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Abstract 
Neuroendocrine tumors (NET) constitute an heterogenous group of malignancies with 

various clinical presentations and growth rates but all rising from neuroendocrine cells 

located all over the body. NET present a relatively low frequency disease being mostly 

represented by gastroenteropancreatic (GEP) and bronchopulmonary tumors (pNET); on 

the other hand an increasing frequency and prevalence has been associated to NET. Beside 

the great effort of the latest years, management of NET is still a critical unmet point due to 

the lack in the knowledge of the biology of the disease, lack of adequate biomarkers, late 

presentation, the relative insensitivity of imaging modalities and a paucity of predictably 
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effective treatment options. In this context Ca2+  signals, being pivotal molecular devices in 

sensing and integrating signals from the microenvironment, are emerging to be particularly 

relevant in cancer, where they mediate interactions between tumor cells and the tumor 

microenvironment to drive different aspects of neoplastic progression (e.g. cell proliferation 

and survival, cell invasiveness and pro-angiogenetic programs). Indeed, ion channels 

represent good potential pharmacological targets due to their location on the plasma 

membrane, where they can be easily accessed by drugs. The present review aims to provide 

a critical and up to date overview on NET development integrating Ca2+  signals involvement. 

In this perspective, we first give an introduction to NET and Ca2+  channels and then describe 

the different families of Ca2+  channels implicated in NET, namely ionotropic receptors, 

voltage-dependent Ca2+ channels, Transient Receptor Potential channels as well as 

intracellular  Ca2+  channels and their signaling molecules. 

 

Introduction 
Neuroendocrine tumors (NET) represent a group of a variety of malignancies with an 

heterogeneous histology. They rise from neuroendocrine cells located all over the body [1]. 

The term neuroendocrine refers to the “neuro” (identified as presence of dense core 

granules) and “endocrine” properties (identified as ability to secrete monoamine) of the cells 

composing the mass. NET is a relatively low incidence disease (about 0.5% of the total 

estimated diagnosed tumors) but have exhibited an increasing frequency and prevalence, 

with the most common being gastroenteropancreatic (GEP), bronchopulmonary (pNET),  

thymus  tumors and several uncommon localizations such as ovaries, heart and ear [2,3]. 

Although classification is quite confusing, in general NET can be classified into two different 

groups based on clinical behavior, histology, and proliferation rate: low grade indolent 

tumors (well differentiated cells) versus high grade aggressive carcinomas (poorly 

differentiated cells). 

Well differentiated NET express typical neuroendocrine markers such as chromogranin A 

(CgA) and synaptophysin (Syn); on the contrary, poorly differentiated NET cells present a 

sheet like proliferation more typical of carcinomas with limited immunocytochemical staining 

patterns for neuroendocrine markers (diffuse expression of Syn, faint or focal staining for 

CgA). Up to 40% of NET contain elements of non-neuroendocrine histology; by definition, 

the neuroendocrine component has to exceed 30% of the tumor to be called NET; otherwise, 

it is classified as a mixed adenoneuroendocrine carcinoma [2]. Other useful markers are the 
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somatostatins receptors (SSR) whose identification and quantification by 

immunohistochemistry or imaging are very useful to identify and predict the response to 

somatostatins analogs [3].  

The general treatment for low-grade tumors is surgical resection while unresectable and 

symptomatic disease is treated with somatostatin analogs and/or interferon-α even though 

tumor regression with these agents is rare [2,4,5]. In contrast, etoposide/platinum-based 

chemotherapy is the mainstay of treatment for high-grade or metastatic neuroendocrine 

tumors (NET). As an alternative, Peptide Receptor Radionucleotide Therapy (PRRT) has 

been recently approved both in Europe and in US. PRRT relies on the use of 

somatoreceptors ligand conjugated with radioactive isotopes such as yttrium-90 and/or 

lutetium-177 for treatment purposes [6]. NET are also highly vascularized thus angiogenesis 

inhibitors such as sunitinib or VEGF inhibitors are good candidates for treatment [2]. 

Beside the great effort of the latest years, management of NET is still a critical unmet point 

due to the lack in the knowledge of the biology of the disease, lack of adequate biomarkers 

allowing to identify the primary tumor site or to differentiate tumor grading, late presentation, 

the relative insensitivity of imaging modalities and a paucity of predictably effective treatment 

options [3].  

 

Ca2+  homeostasis deregulation in cancer 
Accumulating evidence demonstrates that the development of several cancers, including 

NET, involves altered Ca2+  homeostasis and aberrant ion channel expression [7,8]. This is 

not surprising considering the multifaceted role of Ca2+  as an ubiquitous second messenger 

which is involved in the tuning of multiple fundamental cellular functions [9].  It has to be 

considered that the ubiquity of Ca2+ signals is not in antithesis with a specific role on a 

particular oncogenic mechanism. Each cell possesses indeed a Ca2+ machinery that 

enables the activation of Ca2+ signals of particular amplitude, frequency and intracellular 

location. The presence of particular fingerprints allows Ca2+ to control specific cellular 

functions that may be altered during cancer progression [7,10]. Intracellular Ca2+ 

concentration, [Ca2+]i, is finely regulated and the different mechanisms involved in Ca2+ 

homeostasis are usually referred to as “Ca2+ toolkit” and include Ca2+-permeable channels, 

pumps and exchangers [11]. The concentration gradient between intracellular cytosolic free 

[Ca2+] (~100 nM) and Ca2+ in extracellular fluids (~1 mM) is very large as compared with 

other ions, being about 1:10000. This gradient is assured by several “ON” and “OFF” 
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mechanisms that finally results in Ca2+ signals that can be codified in amplitude and 

frequencies. As regarding the “ON” mechanisms, [Ca2+]i can increase via two different 

mechanisms: release form intracellular stores (mainly ER, but also mitochondria or 

endolysosomes as an example) or entry from extracellular medium via Ca2+-permeable ion 

channels opened on the plasma membrane thanks to the strong electrochemical gradient 

that promotes the influx of Ca2+ into the cell [11]. 

Ion channels represent therefore a good potential pharmacological target due also to their 

location on the plasma membrane, where they can be easily accessed by drugs. Since the 

first reports identifying the role of ion channels in cancer development [12–15], the field has 

undergone an exponential development giving rise to a large consensus in the scientific 

community to consider ion channels in cancer development as “oncochannelopathy” [16,17]. 

Beside ion channels, altered Ca2+-regulated proteins have been also extensively 

investigated as possible target to modulate cancer development [7].  

A general classification of Ca2+ channels can be described on the basis of the gating 

mechanism. In this context the studies of electrical excitability of 1950s an 60s provided 

good basis for classification in Voltage-gated channels (VGC) and Ligand-gated channels 

(LGC). Voltage gated Ca2+ channels are comprehensive of three voltage-gated calcium 

channel subfamilies: CaV1; CaV2; and CaV3 encoded by ten genes [18].  Within the LGC 

classification can be achieved according to the nature of signaling molecule (ligand), which 

activated them (e.g., acetylcholine, glutamate, serotonin, ATP). In more recent years, 

intense studies led to an exponential increase in the number of ion channel types and 

families thanks to the application of molecular biology techniques to the cloning of their gene 

[16]. In particular the cloning of Transient receptor potential (TRP) ion channels gave rise to 

a whole new family of channels which are good candidates for mediated non-voltage gated 

Ca2+ signals. TRP channels include ion channels with high selectivity for Ca2+ and potential 

constitutive activity (for example, TRPV5 and TRPV6), as well as temperature-sensitive 

channels such as the cold sensor TRPM8 and the heat and capsaicin (hot chilly component)-

sensitive TRPV1 [19]; different TRP channels are activated by second messengers and can 

promote Ca2+ influx via store operated Ca2+ entry (SOCE) which is activated in response to 

endoplasmic reticulum (ER) Ca2+ stores depletion. In physiological conditions this is achived 

by agonist-stimulated inositol 1,4,5-trisphosphate (IP3) generation and release of ER Ca2+ 

through the IP3 receptor (IP3R). In turn, Ca2+ release is detected by the ER Ca2+ sensor 

stromal interaction molecule 1 (STIM1). Upon Ca2+ store depletion, STIM1 protein forms 
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clusters and subsequently interact with TRP channels proteins found at the plasma 

membrane, leading to activation of Ca2+ influx [20].  Another important Ca2+ channel is 

calcium release activated calcium channel protein 1 (ORAI1), involved in SOCE [21]. In 

particular strong evidences  show that beside STIM1, also STIM2 is involved in ORAI1 

activation under low agonist, low ER ca2+ release, by promoting STIM1 clustering in ER-PM 

junctions  and thus increasing assembly of the ORAI1-STIM1 complex and activation of 

SOCE [22,23]. ORAI family of channels comprehend other two related proteins ORAI2 and 

ORAI3, which mediates not SOCE (NSOCE) Ca2+ signals as homotetramers but can 

mediate SOCE Ca2+ signals in heteromeric channels composed of ORAI isoforms 

particulary in neurons where ORAI2 is likely to be the most candidate for SOCE [24–26]. 

In order to categorize all the channels set expressed at cellular level, the term “channelome” 

has been reported in analogy with the widely accepted “genome”, “proteome” and 

“metabolome” and the branch of research focused on the study of ion “channelome” has 

been referred to as “channelomic”[16]. 

In this regard identification of the “channelome” in specific cancer types is especially 

important, since its determination might help to set up strategies to specifically target cancer 

cells but not healthy tissues, in contrast to the most widely used chemotherapics which affect 

the most rapidly proliferating cells. In addition, the tissue-specific location of these channels 

and their variable structure could render the treatment of oncochannelopathies possible, 

without causing considerable side effects to other organs (liver, kidney, central nervous 

system, medulla etc). 

  

Ionotropic receptors and NET progression: NMDAR 
Ionotropic receptors are highly expressed and play key roles in different crucial aspects of 

neuroendocrine cell physiology ranging from excitation, synaptic release and gene 

expression. It is therefore not surprising that alteration of their function is involved in several 

hallmarks of NET progression. 

Among the ionotropic receptor, N-methyl-D-aspartate receptor (NMDAR) is an ionotropic 

glutamate receptor present in most excitatory neuronal synapses where it modulates 

synaptic plasticity with peculiar roles in learning and memory as well as neuron maturation. 

NMDAR is a non-selective Ca2+-permeable channel also depicted as “coincidence receptor” 

due to its voltage-dependent inhibition by Mg2+ [27]. Expression and functional activity of 

NMDAR has been reported in different cancer tissue and cell types such as small-cell lung 
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cancer and breast cancer [28–30] or prostate cancer [31]. More recently different research 

papers implicated NMDAR in pancreatic neuroendocrine cancer (PNET) in vivo as well as 

in vitro [32]. The authors showed that NMDAR is upregulated at the periphery of PNET 

tumors, both in the Rip1-Tag2 mouse model as well as in human tissue microarrays [33]. 

Inhibition or downregulation of NMADR but not AMPAR, another glutamate ionotropic 

receptor, significantly inhibits cell invasion. Interestingly NMADR is associate to vGlut family 

proteins, vesicular Glutamate transporters that export Glutamate in presynaptic membrane 

to initiate the signals by activating postsynaptic membrane. The authors postulated that in 

PNET autocrine glutamate secretion is involved in their capability for invasion. More recently 

this hypothesis has been strengthened by showing the electrophysiological inhibition of 

autocrine-activated NMDAR activity by vGlut inhibitor treatment [32]. The activation of 

NMDAR signaling is followed by an increased phosphorylation of calmodulin kinase type II 

(CaMK-II) and calmodulin kinase type IV (CaMK-IV), leading to a modest increase in CREB 

phosphorylation at Ser133. These data together with BAPTA-AM inhibition of NMDAR-

mediated invasion, clearly showed a central role of Ca2+ signaling in the process [33]. 

Interestingly Hanan and collegues proposed an interesting mechanism by which NMDAR in 

PNET cancer cells can hijak the glutamate-NMDAR signaling normally used by neurons to 

promote cell invasion by a cancer specific mechanism. The authors hypothesized that the 

high interstitial fluid pressure (typical of solid tumors) and the consequent pressure drop at 

tumor margins, activates glutamate release via mechano-sensory pathway. In turn 

glutamate release promotes NMDAR activation with consequent intracellular Ca2+-mediated 

signal transduction that promotes cell invasion [33].  

 

Voltage-gated Ca2+ channels and NET progression  
A close correlation between voltage-gated Ca2+ channels and neurendocrine differentiation 

(NED) has been extensively observed in prostate cancer [34,35]. Indeed the presence of 

neuroendocrine markers like CgA is correlated with prostate cancer dedifferentiation [36] 

and the presence of neuroendocrine cells in prostate cancer is correlated to a negative 

prognosis [37]. This is mainly due to the secretion of many neuropeptides with mitogenic 

activities like parathyroid hormone-related peptide, calcitonin, or gastrin-related peptides by 

neuroendocrine prostate cells which in turn could be responsible for the progression of 

cancer toward an androgen-independent stage. In this context, neuroendocrine prostate 

cancer cells overexpress voltage-dependent calcium current of the T-type family and in 
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particular the channel subunit involved in this calcium current was shown to be the CaV3.2 

( a1H) pore subunit [34]. This overexpression is attributable to upregulation of early growth 

response 1 (Egr-1) and downregulation of repressor element (RE)-1- silencing transcription 

factor (REST), that positively and negatively regulate transcriptional expression of Cav3.2, 

respectively [38]. Functional expression of CaV3.2 (a1H) sustains morphological 

differentiation and survival of neuroendocrine differentiated cells [39,40]. Beside sustaining 

the NED of prostate cells, Ca2+ signals activated by iononomycin or thapsigargin treatments 

significantly promote secretion of prostatic acid phosphatase (PAP) form NED. The specific 

role for CaV3.2 (a1H) was demonstrated by means of both pharmacological inhibitors or 

siRNA specifically directed against the channel. Both approaches show a clear involvement 

of CaV3.2 (a1H) in promoting both synthesis as well as secretion of PAP, and most likely 

serotonin, therefore being responsible of an enhance autocrine/paracrine secretion in 

neuroendocrine prostate cancer. This phenomenon has been suggested to be in turn 

responsible for the progression of prostate cancer toward an androgen-independent stage 

[35]. Because of their lower threshold for activation, from T-type Ca2+ channel activity can 

be significant at membrane potentials close to rest, resulting in a “window current” and 

consequent basal Ca2+ entry that is likely to be responsible for the neuropeptide secretion, 

explaining the role of these channels even in the absence of action potential [35].  

Pancreatic neuroendocrine cancer cells (BON) express a different subset of Voltage gated 

Ca2+ channels which are involved in CgA release in BON cells or insulin release from 

Insulinoma INS cell lines. In both cases the secretion relies in fact on R-type Cav (CaV 2.3). 

This suggest a critical role in certain clinical characteristics of NET, such as the 

hypersecretion syndrome [41]. Interestingly CaV2.3 are also involved in somatostatins-

mediated inhibitory mechanism of insulin release in pancreatic ß cells. Activation of 

somatostatins receptors 2 decrease significantly  CaV2.3-mediated Ca2+ signals with a 

consequence inhibition of Insulin release [42].  

 

TRP channels NET 
The TRP family of channels encompass 27 members of non voltage-gated cation channels 

Ca2+-permeable although not selective for most of them [43]. Several TRP channels result 

de-regulated in cancer cells and have been suggested as valuable markers in predicting 

cancer progression and as potential targets for pharmaceutical therapy [7,44] . Concerning 



8 

 

NET, TRP channels have been involved in neurosecretion and cell proliferation  and in 

particular TRPM8, TRPV1 and TRPV6 in pancreatic NET BON cells lines as well as in 

primary PNET cells [45–47]. 

Cold/menthol-sensitive TRPM8 activation by icilin elicits [Ca2+]i increases and secretion of 

neurotensin (NT) in BON cells as well as in primary pancreatic NET [45]. Interestingly NT is 

not expressed in healthy pancreas, while its expression and secretion could be switched on 

during tumorigenesis of pancreatic endocrine cells. The release of NT could have a double 

physiopathological role: on one side NT is a potent stimulator for a number of secretion 

processes of the gastrointestinal tract and increased local and systemic levels of NT may 

contribute to hypersecretion characteristic of the carcinoid phenotype. On the other hand, 

NT also sustain cell proliferation and enhanced tumor growth in different in vitro and in vivo 

studies [48]. However, it should be further clarified how the channel activation induces NT 

secretion. TRPM8 has been previously reported to participate in secretory pathways in 

particular in cold-induced mucus hypersecretion of bronchial epithelial cells [49]. TRPM8-

mediated airway mucus hypersecretion is induced by cold air in airway epithelial cells 

through the Ca2+-PLC-PIP2-PKC-MARCKS signaling pathway. A secretory function has 

also been suggested for this channel in prostate due to its localization in the epithelial cells 

at the apical side of the prostatic acini [50]. Even though this hypothesis was not further 

demonstrated, TRPM8 high expression was correlated with early prostate tumor 

progression while  the channels expression decreases with tumor progression to the late, 

invasive, androgen-insensitive stage (for a review see [51]). In this context it has emerged 

as an important factor in cell migration and prostate cancer progression showing a protective 

role in metastatic prostate cancer due to its inhibition of cancer cell migration [52–55]. On 

the other hand short TRPM8 (sM8-18) isoform seems to have an opposite role leading to 

an increase in prostate cancer cell migration and invasiveness through the activation of 

MMP-2 [56]. This effect could also result from sM8-18 inhibiting full- length TRPM8, as we 

have shown that the channel negatively regulates migration, even if the interaction between 

short isoforms and ER-located TRPM8 has not yet been confirmed. In this respect given the 

aggressiveness of NET it would be interesting to investigate which isoforms are expressed 

in NET and whether they affect cell migration in addition to NT secretion. 

Beside TRPM8, TRPV1 is also implicated in neurosecretion in on BON-1 PNET cells. In 

particular TRPV1 activation by capsaicin promotes CgA secretion, a common marker 

indicating hormone neuropeptides and biogenes amines release [57]. TRPV1- mediated 
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CgA release could have some potential relevance on PNET physiopathology considering 

the fact that TRPV1 activity is regulated by somatostatins which inhibits also CgA release 

[58]. It is easy to speculate that TRPV1 could be one of the mechanisms involved in CgA 

secretion as target of somatostatins activity, which are important therapeutic targets for NET. 

Finally, TRPV6 is expressed in several pancreatic NET cells including BON-1 where it 

controls Ca2+ homeostasis. The presence of TRPV6 in neuroendocrine cancer cells 

mediates cell proliferation: TRPV6 downregulation reduces cell growth by approximately 30 

% and leads to declined CCND1 and CDK4 expression, without affecting CCND2. TRPV6-

mediated cell proliferation is dependent upon NFAT-Ca2+ activation as shown by TRPV6 

downregulation [47]. These data are in accordance with previously reported role for TRPV6 

in both prostate and breast cancer proliferation and growth. In particular TRPV6-mediated 

prostate cancer cell proliferation implicates NFAT activation [59]. 

 

Intracellular Ca2+ signals in NET 
The last paragraph of the present review is dedicated to the discussion of the role of 

intracellular Ca2+ signals in NET. We will analyze in particular the role of specific Ca2+ entry 

mechanisms triggered by the release from intracellular stores giving rise to SOCE or 

alternatively NSOCE mechanisms [11]. 

The role of Ca2+ homeostasis in neuroendocrine differentiation has been clearly established 

in prostate cancer. As reported in previous paragraphs, in vitro NED differentiation is a poor 

prognosis marker in prostate cancer progression and is frequently associated with androgen 

independent states of cancer [37]. In vitro NED differentiation of epithelial prostate LnCaP 

cell line induced by androgen depletion or [cAMP] increase, causes marked changes in Ca2+ 

homeostasis including reduced filling of the ER Ca2+ store, the decreased expression of both 

endolemmal SERCA 2b Ca2+ ATPase and the luminal Ca2+ binding/storage chaperone 

calreticulin, as well as a substantial downregulation of SOC current (ISOC) [60]. The reduction 

of SOCE is due to cytoskeleton reorganization, especially F-actin over-polymerization [61]. 

As final effect, SOCE downregulation in NE cells is involved in an increase of both 

thapsigargin (Tg) or TNFa apoptosis resistance [60]. 

SOCE activation has been also described in different cell lines of gastroenteropancreatic 

neuroendocrine tumors (GPNET). In particular SOCE-mediated Ca2+ signals can be 

recorded both by exogenous store depletion by means of cyclopiazonic acid (CPA) or 

muscarinic receptor activation by carbachol and are significantly inhibited by Gd3+ 1uM or 
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BTP-2 perfusion. However the authors did not describe any cellular function associated with 

SOCE [62]. 

Interestingly, recently NSOCE-mediated Ca2+ signals have been described in GPNET cell 

lines BON-1 after exogenous application of arachidonic acid (AA). Form the molecular point 

of view both ORAI1 and ORAI3 channels are required for AA-mediated Ca2+ signals. 

However, Orai1 was necessary for mediating SOCE, whereas Orai1 and Orai3 were both 

required for AA-induced Ca2+ entry as well as BON cell migration. Moreover activation of 

NSOCE by AA correlates with an increase in BON-1 cell migration as well as induction of 

neuroendocrine mesenchymal transition [63]. These data are in accordance with previously 

reports showing that AA is a key player in cell migration [64,65]. 

 

Conclusions 
Even though few Ca2+ channels and their signaling molecules have been shown to be 

implicated in NET, they constitute a growing field of interest in last decades. Indeed, the 

expression of several channels from different families (ionotropic receptors, voltage-gated, 

TRP and SOCE components) were shown to be deregulated in NET, affecting thus mainly 

neurosecretion, cell proliferation, neuroendocrine cell differentiation and invasion mostly in 

GPNET. Interestingly the drivers of this deregulation are not the same for all channels 

analyzed. The role in NET progression is associated either to increased expression or 

specific activation due to peculiar tumor microenvironment. In this context, it is in fact quite 

intriguing the link between high intracellular interstitial pressure and mechano-activated 

Glutamate release which in turn promotes NMDAR activation and Ca2+ mediated cell 

invasion proposed by Hanahn and collegues [33]. It is therefore the peculiar physical 

characteristics of tumor microenvironment which is responsible for NMDAR specific activity 

in cancer cells. On the other hand, as regarding T-type Ca2+ channels role in neuroendocrine 

prostate cancer cells, Mariot and collegues described an upregulation of CaV3.2 channel 

subunit aH1 in neuroendocrine differentiated LNCaP as compared with control (not 

differentiated) LNCaP [35]. Moreover, the marked changes in Ca2+ homeostasis observed 

in NED differentiated LNCaP cells, is due to cytoskeleton reorganization, especially F-actin 

over-polymerization as discussed by Prevarskaya and collegues [61]. 

It would be interesting though to further characterize the molecular mechanisms underlying 

these cellular functions to carcinogenesis and investigate putative consequences in Ca2+ 

homeostasis. In this perspective, there have been several cases reports linking NET in 
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thymus, pancreas and gastrointestinal tract to hypercalcemia [66,67] suggesting that 

excessive hormones secretion influences Ca2+ channels and their signaling pathway. 

Increased serum Ca2+ levels in NET were mostly correlated with high 1,25-dihydroxyvitamin 

D and parathyroid hormone-related protein (PTH-rP) secretion. This link has to be further 

investigated since it is well known that 1,25-dihydroxyvitamin D and PTH regulate Ca2+ 

channel expression and in particular the one of TRPV5 and TRPV6, both involved in Ca2+ 

intestinal absorption, distal tubular reabsorption and bone resorption [68]. 
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