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ABSTRACT 

Sexual disturbances,and aggressivity are a major social problem. However, the molecular 

mechanisms involved in the control of these behaviors are largely unknown. FGF14, which is an 

intracellular protein controlling neuronal excitability and synaptic transmission, has been implied in 

neurologic and psychiatric disorders. Mice with Fgf14 deletion show blunted responses to drugs of 

abuse. By behavioral tests we show that male Fgf14 knockout mice have a marked reduction of 

several behaviors including aggressivity and sexual behavior. Other behaviors driven by 

spontaneous initiative like burying novel objects and spontaneous digging and climbing are also 

reduced in Fgf14 knockout mice. These deficits cannot be attributed to a generalized decrease of 

activity levels, because in the open field test Fgf14 knockout mice have the same spontaneous 

locomotion as wild types and increased rearing. Our results show that Fgf14 is important to 

preserve a set of behaviors and suggest that fine tuning of neuronal function by Fgf14 is an 

important mechanism of control for such behaviors. 

 

HIGHLIGHTS 

• Deletion of Fgf14, which is known to fine tune neuronal function, causes a reduction of 

climbing, digging and burying novel objects. 

• These behavioral deficits cannot be attributed to motor impairment, because Fgf14 knock-

out mice have normal spontaneous locomotion in a novel environment. 

• Fgf14 knock-out mice show reduced aggressivity and sexual behavior. 

• These deficits in inter-individual interaction cannot be attributed to impaired sociability, 

because Fgf14 knock-out mice show a normal preference for a conspecific relative to an 

object. 
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ABBREVIATIONS 

Fgf14-/- mice: mice with a targeted deletion of the Fgf14 gene 

SEM: standard error of the mean 

 

1. INTRODUCTION 

Disorders that include, alterations of sexual behavior and aggressivity are controlled by complex 

brain networks including the main olfactory system, basal ganglia (mainly ventral striatum and 



ventral pallidum), prefrontal cortex, ventral hippocampus, amygdala and hypothalamus [1], but 

little is known about the molecular determinants of such diseases. 

Mutations of the FGF14 gene were initially reported in a spontaneously occurring human 

disease, the spino-cerebellar ataxia type 27 (SCA27), which, in addition to cerebellar symptoms, is 

associated to deficits in cognition, memory and behavior [2-3]. More recently, FGF14 has been 

implied in a series of psychiatric and neurologic disorders by several large-scale genome-wide 

association studies, which identified this gene as a potential molecular determinant of addictive 

behavior, schizophrenia, bipolar disorder, depression and epilepsy [4-11]. 

FGF14 is an intracellular protein that is related in sequence and structure to fibroblast growth 

factors, which are secreted, trophic molecules essential for proper development and function in a 

large variety of tissues [12]. In contrast to such fibroblast growth factors, some members of the FGF 

family (FGF11-14) are not secreted but act intracellularly, where they bind to target proteins 

including voltage-gated Na+ (Nav) channels [13-15]. More specifically, FGF14 binds to the C-

terminal domain of Nav1.1, Nav1.2 and Nav1.6 [16-17]. The binding of FGF14 modulates the 

function of the channel, in an isoform specific manner [16-17]. Furthermore, the biophysical 

properties of Nav channels are regulated by phosphorylation of FGF14 by several kinases, like 

GSK3, which are implied in psychiatric disorders [11]. 

Fgf14 is expressed in the mouse central nervous system from embryonic day 12.5 [18] and in 

the adult brain the highest levels of Fgf14 expression have been found in cerebellum, basal ganglia, 

hippocampus, amygdala, cerebral cortex and thalamus [19-20], showing a large overlap with the 

regions critical for the control of food intake, sexual behavior and aggressivity. 

Mice with a targeted deletion of the Fgf14 gene (Fgf14-/- mice) have a normal development of 

the central nervous system and a preserved overall brain anatomy [19]. In the adult brain, while the 

cerebellum and basal ganglia of Fgf14-/- mice are indistinguishable from wild types, in the 

hippocampus they show a disrupted inhibitory GABAergic circuit associated with altered action 

potential generation [21]. 

Fgf14-/- mice recapitulate several features of psychiatric disorders like working memory 

deficits and decreased gamma frequency oscillations of cortical networks, reminiscent of findings in 

patients with schizophrenia [21]. Moreover, Fgf14-/- mice display a strong suppression of locomotor 

responses normally elicited by the administration of drugs of abuse like cocaine and amphetamine, 

and to the administration of a D2 dopamine receptor agonist [19]. These results suggest that Fgf14-/- 

mice might have a deficit in behaviors that are related to decreased responsiveness to dopamine. 

However, the underlying mechanisms might be more complex, because the dopaminergic pathways 

were found to be intact in Fgf14-/- mice [19]. The presence of such morphological and behavioral 

alterations suggests the presence of aberrant neuronal activity in the critical regions for the control 

of food intake, sexual behavior and aggressivity. These regions include the striatum, hippocampus, 



neocortex (especially prefrontal cortex) and amygdala [1]. Therefore, we hypothesized that some of 

these behaviors might be affected by Fgf14 deletion. 

 

 

2. MATERIALS AND METHODS 

 

2.1. Animals 

Two to four months old male Fgf14-/- mice and their wild type littermates were used for all 

experimental paradigms. All the animals used were male. The Fgf14-/- mice were obtained from 

Prof. Laezza Fernanda, University of Texas Medical Branch U.S.A. Adequate measures were taken 

to minimize pain and discomfort. All experimental procedures were carried out at NICO and 

approved by the Ethical Committee of the University of Torino and authorized by the Italian 

Ministry of Heath (authorization number: 822/2016-PR). Experiments have been carried out in 

accordance with the European Communities Parliament and Council Directives of 24 November 

1986 (86/609/EEC) and 22 September 2010 (2010/63/EU). 

 

2.2. Behavioral tests 

Behavioral studies were performed in young adult male animals between 2 and 4 months, always 

during the light phase of the cycle. A general timeline of the behavioral tests is reported in Fig 1. 

The same animals underwent all of the behavioral tests reported in the timeline. Where needed, all 

behavioral procedures were video-recorded and scored by an individual blind to the genotype of the 

mouse. 

 

2.2.1. Spontaneous behavior 

For each mouse (n=12 wild type; n=12 Fgf14-/-) the evaluation of spontaneous behavior was 

performed as follows: 

Mice were allowed to habituate to room for at least 45 minutes. Mice were removed from their 

home cages and individually placed in a clear cage (area 36 x 21, height 14 cm) with standard 

supply of food and water. The experiment was performed with constant lighting conditions. Each 

trial was video recorded for 20 minutes while the operator was out of the room. Each video was 

analyzed off-line for 10 minutes, between the 5th and 15th, by an individual blind to the genotype of 

the mouse. The ethologically-based behavioral checklist was similar to that described previously 

[22]. 

In particular, we measured the following parameters: 

• Rearing free (front paws reaching upwards away from any cage wall while standing on 

hind limbs). 



• Rearing towards a cage wall (front paws reaching upwards on a cage wall while standing 

on hind limbs). 

• Rearing towards central structure (front paws reaching upwards on that portion of grill 

where food and water are placed, while standing on hind limbs). 

• Digging. 

• Grooming (of any form). 

• Climbing (jumping onto cage top with climbing along grill in inverted or hanging position). 

• Stillness (motionless, with no behavior evident). 

• Jumping (every vertical movement, with detachment of both hind limbs from the cage 

floor, which is not included as total climbing). 

We assessed, for each type of behavior, three different time parameters:  

• Total time (seconds) spent by the animal showing a single behavior. 

• Number of episodes of a specific behavior. 

• Mean time duration (seconds) of each episode for each specific behavior (this data was 

obtained by the division of total time spent for a specific behavior / number of episodes for the 

same behavior). 

 

 

2.2.2. Sexual behavior 

All mice (n=14 wild type; n=14 Fgf14-/-) were removed from their home cage and kept single caged 

(cage area 36 x 16, height 13 cm) for two weeks before performing the test. Only sexually naive 

male mice were used, because they are unable to discriminate between oestrus and non oestrus 

females [23]. Mice were transported in the test room and were allowed to habituate to room setting 

for at least 45 minutes. A sexually naive female (randomly chosen in a group of 2-4 months aged 

C57BL/6 female mice) was introduced in the home cage of the tested mouse. Each female was used 

only once. Each trial was carried out maintaining constant setting and lighting conditions in the 

same room. The tests were videotaped for 15 minutes. Each video was analyzed off-line by a 

trained single operator blind to the genotype of each animal. The male-female interactions were 

screened through a behavioral checklist similar to that described by [23-24].  

The parameters analyzed were: 

Mounting (pelvic thrusting with physical contact between male and female pelvic regions). 

Latency to mount (seconds) (if no mount could be detected during the entire duration of the test, 

this latency was set to 900 seconds). 

Intromission (mounting associated with a stable frequency continuously for at least 3 seconds and 

if the female's anogenital area was elevated over the ground when finished). 



Social approach (including sniffing on the body or head of the female, anogenital sniffing, social 

grooming, barbering and chasing). 

Avoidance (leaving the female, both on the horizontal and vertical plane). 

Passive behavior (the female exhibits one of the items included in the category “social approach” 

while the male stands in a submissive attitude). 

The statistical comparison between the two genotypes was applied to three different time 

parameters for each behavioral item, excluding latency measures: 

• Total time (seconds) spent by the animal showing a single behavior. 

• Number of episodes of a specific behavior. 

• Mean time duration (seconds) of each episode of that specific behavior (these data were 

obtained with the division total time / number of episodes). 

 

2.2.3. Resident intruder test 

All mice (n=14 wild type; n=16 Fgf14-/-) used for this test were removed from their home cage and 

kept single caged (cage area 36 x 16, height 13 cm) for two weeks before being used as resident. 

This was in order to enhance their territorial attitude and to create a condition of mild social stress. 

Mice were transported in the test room and were allowed to habituate to room setting for at least 45 

minutes. The test was carried out maintaining constant setting and lighting conditions. An intruder 

mouse of the same age and with a lower or same weight (intruders were group-housed C57BL/6 

male mice) was placed in the home cage of the tested resident mouse. The intruders were used only 

once. The test was videotaped for 15 minutes. The analysis took place in a subsequent moment and 

was performed by a trained single operator blind to the genotype of each animal. The aggressive 

and territorial attitude of resident mice was assessed as previously described by [25]. 

• Attacking (wrestling). 

• Latency to attack (seconds) (if no attack could be detected during the entire duration of the test, 

the attack latency was set to 900 seconds). 

• Threatening (including chasing, all offensive postures and aggressive grooming). 

• Social behavior (including sniffing on the body or head of the intruder, anogenital sniffing, social 

grooming and following). 

• Individual interaction (the sum of the time spent in attack, threat and social behavior). 

• Types of interaction (the behavioral pattern of the animals was studied by calculating the 

percentage of each type of behavior (i.e. social interaction, threatening and attacking) in relation to 

the total time of individual interaction). 

The statistical comparison between the two genotypes was applied to three different time 

parameters for each behavioral item, excluding latency measures: 



• Total time (seconds) spent by the animal showing a single behavior. 

• Number of episodes of a specific behavior. 

• Mean time duration (seconds) of each episode of that specific behavior (these data were obtained 

with the division total time / number of episodes for each specific behavior). 

 

2.2.5. Open field 

Animals (n=8 wild type; n=11 Fgf14-/-) were tested in a 50 x 50 cm arena. The animal was placed in 

the corner of the open field and was allowed to explore the arena for 60 min. The distance traveled 

in the open field and the time spent in the center zone were measured every 10 minutes . 

 

2.2.6. Three-chambered sociability test 

The mice (n=7 wild type; n=7 Fgf14-/-) used for the experiment were transported to the test room 

and were allowed to habituate to room setting for at least 45 minutes. The apparatus, a custom-

made clear Plexiglas box partitioned into three chambers of equal size (length 20 cm x width 40.5 

cm x height 22 cm), was designed as previously described [26]. The test was divided in two phases, 

habituation and social behavior. 

Habituation. At the beginning of the test the mouse was confined in the middle chamber for 

10 minutes. After this phase the doors were opened and the mouse was permitted to freely move in 

all chambers for other 10 minutes.  

Social behavior. The test mouse was confined again in the middle chamber. An inverted 

empty wire cup (wire pencil cup, Galaxy Cup, Kitchen Plus, http://www.kitchen-plus.com) and a 

wire cup containing a stranger mouse (stranger) were placed into left and right chambers. The doors 

were re-opened and the mouse was allowed to explore all chambers for other 10 minutes. The 

movements of the test mice were videotaped from the top and their approaches were analyzed using 

Ethovision XT video track system (Noldus Information Technology, Wageningen, The 

Netherlands). The comparison of the time spent with stranger vs. empty wire cup indicated the 

sociability of animals. Stranger mice were housed in the same facility but had no prior contact with 

test mice. They were trained for two sessions of 15 min a day before the test. The observer 

remained in the room and only mice that at the end of 15 min did not grip to the wire cup were 

chosen. 

 

2.2.7. Marble burying test 

The test was performed as in Hoeffer et al. [27]. Mice were placed individually in large clean cages 

(area 36 x 21, height 14 cm) containing five cm deep bedding. Twenty small black marbles were 

arranged in five spaced rows of four marbles. After a 30-min test period conducted under normal 



room lighting, mice were removed and the unburied marbles were counted. Marbles were 

considered buried if they were at least 2/3 covered with bedding. 

 

2.3. Histological procedures 

Fgf14-/- mice (n= 3) and their wild type littermates (n= 3) were anesthetized via intraperitoneal 

injection with ketamine (100 mg/kg body weight) and xylazine (10 mg/kg body weight) and 

perfusion-fixed with 4% paraformaldehyde in 0.12 M phosphate buffer. The brains were removed 

and immersed in the same fixative at 4 °C for 18 h and then cryoprotected in 30% sucrose in 0.12 

M phosphate buffer. The brains were frozen and serially cut by a freezing microtome in 50 µm-

thick coronal sections and stained with cresyl violet. Volumetric analysis was performed on the 

basolateral amygdala complex by means of the StereoInvestigator software (MicroBrightField, 

Williston, VT, USA). The interval thickness between the serial sections analyzed was 300 µm. 

 

2.4. Real time RT-PCR 

mRNA expression levels of the dopamine D1 receptor (Drd1), D2 receptor (Drd2) and dopamine 

reuptake transporter DAT (Slc6a3) were evaluated by real time reverse transcription polymerase 

chain reaction (RT-PCR). 

 To obtain dissected brain regions, male mice (2-4 months old) were anesthetized by isoflurane 

inhalation and decapitated. Brains were removed immediately after decapitation and coronal 

sections were cut using a vibratome (Leica Microsystems GmbH, Wetzlar, Germany) following the 

coordinates of the mouse brain atlas [28]. From the slices, the prelimbic and infralimbic areas of the 

medial prefrontal cortex (mPFC), the nucleus accumbens (Acb) and the caudate-putamen (CPu) 

were dissected. 

Total RNA from mPFC (mice: n = 8 wild type and n = 9 Fgf14-/-), Acb (mice: n = 4 wild type and n 

= 5 Fgf14-/-) and CPu (mice: n = 4 wild type and n = 5 Fgf14-/-), was extracted using the Pure link 

RNA Mini Kit (Life Tecnologies), according to manufacture’s instructions. Total RNA, for each 

region, was reversed transcripted at a final concentration of 20ng/µl, using the High-Capacity 

cDNA Reverse Transcription Kit (Thermo Fisher Scientific). For primers and probes, Applied 

Biosystems’ TaqMan® Assay-on-demand-TM gene expression products were used. The catalogue 

number for each gene was Drd1 (Mm02620146_s1), Drd2 (Mm00438545_m1), Slc6a3 

(Mm00438388_m1). Phosphoglycerate Kinase 1 (PGK1) (Mm00435617_m1) was used as the 

reference gene in the expression level analysis. Expression levels of target genes were calculated by 

the normalized comparative cycle threshold (Ct) method (2−ΔCt). 
	

2.5. Statistical analysis 



Statistical analyses were carried out by GraphPad Prism 5 (GraphPad Software Inc., La Jolla, CA, 

USA) and included two-tailed unpaired Student’s t-test, Fisher's test and Mann-Whitney u-test. In 

all instances, P < 0.05 was considered as statistically significant. Data were expressed as 

average ± standard error of the mean (SEM).  

 

3. RESULTS 

3.1. Abnormal spontaneous behavior of Fgf14-/- mice 

The observation of spontaneous behavior of mice in their housing cages represents a rich source of 

information not biased by experimental manipulation. For this reason, in order to gain insight in the 

behavioral alterations of Fgf14-/- mice we started with a thorough assessment of their spontaneous 

behavior, compared to their wild-type littermates. The parameters considered were rearing (defined 

as lifting the forepaws and keeping them either free or leaning to a vertical surface like the cage 

wall or the cage central structure), digging, grooming, climbing, jumping and remaining still. For 

each behavior we counted the total number of episodes, the duration of each episode and the total 

time spent in that behavior. The results are reported in Table I. Fgf14-/- and wild type mice differed 

significantly in rearing, climbing and digging behaviors. Rearing wall and central structure 

behaviors differed between genotypes (t test, t(22)=2.465,  p = 0.022 and t(22)=3.025, p = 0.006; 

respectively, Fig. 2A, D and Table I). Fgf14-/- mice reared significantly less often toward the central 

structure (t-test, t(22)=2.374, p = 0.027, Fig. 2E and Table I), but with a significantly increased 

duration of each episode (t-test, t(22)=4.714, p = 0.0001, Fig. 2F and Table I). Furthermore, an 

increased duration of each episode was observed for all types of rearing, also for free rearing and 

rearing wall behaviors (t-test, t(22)=2.415, p = 0.025 and t(2)=5.011, p = 0.0001; respectively, Fig. 

2C, I and Table I). Digging behavior was significantly reduced in Fgf14-/- mice compared to their 

wild type littermates (t-test, t(22)=3.641, p = 0.001, Fig. 3A and Table I). A reduction was also 

observed in the number of episodes for digging in Fgf14-/- mice (t test, t(22)=4.060, p = 0.0005, Fig. 

3B and Table I). The climbing behavior was reduced in Fgf14-/- mice both as total time and as 

number of episodes (t test, t(22)=2.624, p = 0.015 and t(22)=3.034, p = 0.006; respectively, Fig. 4A, 

B and Table I). Grooming, jumping and stillness behaviors did not differ between genotypes (t-test, 

p > 0.05). However, for stillness behavior there was a significant increase in the duration of each 

episode in Fgf14-/- mice (Table I). 

 

3.2. Reduced marble burying by Fgf14-/- mice 

The marble burying test revealed a more than tenfold and significant difference between genotypes, 

with a reduced number of buried marble spheres for Fgf14-/- mice (0.8 ± 0.55) compared to wild 

types (10.75 ± 1.73) (t test, t(16)=6.007, p < 0.0001, Fig. 5). 

 



3.3. Reduced sexual behavior of Fgf14-/- mice 

The sexual behavior of Fgf14-/- male mice resulted profoundly altered. The latency to the first 

mount was significantly prolonged in Fgf14-/- mice (t test, t(26)=5.331, p = 0.0001, Fig. 6A and 

Table II). Both mean time of mounting and duration of each episode were significantly reduced in 

Fgf14-/- mice (t test, t(26)=2.484, p = 0.020 and t(26)=3.449, p = 0.002 respectively, Fig. 6B, D and 

Table II). The number of mounts was significantly reduced in Fgf14-/- mice (t test, t(26)=3.234, p = 

0.003, Fig. 6C and Table II). Furthermore, the number of Fgf14-/- males performing mounting was 

very low (1 of 14 mice) relative to their wild type littermates (12 of 14 mice) (Fisher’s test, p < 

0.0001, Fig. 6E). Intromission, avoidance and affiliation approach were not significantly different 

between genotypes (p > 0.05, Table II). An interesting data that arise from this test, in accord with a 

reduced sexual interaction, is the significant increase of passive behavior in Fgf14-/- mice (t test, 

t(26)=4.793, p < 0.0001, Fig. 6F and Table II). 

 

3.4. Reduced aggressive behavior of Fgf14-/- mice in the resident/intruder test 

In the resident/intruder test, the latency of attacking the intruder mouse and the number of episodes 

were comparable between genotypes (p > 0.05, Table III). On the contrary, the time spent attacking 

and the duration of each attack were significantly reduced in Fgf14-/- mice (u=71.50, p = 0.045 and 

t(28)=2.786, p = 0.0095, respectively, Fig. 7A, C and Table III). The number of episodes for attack 

was comparable between genotypes (p > 0.05, Fig. 7C) Fgf14-/- mice showed a significant reduction 

in time threatening the intruder mouse, number of episodes and duration of each threat episode (t 

test, t(28)=4.007, p = 0.0004; t(28)=4.076, p = 0.0003 and t(28)=2.346, p = 0.026; respectively, Fig. 

7D, E, F and Table III). On the other hand, Fgf14-/- mice spent more time in social interaction than 

their wild type littermates (t(28)=8.769, p < 0.0001, Fig. 7G and Table III). Moreover, the 

percentage of time spent in social behavior relative to the total time of all types of inter-individual 

interaction was greater in Fgf14-/- mice than controls (97.59% for Fgf14-/- mice and 78.25% for wild 

type, Fig. 7H).  

 The amygdala plays a pivotal role in the integration and expression of aggressivity and the 

volume of this structure has been reported to be altered in subjects with a history of aggressivity or 

violence [29-32]. We hypothesized that in Fgf14-/- mice the reduced levels of aggressivity could be 

related to an abnormal volume of the amygdala. With a stereological analysis of the amygdala, the 

volume in Fgf14-/- mice was 0.770 ± 0.050 mm3, which was not significantly different compared to 

wild type (0.807 ± 0.042 mm3; p > 0.05, Fig. 7I, J). This result suggests that the reduction in 

aggressivity is not due to an altered volume of the amygdala. 

 

3.5. Normal sociability of Fgf14-/- mice in the three-chambered test 



Modifications of social behavior might in some cases underlie alterations in sexual and aggressive 

behavior. To exclude the hypothesis of a reduced social interaction of Fgf14-/- mice with wild type 

mice of the same sex we performed the three-chambered test. The time spent in the chamber with 

the stranger mouse was significantly greater than the time spent in the chamber with the inanimate 

object for both wild type (t test, t(12)=4.21, p = 0.0012; Fig. 8A) and Fgf14-/- mice (t test, 

t(12)=3.21, p = 0.0074; Fig. 8A). These results demonstrate that the deficit in sexual and aggressive 

behavior of Fgf14-/- mice is not attributable to changes in social interaction. 

 

3.6. Preserved locomotor activity and exploratory behavior of Fgf14-/- mice in the open field 

test 

The reduction of some behaviors of Fgf14-/- mice, like aggressivity or sexual approach, might be 

due to a to a reduced locomotor activity or a lack of interest to explore a novel environment. To 

address this hypothesis, mice were subjected to the open field test. No significant differences were 

observed between genotypes for the distance traveled in the open field (two way ANOVA repeated 

measures, F(1, 15)=0.2633, p = 0.62; Fig. 8B). Moreover, the distance traveled in the arena in the 

first 10 minutes was comparable between genotypes (Mann-Whitney test, u=22, p = 0.20) 

indicating a normal exploratory behavior of Fgf14-/- mice in a new environment. The time spent on 

the center zone of the open field was comparable between genotypes (two way ANOVA repeated 

measures, F(1, 85)=0.17, p = 0.68; Fig. 8B). These results demonstrate that the reduction of 

aggressive or sexual behavior is not linked to deficits in exploratory or locomotor activity. 

 

3.7. Preserved dopamine receptors and transporter gene expression in Fgf14-/- mice 

We quantified by real time RT-PCR the gene expression of the dopamine receptor D1 (Drd1), the 

dopamine receptor D2 (Drd2) and the dopamine reuptake transporter (Slc6a3) (Fig. 9) in the mPFC, 

Acb, and CPu, in wild type and Fgf14-/- mice. In the mPFC there was no significant difference 

between genotypes in mRNA levels for each gene analyzed (t test, p > 0.05; Fig. 10A). Furthermore, 

the mRNA levels of Drd1, Drd2 and Slc6a3 did not change also for Acb and CPu in Fgf14-/- mice (t 

test, p >0.05; Fig. 9B and C respectively). These results demonstrate that the postsynaptic 

expression of receptors and transporters of the dopaminergic system is intact in Fgf14-/- mice, ruling 

out a possible major determinant of behavioral abnormality. 

 

4. DISCUSSION 

Previous reports on human mutations or variants of FGF14 indicate a correlation with aggressivity 

[33] and drug addiction [4-5,9]. Several studies on Fgf14-/- mice suggest that this gene might be 

involved in fine tuning of neuronal activity in circuits controlling spatial working memory and 

susceptibility to drug addiction [19-21]. The current study was performed to explore whether the 



lack of Fgf14 in mice is relevant for deficits in several behaviors ranging from aggressivity, to 

sexual behavior, sociability and spontaneous locomotion. 

 Our results confirm this hypothesis by showing that Fgf14-/- mice have a marked reduction 

of aggressivity and sexual behavior. The normal social interaction of Fgf14-/- with wild type mice 

suggests that the reduced level of aggressivity and sexual behavior is not due to deficits in social 

interaction between mice. Moreover, the normal levels of locomotor activity, observed in the open 

field test, also rule out the hypothesis that these deficits are caused by a reduced motor activity of 

mice in a novel environment. In addition, other behaviors driven by spontaneous initiative are also 

reduced in Fgf14-/- mice. These include burying novel objects and spontaneous digging and 

climbing. However, in the open field test, that evaluates the spontaneous locomotion in an arena, 

generally considered as a measure of the general level of activity and related to exploratory 

behavior [34], Fgf14-/- mice travel the same distance as control wild-type littermates. It is possible 

that the reduced number of marbles buried is due to a reduced propensity of Fgf14-/- mice to dig. 

Moreover, rearing, which is also related to exploratory activity [34], was more frequent in Fgf14-/- 

mice, indicating that the decrease was specific for behaviors like burying, digging and climbing. 

Rearing is also related to anxiety, because during this behavior the animal might be more vulnerable 

to predators [34]. However, Fgf14-/- male mice showed the same propensity to walk in the center as 

wild-type mice, suggesting that anxiety is not significantly affected. The different consequence of 

Fgf14 deletion on behaviors directed toward an object (burying, digging, climbing), relative to 

exploratory activity (locomotion, rearing), indicates that this gene specifically controls goal directed 

behaviors rather than unaimed, exploratory movements. 

 Our results show that Fgf14 is important for the control and modulation of sexual behavior, 

aggressivity and spontaneous behaviors toward targets like burying objects, digging and climbing. 

Regarding the mechanisms of these actions, it should be noted that Fgf14 controls neuronal 

excitability by modulating NaV channels by direct interaction [16,35-36] and neurotransmitter 

release by mechanisms, which are not yet completely clear [37-38]. Fgf14 increases neuronal 

excitability and action potential firing [35-36] with effects, which are NaV-subtype-specific [17]. 

Since each type of neuron expresses a specific repertoire of NaV channels, the modulation of 

membrane excitability by Fgf14 differs across neurons, with consequences, which are difficult to 

predict. For example, in the CA1 area of the hippocampus, Fgf14 deletion causes an alteration of 

inhibitory postsynaptic currents and a selective loss of some parvabumin-positive GABAergic 

interneurons. Similar alterations have been found in psychiatric disorders like schizophrenia [21]. 

Future studies are necessary to test whether similar alterations are also present in the brain regions 

involved in the behaviors, shown to be altered by this report. The modulation of neurotransmitter 

release by Fgf14 [37-38] adds further complexity to the control of signal processing in neuronal 

networks. Our finding that several types of behavior are impaired by the lack of Fgf14 opens a 



novel path in the field of investigation on the molecular mechanisms implied in sexual behavior, 

aggressivity and spontaneous behaviors such as burying, digging and climbing. This suggests that 

fine tuning of neuronal function by Fgf14 is an important mechanism of control for several 

behaviors in mice. 
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FIGURE LEGENDS 

 

Fig. 1 Experimental timeline showing the sequence of behavioral tests delivered to the animals. 

 

Fig. 2 Rearing behavior observed in 10 min session. A-C. Rearing-wall behavior: Bars represent 

mean ± SEM of (A) rearing-wall time (p < 0.05), (B) number of episodes and (C) duration of each 

rearing-wall episode ( p< 0.001). Rearing central structure behavior (D-F): (D) rearing-central 

structure time (p < 0.01), (E) number of episodes (p < 0.05) and (F) duration of each rearing-central 

structure episode (p < 0.001). Free rearing behavior (G-I): (G) free rearing time, (H) number of 

episodes and (I) duration of each free rearing episode of (p < 0.05). 

 

Fig. 3 Fgf14-/- mice show a reduction in digging behavior. (A) Time spent in digging behavior (p < 

0.01). (B) Number of digging episodes (p < 0.001). (C) Duration of each digging episode (p > 

0.05). 

 

Fig. 4 Fgf14-/- mice show a reduction in climbing behavior. (A) Bars represent mean ± SEM of total 

time spent climbing during the 10 min session. The total time spent climbing is significantly 

reduced compared to wild type mice * p < 0.05. (B) Fgf14-/- mice display a reduced number of 

climbing episodes ** p < 0.01. (C) Bars show no significant difference between genotypes in the 

mean duration of each climbing episode p > 0.05. 

 

Fig. 5 Fgf14-/- mice bury a smaller number of marbles in 30 minutes of test compared to their wild 

type littermates. The bars represent mean ± SEM. *** p < 0.001 

 

Fig. 6 Fgf14-/- male mice show a reduced sexual interaction. (a) The latency for sexual interaction is 

increased while the mounting duration is decreased (b). The number of mounts (c), and the duration 

of each episode (d) are significantly fewer in Fgf14-/- mice compared to their wild type littermates. 

(e) The number of males that had a sexual approach was significantly lower in Fgf14-/- mice. Fgf14-

/-  mice during the test spent more time in passive behavior (f). The bars represent mean ± SEM. * p 

< 0.05; ** p < 0.01; *** p < 0.001. 

 

Fig. 7 Fgf14-/- male mice show a reduced aggressivity in the resident intruder test. Bars represent 

means ± SEM of time (in seconds) spent in attack (a) and threat (d), number of episodes for attack 

(b) and threat (e), and mean duration of each episode for attack (c) and threat (f). (g) Duration of 

social behavior exhibited during the test. (h) Relative duration of inter-individual interaction types. 



(i) Representative Nissl-stained sections used to measure the size of the amygdala (calibration bar: 

250 µm). (j) Volume of the amygdala in Fgf14-/- and wild type mice. The bars represent mean ± 

SEM. * p < 0.05; ** p < 0.01; *** p < 0.001. 

 

Fig. 8 Fgf14-/- male mice show normal sociability, locomotor activity, exploratory behavior and 

time in center. (a) In the three chambers test both wild type and Fgf14-/- mice show a preference for 

a stranger mouse relative to an object (an empty wire cup identical to the one used to restrict the 

stranger mouse). (b) (left) In a novel open arena the locomotor activity related to the exploratory 

behavior and (right) the time in center are indistinguishable in Fgf14-/- relative to wild type mice. 

The bars represent mean ± SEM. ** p < 0.01. 

 

Fig. 9 Drd1, Drd2 and Slc6a3 gene expression in the mPFC (a, d, g), Acb (b, e, h) and CPu (c, f, i) 

in wild type and Fgf14-/- mice. There were no significant changes for each gene expression in all the 

brain regions analyzed. Data are expressed as mean ± SEM. 

 

 

TABLES 

 

Table I. Analysis	of	10	minutes	of	spontaneous	behavior	(n	=	12	for	wild	type	and	Fgf14	-/-	

mice).	For	each	behavior,	total	time,	number	of	episodes	and	episode	mean	time	are	reported.	

*	p	<	0.05,	**	p	<	0.01,	***	p	<	0.001. 

 

Table II.  Analysis of 15 minutes of resident intruder test (n = 14 for wild type and n = 16 for  

Fgf14-/- mice.* p < 0.05, ** p < 0.01, *** p < 0.001. 

 

Table III. Analysis of 15 minutes of sexual behavior (n = 14 for both genotypes). * p < 0.05, ** p < 

0.01, *** p < 0.001. 

 


