sample by high-performance LC- 

(HPLC)- and GC-MS, after optimization of the hydrolysis and separation procedures [12]. Other 

novel methodologies for sample preparation have also been presented, for example an automated 

filtration/filter backflush SPE for the separation of 24-, 25- and 22-hydroxycholesterol (22-HC) 

[13]. 

Interestingly, alternative GC- and LC-MS techniques have been proposed for oxysterol evaluation, 

including ultra-performance LC (UPLC)-ion mobility-time-of-flight MS (IM-TOFMS) [14].
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3. Application of lipidomics to the study of oxysterols in human pathophysiology

In the last two decades, an increasing literature has reported the use of the lipidomics approach to 

study the role of oxysterols in human pathophysiology (Fig. 1). Most investigations strengthened 

the feasibility of oxysterol measurement as indicator of illness, both rare diseases caused by 

inherited errors in cholesterol metabolism, and widespread acquired chronic diseases often induced 

by an unhealthy lifestyle. Of note, most of these pathological conditions share as main causes the 

imbalance of the physiological redox equilibrium together with a sustained inflammatory response. 

Although very promising, the application of oxysterol analysis to the clinical practice still shows 

some critical aspects. Data are sometimes inconsistent, in part because of the great individual 

variability of factors like age, race, gender. life-style. Analytical artifacts may also derive from 

sample handling and processing, since often laboratories do not share the same procedures. 

Further, results also differ depending on whether total or free (i.e. non esterified) oxysterols are 

considered. Of note, since esterification to fatty acids is presumed to be a mechanism neutralizing 

biological activity of cholesterol [3], and likely of oxysterols, evaluation of the free form could be 

more representative of pathogenic conditions. 

In table 1 and table 2 are reported the main oxysterol determinations accomplished in human and 

animal specimens, respectively.
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Fig. 1. Association between oxysterols and pathologies, suggested by lipidomics analyses of 

biological specimens.

3.1. Oxysterols and Cardiovascular Diseases

Hypercholesterolemia has been implicated in the pathogenesis of atherosclerosis, and in particular 

LDL cholesterol has been considered as a primary risk factor for cardiovascular diseases (CVD). Of 

note, oxidation of these particles generates several reactive molecules that contribute to vascular 

cell dysfunction by promoting oxidative stress and inflammation. Among them, oxysterols have 

consistently shown to contribute to the various steps of atheroma development [15].

In consideration of that, at the end of ‘90s and in the first decade of 2000s great research effort was 

devoted to oxysterol evaluation in specimens of animal and human origin, mainly blood and blood 

vessels, as extensively described in still relevant reports. [3, 16-18]. Some of these investigations 

were achieved employing LC- and GC-MS. 

Despite some discrepancies in the measured oxysterol contents, several data concur in confirming 

the presence of these compounds in CVD. A rapid protocol using LC-tandem MS (MS/MS), 

combined with an atmospheric pressure chemical ionization (APCI) source operating in the positive 

mode, was developed for the quantification of free oxysterols (i.e. 7-ketocholesterol, 7-KC, 
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cholestane-3β,5α,6β-triol, TRIOL, 7-HC, and 5α,6α- and 5β,6β-epoxycholesterol isomers, 5α,6α-

EPOX and 5β,6β-EPOX) in human plasma of healthy middle-aged volunteers, and it has been also 

successfully applied to demonstrate accumulation of cholesterol oxides in carotid plaques. This 

procedure has been improved by reducing the complex sample pretreatment to a single protein 

precipitation and concentration step [19]. 

The content of enzymatic side-chain oxidized oxysterols in the arterial intima was compared to their 

concentrations in the corresponding plasma samples of individuals with or without severe peripheral 

artery disease. Results from GC-MS determination showed that 24S-HC and mostly 27-HC, were 

significantly abundant in the arteries with atherosclerotic plaques, although their blood levels did 

not show any significant difference between patients and controls. The evidence is consistent with a 

major endothelial permeability in the subjects who develop atheroma. Remarkably, tissue amounts 

of the two oxysterols significantly correlated with plasma level of the inflammation index C-

reactive protein [20]. 

Another investigation worth of mention is a HPLC-MS/MS analysis, that established for the first 

time a significant elevation of serum 24S-HC in patients with hypercholesterolemia of genetic 

origin. Moreover, highest level of 24S-HC corresponded to an increase in the carotid intima media 

thickness of the patients. Other two intermediates of bile acid synthesis, 27-HC and 7α-hydroxy-4-

cholesten-3-one (7α-HCO), and two non-sterol markers of cholesterol synthesis, lanosterol and 

desmosterol, were also present at high amounts, consistent with hepatic overproduction of 

cholesterol [21]. 

Recently, much attention has been paid to the potential application of oxysterols as indicators of the 

efficacy of lifestyle interventions and therapies potentially useful to counteract atherosclerosis 

progression. For instance, detection of oxysterols by GC-MS was employed to evaluate the effect of 

aerobic exercise training in dyslipidemic mice [22], and of antioxidant supplementation in hamsters 

fed hypercholesterolemic diets [23]. In hypercholesterolemic mice, LC-APCI-MS oxysterol 

evaluation highlighted the potential benefit of phytosterol supplementation of the maternal diet in 

offspring from hypercholesterolemic mice. ApoE-/- mothers fed a high cholesterol diet and their 

pups exhibited increased serum 7α-HC, 7β-HC, 7-KC, 24S-HC, and 25-hydroxycholesterol (25-

HC), but not 27-HC, compared with the ApoE-/-  chow group; phytosterol intervention reduced 

oxysterol concentrations in both dams and their offspring upon. Overall, the results demonstrate that 

a hypercholesterolemic maternal environment during pregnancy and lactation is able to affect 

oxysterol status in offspring, and point to phytosterols as a suitable CVD risk-reduction strategy 

either in hypercholesterolemic mothers and in their newly weaned offspring [24]. 
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Lastly, a LC-MS/MS multiple reaction monitoring (MRM) detection of circulating 24S-HC, 25-HC, 

27-HC, 7β-HC and 7-KC proved the capability of simvastatin to reduce oxysterols of both 

enzymatic and non-enzymatic origin, and not only cholesterol. In particular, the blood level of 

oxysterols 7-KC, 7β-HC and 25-HC was brought back to the normal range, even after normalization 

to total plasma cholesterol, thus suggesting antioxidant properties of the drug beside its cholesterol-

lowering action [25]. 

3.2. Oxysterols and Metabolic Diseases

Metabolic disorders, characterized by abnormalities in cholesterol metabolism, are currently among 

the major health concerns in the world. Oxysterols are highly suspected to participate in these 

pathologies as well [26]. 

3.2.1. Cerebrotendinous Xantomathosis Syndrome  

The pathogenetic importance of oxidized intermediates was initially highlighted by the study of 

pathologies due to inborn errors of genes involved in cholesterol synthesis and conversion. This is 

the case of cerebrotendinous xanthomatosis (CTX), a disease caused by a deficiency of sterol 27-

hydroxylase (CYP27A1), responsible for decreased synthesis of bile acids, excessive production of 

cholestanol with its accumulation in tissues, progressive neurological dysfunction, premature 

atherosclerosis, and cataract.

Besides the evaluation of the CYP27A1 product 27-HC, advanced LC- and GC-MS allowed the 

recognition of other oxysterols associated with CTX. An isotope dilution LC-electrospray ionization 

(ESI)-MS/MS methodology utilizing keto derivatization was developed for the simultaneous 

quantification of 3-oxo bile acids precursor in plasma of CTX patients, providing a sensitive 

biochemical test with diagnostic value [27]. Similarly, the presence in CTX plasma of high 

concentrations of the bile acids’ precursors 7α-HC/7α-HCO and 7α,12α-dihydroxycholesterol 

(7α,12α-diHC)/7α,12α-dihydroxycholest-4-en-3-one (7α,12α-diHCO), and the absence of 27-HC 

and 3β-hydroxycholest-5-enoic acid (3β-HCA), indicating a dysfunctional bile acid biosynthesis, 

was assessed by LC-MS quantification of the isotope-labeled charge-tagged derivatives [28]. A 

similar charge-tagging approach, in this case implying an enzyme-assisted derivatization step, has 

been utilized for the identification of over 50 cholesterol metabolites and precursors in the brain and 



9

circulation of CYP27A1 lacking mice, helping in the elucidation of the metabolic pattern that 

characterizes CTX disease [29]. 

3.2.2. Obesity, Metabolic Syndrome and Insulin Resistance 

Oxysterols are also emerging as key-players in the genesis of those metabolic disorders commonly 

ascribed to incorrect lifestyle (mainly overnutrition and sedentary behavior), including obesity and 

metabolic syndrome (MetS). 

A typical feature in these morbidity states is a dyslipidemic condition with elevated levels of LDL 

cholesterol, total cholesterol and triglycerides, as well as a decrease in HDL cholesterol 

concentration. Lipid abnormalities induce oxidative stress, which in turn results in a state of low-

grade chronic inflammation with deregulated production of cytokines, adipokines and chemokines, 

thus exerting harmful effects within adipose tissue and liver, and contributing to the development of 

insulin resistance (IR) and eventually diabetes [30].

In this context, it might be postulated that an extensive formation of bioactive oxysterols occurs and 

amplifies the inflammatory response. In agreement with that, the accumulation of two free-radical 

derived oxysterols, 7-KC and 7β-HC, was detected by GC-MS, in adipocytes isolated from obese 

patients with type 2 diabetes; the first compound was proven to act as an adipokine modulator in 

adipose-derived stem cells [31]. Similarly, in diet-induced obese mice, GC-MS analysis confirmed 

an elevation of several oxysterols, mainly of non-enzymatic origin, in the plasma, liver and adipose 

tissue [32]. A HPLC-APCI-MS method enabled the simultaneous quantification of 11 oxysterols 

and ceramides, dihydroceramides, endocannabinoids and N-acylethanolamines in the liver and 

adipose tissue of diet-induced obese mice. In this case, however, the tissue levels of oxysterols were 

not markedly affected by the high fat diet, with the exception, in the liver, of a significant decrease 

in 4β-hydroxycholesterol (4β-HC) and 7α,25-dihydroxycholesterol (7α,25-diHC) and of an increase 

in 7α-HCO and 27-HC, both of which are key intermediates in the synthesis of bile acids, probably 

reflecting the capability of dietary lipids to differently affect several pathways involved in 

metabolic sterol oxidation [33]. 

Although experimental investigations on in vitro and in vivo models of obese-associated illness are 

strongly in favor of oxysterol effectiveness in modulating the pathological process by interaction 

with several molecular factors [34], their actual presence in biological specimens has not yet been 

consistently defined. The high variability of the available data might depend on gender, age and life 

habits, and makes oxysterol relevance as markers in the assessment of metabolic disorders still 

questionable.
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A gender-related distribution of circulating oxysterols in patients with obesity and MetS was 

reported after isotope dilution GC-MS, consistent with the established sexual dimorphism in lipid 

metabolism. In male patients, significant changes were observed in 4α- and 4β-HC levels only. In 

females, significant changes were also observed for other oxysterols of both enzymatic and non-

enzymatic origin. In particular, higher levels of 7β-HC and TRIOL were found in female patients 

with MetS compared to healthy controls or obese patients. Interestingly, a significant correlation 

was observed between 4β-HC and saturated and mono-unsaturated fatty acids, both in males and 

females, suggesting a common regulation of different lipogenic pathways [35].

On the other hand, an observational study conducted over a one-year period on 30 postmenopausal 

women, showed no association between body mass index (BMI) and the serum levels of 7α-HC, 

24S-HC, 25-HC, and 27-HC, detected by LC-MS analysis [36].

In a cohort study conducted in adolescent girls, serum concentrations of 7-HC isomers and 7-KC 

increased and positively correlated with BMI, insulin, LDL cholesterol and apolipoprotein B [37]. 

An elevation of 7-KC was recognized in the blood of hypercholesterolemic and diabetic patients 

relative to controls, 7α- and 7β-HC were specifically higher in diabetic blood, and α-EPOX in 

hypercholesterolemic patients [38]. Considering that in both studies 19-hydroxycholesterol was 

employed as internal standard for oxysterol measurement by GC-MS, data might need confirmation 

by means of quantitative isotope dilution LC- and GC-MS. 

In this regard, very recently, a LC-MS/MS protocol including deuterated oxysterols as internal 

standards and N,N-dimethylglycine derivatization was applied to compare the plasma oxysterol 

level among healthy subjects and type 1 and type 2 diabetes mellitus patients, reporting 7-KC and 

TRIOL elevation in association with disease, particularly with type 2 diabetes [39].

The potential use of oxysterols as markers of IR would be corroborated by the results from a LC-

MS/MS analysis of the sera of hypercholesterolemic patients with non-alcoholic fatty liver disease 

(NAFLD), a condition that shares many features with MetS. In NAFLD patients, the concentrations 

of 4β-HC, 25-HC, and 27-HC, expressed as ratios to cholesterol content, were significantly elevated 

compared to controls. Of note, these oxysterols are ligands for the liver X receptor α (LXRα), a key 

factor in the regulation of lipid metabolism. As regards the others LXRα ligands, 24S-HC level in 

NAFLD patients was not significantly different from controls and only trace amounts of 22R-HC 

and 24S,25-epoxycholesterol (24S,25-EPOX) were detected [40].

3.3. Oxysterols and Neurological Diseases
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The mammalian central nervous system is particularly rich in cholesterol, thus even oxysterols are 

likely present in measurable amounts and seem to affect brain functions. For this reason, oxysterol 

profile in biological matrices is extensively examined to elucidate neurological disorders.

Some oxysterols derive principally from enzymatic processes, that take place in the brain, as for 

24S-HC, also known as cerebrosterol, and for 7α-hydroxy-3-oxo-4-cholestenoic acid (7α-HOCA), a 

27-HC metabolite in neurons, which are in fact the effectors of physiological cholesterol efflux 

from the brain to the circulation [41].

In addition, many oxysterols are generated following oxidative stress, to which the brain is 

particularly exposed being this organ strictly dependent on oxidative metabolism [42]. 

Alternatively, oxysterols produced in other organs, either enzymatically or as the consequence of 

systemic ROS overproduction, can flow in the circulation and reach the brain by crossing the blood-

brain barrier (BBB) [41].

As a consequence of exchange through BBB, oxysterols variation in the peripheral circulation may 

reflect changes in their brain content and vice versa. In this connection, differences in the blood 

concentrations, between jugular and forearm veins, of eighteen oxysterols, five cholestenoic acids 

and three cholenoic acids were measured by LC- and GC-MS. The data showed that 24S-HC and, to 

a lesser extent, 7β-HC, 7-KC, 5α-hydroxy-6-oxocholesterol and 7α-HOCA, were exported from the 

brain, whereas 27-HC was imported into the brain [43].

In biological specimens, and particularly in cerebrospinal fluid (CSF), the ratio may be assumed as 

a meaningful indicator of nature and extent of the events associated with neurodegeneration. 24-

Hydroxycholesterol originates almost exclusively in the brain whereas 27-HC originates mainly in 

several other organs and is metabolized in the brain by the enzyme CYP7B1. A deviation from the 

physiological 24S-HC/27-HC ratio indicates a loss of cerebral enzymatic activity consequent to 

neuronal death, or alteration in oxysterol release to CSF due to disruption of the blood-CSF barrier 

or BBB [44]. In this regard, the benefit of lipidomics is evident, since it allows the simultaneous 

detection of these two molecules in the same sample.

Therefore, the major attention of analytical research was paid to 24S-HC, 27-HC and, to a lesser 

extent, to 7α-HOCA, although other oxysterols were also considered as indices of neurological 

disturbances in diverse types of biological specimens [45-47].

Recently, a novel on-line SPE-LC-ESI-tandem MS (MS/MS) assay provided the simultaneous 

quantification of free cholesterol and 34 of its metabolites, including 17 free oxysterols, in plasma 

and CSF of patients having BBB disturbances. Among the main brain cholesterol oxides, 24S-HC 

and 27-HC could not be detected in CSF, whereas 7α-HOCA was quantified showing a 

concentration relatively higher than that of the other cholesterol metabolites; moreover, a 
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correlation between 7α-HOCA level and the degree of BBB dysfunction was also confirmed, 

suggesting the potential application of this molecule as a marker of BBB damage [48].

Defects of cholesterol homeostasis in the adult brain are linked to neurodegenerative diseases like 

Niemann-Pick type C (NPC) disease, Alzheimer’s disease (AD), Parkinson’s disease (PD), 

Huntington’s disease (HD), multiple sclerosis (MSdis), and amyotrophic lateral sclerosis (ALS) in 

which oxidative stress and inflammation represent driving forces for the progressive degeneration 

and death of neurons [42].

In this connection, a very recent work provides solid support to the relationship between oxysterols 

and neuroinflammation. The levels of over 10 oxysterols were analyzed by means of HPLC-MS, 

operating in the positive mode with APCI source, in the microglia BV2 cells after treatment with 

LPS. Surprisingly, at prolonged incubation periods, LPS-activation differently affected the amounts 

of cell oxysterols. In particular, the ones oxidized on the sterol backbone increased, and the ones 

oxidized on the side chain decreased (e.g. the enzymatic products 25-HC and 27-HC); both 5α,6α- 

and 5β,6β-EPOX did not change. This evidence strongly indicates that ROS overproduction after 

inflammatory stimuli would sustain non-enzymatic cholesterol oxidation, but, at the same time, it 

would alter the expression and/or activity of the oxysterol-metabolizing enzymes, as further 

investigated in the same study. Some similarities in the oxysterol pattern after LPS-treatment were 

observed also in co-culture of primary microglia and astrocytes, but not in mice brain. In this organ, 

sterol backbone oxidized species decreased suggesting that other eventually protective mechanisms 

could occur in case of systemic inflammation [49].

3.3.1. Alzheimer’s Disease

The link between AD and oxysterols has been definitely recognized. Alteration in the biological 

levels of these compounds would be not only the consequence of the cerebral derangement 

associated with the disease, but may also contribute to its onset and progression, since oxysterols 

have been proven to be mediators of several molecular pathways underlying AD ethiopathology 

[50].

In a populations of patients with memory complaints and identified as probable AD on the basis of 

their CSF amyloid β42 (Aβ42) and total tau levels, the CSF levels of both 24S-HC and 27-HC, 

determined through isotope dilution-MS, were higher than in the control-like group, and showed a 

positive correlation with white matter hyperintensities, a hallmark of demyelination; on the 

contrary, both oxysterols were reduced in the plasma of AD-like group compared to control-like 
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group. The data may reflect an imbalance in brain cholesterol homeostasis with consequent 

impaired myelination [51].

A systematic analysis of oxysterols, of both enzymatic and non-enzymatic origin, has been 

performed by GC-MS measurement in post-mortem brains of AD patients at different stages of the 

disease. Interestingly, most of the oxysterols included in the study (i.e. 25-HC, 27-HC,7-KC, 4α-

HC, 4β-HC, 7α-HC, 7β-HC, α-EPOX and β-EPOX) increased during disease progression, this 

increment becoming markedly significant in late stage AD. On the contrary, 24S-HC amount in 

early stage AD was similar to that of control brains, whereas it was significantly decreased at 

advanced disease stages, likely reflecting a selective loss of neuronal cells expressing the 

cholesterol 24-hydroxylase in the late AD [52].

Other studies focused on the possible relationship between oxysterols and the cognitive decline that 

characterize AD patients. Plasma levels of 27-HC, 24S-HC, 7α-HC and 7β-HC were quantified by 

HPLC-MS in subjects diagnosed as suffering from mild cognitive impairment (MCI), namely the 

pre-clinical stage of AD. Compared to controls with normal cognition, only 27-HC was 

significantly higher in MCI patients. Of note, this oxysterol not only was significantly associated 

with MCI, but it also positively correlated with the levels of the neurotoxic Aβ1-42 and Aβ1-40 

peptides [53].

Eight sterols were detected by HPLC-MS coupled to multivariate data analysis in scalp hair samples 

of women including MCI, AD and control subjects. Both 7α-HC and 7β-HC increased in patients, 

but in particular significantly higher 7β-HC/cholesterol ratio was observed in the presence of 

cognitive impairment (MCI and AD), thus pointing to this ratio as a predictive biomarker of AD. As 

far as we know, this is the only work in which hair specimens have been used for oxysterol 

assessment and, although interesting, the procedure likely need further validation [54]. 

3.3.2. Parkinson’s Disease

Several in vitro reports suggest the involvement of oxysterols in the Parkinson’s pathology, to 

which they may contribute causing α-synuclein aggregation and destruction of dopamine containing 

neurons. Nevertheless, there are some prospective clinical investigations from which negative or no 

correlation emerged between Parkinsonism and oxysterol content [55]. 

A possible explanation for such conflicting results may reside in the use of blood as specimen for 

oxysterol characterization. For example, 27-HC and 24S-HC measurement by isotope dilution-MS 

revealed no differences in the plasma concentrations of these compounds in PD patients with 
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different disease duration; on the contrary, when analyzing CSF, both 27-HC and 24S-HC exhibited 

concentrations above the cut-off level in 10% of the patients, indicating a possible blood-CSF 

barrier damage in connection with the pathology, and in particular 24S-HC significantly correlated 

with the duration of the disease [56,57].

Supporting the actual occurrence of an abnormal oxysterol profile in PD is a very interesting report 

on the screening by lipidomics techniques of 200 lipid species (including sphingolipids, 

glycerophospholipids and cholesterol species) in the visual cortex of PD patients. The GC-MS 

analysis showed that 6 out of 7 oxysterols of both non-enzymatic and enzymatic origin (i.e. 7α-HC, 

7β-HC, 5β,6β-EPOX, 7-KC, 24S-HC and 27-HC) selectively increased in PD tissue compared to 

controls. Moreover, these variations appeared to correlate with the changes in the expression of 

genes involved in cholesterol metabolism and oxidative stress response, that were observed in the 

same samples by quantitative polymerase chain reaction [58].

3.3.3. Niemann-Pick Type C Disease

 

Niemann-Pick type C disease is a rare autosomal lipid storage disorder characterized by progressive 

neurological deterioration with challenging diagnostic procedures since its clinical presentation is 

variable and non-specific. Improvement in GC- and LC-MS/MS technologies with different 

derivatization procedures allowed the detection of 7-KC and TRIOL. These two compounds are 

likely formed non-enzymatically as result of an excessive oxidative attack of cholesterol 

accumulated in the viscera cells of NPC patients [59]. Of interest, although these oxysterols are 

indicated as reliable plasma biomarkers of NPC disease, their quantification may sometimes lead to 

false results, especially in the presence of cholestasis or variant biochemical phenotypes [60-62]. 

Very recently, the development of a methodology based on charge-tagging LC-MS with multistage 

fragmentation (MSn) allowed the identification in plasma from NPC patients of unusual oxysterols 

having 7-oxo and 3β,5α,6β-trihydroxy functions, which are likely intermediate of the conversion of 

7-KC and TRIOL to bile acids. Thus, also these metabolites are worth of consideration in the 

clinical assessment of NPC disease, and their quantification in this context needs further validation 

[63].

3.3.4. Multiple Sclerosis
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Recently, attention has been paid to the possible relationship between oxysterols and the onset of 

multiple sclerosis (MSdis). In human specimens, mainly the levels of side-chain oxysterols 

appeared to be altered, although conflicting results have been reported so far. 

A derangement of oxysterol network was observed by stable isotope dilution LC-APCI-MS in 

subjects with relapsing-remitting MSdis and progressive MSdis. Compared to healthy controls, in 

all patients there was a decrease in the levels of the enzymatic products 7α-HC, 24S-HC and 27-

HC, which presumably reflects changes in cholesterol metabolism in periphery as well as in brain, 

due to neurodegeneration. An increase in 7-KC was found only in progressive MSdis patients 

compared with relapsing-remitting MSdis patients, thus indicating a sustained oxidative stress, 

which promote neurodegeneration in the progressive form [64].

In another paper, LC coupled to APCI-MS in series with photodiode array (PDA) for oxysterol and 

cholesterol detection respectively, showed lower plasma levels of 27-HC and 7α-HC in MSdis 

patients versus controls, even when normalized to cholesterol, while other oxysterols (i.e. 7-KC, 

24S-HC and 25-HC), cholesterol and 25-hydroxy-vitamin D did no show any significant variation 

[65].

Moreover, in a mouse model of MSdis, the disease was apparently accompanied by a decrease of 

5α,6β-dihydroxycholesterol (5α,6β-diHC), 7-KC and 24S,25-EPOX, and by an increase of 7α,25-

di-HC, as assessed by LC-MS in the brainstem of animals sacrificed at different stages of the 

disease. In particular, 7α,25-di-HC was proposed to contribute to neurodegeneration by promoting 

inflammatory responses [49].

3.3.5. Amyotrophic Lateral Sclerosis 

Amyotrophic lateral sclerosis (ALS) is a non-demyelinating neurodegenerative disease in adults. 

Oxidative stress, neuroinflammation and disturbance in cholesterol homeostasis have been 

supposed to be critical in the occurrence of this pathology, which in the 10% of cases also shows 

genetic mutations [66]. Although certain cholesterol oxides are potentially involved in ALS, for 

example. 25-HC and 27-HC, it is not yet clear whether they could be used as biomarkers, since 

analyses, mainly carried out in blood and CSF by LC-MS, produced conflicting results [66-68]. 

It could not be excluded that species less frequently analyzed might be useful for this purpose. In 

fact, the measurement of more than 40 sterols by LC-MS in not hydrolyzed samples revealed that, 

when normalized to cholesterol, the CSF amount of 3β,7α-dihydroxycholest-5-en-26-oic acid, along 

with its precursor 3β-hydroxycholest-5-en-26-oic acid and its product 7α-hydroxy-3-oxocholest-4-
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en-26-oic acid, were decreased in ALS patients compared with healthy controls, as well as the 

serum level of 27-HC, which is the immediate precursor of 3β-hydroxycholest-5-en-26-oic, in 

agreement with defective cholesterol metabolism in ALS brain [69].

3.3.6. Huntington’s Disease

Huntington’s disease (HD) is an autosomal dominant, progressive neurodegenerative disease whose 

pathogenesis might primarily involve lipid oxidative stress, as suggested by GC-MS quantification 

in post mortem human brain tissue of 7β-HC, 7-KC, 24S-HC, 27-HC and other sterols. Compared to 

control tissue, 24S-HC and the enzyme responsible for its synthesis, cholesterol 24-hydroxylase, 

showed a net decrease, while 27-HC concentration was increased mostly in the HD putamen; in the 

same region, a rise of the free-radical generated oxysterols 7-KC and 7β-HC was also observed. 

[70].

3.3.7. Smith-Lemli-Opitz Syndrome 

The Smith-Lemli-Opitz (SLO) syndrome is a disorder caused by mutations in gene encoding for the 

cholesterol biosynthesis enzyme 3β-hydroxysterol-Δ-(7)-reductase, which lead to elevated level of 

7-dehydrocholesterol (DHC) and reduced level of cholesterol in all biological tissues. It is 

characterized besides other symptoms by prenatal and postnatal growth retardation, microcephaly, 

and moderate to severe intellectual disability. Of note, 7-DHC has been recognized to be highly 

oxidizable and several oxysterols may derive from its radical or enzymatic oxidation, as observed 

by means of LC-MS analyses of fluids and tissues from SLO patients and mouse models [71-75].

3.4. Oxysterols and Retinal Diseases

Cholesterol accounts for 2%, by weight, of the retina and rod outer segment membranes, where it 

can also accumulate once delivered from circulating LDL. Eye exposure to sunlight makes this lipid 

highly susceptible to oxidation. It is therefore conceivable that oxysterols concur in the 

pathogenesis of age-related diseases of the retina [7,76].

The fact that free radical-mediated photoxidation of cholesterol in the retina leads to in situ 

formation of oxysterols was sustained by a LC-MS analysis of photodamaged rat retina, where 7-
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KC, 7-HC and 5,6-EPOX isomers, but also their precursors 7α- and 7β-hydroperoxycholesterol, 

appeared to be present at much greater amounts than in non-photodamaged specimens. Moreover, 

7-KC was shown by immunohistochemistry to accumulate in the ganglion cell layer, the 

photoreceptor inner segments and the retinal pigment epithelium, where it may exert cytotoxic 

effects contributing to photoreceptors degeneration [77]. 

It cannot be excluded that abnormalities in cholesterol intake and metabolism, rather than its 

extensive photoxidation, could be determinant events for retinopathy. For example, it was found out 

by LC-MS quantification that a 2% cholesterol-enriched diet administered to rabbits for 12 weeks 

caused an accumulation in the animal retina of cholesterol, and specifically of its metabolites 27-

HC, 22-HC, and 24-HC, together with structural and morphological changes relevant to age-related 

macular degeneration (AMD) [78].

Circulating oxysterols have been considered as possible biomarkers in the clinical assessment of 

AMD: LC-MS/MS oxysterol profiling in human peripheral blood monocytes and in human plasma 

allowed to discriminate between age-dependent and disease-dependent changes in their content. 

Although age-associated alterations in oxysterol signatures emerged also in healthy humans, likely 

reflecting changes in cholesterol homeostasis, only plasma 24-HC among all the analytes (i.e. 4β-

HC, 7-KC, TRIOL, 24-HC, and 27-HC) would differentiate AMD from physiologic aging, even 

after normalization to total plasma cholesterol, thus highlighting its diagnostic value [79].

However, a more exhaustive update by means of advanced lipidomics analyses in humans aimed to 

clarify oxysterol involvement in AMD and other eye disease still appears necessary.

  

3.5. Oxysterols and Cancer 

Oxysterols possess mutagenic, genotoxic and pro-proliferative activities, as extensively confirmed 

in different animal and cell models, and are, in fact, associated with the carcinogenesis in different 

organs including colon, lung, pancreas, liver, and bile ducts. In consideration of that, the strongly 

suspected relationship between hypercholesterolemia and cancer likely depends on the formation of 

cholesterol oxides [80,81]. On the other hand, by inducing early inflammatory reactions, 

citotoxicity and apoptotic death, oxysterols might also counteract cancer growth, suggesting that 

their pro-tumoral and anti-tumoral properties would largely depend on the cell type, and also on the 

extent of the oxidative redox imbalance underlying the various steps of tumor progression [82].
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Although there is a large body of experimental evidence supporting their role as oncomediators, 

data about their content in cancer bearing animal and particularly in humans are still too few to 

draw definitive statements.

3.5.1. Breast Cancer

The similarities between some oxysterols (e.g. 27-HC, 25-HC, both recognized as tumor promoters) 

and sexual hormones [80] addressed most of the research interest to their evaluation in the 

progression of hormone sensitive tumors, in particular in response to pharmacological or surgical 

interventions.

An example is the work of Dalenc and collaborators, where the detection of 11 oxysterols by GC-

MS was conducted in the serum of breast cancer (BC) patients to evaluate the therapeutic efficacy 

of Tamoxifen, a selective estrogen receptor modulator, or of alternative aromatase inhibitors, for the 

treatment of this tumor. The observed decrease, after 28 days of Tamoxifen treatment, of 25-HC 

serum levels would sustain, according to the authors, the anti-tumoral activity of this drug. Notably, 

the initial concentration of 25-HC was significantly greater in the patients undergoing treatment for 

a metastatic disease than in those under adjuvant treatment, suggesting that 25-OH increase could 

be a metabolic index of BC aggressiveness. Conversely, the levels of 27-HC significantly increased 

in response to aromatase inhibitors, but not after Tamoxifen. 5,6-EPOX also increases only 

following therapy with aromatase inhibitors, likely because of the ability of these drugs to induce 

oxidative stress. Moreover, the same study suggested the use of 5,6-EPOX sulfates as biomarkers of 

Tamoxifen therapy [83]. These compounds are in fact supposed to be induced by Tamoxifen 

treatment by inhibition of cholesterol-5,6-epoxide hydrolase (ChEH), and to contribute to the drug 

anti-tumoral activity, as proven by means of GC-MS in the BC cell line MCF-7 cells [84].

Recently, chromatographic techniques coupled to MS helped to identify another oncometabolite 

downstream of 5,6-EPOX transformation by ChEH, namely 6-oxo-cholestan-3β,5α-diol (OCDO), 

whose level in breast tissue of BC patients significantly increased, together with ChEH protein 

expression, in comparison to normal tissues [85]. 

B-ring oxysterols are suspected to interact with estrogen receptors and anti-estrogen binding sites 

(AEBS) and by this way to affect the efficacy of hormonal therapy [80]. Among the diverse 

oxysterols quantified by UPLC coupled with positive-ion APCI-MS/MS in plasma of BC patients 

before and after 12-24-months surgical removal of tumor, 7-KC significantly increased at the end 



19

point. This rise was found in all patients and also in a subgroup with estrogen receptor-expressing 

tumors treated with Tamoxifen, suggesting that 7-KC presence may be linked to tumor growth, 

independently of estrogenic activity [86]. 

Lastly, a novel filter and filter-back flush capillary LC system, followed by high-resolution MS, 

allowed to profile side chain-hydroxylated oxysterols even in exosomes, namely extra-cellular 

vesicles released by exocytosis, in particular by cancer cells. These particles, which may contain 

elevated levels of lipids, are typically present in very limited amounts. The results thus obtained 

showed that in a panel of either cancerous and not cancerous cells, the exosomal oxysterol content 

differed from the cytosolic one. In particular, 27-HC is more abundant in exosomes obtained from 

the estrogen receptor positive BC cells MCF-7 versus estrogen receptor negative BC cells. Overall, 

the data point to exosomal oxysterols as more reliable markers for cancer diagnosis [87]. 

However, the actual correlation between oxysterol levels and BC incidence could be re-evaluated in 

the light of new observations. A very recent prospective study including 530 incident invasive BC 

cases, and employing LC-MS for oxysterol analysis, showed that serum 27-HC was not associated 

with BC risk overall. On the contrary, in postmenopausal women, higher 27-HC was even 

associated with a lower risk to develop BC [88]. Therefore, the use of oxysterols as markers of 

human BC should be carefully reconsidered.

In relation to this, a very recent quantification of side chain oxysterols performed by an advanced 

LC-MS technology on estrogen receptor positive and estrogen receptor negative BC specimens 

highlighted a large variation in their concentrations among the different specimens and even in the 

different sections from the same specimen. No significant difference was observed in oxysterol 

amount between estrogen receptor positive and estrogen receptor negative breast carcinomas. Such 

a great heterogeneity of oxysterol concentration in BC tissue questions the role of oxysterols in 

cancer growth [89].

3.5.2. Liver and Bile Duct Cancer

Even if the suitability of oxysterols as target analytes correlating with liver and bile duct 

carcinogenesis needs deeper investigation, some of these cholesterol oxides were proven to be 

associated with the chronic inflammatory states that may promote hepatic cancers. Indeed, an 

increase of 7α-HC, 4β-HC and 25-HC in serum of chronic hepatitis C patients was reported as 

assessed by LC-ESI-MS/MS. The evidence that 7α-HCO, a marker of cholesterol 7α-hydroxylase 
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activity, did not change in those patients would suggest that only oxysterols of non-enzymatic 

origin would be detectable in the inflammatory and pro-oxidant state that accompanies viral 

infections of the liver. Interestingly, the level of this compound decreased after 3 months of 

interferon anti-viral therapy, and it may therefore represent a marker for the evaluation of disease 

progression to hepatocarcinoma [90].

Similarly, by using GC-MS the B-ring oxysterols 7-ketocholesta-3,5-diene (7-KD), 3-ketocholest-

4-ene (3-K4), 3-ketocholest-7-ene (3-K7), 3-ketocholesta-4,6-diene (3-KD), and TRIOL were found 

in the liver of hamsters developing cholangiocarcinoma after infection with liver fluke. Among 

them, TRIOL and 3K4 were also suspected to cause DNA damage in the setting of chronic 

inflammation [91].

3.5.3. Colorectal Cancer

As regards colorectal carcinogenesis hypercholesterolemia and obesity are likely among the major 

risk factors of cancer growth and progression [92]. Since a diet rich of animal fats is source of 

oxysterols, it is conceivable that these compounds would contribute to activate a sustained oxidative 

and inflammatory machinery in immune system cells leading to cancer development in the gut 

[93,94]. This hypothesis has been corroborated by the results provided by a HPLC-MS 

measurement of the level of 11 oxysterols in the colon and plasma of several models of murine 

colitis, as well as in colon biopsies from patients with the two main inflammatory bowel diseases, 

namely Crohn’s disease and ulcerative colitis, well recognized precancerosis. 4β-HC and 25-HC 

levels were found consistently altered in the colon of all animal models, whereas 7α-HCO and 25-

HC increased and 27-HC appeared to decrease in colon cancer patients [95].

4. Conclusions

The primary importance of cholesterol in human pathophysiology is nowadays unanimously 

established, and hypercholesterolemia is considered a risk factor in several chronic diseases and not 

only in atherosclerosis. Cholesterol oxidation generates a wide family of derivatives, termed 

oxysterols, that are provided with many biochemical and biological effects. The contribution of 

oxysterols to cholesterol pathophysiology has been investigated in a number of in vitro and in vivo 
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models. The unanimous outcome of all these studies is that supra-physiological concentrations of 

oxysterols may exert pro-oxidant and pro-inflammatory effects. 

Moreover, confirmation of the association between oxysterol levels and human chronic disease 

comes from a series of analyses aimed at characterizing oxysterol profile in various types of 

patients, and to evaluate its diagnostic and prognostic value. In this field, interest has been mainly 

dedicated to those pathologies that are definitely ascribed to defects in cholesterol metabolism (e.g. 

some neurodegenerative or hereditary disorders) or to hypercholesterolemia (e.g. cardiovascular 

disease, MetS), whereas, with regard to other pathologies, including cancer, oxysterol identification 

in biological specimens has been so far less considered.

In addition, data availability and consistency are limited because of technical aspects which make 

oxysterol detection in biological matrices quite difficult. Oxysterols are present at nanomolar 

amounts in tissues and biological fluids against the millimolar concentration of cholesterol. In 

addition, cholesterol is highly susceptible to oxidation, also during specimen processing, and this 

can easily lead to artifacts. Moreover, diverse oxysterols usually coexist in specimens: considering 

that these molecules have similar and thus analytical behavior, their precise identification in the 

same sample could be tough. In this regard, lipidomics techniques offer exceptional specificity and 

sensitivity, and therefore represent the best approach for qualitative and quantitative oxysterol 

determination.

Another important aspect to take into consideration is the necessity to recognize, for every 

pathology, the oxysterol pattern that specifically correlates with its onset and progression. This 

seems to be possible for some diseases for which definite oxysterols have been identified as 

possible hallmarks of occurrence. This is the case, for example, of DHCEO and 24-, 25-, 26-OH-8-

DHC in SLO assessment, or OCDO in BC evaluation. On the contrary, for many disorders, no 

oxysterols have been recognized so far as selective biomarkers. In fact, the modulation of the most 

frequently formed oxysterols (e.g. 7-KC, 7-OH, 24S-HC), reported in several investigations, is 

more likely an indication of generic inflammation and redox imbalance, or of incorrect diet, and is 

thus less informative for precise clinical applications. For the latter purpose, lipidomics can give 

again a helpful contribution, thus it is conceivable that future research effort will be addressed to 

improve disease-targeted identification and quantification of novel oxysterols by means of this 

methodology.
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Table 1. 
Oxysterol evaluation in pathological conditions by lipidomics analyses of human specimens. (total: an alkaline hydrolysis step was performed to 
give free and esterified oxysterols)

PATHOLOGY ANALYTICAL 
ASPECTS

SUBJECTS SPECIMEN ANALYTES MAIN OBSERVATIONS REF.

one-step protein 
precipitation and 
concentration followed by
LC-APCI(+)-MS/MS

healthy middle-aged 
volunteers and 
patients undergoing 
carotid 
endoarterectomy

plasma   and 
carotid plaques

(free)
7-KC, 7α/7β-HC, 5α,6α-EPOX, 
5β,6β-EPOX, TRIOL

the chromatographic conditions 
do not allow separation between
7α- and 7β-HC

oxysterol accumulation in 
carotid plaques

[19]

A
TH

ER
O

SC
LE

R
O

SI
S

isotope dilution 
GC-MS

patients with severe 
peripheral artery 
disease

plasma 
arteries

(total)
24S-HC, 25-HC, 27-HC

plasma: 25-HC
arteries: 24S-HC 27-HC 
(vs. controls)

[20]

semi-quantitative
HPLC-MS/MS

patients with primary 
hypercholesterolemia 
of genetic origin 

serum (total)
7α-HCO, 24S-HC, 27-HC

all oxysterols
(vs. controls)

[21]

H
Y

PE
R

C
H

O
LE

ST
ER

O
LE

M
IA

isotope dilution 
LC-MS/MS 
operating in MRM 

asymptomatic 
hypercholesterolemic 
patients in treatment 
with Simvastatin 

plasma 
(0 and 3-month 
follow-up)

(free)
7-KC, 7β-HC, 24S-HC, 25-HC, 
27-HC

baseline: 7β-HC 25-HC  
7-KC
(vs. controls, normalized to total 
cholesterol)
3-month follow up: same control 
level (normalized to total 
cholesterol)

[25]

keto derivatization 
followed by 
isotope dilution 
LC-ESI-MS/MS 

CTX untreated 
patients

plasma (free)
7α-HCO, 7α,12α-diHCO, 
7α,12α-dihydroxy-4-cholestan-3-one

all oxysterols
(vs. controls)

[27]

C
ER

EB
R

O
TE

N
D

IN
O

U
S 

X
A

N
TO

M
A

TH
O

SI
S 

  S
Y

N
D

R
O

M
E

charge-tagging with 
isotope-labeled Girard P 
reagent derivatization 
followed by LC-MSn

CTX patients plasma (free)
over 20 oxysterols including 7α-HC, 
27-HC, 7α,12α-diHC, sterols with 
3-oxo or 3-hydroxy group

7α-HC/7α-HCO
7α,12α-diHC/7α,12α-diHCO
27-HC and 3β-hydroxy-5-enoic 
ac. absents
(vs. controls)

[28]



isotope dilution
GC-MS

obese patients with 
type 2 diabetes

adipocytes (total)
7-KC, 7β-HC

7-KC 7β-HC
(vs. controls)

[31]

isotope dilution
GC-MS

male and female 
obese patients and  
metabolic syndrome 
patients

plasma (total)
4α-HC, 4β-HC, 
5α-hydroxy-6-oxocholesterol, 7-KC, 
7α-HC, 7β-HC, 5α,6α-EPOX, 5β,
6β-EPOX, TRIOL, 24S-HC, 27-HC

obese males: 4α-HC 4β-HC
males with metabolic syndrome: 
4α-HC 4β-HC
obese females: 5α,6α-EPOX 
4β-HC 24S-HC
females with metabolic 
syndrome: 5α,6α-EPOX 4β-
HC 4α-HC 7α-HC 7β-HC 
7-KC TRIOL 25-HC
(vs. controls)

[35]

semi-quantitative 
LC-MS

postmenopausal 
women

serum 7α-HC, 5α,6α-EPOX, 5β,6β-EPOX, 
22R-HC, 22S-HC, 24,25-EPOX, 
24S-HC, 25-HC, 27-HC

22S-HC and 24,25-EPOX n.d.
no association with BMI

[36]

semi-quantitative
GC-MS

adolescent girls serum (total)
7α-HC, 7β-HC, 7-KC, 5α,6α-EPOX, 
5β,6β-EPOX, TRIOL

7α-HC, 7β-HC, 7-KC correlate 
with BMI
7α-HC, 7β-HC correlate with 
fasting insulin

[37]

semi-quantitative 
GC-MS

hypercholesterolemic 
and diabetic patients

blood 4β-HC, 7α-HC, 7β-HC, 7-KC, 
5α,6α-EPOX, 5β,6β-EPOX, TRIOL, 
25-HC, 27-HC

diabetic patients: 7α-HC 7β-
HC
hypercholesterolemic patients: 
5α,6α-EPOX 
both patients: 7-KC
(vs. controls)

[38]

O
B

ES
IT

Y
M

ET
A

B
O

LI
C

 S
Y

N
D

R
O

M
E

D
IA

B
ET

ES

isotope dilution
LC-ESI(+)-MS/MS

type 1 and type 2 
diabetes patients

plasma (free)
7-KC, TRIOL

both patient groups: 
7-KC TRIOL
(vs. controls)

[39]

N
O

N
-A

LC
O

H
O

LI
C

 
FA

TT
Y

 L
IV

ER
 

D
IS

EA
SE

isotope dilution ultrafast 
LC-MS/MS

NAFLD patients serum (total)
4β-HC, 22R-HC, 24S-HC, 
24S,25-EPOX, 25-HC, 27-HC
(free)
7α-HCO

4β-HC 25-HC 27-HC
trace amounts of 22R-HC and 
24,25-EPOX
(vs.  controls)

[40]



N
EU

R
O

LO
G

IC
A

L 
D

IS
EA

SE
S

protein precipitation and 
on-line SPE followed by 
isotope dilution 
LC-ESI(+)-MS/MS

patients with BBB 
dysfunctions

CSF
plasma

(free)
4β-HC, 5α,6α-EPOX, 5β,6β-EPOX, 
7α/7β-HC, 7-KC, TRIOL, 20α-HC, 
22S-HC, 22R-HC, 24S-HC, 
24S,25-EPOX, 25-HC, 27-HC, 
7α,24-diHC, 7α,25-diHC, 
7α,27-diHC, 7α-HOCA

CSF: 7α-HOCA
(vs. patients without BBB 
dysfunctions)

[48]

isotope dilution MS patients with 
memory complaints

CSF
plasma

24S-HC, 27-HC (in plasma also 
lanosterol and lathosterol)

CSF: 24S-HC 27-HC (vs. 
controls) 
both compounds correlate with 
white matter hyperintensities 
plasma: 24S-HC 27-HC
(vs. controls)

[51]

isotope dilution
GC-MS

AD patients brain cortex, 
classified by the 
Braak staging
system

(total)
4α-HC, 4β-HC, 5α,6α-EPOX, 
5β,6β-EPOX, 7α-HC. 7β-HC, 7-KC, 
24S-HC, 25-HC, 27-HC

all AD stages: 4α-HC 4β-HC 
5α,6α-EPOX 5β,6β-EPOX 
7α-HC 7β-HC 7-KC 25-
HC 27-HC
advanced AD stages: 24S-HC 
(vs. controls)

[52]

HPLC-MS MCI patients plasma (total)
7α-HC, 7β-HC, 24S-HC, 27-HC

27-HC
(vs. controls)

[53]

A
LZ

H
EI

M
ER

'S
  D

IS
EA

SE

isotope dilution
GC-EI-MS
followed by multivariate 
analyses of data

MCI and AD female 
patients

hair 7α-HC, 7β-HC, 24S-HC, 27-HC both patient groups: 7α-HC 
7β-HC 
significant 7β-HC/cholesterol 
increase
(vs. controls)
24S-HC in trace, 27-HC n.d.

[54]

PA
R

K
IN

SO
N

'S
  

D
IS

EA
SE

isotope-dilution 
GC-EI-MS 

PD patients brain (anterior 
cingulate cortex, 
amygdala, visual 
cortex) 

(total)
(quantitative) 7α-HC, 7β-HC, 7-KC, 
24S-HC, 25-HC, 27-HC
(semi-quantitative) 5α,6α-EPOX, 
5β,6β-EPOX

visual cortex: 5β,6β-EPOX 
7α-HC 7β-HC 7-KC 
24S-HC 25-HC 27-HC
(vs. controls)

[58]

N
IE

M
A

N
N

-P
IC

K
 

TY
PE

 C
 

D
IS

EA
SE

charge-tagging 
derivatization followed by
LC-MS(MSn)

NPC patients plasma (free)
sterols with 7-oxo and 
3β,5α,6β- triol functions

compound identification and 
semi-quantitative evaluation

[63]



isotope dilution
LC-SIM-APCI-MS

relapsing-remitting 
and progressive 
MSdis patients

plasma (total)
7α-HC, 7-KC, 24S-HC, 25-HC, 
27-HC

both patient groups: 7α-HC 
24S-HC 27-HC
progressive MSdis patients: 
7-KC
(vs. controls)

[64]

M
U

LT
IP

LE
 S

C
LE

R
O

SI
S

isotope dilution
LC-APCI(+)-MS
in series with PDA

MSdis patients plasma (total)
7α-HC, 7β-HC, 7-KC, 24S-HC, 
27-HC

7α-HC 7β-HC 7-KC 
27-HC
(vs. controls)

[65]

isotope dilution
GC-MS

male and female 
ALS patients

plasma (total)
24S-HC, 25-HC, 27-HC, 7α-HCO 

men: 27-HC, 24S-HC and 
25-HC do not change
women: 24S-HC, 25-HC and 
27-HC do not change
(vs. controls)
no significant correlation 
between oxysterols and time of 
survival

 [68]

A
M

Y
O

TR
O

PH
IC

 L
A

TE
R

A
L 

SC
LE

R
O

SI
S

enzyme-assisted 
derivatization followed by 
LC-ESI- MSn

ALS patients CSF
serum 

(free)
over 50 cholesterol metabolites

CSF: 3β,7α-dihydroxycholest-5-
en-26-oic ac. 
3β-hydroxycholest-5-en-26-oic 
ac. 
7α-hydroxy-3-oxocholest-4-en-
26-oic ac.
(vs. controls)

[69]

H
U

N
TI

N
G

TO
N

'S
 

D
IS

EA
SE

isotope dilution
GC-MS/MS

HD patients brain (putamen, 
caudate, 
cerebellum, grey 
cortex, white 
frontal cortex)

(total)
7β-HC, 7-KC, 24S-HC, 27-HC

putamen: 7β-HC 7-KC 
24S-HC 27-HC
(vs. controls)

[70]

SM
IT

H
-L

EM
LI

-O
PI

TZ
 

SY
N

D
R

O
M

E

enzyme-assisted 
derivatization followed by 
LC-ESI- MSn

SLO patients plasma (free) 
7α-HC, 7α,8α-EPOX, 24S-HC, 
25-HC, 27-HC, 7α,25-diHC, 
7α,25-diHCO, 7α,27-diHC, 
7α,27-diHCO, 
24-OH-8-DHC+25-OH-8-DHC, 
27-OH-8-DC, DHCEO 

7α,8α-EPOX 25-HC 27-HC
(vs. controls)
24-OH-8-DHC, 25-OH-8-DHC, 
27OH-8-DC, 
3β,5α-dihydroxycholest-7-en-6-
one (DHCEO) non detectable in 
controls but present in some 
SLO patients

[72]



A
G

E-
R

EL
A

TE
D

 
M

A
C

U
LA

R
 

D
EG

EN
ER

A
TI

O
N

isotope dilution 
HPLC-ESI(+)-MS 
operating in MRM mode

AMD patients plasma 
peripheral blood 
monocytes

4β-HC, TRIOL, 7-KC, 24S-HC, 
27-HC

plasma: 4β-HC TRIOL 
24S-HC
monocytes: 7-KC
(vs. control)
only 24S-HC specifically 
associates to AMD 
independently from age

[79]

isotope dilution
GC-MS

BC patients in 
treatment with 
Tamoxifen or with 
aromatase inhibitors

serum (total)
4β-HC, 5α,6α-EPOX, 5β,6β-EPOX, 
OCDO, 7α-HC, 7β-HC, 7-KC, 
TRIOL, 24S-HC, 25-HC, 27-HC

Tamoxifen treatment: 4β-HC 
7α-HC 24S-HC 25-HC
aromatase inhibitors treatment: 
5β,6β-EPOX 7-KC 25-HC 
27-HC
(vs. baseline)

[83]

isotope dilution
GC-MS

BC patients breast tissue 
breast cells 

5α,6α-EPOX, 5β,6β-EPOX, TRIOL, 
OCDO

breast tissue: 5α,6α-EPOX 
5β,6β-EPOX TRIOL OCDO
(vs. paired normal adjacent 
tissue)

[85]

isotope dilution 
UPLC-APCI(+)-MS/MS

BC patients before 
and after tumor 
removal

plasma 7α-HC, 7-KC, 25-HC, 27-HC after tumor removal: 7-KC
(vs. paired sampling before 
tumor removal)

[86]

B
R

EA
ST

 C
A

N
C

ER

Girard T derivatization 
followed by isotope 
dilution fast LC-MS/MS 
coupled with on-line 
sample clean-up system 

estrogen receptor 
positive and estrogen 
receptor negative BC 
patients

BC tumor 
(consecutive 
slices)

(free and total)
22R-HC, 24S-HC, 25-HC, 27-HC

large intra-tumor variations of all 
oxysterols 

no significant differences in 
oxysterol amounts between 
estrogen receptor positive and 
estrogen receptor negative BC

significant correlation between 
free and esterified 27-HC and 
25-HC in estrogen receptor 
positive BC

[89]



H
EP

A
TI

TI
S 

C piconyl ester 
derivatization followed by 
isotope dilution 
HPLC-ESI-MS/MS

chronic hepatitis C 
patients

serum (total)
4β-HC, 7α-HC, 22R-HC, 24S-HC, 
25-HC,24S,25-EPOX, 27-HC
(free) 
7α-HCO

4β-HC 7α-HC 25-HC
(vs. control)

[90]
IN

FL
A

M
M

A
TO

R
Y

 
B

O
W

EL
  D

IS
EA

SE
S semi-quantitative 

HPLC-APCI(+)-MS
Crohn’s disease 
patients and 
ulcerative colitis

colon (free)
4β-HC, 5α,6α-EPOX, 5β,6β-EPOX, 
5β,6β-diHC, 7α-HCO, 7-HC, 7-KC, 
25-HC, 27-HC

7α-HCO 25-HC 27-HC
(vs. control)

[95] 



Table 2. 
Oxysterol evaluation in pathological conditions by lipidomics analyses of animal specimens. (total: an alkaline hydrolysis step was performed to give free and 
esterified oxysterols)

PATHOLOGY ANALYTICAL 
ASPECTS

SUBJECTS SPECIMEN ANALYTES MAIN OBSERVATIONS REF.

isotope dilution
GC-MS/MS

trained dyslipidemic 
mice

plasma 
aortic arch

(total)
7α-HC, 7β-HC, 7-KC, 
25-HC, 27-HC

plasma: no change for all oxysterols
aortic arch: 7β-HC
25-HC and 27-HC n.d.
(vs. sedentary mice)

[22]

GC-MS hamsters fed high 
cholesterol diet with or 
without antioxidant 
supplementation

liver (total)
7-KC, 24S-HC,
25-HC, 27-HC

25-HC 27-HC
(vs. hamsters fed high cholesterol diet free of 
antioxidants) 

[23]
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ER
O
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M
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isotope dilution 
LC-SIM-APCI-MS

female mice and paired 
newly-weaned 
offspring fed high 
cholesterol diet with or 
without phytosterol 
supplementation

serum
liver

(total)
7α-HC, 7β-HC, 7-KC, 
24S-HC, 25-HC, 
27-HC

maternal serum,  without phytosterol 
supplementation: 7α-HC 7β-HC 7-KC 
24S-HC 25-HC 27-HC

maternal liver,  without phytosterol 
supplementation: 7α-HC 7β-HC 
7-KC 24S-HC 25-HC 27-HC

maternal serum and liver, with phytosterol 
supplementation: no differences for all 
oxysterols

newly-weaned offspring serum without 
phytosterol supplementation: 7α-HC 
7β-HC 7-KC 24S-HC 25-HC
27-HC

newly-weaned offspring liver, without 
phytosterol supplementation: 7β-HC

newly-weaned offspring serum and liver, with 
phytosterol supplementation: no differences 
for all oxysterols

(vs. chow-fed animals)

[24]
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O

M
E

enzyme-assisted 
charge-tagging 
derivatization 
followed by 
LC-ESI-MSn

Cyp27A1 knock-down 
mice

plasma 
brain

(free)
over 50 cholesterol 
metabolites and 
precursors

formation of (25R)26,7α- and (25S)26,7α-
dihydroxy epimers of oxysterols and 
cholestenoic acids

wild type mice plasma:
7α-hydroxy-3-oxocholest-4-en-(25R)26-oic 
ac.  > 7α-hydroxy-3-oxocholest-4-en-(25S)26-
oic ac.
 
knock-down mice plasma:
7α-hydroxy-3-oxocholest-4-en-(25S)26-oic 
ac. > 7α-hydroxy-3-oxocholest-4-en-(25R)26-
oic ac. 

[29]

isotope dilution
 GC-MS

male mice fed a high 
cholesterol diet  

plasma
liver
adipose tissue

(total)
4β-HC, 5α,6α-EPOX, 
5β,6β-EPOX,  7α-HC, 
7β-HC, 7-KC, 25-HC, 
27-HC

plasma: 4β-HC 5α,6α-EPOX 
5β,6β-EPOX  7α-HC 7β-HC
27-HC
liver: 4β-HC
adipose tissue: 4β-HC 27-HC
(vs. chow-fed animals)

[32]
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B
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isotope dilution
 HPLC-APCI(+)-MS

male mice fed a high 
cholesterol diet  

liver
adipose tissue

(free)
4β-HC, 5α,6α-EPOX, 
5β,6β-EPOX, 
5α,6β-diHC, 7α-HC, 
7α-HCO, 7-KC, 
25-HC, 7α ,25-diHC, 
7α,27-diHC, 27-HC

liver: 4β-HC  7α,25-diHC
7α-HCO 27-HC
adipose tissue: 7α,27-diHC n.d.
no change for the other oxysterols 
(vs. lean mice)

[33]

M
U

LT
IP

LE
 S

C
LE

R
O

SI
S semi-quantitative

LC-APCI-MS
MSdis model 
(experimental 
autoimmune 
encephalomyelitis) 
mice

brain stem (free)
4β-HC, 5α,6α-EPOX, 
5β,6β-EPOX, 
5α,6β-diHC, 7-HC, 
7-KC, 7α-HCO, 
24S-HC, 
24S,25-EPOX, 
7α,25-diHC, 27-HC, 
7α,27-diHC

5α,6β-diHC 7-KC 24S,25-EPOX 
7α,25-diHC
(vs. control)

[49]



semi-quantitative 
HPLC-APCI-MS/MS

genetic SLO mouse 
model

brain 
liver

(free) 
7-DHC, DHCEO,
4α-OH-7-DHC, 
4β-OH-7-DHC, 7-KC, 
24-OH-7-DHC

 

SLO mice: presence of all oxysterols in both 
tissues

brain 7-DHC and DHCEO > liver 7-DHC and 
DHCEO 
brain 4α- and 4β-hydroxy-7-DHC < liver 4α- 
and 4β-hydroxy-7-DHC

wild type-mice: 7-DHC, DHCEO,
4α-OH-7-DHC, 4β-OH-7-DHC, 4-OH-7-DHC 
n.d. in both tissues

[73]

enzyme-assisted 
charge-tagging 
derivatization 
followed by semi-
quantitative
LC-ESI-MSn

SLO mouse model brain (free)
6β-HC, 7β-HC, 
7-DHC and its 
derivatives, 8-DHC, 
24S-HC, 
24S,25-EPOX

6β-HC 7β-HC 7-DHC 
7-DHC derivatives 8-DHC 
24S-HC 24S,25-EPOX
(vs. wild type mice)

[74]
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semi-quantitative 
HPLC-APCI-MS/MS

SLO rat model brain
liver
serum

(free in brain and 
liver, total in serum)
7-DHC,
4α-OH-7-DHC, 
4β-OH-7-DHC, 
DHCEO, 7-KC,
24-OH-7-DHC

7-DHC, 4α-OH-7-DHC, 4β-OH-7-DHC, 
DHCEO, 24-OH-7-DHC n.d. in all tissues of 
control animals

brain and liver: 7-KC
(vs. control animals)

the method does not allow quantification of 
serum 4α-OH-7-DHC, 4β-OH-7-DHC, 
7-KC

[75]
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D
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A
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O
N

Isotope dilution 
HPLC-ESI-MS 

cholesterol-fed rabbits retina (total)
4β-HC, 7α-HC, 
22-HC, 24S-HC, 
25-HC, 27-HC

all oxysterols 
(vs. chow-fed animals)

[78]
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semi-quantitative
GC-MS

liver fluke-infected 
hamsters

liver (total)
3-K4, 3-K7, 3-KD, 
7-KD, TRIOL

3-K4 TRIOL
(vs. control animals)

[91]

C
O

LI
TI

S

semi-quantitative 
HPLC-APCI(+)-MS

acute and chronic 
colitis mouse model 

colon
plasma

(free)
4β-HC, 5α,6α-EPOX, 
5β,6β-EPOX, 
5β,6β-diHC, 7-HC, 
7α-HCO, 7-KC, 
25-HC, 7α,25diHC, 
27-HC

colon: 4β-HC in all colitis models 
(vs. control animals)

[95]


