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1 Abstract

2 Artificial diets represent an essential tool for investigations on intimate 

3 relationship between plant pathogens and their vectors. Previous research failed 

4 in devising an artificial diet delivery system for the meadow spittlebug Philaenus 

5 spumarius, to date considered the most important vector of the bacterium Xylella 

6 fastidiosa in Europe. Here we describe a new delivery “tube-system” by which 

7 we succeeded in artificial feeding of P. spumarius with holidic diets (one sucrose-

8 diet and two amino-acids diets). Spittlebug probing and feeding behavior on either 

9 the tube-system, or a traditional “flat-system” realized out of a small Petri dish 

10 filled with diet and covered with stretched Parafilm®, was observed in real-time 

11 by video-EPG (Electrical Penetration Graph), in order to assess the occurrence of 

12 ingestion and excretion. Moreover, we evaluated P. spumarius survival on either 

13 the tube-system filled with the two holidic diets that gave the best EPG results, or 

14 an empty tube-system serving as control. Contrary to the flat-system, where just 

15 brief stylet insertions through the Parafilm® were recorded, the spittlebug ingested 

16 the artificial diets when delivered with the tube-system. Survival on the diets 

17 provided with the tube-system was significantly greater than the control, with no 

18 differences between the diets tested. Furthermore, the tube-system was suitable 

19 also for another spittlebug species shown to be a competent vector of X. fastidiosa, 

20 i.e. Neophilaenus campestris. The tool we devised opens new perspectives for 

21 investigations on X. fastidiosa/spittlebugs interactions, as well as for the 

22 functional analysis of mutant X. fastidiosa strains in respect to insect colonization 

23 and transmission.

24

25 Key words

26 Vector-borne plant pathogens; insect vectors; spittlebugs; EPG; probing and 

27 feeding behavior; artificial feeding.
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29 Introduction

30 As others vector-borne plant pathogens, the bacterium Xylella fastidiosa Wells 

31 (1987) “lives in two worlds” (Chatterjee et al., 2008), being capable of explore 

32 and exploit two different hosts, the plant and the insect vector. Consequently, the 

33 set-up of a long-term sustainable bacterium control strategy requires a deep 

34 understanding of the intimate bacterium-vector-host plant interactions. Artificial 

35 diet systems are useful to study how plant pathogens interact with their respective 

36 vectors, excluding host plant-vector interactions (Mitsuashi, 1979; Killiny and 

37 Almeida, 2009). For example, essential data on leafhoppers probing behavior and 

38 plant pathogen transmission mechanisms have been gathered through the 

39 application of artificial diets (Carter, 1927; Severin and Swezy, 1928; Storey, 

40 1932; Crane, 1971; Mitsuashi and Koyama, 1971; Kawabe and McLean, 1978; 

41 Triplehorn et al., 1984; Joost et al., 2006; Killiny and Almeida, 2009). X. 

42 fastidiosa is restricted to the xylem; xylem-sap feeding habit is apparently the only 

43 characteristic shared by its vectors, namely sharpshooters (Hemiptera: 

44 Cicadellidae: Cicadellinae) and spittlebugs (Hemiptera: Cercopoidea) (Purcell, 

45 1990; Redak et al., 2004; Esteves et al., 2018). Sharpshooters are considered the 

46 main vectors of X. fastidiosa throughout the American continent and Taiwan 

47 (Almeida et al., 2005; Tuan et al., 2015). On the contrary, spittlebugs are likely to 

48 play the main role in bacterial epidemiology in Europe (Cornara et al., 2018a). 

49 Indeed, the meadow spittlebug Philaenus spumarius L. (1758) (Hemiptera: 

50 Aphrophoridae) proved to be the main vector  of X. fastidiosa in olive orchards of 

51 Southern Italy (Saponari et al., 2014; Cornara et al., 2017a; Cornara et al., 2017b). 

52 Furthermore, data from surveys currently ongoing throughout Europe suggest its 

53 possible involvement in all the European outbreaks reported so far (EFSA, 2018; 

54 Morente et al., 2018a; Cruaud et al., 2018). Additionally, two other spittlebugs, 

55 i.e. Neophilaenus campestris Fallen (1805) (Hemiptera: Aphrophoridae) and 

56 Philaenus italosignus Drosopoulos & Remane (Hemiptera: Aphrophoridae), have 
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57 been shown to be competent vectors of the bacterium (EFSA, 2018). 

58 Understanding the intimate spittlebug-bacterium interaction might open new 

59 possibilities for disrupting the transmission process; however, as previously 

60 remarked, artificial diets are an essential tool for such investigations. 

61 Unfortunately, past attempts to artificially feed P. spumarius adults with 

62 traditional “flat” systems such as the commonly used sachets and artificial 

63 chambers were unsuccessful, independently on the diet used (Watson, 1999). 

64 Watson (1999) and Ponder et al. (2002) achieved spittlebug’s artificial feeding by 

65 using a stem perfusion system; nevertheless, stem perfusion requires a plant 

66 portion through which the diet is injected, thus does not allow neither direct 

67 observation of stylets activity during the probe, nor the complete exclusion of 

68 plant effects on bacterium-insect interaction. The failure of artificially feeding P. 

69 spumarius might be related to the lack of a proper stimulus required by the insect 

70 to begin a probe. Indeed, according to Backus and McLean (1985), mechanical 

71 stimuli are necessary for leafhoppers to initiate a probe, while chemical stimuli 

72 are required for the probe to continue, and for prolonged ingestion to ensue. P. 

73 spumarius usually prefers “rounded” tissues to “flat” ones; indeed, at least on 

74 woody hosts, the spittlebug tends to settle on leaf petioles and stems (Cornara , 

75 pers. obs.), grabbing the tissue with the anterior two pairs of legs, and pressing 

76 the tip of the stylet vertically down against the plant surface (Watson, 1999). 

77 Accordingly, the reason underlying the failure of traditional “flat” systems for P. 

78 spumarius artificial feeding would be their “non-resemblance” with a petiole or a 

79 stem, thus the lack of a mechanical/tactile stimulus triggering the probe. 

80 Therefore, setting up an artificial feeding system for P. spumarius, and more in 

81 general for spittlebugs, represents a major challenge in research on X. fastidiosa 

82 epidemics across Europe. In order to fill this knowledge gap, we tested if a new 

83 concept of artificial diet delivery system, designed to mimic a plant stem or leaf 

84 petiole, providing the insect with a more suitable surface to probe than a flat one, 
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85 would be feasible for P. spumarius artificial feeding. Furthermore, we tested the 

86 applicability of this system for other spittlebugs by carrying out further 

87 observations on N. campestris. The suitability of our feeding system versus a 

88 traditional “flat” system derived from a Petri dish was assessed through feeding 

89 behavioral observations performed with a combination of Electrical Penetration 

90 Graph (EPG) technique and video recording.  

91
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92 Material and Methods

93 Spittlebug collection and rearing

94 P. spumarius individuals used for the EPG recordings were collected, reared, 

95 and maintained following the protocol illustrated by Cornara et al. (2018b) 

96 slightly modified. Briefly, spittlebug nymphs were collected during spring, 2018 

97 in Sierra de Aracena (Huelva Spain) on Sonchus sp. L., Cirsium sp. (Miller), 

98 Borago officinalis L., Calendula sp. L., and Scolymus hispanicus L., and reared 

99 on one month old Sonchus oleraceus L. plants until adulthood. Both nymphs and 

100 adults were reared in the controlled-environmental facilities of Instituto de 

101 Ciencias Agrarias-Consejo Superior de Investigaciones Cientificas (ICA-CSIC, 

102 Madrid, Spain) in a walk-in growth chamber at 24:20°C  day:night temperature, 

103 humidity of ca. 60%, and photoperiod 14:10 light:dark. For colony maintenance, 

104 adults were transferred in groups of ten per plant to one month old S. oleraceus 

105 plants, which were replaced every two weeks. N. campestris were collected as 

106 adults on Bromus sp. plants in an olive orchard in Morata de Tajuña (Madrid, 

107 Spain) during fall 2017. The adults were maintained on three-week-old Bromus 

108 sp. plants replaced every two weeks, in groups of ten per plant, at the same 

109 conditions described above for P. spumarius. S. oleraceus and Bromus sp.  

110 plants used for spittlebugs rearing were seedlings germinated and maintained in 

111 a growth chamber (25:18 °C day:night temperature, 60% humidity, 16:8 

112 light:dark photoperiod) in 5L pots filled with universal soil: vermiculite (2:1), 

113 and water-fertilized every two days with a nutritional complex 20-20-20 (N:P:K) 

114 of Nutrichem 60 fertilizer (Miller Chemical & Fertilizer. Hanover, PA, USA) (1 

115 g/l).

116 Artificial diet delivery systems

117 For spittlebugs artificial feeding, we tested two delivery systems: the “Flat-

118 system” and the “Tube-system”. The Flat-system was similar to the one 

119 described by Trebicki et al. (2012) for Orosius orientalis Matsumura 
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120 (Hemiptera: Cicadellidae). Briefly, an artificial diet–feeding platform was 

121 constructed out of a small plastic Petri dish (1 x 3.5 cm); an EPG “diet” 

122 electrode was inserted inside the Petri dish through a hole drilled at the bottom 

123 of the dish, and sealed with hot-glue. The diet-electrode was connected to the 

124 EPG by a clamp cable. A five cm plastic stick was glued to the bottom of the 

125 dish, in order to secure the system with tape to a plastic holder. The bottom of 

126 the dish was covered with a piece of green tape. The Petri dish was filled to 

127 capacity with the diet, and a single layer of Parafilm® was stretched over the 

128 chamber carefully to prevent the occurrence of air bubbles. The set-up of the 

129 Flat-system is illustrated in Fig. 1.1. For the Tube-system (Fig. 1.2), two 

130 rectangular windows (3x12 mm), 15 mm distant from each other, were carved 

131 with a lancet blade on the surface of a 15 cm silicon tube (external diameter: 4 

132 mm; internal diameter: 2 mm; wall thickness: 1 mm). The side opposite to the 

133 window was covered with a green tape, without interfering with the openings. 

134 The windows were then covered with two layers of stretched Parafilm®. The 

135 tube was subsequently filled with the diet by using a syringe, avoiding the 

136 formation of air bubbles; once filled, the tube was bent in a semi-circular shape, 

137 and inserted in a 100ml Beaker containing the diet. Approximately five cm of 

138 the tube protruded out of the Beaker; this portion was the one exposed to insect 

139 feeding. 

140 For both the delivery systems, we tested holidic diets used by other authors for 

141 xylem-sap feeders: i) the sucrose-diet (Sucrose), used by Joost et al. (2006) for 

142 Homalodisca vitripennis Germar (1821) (Hemiptera: Cicadellidae) (previously 

143 Homalodisca coagulata); ii) the sharpshooter diet (SHPD), used by Killiny and 

144 Almeida (2009) for Graphocephala atropunctata Signoret (1854) (Hemiptera: 

145 Cicadellidae); iii) the XFM amino-acids diet (XFM), based on the amino-acids 

146 fraction of the XFM medium for X. fastidiosa described by Killiny and Almeida 

147 (2009).  Holidic diets were chosen since they are easier to handle and 
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148 standardize in routinely laboratory activity compared to meridic diets. 

149 Nevertheless, for the Flat-system, beside holidic diets, we also tested pure and 

150 diluted olive xylem sap extracted with a Scholander pressure bomb (3005 Series 

151 Plant Water Status Consoles, Soilmoisture Equipment Corp., Santa Barbara, CA, 

152 U.S.A), following the protocol described by Alexou and Peuke (2012). The diets 

153 used for the two systems, together with their compositions are reported in Tab. 

154 1.

155 Probing and feeding behavior observation

156 The spittlebug probing and feeding behaviour on the two artificial systems was 

157 observed and described through a combination of EPG and simultaneous video 

158 recording. Flat- and Tube- systems (not tested contemporary) were assembled 

159 inside a Faraday cage, in an acclimatized room (23 ±2°C). P. spumarius 

160 individuals were starved for three hours (1 hour for N. campestris; we observed 

161 that this species does not withstand longer starvation periods) inside an aerated 

162 Petri dish, then tethered with an 18 µm gold wire and connected to the EPG 

163 probe as described by Cornara et al. (2018b). The substrate copper electrode was 

164 inserted into the 100ml Beaker containing the diet. We recorded the probing 

165 behaviour with a Giga 4-DC EPG (EPG-systems, Wageningen, The 

166 Netherlands) at 1 Giga Ohm input resistance. Output from the EPG at 50x gain 

167 was digitalized at a rate of 100 samples per sec. per channel, and recorded using 

168 Stylet+ software (EPG-systems, Wageningen, The Netherlands). EPG 

169 recordings were set and adjusted following the indications of Cornara et al. 

170 (2018b). For P. spumarius, and for each combination delivery system/artificial 

171 diet, we carried out five 3-hour long EPG-assisted observations, with one single 

172 insect recorded per time, from 4 to 7 p.m. (thus a total of 15 hours of recording 

173 per delivery system/diet combination, with three males and two females per 

174 combination). During the EPG-recording, the activities of the tethered 

175 spittlebugs were simultaneously observed through a 600X 4.3" 3.6MP LCD 
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176 Display Electronic Digital Video Portable LED Microscope R9N7 (KKmoon, 

177 https://www.kkmoon.com) in order to: i) distinguish probing (stylet penetration) 

178 from non-probing signals (e.g. crawling and wire-pulling); ii) observe 

179 occurrence of excretions during feeding in artificial diets (we considered 

180 excretion as occurring in case multiple watery drops were shed by the spittlebug 

181 for an interval longer than 30sec). For N. campestris, we performed four 3-hour 

182 long EPG-assisted observation of the spittlebug probing and feeding behavior on 

183 the Tube-system filled with XFM-diet, following the same protocol used for P. 

184 spumarius. The main aim was to assess whether a spittlebug other than P. 

185 spumarius would feed from an artificial diet provided with the Tube-system.

186 EPG data analysis

187 The EPG waveforms obtained during artificial feeding were distinguished and 

188 correlated with their possible biological meaning through simultaneous 

189 observations and analysis of the video recorded, and by analogy to the ones 

190 previously reported by Joost et al. (2006) and Cornara et al. (2018b). The main 

191 goal of this work was to develop a suitable artificial diet delivery system for P. 

192 spumarius and other spittlebugs; EPG and video recording were used to 

193 discriminate probing from non-probing signals, and to verify the occurrence of 

194 ingestion. A complete characterization of P. spumarius feeding behavior on 

195 artificial diet, or a comparison of the diets used, were out of the purpose of this 

196 research. Nevertheless, we performed a basic analysis of the EPG recordings 

197 obtained from the different diets, in order to gather preliminary data for future 

198 work on spittlebug artificial feeding. Therefore, after identifying the typical 

199 waveform categories, we calculated a series of non-sequential and sequential 

200 variables of the EPG recordings. The non-sequential variables were: i) n probes: 

201 total number of probes performed by the insect; ii) n succ probes: number of 

202 probes during which the spittlebug ingested the diet; iii) np WDI: total duration 

203 of the non-probing phase per insect; iv) C WDI: total duration of the pathway 
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204 phase per insect; v) Xi WDI: total duration of the ingestion phase per insect; vi) 

205 Xi WDEI: duration of the single ingestion event per insect; vii) Xi NWEI: total 

206 number of ingestions performed per insect; viii) Xi>10min: occurrence of an 

207 ingestion longer than 10 minutes. The sequential variables were: i) Time to first 

208 C: time required by the spittlebug to start a probe from the beginning of the 

209 recording; ii) Time to first Xi: time required by the spittlebug to start an 

210 ingestion from the beginning of the recording; iii) Time from 1st C to Xi: time 

211 required by the spittlebug to start an ingestion after the first absolute probe. EPG 

212 data were elaborated with an Excel Workbook purposely developed for P. 

213 spumarius by Antonio J. Alvarez (Universidad de Almeria, Spain) (Cornara et 

214 al., 2018b). 

215 Probing and feeding behavioral differences among the three holidic diets tested 

216 were evaluated through Kruskall-Wallis test by ranks and Dunn test. Statistical 

217 analysis was conducted with the software R (R Core Team, 2018); differences 

218 were considered significant for p<0.1.

219 Survival test on the Tube system

220 Finally, we performed a survival test of P. spumarius on the Tube-system under 

221 non-choice conditions but without wiring the insect to the EPG device and 

222 allowing free movement inside a cage. We assessed P. spumarius survivorship 

223 on two diets that led to the best results during the EPG recordings, i.e. XFM and 

224 Sucrose. The test was conducted under laboratory conditions (T=24±2°C, 

225 HR=40%, constant artificial light), with 12 replicates per diet (six males and six 

226 females), plus six controls (three males and three females). Insects, caged inside 

227 a plastic and mesh cage, were offered the artificial diets contained in the tubes; 

228 the controls consisted of empty tubes not filled with diet (the setup is illustrated 

229 in Fig. 1.3). P. spumarius used for the survival test were one-month old adults 

230 obtained through indoor artificial rearing, following the protocol described by 

231 Morente et al. (2018b). Differences in survival either between the diets and the 
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232 control, or between the XFM and the Sucrose were evaluated by Cox 

233 Proportional-Hazards Model (Cox, 1972), with the statistical analysis performed 

234 with the software R (R Core Team, 2018); differences were considered 

235 significant for p<0.1. 

236
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237 Results 

238 Except for a few very quick stylets insertion attempts as short as one or two 

239 seconds (as observed by the help of the microscope video recorder), we achieved 

240 no probing with the Flat-system, regardless of the type of diet used. On the 

241 contrary, P. spumarius probed and fed readily from all the artificial diets provided 

242 with the Tube-system. The EPG signals produced on the artificial diets were 

243 distinguished in: i) non probing (np) signals, corresponding mainly to crawling 

244 and wire pulling (Fig. 2); ii) pathway/non ingestion waveform (C) (Fig. 3); iii) 

245 ingestion waveform (Xi) (Fig. 4). During one of the recordings on XFM we also 

246 observed an interruption of the ingestion activity similar to the N waveform 

247 described by Cornara et al. (2018b) (Fig. 4.f). The waveforms characteristics and 

248 their likely biological meaning are reported in Tab. 2. We observed the longest 

249 ingestion and a subsequent excretion of P. spumarius with the Tube-system 

250 containing the sucrose-diet (multiple watery drops excreted by the spittlebug 

251 during the occurrence of the ingestion waveform); excretion was not observed in 

252 the rest of the P. spumarius recorded. A summary of the sequential and non-

253 sequential variables calculated for the three diets provided to the meadow 

254 spittlebug with the Tube-system, calculated by pooling the recordings of the five 

255 insects per diet, is reported in Tab. 3; raw data (all the variables calculated for 

256 each one of the spittlebugs tested) are provided as supporting information 

257 (SuppInfo). One insect on SHPD and one on XFM jumped away 30 and 20 

258 minutes before the end of the recording, respectively (Tab. 3). 

259 Considering just the rough dataset of EPG variables, and those that could be 

260 important for artificial feeding applications aimed at X. fastidiosa acquisition, i.e. 

261 number of total and successful probes, total duration of ingestion and total number 

262 of ingestion events, SHPD was by far the least suitable of the diets tested. For 

263 Sucrose and XFM, we observed an overall greater number of probes on the former 

264 compared to the latter, although an opposite trend was evident considering the 
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265 number of probes during which ingestion occurred (defined as successful probes). 

266 Furthermore, despite ingestion was longer on sucrose-diet, the ingestion events in 

267 XFM were twice the number of those recorded on Sucrose.

268 The results of the Kruskall-Wallis test by ranks (χ2) and Dunn test (z), confirmed 

269 the overall better performance of the meadow spittlebug on XFM and Sucrose 

270 compared to the SHPD. P. spumarius performed significantly more successful 

271 probes (probes during which ingestion occurred) (χ2=4.865, p=0.744; z=-2.161, 

272 p=0.0922), longer total ingestion (χ2=5.232, p=0.073; z=-1.862, p=0.098), and 

273 greater number of ingestion events (χ2=4.972, p=0.083; z=-2.197, p=0.084) on 

274 XFM compared to SHPD. The single ingestion events were longer on Sucrose 

275 than on SHPD (χ2=4.997, p=0.082; z=-2.227, p=0.077). Finally, the spittlebug 

276 performed the first absolute probe on XFM earlier than on Sucrose (χ2=6.076, 

277 p=0.048; z=2.371, p=0.053).

278 Regarding the survival test, the survival time of P. spumarius on the diets 

279 provided with the tube system and the control was 13.25±1.14 hours (h) for XFM 

280 (min=9 h, max=21 h), 14.17±1.76 h for Sucrose (min= 6 h, max= 24 h), and 

281 9±1.46 h for the control (min= 4h, max= 13 h.). According to the Cox 

282 Proportional-Hazards Model, survival on the diets provided with the tube-system 

283 was statistically significantly longer than on the control, while no gender-related 

284 difference was observed (diet vs control: z= 2.141, p=0.0323; gender: z=-1.207; 

285 p=0.227). Moreover, the spittlebugs showed similar survival time on the two diets, 

286 with no statistically significant difference neither diet- nor gender-related (diet: 

287 z=-0.358 p=0.720; gender: z=-1.047; 0.295). 

288 During the survival test, all the insects including the controls were observed 

289 settling on the tube and probing through the Parafilm® membrane, or even 

290 apparently introducing their stylets through the tube itself, multiple times. 

291 We also successfully verified that our Tube-system was suitable for artificial 

292 feeding of N. campestris. Indeed, two out of the four spittlebugs connected to the 

293 EPG device were observed feeding on XFM diet (the only diet tested for N. 
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294 campestris) provided with the Tube-system. N. campestris produced clearly 

295 distinguishable ingestion waveforms (Fig. 4.e) very similar to those produced by 

296 P. spumarius.

297
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298 Discussion

299 Host selection by leafhoppers and planthoppers can be studied by analogy to an 

300 input-output relationship, with a stimulus being the input, and the response as 

301 output (Backus, 1985). P. spumarius bears a low number of antennal olfactory 

302 sensilla; thus it can be inferred that olfactory cues might not be as important as 

303 other stimuli (e.g. visual, tactile) during host plant location (Ranieri et al., 2016). 

304 Given the results of our tests, we suggest that P. spumarius requires a tactile 

305 stimulus to begin a probe. Indeed, as proven by the success of the Tube- versus 

306 the Flat-system, the meadow spittlebug needs a rounded/tubular surface to grab 

307 with the anterior four legs, in order to push the stylets through and start a probe. 

308 The green tape covering the bottom of the tube could also have played a role in 

309 triggering the spittlebug settlement. Mittler (1988) reported the use of green and 

310 yellow light in order to encourage aphids feeding on artificial diets. For aphids, 

311 as well as for other phytophagous insects, many investigations have addressed the 

312 role of plant spectral quality as principle stimulus in alighting behavior (reviewed 

313 in Fereres, 2016). On the contrary, except for few reports on attraction toward 

314 sticky traps of different colors (Wilson and Shade, 1967) and post-embryonic 

315 photoreceptors development (Keskinen and Meyer-Rochow, 2004), nothing is 

316 known about the role of visual cues in P. spumarius host seeking behavior. The 

317 study of visual and olfactory cues in this vector species may reveal important 

318 features that can potentially explain host plant selection and could be exploited to 

319 attract, collect and monitor more efficiently the spittlebug.

320 The main goal of this work was to devise a ready-to-use system to deliver artificial 

321 diet to spittlebugs. For this scope, we were more oriented toward holidic diets, 

322 which can be easily prepared and standardized in laboratory routinely activity 

323 compared to meridic diets. P. spumarius did not ingest holidic diets provided with 

324 the Flat-system, and only very brief stylets insertions were recorded. In order to 

325 rule out the hypothesis that absence of ingestion was related to the diet rather than 

326 to the system itself, we additionally tested the Flat-system with meridic diets, i.e. 
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327 pure and diluted xylem sap. The further failure of such attempt supports our initial 

328 hypothesis about the need for spittlebugs of a tactile cue triggering the probe.  

329 EPG and video observations were used as supports to verify mainly the 

330 occurrence and duration of ingestion and watery excretions. A deep and robust 

331 characterization of EPG variables (sequential and non sequential) produced by the 

332 spittlebugs on artificial diets, or a comparison among different artificial diets, 

333 were out of the scope of this work. Nevertheless, the trends we observed in P. 

334 spumarius probing behavior on the different diets (Tab. 3) should be taken into 

335 account for further work on spittlebugs artificial feeding and transmission tests. 

336 The diet devised by Killiny and Almeida (2009) for artificial acquisition of X. 

337 fastidiosa by sharpshooters, i.e. SHPD, resulted to be the least acceptable for P. 

338 spumarius, with a statistically significant shortest duration of the overall ingestion 

339 and of the single ingestion events, and lowest number of successful probes and of 

340 ingestion events compared to XFM and Sucrose. This might suggest a difference 

341 between spittlebugs and sharpshooters in nutritional requirements or chemical 

342 cues stimulating a sustained ingestion. The survival time of P. spumarius on XFM 

343 and Sucrose was overall similar. The only statistically significant difference 

344 detected between XFM and Sucrose was the time required to perform the first 

345 absolute probe that resulted lower for the former compared to the latter diet. 

346 However, looking at the rough dataset, we observed several differences between 

347 XFM and Sucrose that could be relevant for experiments aimed at using the diets 

348 for X. fastidiosa artificial acquisition. The greatest number of short non-ingesting 

349 probes was recorded on the sucrose-diet, possibly indicating a low acceptability 

350 of the medium (Crane, 1971). This is contrasting with the fact that one of the P. 

351 spumarius feeding on the Sucrose showed the overall longest ingestion (almost 

352 40 minutes) and the only observed excretion. Absence of excretion for the other 

353 insects tested may be related to a condition of acute water stress due to the long 

354 starvation (Crane, 1971), or just to ingestion not long enough to induce excretion. 

355 Sucrose is the major phagostimulant component of aphid diets (Mittler and Dadd, 
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356 1963), and has been used also for sharpshooters artificial feeding (Joost et al., 

357 2006). However, possible effects of sucrose on the viability of X. fastidiosa cells 

358 suspended in the diet should be carefully investigated prior to use a sucrose-diet 

359 for bacterium transmission tests. Moreover, considering the rough dataset, P. 

360 spumarius on XFM diet showed the greatest number of ingestion events, although 

361 their overall duration was reduced compared to Sucrose. According to Mitsuhashi 

362 (1979), a rich medium is not required for artificial acquisition of pathogens, since 

363 acquisition from artificial diets does not require a long ingestion. Therefore, 

364 considering our dataset, XFM could be the best candidate for X. fastidiosa 

365 artificial acquisition by P. spumarius. Given the results from the EPG-assisted 

366 feeding behavioral observation of the meadow spittlebug, we decided to choose 

367 XFM-diet to test Tube-system suitability for N. campestris. Assessment of 

368 nutritional requirements of N. campestris, or preference of this species for one 

369 diet over another, were out of the purpose of this work. The fact that also N. 

370 campestris fed on XFM-diet, suggests this diet could be a good candidate for 

371 further tests on spittlebugs, including X. fastidiosa transmission studies. However, 

372 as for Sucrose, bacterial cells viability in XFM diet should be accurately assessed 

373 prior to apply such a diet in transmission tests. 

374 In the present work, we developed a functional system for artificial diet delivery 

375 to P. spumarius, that resulted to be suitable also for artificial feeding of another 

376 spittlebug, i.e. N. campestris. This tool opens new perspectives for investigations 

377 of X. fastidiosa/spittlebugs interactions and transmission mechanism. 

378 Furthermore, our Tube-delivery system could have an immediate applicability for 

379 behavioral and biological studies directly or indirectly related with the fastidious 

380 bacterium epidemiology and control strategies.

381

382

Page 17 of 30

Journal of Applied Entomology

Journal of Applied Entomology



For Peer Review

383 Author Contribution

384

385  DC and AF conceived research.

386  DC, MR, MM, and EG conducted experiments.

387  DC and MR wrote the manuscript.

388  MM, EG, DB AM, and AF reviewed and edited the manuscript.

389  DB, AM, and AF secured funding.

390  All authors read and approved the manuscript.

391

392 Data Availability Statement: raw data (dataset containing all the variables 

393 calculated for each one of the spittlebugs tested) are provided as supporting 

394 information (SuppInfo).

395

396

Page 18 of 30

Journal of Applied Entomology

Journal of Applied Entomology



For Peer Review

397 References

398 Alexou, M. & Peuke, A.D. (2013). Methods for Xylem Sap Collection. In: 
399 Maathuis F. (eds) Plant Mineral Nutrients. Methods in Molecular Biology 
400 (Methods and Protocols), 953, 195-207. Humana Press, Totowa, NJ.
401 Almeida, R. P., Blua, M. J., Lopes, J. R. & Purcell, A. H. (2005). Vector 
402 transmission of Xylella fastidiosa: applying fundamental knowledge to generate 
403 disease management strategies. Annals of the Entomological Society of 
404 America, 98(6), 775-786.
405 Backus, E. A. (1985). Anatomical and sensory mechanisms of leafhopper and 
406 planthopper feeding behavior. The leafhoppers and planthoppers, 163-194.
407 Backus, E. A. & McLean, D. L. (1985). Behavioral evidence that the precibarial 
408 sensilla of leafhoppers are chemosensory and function in host 
409 discrimination. Entomologia experimentalis et applicata, 37(3), 219-228.
410 Carter, W. (1927). A technique for use with homopterous vectors of plant 
411 disease, with special reference to the sugar-beet leafhopper, Eutettix tenellus 
412 (Baker). J. agric. Res, 34, 449-451.
413 Chatterjee, S., Almeida, R. P. & Lindow, S. (2008). Living in two worlds: the 
414 plant and insect lifestyles of Xylella fastidiosa. Annual review of 
415 phytopathology, 46, 243-271.
416 Cornara, D., Cavalieri, V., Dongiovanni, C., Altamura, G., Palmisano, F., 
417 Bosco, D., Porcelli, F., Almeida, R.P.P. & Saponari, M. (2017a). Transmission 
418 of Xylella fastidiosa by naturally infected Philaenus spumarius (Hemiptera, 
419 Aphrophoridae) to different host plants. Journal of Applied Entomology, 141(1-
420 2), 80-87.
421 Cornara, D., Saponari, M., Zeilinger, A. R., de Stradis, A., Boscia, D., 
422 Loconsole, G., Bosco, D., Martelli, G.P., Almeida, R.P.P. & Porcelli, F. 
423 (2017b). Spittlebugs as vectors of Xylella fastidiosa in olive orchards in 
424 Italy. Journal of pest science, 90(2), 521-530.
425 Cornara, D., Bosco, D. & Fereres, A. (2018a). Philaenus spumarius: when an 
426 old acquaintance becomes a new threat to European agriculture. Journal of pest 
427 science, 1-16.
428 Cornara, D., Garzo, E., Morente, M., Moreno, A., Alba-Tercedor, J. & Fereres, 
429 A. (2018b). EPG combined with micro-CT and video recording reveals new 
430 insights on the feeding behavior of Philaenus spumarius. PloS one, 13(7), 
431 e0199154.
432 Cox D.R. (1972). Regression models and life tables (with discussion). J R Statist 
433 Soc B, 34(2): 187-202.

Page 19 of 30

Journal of Applied Entomology

Journal of Applied Entomology



For Peer Review

434 34: 187–220
435 Crane, P. S. (1971). The feeding behavior of the blue-green sharpshooter 
436 Hordnia circellata (Baker) (PhD Thesis). Ph. D. dissertation. Univ. Calif., 
437 Davis.
438 Cruaud, A., Gonzalez, A. A., Godefroid, M., Nidelet, S., Streito, J. C., Thuillier, 
439 J. M., Rossi, J.P., Santoni, S. & Rasplus, J. Y. (2018). Using insects to detect, 
440 monitor and predict the distribution of Xylella fastidiosa: a case study in 
441 Corsica. Scientific reports, 8(1), 15628.
442 EFSA (2018). Updated pest categorisation of Xylella fastidiosa. EFSA 
443 Journal, 16(7), e05357.
444 Esteves, M. B., Kleina, H. T., Sales, T. D. M., Oliveira, T. P., de Lara, I. A. R., 
445 Almeida, R., Coletta-Filho, H. & Lopes, J. S. (2018). Transmission efficiency of 
446 Xylella fastidiosa subsp. pauca sequence types by sharpshooter vectors after in 
447 vitro acquisition. Phytopathology, https://doi.org/10.1094/PHYTO-07-18-0254-
448 FI.
449 Fereres, A. (2016). Aphid behavior and the transmission of noncirculative 
450 viruses. In: Vector-Mediated Transmission of Plant Pathogens (pp: 31-45). Ed: 
451 J.K. Brown. APS Press, St Paul MN. ISBN: 978-0-89054-535-5.
452 Joost, P. H., Backus, E. A., Morgan, D. & Yan, F. (2006). Correlation of stylet 
453 activities by the glassy-winged sharpshooter, Homalodisca coagulata (Say), 
454 with electrical penetration graph (EPG) waveforms. Journal of insect 
455 physiology, 52(3), 327-337.
456 Kawabe, S. & McLean, D. L. (1978). Electronically recorded waveforms 
457 associated with salivation and ingestion behavior of the aster leafhopper, 
458 Macrosteles fascifrons STAL (Homoptera: Cicadellidae). Applied Entomology 
459 and Zoology, 13(3), 143-148.
460 Keskinen, E. & Meyer-Rochow, V. B. (2004). Post-embryonic photoreceptor 
461 development and dark/light adaptation in the spittle bug Philaenus spumarius 
462 (L.)(Homoptera, Cercopidae). Arthropod structure & development, 33(4), 405-
463 417.
464 Killiny, N. & Almeida, R. P. (2009). Host structural carbohydrate induces vector 
465 transmission of a bacterial plant pathogen. Proceedings of the National Academy 
466 of Sciences, 106(52), 22416-22420.
467 Mitsuhashi, J. & Koyama, K. (1971). Rearing of planthoppers on a holidic 
468 diet. Entomologia Experimentalis et Applicata, 14(1), 93-98.

Page 20 of 30

Journal of Applied Entomology

Journal of Applied Entomology

https://doi.org/10.1094/PHYTO-07-18-0254-FI
https://doi.org/10.1094/PHYTO-07-18-0254-FI


For Peer Review

469 Mitsuhashi, J. (1979). Artificial rearing and aseptic rearing of leafhopper 
470 vectors: Applications in virus and MLO research. In Leafhopper Vectors and 
471 Plant Disease Agents (pp. 369-412).
472 Mittler, T. E. & Dadd, R. H. (1963). Studies on the artificial feeding of the aphid 
473 Myzus persicae (Sulzer)—I. Relative uptake of water and sucrose 
474 solutions. Journal of Insect Physiology, 9(5), 623-645.
475 Mittler, T.E. (1988). Applications of artificial feeding techniques for aphids. In 
476 Aphids their biology, natural enemies and control (pp. 145-170). Elsevier, 
477 Amsterdam, The Netherlands.
478 Morente, M., Cornara, D., Plaza, M., Durán, J.M., Capiscol, C., Trillo, R., Ruiz, 
479 M., Ruz, C., Sanjuan, S., Pereira, J.A., Moreno, A. & Fereres, A. (2018a). 
480 Distribution and relative abundance of insect vectors of Xylella fastidiosa in 
481 olive groves of the Iberian Peninsula. Insects, 9(4), 175.
482 Morente, M., Cornara, D., Moreno, A. & Fereres, A. (2018b). Continuous 
483 indoor rearing of Philaenus spumarius, the main European vector of Xylella 
484 fastidiosa. Journal of Applied Entomology, 142(9), 901-904.
485 Ponder, K. L., Watson, R. J., Malone, M. & Pritchard, J. (2002). Mineral content 
486 of excreta from the spittlebug Philaenus spumarius closely matches that of 
487 xylem sap. New Phytologist, 153(2), 237-242.
488 Purcell, A. H. (1990). Homopteran transmission of xylem-inhabiting bacteria. 
489 In Advances in disease vector research (pp. 243-266). Springer, New York, NY.
490 R Core Team (2018). R: A Language and Environment for Statistical 
491 Computing. R Foundation for Statistical Computing, https://www.R-project.org.
492 Ranieri, E., Ruschioni, S., Riolo, P., Isidoro, N. & Romani, R. (2016). Fine 
493 structure of antennal sensilla of the spittlebug Philaenus spumarius L. 
494 (Hemiptera: Aphrophoridae). I. Chemoreceptors and thermo-
495 /hygroreceptors. Arthropod structure & development, 45(5), 432-439.
496 Redak, R. A., Purcell, A. H., Lopes, J. R., Blua, M. J., Mizell III, R. F. & 
497 Andersen, P. C. (2004). The biology of xylem fluid–feeding insect vectors of 
498 Xylella fastidiosa and their relation to disease epidemiology. Annual Reviews in 
499 Entomology, 49(1), 243-270.
500 Saponari, M., Loconsole, G., Cornara, D., Yokomi, R. K., De Stradis, A., 
501 Boscia, D., Bosco, D., Martelli, G.P., Krugner, R. & Porcelli, F. (2014). 
502 Infectivity and transmission of Xylella fastidiosa by Philaenus spumarius 
503 (Hemiptera: Aphrophoridae) in Apulia, Italy. Journal of economic 
504 entomology, 107(4), 1316-1319.
505 Severin, H. H. P. & Swezy, O. (1928). Filtration experiments on curly top of 
506 sugar beets. Phytopathology, 18, 681.

Page 21 of 30

Journal of Applied Entomology

Journal of Applied Entomology

https://www.mdpi.com/search?authors=Marina%20Morente&orcid=
https://www.mdpi.com/search?authors=Daniele%20Cornara&orcid=0000-0001-8258-2291
https://www.mdpi.com/search?authors=Mar%C3%ADa%20Plaza&orcid=
https://www.mdpi.com/search?authors=Jos%C3%A9%20%20Manuel%20Dur%C3%A1n&orcid=
https://www.mdpi.com/search?authors=Carmen%20Capiscol&orcid=
https://www.mdpi.com/search?authors=Raquel%20Trillo&orcid=
https://www.mdpi.com/search?authors=Manuel%20Ruiz&orcid=
https://www.mdpi.com/search?authors=Carmen%20Ruz&orcid=
https://www.mdpi.com/search?authors=Susana%20Sanjuan&orcid=
https://www.mdpi.com/search?authors=Jose%20%20Alberto%20Pereira&orcid=0000-0002-2260-0600
https://www.mdpi.com/search?authors=Aranzazu%20Moreno&orcid=
https://www.mdpi.com/search?authors=Alberto%20Fereres&orcid=0000-0001-6012-3270


For Peer Review

507 Storey, H. H. (1932). The filtration of the virus of streak disease of 
508 maize. Annals of Applied Biology, 19(1), 1-5.
509 Trębicki, P., Tjallingii, W. F., Harding, R. M., Rodoni, B. C. & Powell, K. S. 
510 (2012). EPG monitoring of the probing behaviour of the common brown 
511 leafhopper Orosius orientalis on artificial diet and selected host 
512 plants. Arthropod-Plant Interactions, 6(3), 405-415.
513 Triplehorn, B. W., Nault, L. R. & Horn, D. J. (1984). Feeding behavior of 
514 Graminella nigrifrons (Forbes). Annals of the Entomological Society of 
515 America, 77(1), 102-107.
516 Tuan, S. J., Hu, F. T., Chang, H. Y., Chang, P. W., Chen, Y. H. & Huang, T. P. 
517 (2016). Xylella fastidiosa transmission and life history of two Cicadellinae 
518 sharpshooters, Kolla paulula and Bothrogonia ferruginea (Hemiptera: 
519 Cicadellidae), in Taiwan. Journal of economic entomology, 109(3), 1034-1040.
520 Watson, R. J. (1999). The development of a novel technique for sampling xylem 
521 sap from intact, transpiring plants using Philaenus spumarius, a xylem-feeding 
522 insect (Doctoral dissertation, University of Birmingham).
523 Wilson, C. M. & Shade, R. E. (1967). Relative attractiveness of various 
524 luminescent colors to the cereal leaf beetle and the meadow spittlebug. Journal 
525 of Economic Entomology, 60(2), 578-580.
526

Page 22 of 30

Journal of Applied Entomology

Journal of Applied Entomology



For Peer Review

527 Fig. 1: 1.1) Experimental setup of P. spumarius recording on artificial diet, 
528 “Flat-system”; 1.2) Experimental setup of P. spumarius recording on 
529 artificial diet, “Tube-system”; 1.3) Experimental setup of P. spumarius 
530 survival test on artificial diet “Tube-system”. a) plastic stick; b) Petri dish 
531 with artificial diet, bottom covered with green tape; c) Parafilm® layer; d) diet-
532 electrode connected to the EPG through a clamp cable; e) insect electrode: brass 
533 nail + copper wire + gold wire connected to P. spumarius with a drop of silver 
534 glue; f) probe; g) Giga 4-DC EPG device; h) Beaker containing artificial diet 
535 (~80 ml); i) tube filled with artificial diet; j) windows covered with stretched 
536 Parafilm® layer, green tape covering the opposite side; k) copper “plant” 
537 electrode; l) cotton-bed; m) conical cage; n) cage ceiling covered with net. 
538 Original P. spumarius clipping derives from David O’Shea 
539 (www.britishbugs.org.uk). 

540 Fig 2. EPG recording for P. spumarius on artificial diet, non probing (np) 
541 waveforms. 2.a, b) crawling phases; 2.c) regular signal produced during np 
542 (stylets are out), insect abdomen touching the tube; 2.d-e) wire pulling; 2.f) 
543 insect fallen, hanging on the wire and dangling.

544 Fig 3. EPG recording for P. spumarius on artificial diet, C waveform. 3.a, b, 
545 d, e, f) waveform C; 3.c) brief probe.

546 Fig 4. EPG recording for P. spumarius on artificial diet, Xi waveform. 4.a, c, 
547 d) waveform Xi; 4.b) Xi, high amplitude, corresponding to long ingestion phases 
548 on sucrose-diet during which excretion was observed; 4.e) N. campestris 
549 ingestion waveform; 4.f) N during Xi.

550
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Tab. 1 Artificial diets tested for P. spumarius

“Flat” and “Tube” refer to Flat-delivery system and Tube-delivery system, respectively. 

Delivery system
Artificial diet Acronym

Flat Tube
pH Composition

Concentration 

[g/l H2O]

Molecular 

weight

Molarity 

[mM]
Reference

L-asparagine 10 132.12 75.69

L-cysteine 5 121.16 41.27
XFM

amino-acids
XFM X x 5.2

L-glutamine 30 148.14 202.51

modified from 

Killiny and Almeida, 

2009

L-asparagine 0.0132 132.12 0.10

L-glutamine 0.1022 148.14 0.69Sharpshooters 

diet
SHPD X x 6.4

tri-sodium 

citrate
0.25 294.1 0.85

Killiny and Almeida, 

2009

Sucrose SUCROSE X x 6.0 Sucrose 50 342.3 146.07 Joost et al., 2006

Pure olive xylem sap X N/A N/A
Pure olive 

xylem sap
N/A N/A N/A Watson, 1999

Diluted olive xylem sap X N/A N/A

Diluted (1:10) 

olive xylem 

sap

N/A N/A N/A Watson, 1999

Page 24 of 30

Journal of Applied Entomology

Journal of Applied Entomology



For Peer Review

Tab. 2 Waveforms characteristics of P. spumarius on artificial diets provided with the 
Tube system

Waveforms characteristics
Waveform Amplitude % [V] Frequency [Hz] Excretion Activity

5 (1 – 20) non probing
200§ non probing - walkingnp
100

mixed no
non probing - wire pulling

C 35.7 (10 - 100) mixed no Pathway

Waves: 1.4 (0.4 - 2.5)
Xi 25.7 (1 - 200§)

Peaks: 1.4 (0.4 - 2.5)
yes Ingestion

First drop N
N

48 16
mixed no Interruption during 

ingestion phase

5V = 100% amplitude; 200§ indicates a 10V (from -5 to +5V) signal

Abbreviations: emf = electromotive force
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Tab. 3 P. spumarius probing behavior on artificial diets provided with the Tube-system: 

summary table EPG variables

Total 
EPG 
time

n 
probes

n succ 
probes

np 
WDI

C 
WDI

Xi 
WDI

Xi 
WDEI

Xi 
NWEI

Xi>10
min

Time 
to 1st 

C

Time to 
1st Xi

Time from 
1st C to Xi

SUCROSE
TOTAL 77 11 802.4 50.1 47.5  13  
MIN 1 0 136.2 0.4 0 0 0 1.1 4.1 0.4
MAX 44 6 179.6 27.8 39.9 39.9 8 54.2 53.2 3.4

MEAN

900

15.4 2.2 160.34
10.0

2 9.5 3.65 2.6

yes

24.86 24.75 1.95
MEAN 
(%)  89.15 5.57 5.28  

SHPD
TOTAL 21 2 844.13 23.6 0.9  2  
MIN 2 0 140.33 0.7 0 0 0 0.5 47.4 43.5
MAX 9 2 179.3 12.8 0.9 0.45 2 59.7 47.4 43.5
MEAN

868.63

4.2 0.4 168.82 4.72 0.18 0.09 0.4

no

15.5 47.4 43.5
MEAN 
(%)  97.17 2.71 0.12  

XFM
TOTAL 42 20 834.73 35.1 16.7  26  
MIN 1 0 146.23 2 0 0 0 0.4 0.9 0.5
MAX 16 8 178 14.5 7.9 1.02 11 3.2 41.3 40.7
MEAN

886.53

8.4 4 166.94 7.02 3.34 0.64 5.2

no

1.36 11.7 10.8
MEAN 
(%)  94.15 3.95 1.88  

Total EPG time: total time the probing behavior of the spittlebug was recorded, calculated by pooling the recordings of the 

five spittlebugs tested per each diet. For SHPD and XFM one of the five replicates jumped away before the end of the 3 

hours. n probes: total number of probes performed. n succ probes: number of probes during which the spittlebug ingested 

the diet. np WDI: total duration of the non-probing phase. C WDI: total duration of the pathway phase. Xi WDI: total 

duration of the ingestion. Xi WDEI: duration of the single ingestion events. Xi NWEI: total number of ingestions 

performed. Xi>10min: occurrence of an ingestion longer than 10 minutes. Time to first C: time required by the spittlebug 

to start a probe from the beginning of the recording. Time to first Xi: time required by the spittlebug to start an ingestion 

from the beginning of the recording. Time from 1st C to Xi: time required by the spittlebug to start an ingestion from the 

first absolute probe. All the values per each diet are calculated referring to the 15 hours recorded (5 spittlebugs/diet). Time 

is expressed in minutes.
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