| 2  |                                                                                                                                   |
|----|-----------------------------------------------------------------------------------------------------------------------------------|
| 3  | The astrophyllite supergroup: nomenclature and classification                                                                     |
| 4  |                                                                                                                                   |
| 5  |                                                                                                                                   |
| 6  | Elena Sokolova <sup>1,*</sup> , Fernando Cámara <sup>2</sup> , Frank C. Hawthorne <sup>1</sup> and Marco E. Ciriotti <sup>3</sup> |
| 7  |                                                                                                                                   |
| 8  | <sup>1</sup> Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2,                               |
| 9  | Canada                                                                                                                            |
| 10 | <sup>2</sup> Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Valperga Caluso 35, I-                    |
| 11 | 10125 Torino, Italy                                                                                                               |
| 12 | <sup>3</sup> AMI – Associazione Micromineralogica Italiana, via San Pietro 55, I-10073 Devesi-Ciriè, Italy                        |
| 13 | I IOMANI aluoto                                                                                                                   |
| 14 |                                                                                                                                   |
| 15 |                                                                                                                                   |
| 16 | * Corresponding author, e-mail: elena_sokolova@umanitoba.ca                                                                       |
|    |                                                                                                                                   |



#### Abstract

18

42

19 Here we report a nomenclature and classification for the astrophyllite-supergroup minerals. The 20 HOH block is the main structural unit in all astrophyllite-supergroup structures; it consists of 21 three H–O–H sheets where the T<sub>4</sub>O<sub>12</sub> astrophyllite ribbons occur in the H sheets. In each 22 structure, HOH blocks alternate with I (Intermediate) blocks along [001]. The twelve minerals of 23 the astrophyllite supergroup are divided into three groups basing on (1) the type of self-linkage 24 of HOH blocks, i.e. (a) HOH blocks link directly where they share common vertices of D 25 octahedra, or (b) HOH blocks do not link directly; and (2) the dominant cation of the O sheet (the C group:  $C_7$  a.p.f.u.). In the astrophyllite group (HOH blocks connect via  $D-X_D^P-D$  bridges, 26 Fe<sup>2+</sup> is dominant at C<sub>7</sub>), there are six minerals: astrophyllite, niobophyllite, zircophyllite, 27 tarbagataite, nalivkinite and bulgakite. In the kupletskite group (HOH blocks connect via  $D-X_{D-}^{P}$ 28 D bridges. Mn<sup>2+</sup> is dominant at C<sub>7</sub>), there are three minerals: kupletskite, niobokupletskite and 29 kupletskite-(Cs). In the devitoite group (HOH blocks do not connect via  $D-X^{P}_{D}-D$  bridges), there 30 31 are three minerals: devitoite, sveinbergeite and lobanovite. The general formula for the astrophyllite-supergroup minerals is of the form  $A_{2n}B_rC_7D_2(T_4O_{12})_2IX^O_{D2}X^O_{A4}X^P_{Dn}W_{A2}$ , where C 32 [cations at the M(1-4) sites in the O sheet] =  $Fe^{2+}$ , Mn, Na, Mg, Zn,  $Fe^{3+}$ , Ca, Zr, Li; D (cations in 33 the H sheets) =  $^{[6,5]}$ Ti, Nb, Zr, Sn<sup>4+</sup>,  $^{[5]}$ Fe<sup>3+</sup>, Mg, Al; T = Si, minor Al;  $A_{2p}B_rIW_{A2}$  (I block) where p = 34 1,2; r = 1,2; A = K, Cs, Ba,  $H_2O$ , Li, Rb,  $Pb^{2+}$ , Na,  $\Box$ ; B = Na, Ca, Ba,  $H_2O$ ,  $\Box$ ; I represents the 35 36 composition of the central part of the I block, excluding peripheral layers of the form A<sub>2p</sub>B<sub>r</sub>W<sub>A2</sub>, e.g.  $(PO_4)_2(CO_3)$  (devitoite);  $X_D^O = O$ ;  $X_A^O = OH$ , F;  $X_D^P = F$ , O, OH, H<sub>2</sub>O,  $\square$ , where n = 0, 1, 2 37 for  $(X_D^P)_n$ ;  $W_A = H_2O$ ,  $\square$ . 38 39 40 Keywords: astrophyllite supergroup, nomenclature, classification, ideal formula, astrophyllite. 41 kupletskite and devitoite groups

#### Introduction

The Nomenclature Voting proposal 15-B – "Magnesioastrophyllite" validated under the name "lobanovite", and astrophyllite supergroup classification – has been approved by the CNMNC-IMA (in accord with Mills et al., 2009) with the two conclusions: (1) "Magnesioastrophyllite" has been validated under the name lobanovite,  $K_2Na(Fe^{2+}_4Mg_2Na)Ti_2(Si_4O_{12})_2O_2(OH)_4$ ; (2) According to the new classification scheme, the astrophyllite supergroup is now divided in three groups: the astrophyllite group, the kupletskite group, and the devitoite group. Following the above decision, the formal description of the lobanovite has been reported by Sokolova et al. (2015). In this paper, we address the second part of the Voting proposal 15-B and report the nomenclature and classification of the astrophyllite supergroup based on the work of Sokolova (2012).

Twelve minerals of the astrophyllite supergroup are listed in Table 1. The HOH block is the main structural unit in all astrophyllite-supergroup structures; it consists of a central O sheet between two adjacent H sheets where the  $T_4O_{12}$  astrophyllite ribbons occur in the H sheets. In each structure, HOH blocks alternate with I (Intermediate) blocks along [001]. They are divided into three groups based on (1) the type of self-linkage between HOH blocks, i.e. (a) HOH blocks link directly where they share common vertices of D octahedra, or (b) HOH blocks do not link directly; and (2) the dominant cation of the O sheet (the C group:  $C_7$  a.p.f.u.). These three groups are as follows:

Astrophyllite group: HOH blocks connect via  $D-X_D^P-D$  bridges,  $Fe^{2^+}$  is dominant at  $C_7$ ; Kupletskite group: HOH blocks connect via  $D-X_D^P-D$  bridges,  $Mn^{2^+}$  is dominant at  $C_7$ ; Devitoite group: HOH blocks do not connect via  $D-X_D^P-D$  bridges.

# Background

For many years, the astrophyllite-group minerals have been divided into two main subgroups on the basis of the dominance of Fe<sup>2+</sup> (astrophyllite; Weibye, 1848) or Mn<sup>2+</sup> (kupletskite; Semenov, 1956) at the octahedrally coordinated sites in the O (Octahedral) sheet in the structure. The

general crystal chemistry of the astrophyllite-group minerals was considered by Beloy (1963. 1976), Piilonen et al. (2003a,b) and Cámara et al. (2010). All references pertinent to work on the general crystal chemistry of the astrophyllite-group minerals prior to 2012 are given in Sokolova (2012). Sokolova (2012) developed a structural hierarchy for the astrophyllite group and showed that (1) In the astrophyllite group, there are two topologically distinct types of structures based on the type of self-linkage of HOH blocks: (1) HOH blocks link directly where they share common vertices of D octahedra, HOH blocks connect via  $D-X^{P}_{D}-D$  bridges, and (2) HOH blocks do not link directly via polyhedra of the H sheets. For the description of atom arrangements in the intermediate space between adjacent HOH blocks the astrophyllite-group structures, Sokolova (2012) introduced the I (Intermediate) block [by analogy with the I block in TS-block (Titanium Silicate) structures, Sokolova, 2006]. She considered nine minerals of the astrophyllite group [astrophyllite, niobophyllite, zircophyllite, tarbagataite, nalivkinite, kupletskite, niobokupletskite, kupletskite-(Cs) and lobanovite (Table 1)], suggested extending the astrophyllite group to include devitoite and sveinbergeite (Table 1), and wrote the general formula of these minerals in the form  $A_{2p}B_rC_7D_2(T_4O_{12})_2IX_{D2}^OX_{A4}X_{Dn}^P$ , where C and D are cations of the O and H sheets,  $C = {}^{[6]}(Fe^{2+}, Mn, Fe^{3+}, Na, Mg \text{ or } Zn)$  at the M(1-4) sites; D =  $^{[6,5]}$ (Ti, Nb, Zr, Fe<sup>3+</sup>); T = Si, minor Al;  $A_{2p}B_r$ l is the composition of the I block where p = 1,2; r = 1,2; A = K, Cs, Li, Ba, H<sub>2</sub>O,  $\square$ ; B = Na, Ca, Ba, H<sub>2</sub>O,  $\square$ ; I represents the composition of the central part of the I block, excluding peripheral layers of the form  $A_2B$ ;  $X = X_{D2}^OX_{A4}^OX_{Dn}^P = O$ , OH, F and  $H_2O$ ; n = 0, 1, 2.

89

90

88

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

### New data

- 91 Sokolova (2012) listed zircophyllite [described by Kapustin (1972) from Tuva, Russia; Mn >
- 92 Fe<sup>2+</sup>] as a member of the kupletskite group. However Kapustin (1972) called zircophyllite a
- 93 zirconium analogue of astrophyllite and wrote its empirical formula as follows:
- 94  $(K_{1.70}Na_{0.71}Ca_{0.24}Mn_{0.35}Sr_{0.02})_{\Sigma 3}(Fe^{2+}_{3.57}Mn_{3.43})_{\Sigma 7}(Zr_{1.58}Nb_{0.25}Ti_{0.17})_{\Sigma 2}(Si_{7.76}Ti_{0.24})_{\Sigma 8}[O_{26.84}$

 $(OH)_{3.26}F_{0.90}]_{\Sigma31}(H_2O)_{0.9}$ , where the composition of the O sheet is  $C_7 = (Fe^{2+}_{3.57}Mn_{3.43})_{\Sigma7}$ , i.e.  $Fe^{2+}$  > Mn. Following the original definition of zircophyllite, we place zircophyllite in the astrophyllite group (in accord with the nomenclature voting proposal 15-B). Here (Tables 1–3), we report some crystallographic data based on the structure refinement of zircophyllite from Mont Saint-Hilaire, Québec, Canada (Sokolova *et al.*, in preparation).

Agakhanov *et al.* (2014, 2015) described a new astrophyllite-group mineral bulgakite,  $\text{Li}_2(\text{Ca},\text{Na})\text{Fe}^{2+}_{7}\text{Ti}_2(\text{Si}_4\text{O}_{12})_2\text{O}_2(\text{OH})_4(\text{O},\text{F})(\text{H}_2\text{O})_2$ , a Ca-analogue of nalivkinite, and revised the crystal structure and chemical formula of nalivkinite:  $\text{Li}_2\text{NaFe}^{2+}_{7}\text{Ti}_2(\text{Si}_4\text{O}_{12})_2\text{O}_2(\text{OH})_4\text{F}(\text{H}_2\text{O})_2$  (Agakhanov *et al.*, 2008; Uvarova *et al.*, 2008) (Table 1). Refinement of the bulgakite and nalivkinite structures resulted in the location of H<sub>2</sub>O groups at the *W* site in the I block. An H<sub>2</sub>O group at the *W* site is a necessary ligand to complete the coordination of the cation at the *A*(2) site, where *A*(2) and *A*(1) are subsites of the *A* site. Hence the number of H<sub>2</sub>O groups at the *W* site must equal the number of cations at the *A*(2) site. The presence of H<sub>2</sub>O groups in the bulgakite and nalivkinite structures was confirmed by infrared spectroscopy (Agakhanov *et al.*, 2014, 2015). Revision of the topology of the *A*(2) site in the astrophyllite-supergroup minerals required revision of the general formula for the astrophyllite-type structures (Sokolova, 2012), and Agakhanov *et al.* (2015) suggested writing the general formula as  $\text{A}_{2p}\text{B}_{r}\text{C}_{7}\text{D}_{2}(\text{T}_{4}\text{O}_{12})_{2}\text{I}$   $\text{X}^{\text{O}}_{\text{D2}}\text{X}^{\text{O}}_{\text{A4}}\text{X}^{\text{P}}_{\text{Dn}}\text{W}_{\text{A2}}$ .

## The HOH block in the astrophyllite-supergroup structures

115 General topology

The HOH block is the main structural unit in all astrophyllite-supergroup structures. In the crystal structure of astrophyllite, the M octahedra (C-group atoms) share edges to form an O (Octahedral) sheet (Fig. 1a). The characteristic feature of the astrophyllite structure is the T<sub>4</sub>O<sub>12</sub> astrophyllite ribbon that extends along [100] (Fig. 1a). The astrophyllite ribbons share common vertices with [6,5]-coordinated D polyhedra to form the H (Heteropolyhedral) sheet (Fig. 1a).

| 121 | Two T <sub>2</sub> O <sub>7</sub> groups oriented perpendicular to [100] constitute the minimal repeat of the                                  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|
| 122 | astrophyllite ribbon which defines the a cell parameter of ~5.4 Å (Fig. 1a, Table 1). The H and O                                              |
| 123 | sheets are characterized by a minimal planar cell with $a \sim 5.4$ , $b \sim 11.9$ Å, $\mathbf{a} \wedge \mathbf{b} \sim 103^\circ$ (Table 1, |
| 124 | Fig. 1a). Two H sheets and a central O sheet form the HOH block (Fig. 1b). The linkage of O                                                    |
| 125 | and H sheets is identical in all astrophyllite-supergroup structures, except for lobanovite                                                    |
| 126 | (Sokolova, 2012).                                                                                                                              |
| 127 |                                                                                                                                                |
| 128 | Cation sites                                                                                                                                   |
| 129 | In the O sheet of the crystal structure of astrophyllite, there are four $M$ sites per minimal cell,                                           |
| 130 | 2M(1) + 2M(2) + 2M(3) + 1M(4), which give a total of M <sub>7</sub> (= C <sub>7</sub> ) a.p.f.u. (atoms per formula unit)                      |
| 131 | (Fig. 1a). In the astrophyllite-supergroup minerals, the dominant cations at the $\it M$ sites are                                             |
| 132 | mainly $Fe^{2+}$ and $Mn^{2+}$ (Table 2). Other dominant M cations are rare: Mg at the $M(4)$ site and Na                                      |
| 133 | at the $M(1)$ site in lobanovite, and Zn at the $M(4)$ site in kupletskite-(Cs) and Zn-rich astrophyllite                                      |
| 134 | (Piilonen et al., 2006). In the H sheet, there are four T sites, mainly occupied by Si with minor Al                                           |
| 135 | (Piilonen et al., 2003a,b). There is one D site which gives D <sub>2</sub> a.p.f.u. The dominant cation at the                                 |
| 136 | D site is mainly [6,5]Ti; [6]Nb (niobophyllite and niobokupletskite), [6]Zr (zircophyllite) and [5]Fe3+                                        |
| 137 | (devitoite) are less common (Table 2). In the minimal cell, there are one D site and one minimal                                               |
| 138 | repeat of the astrophyllite ribbon (Fig. 1a), and the ideal composition of the H sheet is DT <sub>4</sub>                                      |
| 139 | a.p.f.u. The ideal cation composition of the HOH layer is C <sub>7</sub> D <sub>2</sub> a.p.f.u., T atoms are considered                       |
| 140 | as part of the complex anion $(T_4O_{12})^{8-}_{\ 2}$ in the anion part of the structure.                                                      |
| 141 |                                                                                                                                                |
| 142 | Anion sites                                                                                                                                    |
| 143 | In the HOH block, O atoms which tetrahedrally coordinate T atoms in two H sheets sum to the                                                    |
| 144 | 24 O a.p.f.u. The D polyhedra of two H sheets share two $X^{O}_{D}$ anions with M octahedra of the O                                           |
| 145 | sheet (for $X^{O}$ , the O superscript defines anions of the O sheet) (Figs. 1a,b), the $X^{O}_{D}$ site is                                    |
| 146 | occupied by an O atom, giving $(X_D^0)_2 = O_2$ a.p.f.u. There are four anions p.f.u. at the $X_A^0$ sites                                     |

147 which occur just under the interstitial A sites (Fig. 1a) and they are occupied by monovalent anions, mainly OH groups and minor F, summing to ideally  $(X^{O}_{A})_{4} = (OH)_{4}$  p.f.u. (Table 2). The 148  $X_{D}^{P}$  site is occupied by an anion at the periphery of the HOH block (P = peripheral) where the D 149 150 cation is [6]-coordinated (Figs. 1a,b). The  $X^{P}_{D}$  site is occupied by F, OH, O, H<sub>2</sub>O and  $\square$ , and in a structure,  $X_D^P = 0$ , 1 or 2 p.f.u. (Table 2). The anion composition of the HOH block is 151  $(T_4O_{12})_2X^O_{D2}X^O_{A4}X^P_{Dn}$ , where n = 0, 1, 2. The number of  $X^P_D$  anions depends on the coordination 152 153 number of the D cation (see above) and the type of self-linkage between the HOH blocks (see 154 below). 155 156 General formula of the HOH block 157 The composition of the HOH block can be written as the sum of the cation and anion sites: C<sub>7</sub>D<sub>2</sub> +  $(T_4O_{12})_2X^O_{D2}X^O_{A4}X^P_{Dn}$  =  $C_7D_2(T_4O_{12})_2X^O_{D2}X^O_{A4}X^P_{Dn}$ , where C and D are cations of the O and H 158 sheets:  $C = {}^{[6]}(Fe^{2+}, Mn, Na, Mg, Zn, Fe^{3+}, Ca, Zr, Li); D = {}^{[6,5]}Ti, Nb, Zr, Sn^{4+}, {}^{[5]}Fe^{3+}, Mg, Al; T = {}^{[6]}Ti, Nb, Zr, Sn^{4+}, {}^{[5]}Fe^{3+}, Mg, Al; T = {}^{[6]}Ti, Nb, Zr, Sn^{4+}, {}^{[5]}Fe^{3+}, Mg, Al; T = {}^{[6]}Ti, Nb, Zr, Sn^{4+}, {}^{[5]}Fe^{3+}, Mg, Al; T = {}^{[6]}Ti, Nb, Zr, Sn^{4+}, {}^{[5]}Fe^{3+}, Mg, Al; T = {}^{[6]}Ti, Nb, Zr, Sn^{4+}, {}^{[5]}Fe^{3+}, Mg, Al; T = {}^{[6]}Ti, Nb, Zr, Sn^{4+}, {}^{[5]}Fe^{3+}, Mg, Al; T = {}^{[6]}Ti, Nb, Zr, Sn^{4+}, {}^{[5]}Fe^{3+}, Mg, Al; T = {}^{[6]}Ti, Nb, Zr, Sn^{4+}, {}^{[5]}Ti, Nb, Zr, Sn^{4+}$ 159 160 Si, minor Al; X are anions: X<sup>O</sup><sub>D</sub> anions coordinate three M cations in the O sheet and a D cation in the H sheet, i.e. O; X<sup>O</sup><sub>A</sub> (monovalent anions) coordinate three M cations in the O sheet, i.e. 161 OH, F; and  $X_D^P$  are peripheral anions of the D cations, i.e.  $X_D^P = F$ , O, OH, H<sub>2</sub>O,  $\square$ , where n = 0, 162 1, 2 for  $(X_D^P)_n$ . For astrophyllite, the ideal composition of the HOH block is 163  $[Fe^{2+}_{7}Ti_{2}(Si_{4}O_{12})_{2}O_{2}(OH)_{4}F]^{3-}$  (Table 1). 164 165 166 Self-linkage of HOH blocks: the I (Intermediate) block 167 Following Sokolova (2012), we divide all structures of the astrophyllite-supergroup minerals into 168 two types on the basis of the type of self-linkage between the HOH blocks: (1) HOH blocks link 169 directly where they share common vertices of D octahedra, and (2) HOH blocks do not link 170 directly.

171

| 173 | Type 1: HOH blocks link direc             | ctly                                                                                                  |
|-----|-------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 174 | HOH blocks link directly when             | re they share common vertices of D octahedra, $X_D^P$ anions, <i>i.e.</i>                             |
| 175 | HOH blocks connect via D-X                | <sup>P</sup> <sub>D</sub> –D bridges (e.g. Ti–F–Ti in astrophyllite) (Fig. 2 <i>a</i> ). This type of |
| 176 | self-linkage of HOH blocks or             | ccurs in astrophyllite, niobophyllite, zircophyllite, tarbagataite,                                   |
| 177 | nalivkinite, bulgakite, kupletsk          | kite, niobokupletskite and kupletskite-(Cs). These type-1 structures                                  |
| 178 | belong to the astrophyllite str           | ucture type with space group $P\overline{1}$ (or space group $C2/c$ in                                |
| 179 | kupletskite-2 <i>M</i> , Table 1). In the | ne space between two HOH blocks, cations at two interstitial sites,                                   |
| 180 | A and B, constitute a layer of            | the form $A_2B$ in the I (Intermediate) block (m = 1, where m denotes                                 |
| 181 | number of cation layers in the            | e I block). In astrophyllite, niobophyllite, kupletskite and                                          |
| 182 | niobokupletskite, the dominar             | nt cations at the A and B sites are K and Na, respectively (Figs.                                     |
| 183 | 2a,b); other dominant cations             | are as follows: <sup>A</sup> Cs [kupletskite-(Cs)] and <sup>B</sup> Ca (tarbagataite)                 |
| 184 | (Tables 2, 3). In bulgakite and           | d nalivkinite, the A site is split into two subsites, $A(1)$ and $A(2)$ ,                             |
| 185 | which are occupied mainly by              | K and Li, respectively, where Li > K (Fig. 3a). Hence we write the                                    |
| 186 | ideal composition of the A site           | e as $\text{Li}_2$ a.p.f.u. (Tables 1-3). Li and K at the $A(1)$ and $A(2)$ sites                     |
| 187 | occur at short distances and              | must be locally mutually exclusive. Figure 3b gives a short-range                                     |
| 188 | order model for Li + H <sub>2</sub> O and | K in the structure of nalivkinite. The large K cation at the $A(1)$ site                              |
| 189 | is coordinated by thirteen O a            | atoms, and a smaller Li cation at the $A(2)$ site is coordinated by five                              |
| 190 | O atoms and an H <sub>2</sub> O group a   | t the $W$ site. The analogous arrangement of Na + H $_2$ O and K has                                  |
| 191 | been reported for nafertisite,            | $Na_3Fe^{2+}_{10}Ti_2(Si_6O_{17})_2O_2(OH)_6F$ ( $H_2O)_2$ (Cámara <i>et al.</i> , 2014).             |
| 192 | Based on the dominar                      | nt cation of the O sheet, we divide the nine minerals listed above                                    |
| 193 | into two groups (Tables 1–3):             |                                                                                                       |
| 194 | Astrophyllite group:                      | HOH blocks connect via $D-X_D^P-D$ bridges, $Fe^{2+}$ is dominant at $C_7$ ;                          |
| 195 | Kupletskite group:                        | HOH blocks connect via $D-X_D^P-D$ bridges, $Mn^{2+}$ is dominant at $C_{7}$ ;                        |
| 196 |                                           |                                                                                                       |
| 197 |                                           |                                                                                                       |
| 198 |                                           |                                                                                                       |

| Type 2: HOH blocks | do | not | link | dire | ctly |
|--------------------|----|-----|------|------|------|
|--------------------|----|-----|------|------|------|

HOH blocks do not link directly via polyhedra of the H sheets, i.e. HOH blocks do not connect 200 201 via D-X<sup>P</sup><sub>D</sub>-D bridges. The type-2 structure occurs in lobanovite, sveinbergeite and devitoite. In 202 lobanovite, with [5]-coordinated Ti in the H sheet, HOH layers connect via K at the A site and Na 203 at the B site, which constitute an I block (m = 1) of the form  $A_2B$  (Fig. 4a). In sveinbergeite, the I 204 block (m = 1) is characterized by both cation and anion disorder (Fig. 4b) (Khomyakov et al., 205 2011). The A site is occupied mainly by H<sub>2</sub>O groups, giving ideally (H<sub>2</sub>O)<sub>2</sub> p.f.u. (Table 2). The B 206 site splits into the B(1) and B(2) sites which are separated by < 1 Å and are occupied by 207  $(Ca,\Box)_2$  and  $(H_2O,\Box)_2$ , giving ideally  $[Ca(H_2O)]$  p.f.u. Short-range order of Ca and  $H_2O$  at the B(1,2) sites affects the composition of the  $X_D^P$  site, ideally [(OH)(H<sub>2</sub>O)] p.f.u. The ideal 208 209 composition of the I block in sveinbergeite is the sum of the constituents at the A (2 a.p.f.u.) and 210 B (2 a.p.f.u.) sites:  $(H_2O)_2 + [Ca(H_2O)] = Ca(H_2O)_3$  p.f.u. Devitoite is the only known mineral with the astrophyllite-type HOH block where [5]-coordinated D sites are occupied by Fe<sup>3+</sup> (Kampf et 211 212 al., 2010) (Tables 1–3). In the devitoite structure, HOH layers alternate with I blocks along [001] 213 (Fig. 4c). In the I block, there are three layers of cations (m = 3). Two peripheral layers of the I 214 block are topologically identical to the layer of the form A<sub>2</sub>B in astrophyllite (Fig. 2a). In the 215 peripheral layer of the I block in devitoite, the A and B sites are occupied by Ba (Fig. 4c), giving 216  $Ba_2(A_2) + Ba(B) = Ba_3$  a.p.f.u. The central layer of the I block in devitoite is occupied by  $PO_4$ 217 tetrahedra and CO<sub>3</sub> groups, giving (PO<sub>4</sub>)<sub>2</sub>(CO<sub>3</sub>) p.f.u. The ideal composition of the I block in 218 devitoite is the sum of the two peripheral layers and the central layer:  $2 \times Ba_3 + (PO_4)_2(CO_3) =$ 219  $Ba_6(PO_4)_2(CO_3)$  p.f.u. 220 Taking into account that devitoite (Kampf et al., 2010) was described prior to

sveinbergeite (Khomyakov *et al.*, 2011) and lobanovite (Sokolova *et al.*, 2015), we list devitoite, sveinbergeite and lobanovite in the:

Devitoite group: HOH blocks do not connect via  $D-X_D^P-D$  bridges.

224

221

222

## General formula for the astrophyllite-supergroup minerals

226 The I block

225

- We write the composition of the I block in the astrophyllite-supergroup minerals as A<sub>2p</sub>B<sub>r</sub>IW<sub>A2</sub>,
- where p is the number of layers of the form  $A_2BW_{A_2}$  and is equal to 1, 2; r = 1, 2; A = K, Cs, Li,
- Ba,  $H_2O$ ,  $\square$ ; B = Na, Ca, Ba,  $H_2O$ ,  $\square$ ; W =  $H_2O$ ,  $\square$ ; I represents the composition of the central
- part of the I block, excluding peripheral layers of the form A<sub>2</sub>B and A<sub>2</sub>BW<sub>A2</sub>, i.e. (PO<sub>4</sub>)<sub>2</sub>(CO<sub>3</sub>) in
- devitoite.
- We combine general formulae for the HOH block,  $C_7D_2(T_4O_{12})_2X^O_{D2}X^O_{A4}X^P_{Dn}$ , and the I
- block, A<sub>2p</sub>B<sub>r</sub>IW<sub>A2</sub>, into a general formula for the astrophyllite-supergroup minerals:
- $A_{2p}B_{r}C_{7}D_{2}(T_{4}O_{12})_{2}IX_{D2}^{O}X_{A4}^{O}X_{Dn}^{P}W_{A2}$
- where C [cations at the M(1-4) sites in the O sheet] =  $Fe^{2+}$ , Mn, Na, Mg, Zn,  $Fe^{3+}$ , Ca, Zr, Li; D
- 236 (cations in the H sheets) =  ${}^{[6,5]}$ Ti, Nb, Zr, Sn<sup>4+</sup>,  ${}^{[5]}$ Fe<sup>3+</sup>, Mg, Al; T = Si, minor Al;  $A_{2p}B_rIW_{A2}$  (I
- block) where p = 1,2; r = 1,2; A = K, Cs, Ba, H<sub>2</sub>O, Li, Rb, Pb<sup>2+</sup>, Na,  $\square$ ; B = Na, Ca, Ba, H<sub>2</sub>O,  $\square$ ; I
- represents the composition of the central part of the I block, excluding peripheral layers of the
- 239 form  $A_{2D}B_rW_{A2}$ , e.g.  $(PO_4)_2(CO_3)$  (devitoite);  $X_D^O = O$ ;  $X_A^O = OH$ , F;  $X_D^P = F$ , O, OH, H<sub>2</sub>O,  $\Box$ ,
- 240 where n = 0, 1, 2 for  $(X_D^P)_n$ ;  $W_A = H_2O$ ,  $\square$ .

# 242 Acknowledgements

- We thank reviewer Yu. Uvarova for useful comments and Associate Editor S. Mills for handling
- the manuscript. The authors are grateful to the vice president of the CNMNC, IMA Frédéric
- 245 Hatert, and members of the Commission, for useful comments and suggestions. FC
- acknowledges support by the University of Torino "Progetti di ricerca finanziati dall'Università
- 247 degli Studi di Torino (ex 60 %)"- year 2014. This work was also supported by a Canada
- Research Chair in Crystallography and Mineralogy and by a Discovery grant from the Natural
- 249 Sciences and Engineering Research Council of Canada to FCH, and by Innovation Grants from
- 250 the Canada Foundation for Innovation to FCH.

| 251 | References                                                                                                                                                                           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 252 | Agakhanov, A.A., Pautov L.A., Uvarova, Y.A., Sokolova E., Hawthorne, F.C. and Karpenko,                                                                                              |
| 253 | V.Yu. (2008) Nalivkinite, Li <sub>2</sub> NaFe <sup>2+</sup> <sub>7</sub> Ti <sub>2</sub> (Si <sub>8</sub> O <sub>24</sub> )O <sub>2</sub> (OH) <sub>4</sub> F, a new mineral of the |
| 254 | astrophyllite group from the Darai-Pioz massif, Tadjikistan. New Data on Minerals, 43, 5-                                                                                            |
| 255 | 12.                                                                                                                                                                                  |
| 256 | Agakhanov, A.A., Pautov, L.A., Sokolova, E., Hawthorne, F.C. and Karpenko, V.Y. (2014)                                                                                               |
| 257 | Bulgakite, IMA 2014-041. Mineralogical Magazine, 78, 1241–1248.                                                                                                                      |
| 258 | Agakhanov, A.A., Pautov, L.A., Sokolova, E., Abdu, Y.A., Hawthorne, F.C. and Karpenko, V.Y.                                                                                          |
| 259 | (2015) Two astrophyllite-supergroup minerals, bulgakite and nalivkinite: bulgakite, a new                                                                                            |
| 260 | mineral from the Darai-Pioz alkaline massif, Tajikistan and revision of the crystal                                                                                                  |
| 261 | structure and chemical formula of nalivkinite. The Canadian Mineralogist (accepted).                                                                                                 |
| 262 | Belov, N.V. (1963) Essays on structural mineralogy. XIV. 97. Ba,Fe-titanosilicate – bafertisite.                                                                                     |
| 263 | 98. Anion role of Ti and Zr. Titanates, zirconates, titanosilicates, zirconosilicates.                                                                                               |
| 264 | Mineralogicheskii Sbornik L'vovskogo Geologicheskogo Obshchestva, N17, 22–29 (in                                                                                                     |
| 265 | Russian).                                                                                                                                                                            |
| 266 | Belov, N.V. (1976) Essays on structural mineralogy. Nedra, Moscow (in Russian).                                                                                                      |
| 267 | Cámara, F., Sokolova, E., Abdu, Y. and Hawthorne, F.C. (2010) The crystal structures of                                                                                              |
| 268 | niobophyllite, kupletskite-(Cs) and Sn-rich astrophyllite; revisions to the crystal chemistry                                                                                        |
| 269 | of the astrophyllite-group minerals. The Canadian Mineralogist, 48, 1–16.                                                                                                            |
| 270 | Cámara, F., Sokolova, E., Abdu, Y.A. and Hawthorne, F.C. (2014) Nafertisite,                                                                                                         |
| 271 | $Na_{3}Fe^{2^{+}}{}_{10}Ti_{2}(Si_{6}O_{17})_{2}O_{2}(OH)_{6}F(H_{2}O)_{2},\ from\ Mt.\ Kukisvumchorr,\ Khibiny\ alkaline\ massif,$                                                  |
| 272 | Kola peninsula, Russia: Refinement of the crystal structure and revision of the chemical                                                                                             |
| 273 | formula. European Journal of Mineralogy, <b>26</b> , 689–700.                                                                                                                        |
| 274 | Kampf, A.R., Rossman, G.R., Steele, I.M., Pluth, J.J., Dunning, G.E. and Walstrom, R.E. (2010)                                                                                       |
| 275 | Devitoite, a new heterophyllosilicate mineral with astrophyllite-like layers from eastern                                                                                            |
| 276 | Fresno County, California. The Canadian Mineralogist, 48, 29–40.                                                                                                                     |

| 277 | Kapustin, Y.L. (1972) Zircophyllite – the zirconium analogue of astrophyllite. Zapiski                                                                                                                                         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 278 | Vsesoyuznogo Mineralogicheskogo Obshchestva, 101(4), 459–463 (in Russian).                                                                                                                                                     |
| 279 | Khomyakov, A.P., Cámara, F., Sokolova, E., Hawthorne, F.C. and Abdu, Y. (2011)                                                                                                                                                 |
| 280 | Sveinbergeite, Ca(Fe <sup>2+</sup> <sub>6</sub> Fe <sup>3+</sup> )Ti <sub>2</sub> (Si <sub>4</sub> O <sub>12</sub> ) <sub>2</sub> O <sub>2</sub> (OH) <sub>5</sub> (H <sub>2</sub> O) <sub>4</sub> , a new astrophyllite-group |
| 281 | mineral species from the Larvik plutonic complex, Oslo region, Norway: description and                                                                                                                                         |
| 282 | crystal structure. Mineralogical Magazine, 75, 2687–2702.                                                                                                                                                                      |
| 283 | Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group                                                                                                                             |
| 284 | hierarchies: application to recent nomenclature proposals. European Journal of                                                                                                                                                 |
| 285 | Mineralogy, <b>21</b> , 1073–1080.                                                                                                                                                                                             |
| 286 | Nickel, E.H., Rowland, J.F. and Charette, D.J. (1964) Niobophyllite – the niobium analogue of                                                                                                                                  |
| 287 | astrophyllite; a new mineral from Seal Lake, Labrador. The Canadian Mineralogist, 8,                                                                                                                                           |
| 288 | 40–52.                                                                                                                                                                                                                         |
| 289 | Piilonen, P.C., Lalonde, A.E., Mcdonald, A.M. and Gault, R.A. (2000) Niobokupletskite, a new                                                                                                                                   |
| 290 | astrophyllite-group mineral from Mont Saint-Hilaire, Quebec, Canada: description and                                                                                                                                           |
| 291 | crystal structure. The Canadian Mineralogist, 38, 627–639.                                                                                                                                                                     |
| 292 | Piilonen, P.C., McDonald, A.M. and Lalonde, A.E. (2001) Kupletskite polytypes from the                                                                                                                                         |
| 293 | Lovozero massif, Kola Peninsula, Russia: kupletskite-1A and kupletskite-Ma2b2c.                                                                                                                                                |
| 294 | European Journal of Mineralogy, 13, 973–984.                                                                                                                                                                                   |
| 295 | Piilonen, P.C., LaLonde, A.E., McDonald, A.M., Gault, R.A. and Larsen, A.O. (2003a) Insights                                                                                                                                   |
| 296 | into astrophyllite-group minerals. I. Nomenclature, composition and development of a                                                                                                                                           |
| 297 | standardized general formula. The Canadian Mineralogist, 41, 1–26.                                                                                                                                                             |
| 298 | Piilonen, P.C., McDonald, A.M. and LaLonde, A.E. (2003b) Insights into astrophyllite-group                                                                                                                                     |
| 299 | minerals. II. Crystal chemistry. The Canadian Mineralogist, 41, 27–54.                                                                                                                                                         |
| 300 | Piilonen, P.C., Pekov, I.V., Back, M., Steede, T. and Gault, R.A. (2006) Crystal-structure                                                                                                                                     |
| 301 | refinement of a Zn-rich kupletskite from Mont Saint-Hilaire, Quebec, with contributions to                                                                                                                                     |

| 302 | the geochemistry of zinc in peralkaline environments. Mineralogical Magazine, 70, 565-                                                                                                                                  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 303 | 578.                                                                                                                                                                                                                    |
| 304 | Semenov, E.I. (1956) Kupletskite, a new mineral of the astrophyllite group. Doklady Akademii                                                                                                                            |
| 305 | Nauk SSSR, <b>108</b> , 933–936 (in Russian).                                                                                                                                                                           |
| 306 | Sokolova, E. (2006) From structure topology to chemical composition: I. Structural hierarchy                                                                                                                            |
| 307 | and stereochemistry in titanium disilicate minerals. The Canadian Mineralogist, 44,                                                                                                                                     |
| 308 | 1273–1330.                                                                                                                                                                                                              |
| 309 | Sokolova, E. (2012) Further developments in the structure topology of the astrophyllite-group                                                                                                                           |
| 310 | minerals. Mineralogical Magazine, <b>76</b> , 863–882.                                                                                                                                                                  |
| 311 | Sokolova, E. and Cámara, F. (2008) Re-investigation of the crystal structure of magnesium                                                                                                                               |
| 312 | astrophyllite. European Journal of Mineralogy, 20, 253–260.                                                                                                                                                             |
| 313 | Sokolova, E., Cámara, F., Hawthorne, F.C. and Ciriotti, M.E. (2015) Lobanovite,                                                                                                                                         |
| 314 | K <sub>2</sub> Na(Fe <sup>2+</sup> <sub>4</sub> Mg <sub>2</sub> Na)Ti <sub>2</sub> (Si <sub>4</sub> O <sub>12</sub> ) <sub>2</sub> O <sub>2</sub> (OH) <sub>4</sub> , a new mineral of the astrophyllite supergroup and |
| 315 | its relation to magnesioastrophyllite. Mineralogical Magazine (submitted).                                                                                                                                              |
| 316 | Stepanov A.V., Bekenova G.K., Levin V.L., Sokolova E.V., Hawthorne, F.C. and Dobrovolskaya                                                                                                                              |
| 317 | E.A. (2012) Tarbagataite, $(K,\Box)_2(Ca,Na)(Fe^{2+},Mn)_7Ti_2(Si_4O_{12})_2O_2(OH)_4(OH,F)$ , a new                                                                                                                    |
| 318 | astrophyllite-group mineral species from the Verkhnee Espe deposit, Akjailyautas                                                                                                                                        |
| 319 | Mountains, Kazakhstan: description and crystal structure. The Canadian Mineralogist,                                                                                                                                    |
| 320 | <b>50</b> , 159–168.                                                                                                                                                                                                    |
| 321 | Uvarova, Y.A., Sokolova, E., Hawthorne, F.C., Agakhanov, A.A. and Pautov, L.A. (2008) The                                                                                                                               |
| 322 | crystal structure of nalivlinite, a new lithium member of the astrophyllite group. The                                                                                                                                  |
| 323 | Canadian Mineralogist, <b>46</b> , 651–659.                                                                                                                                                                             |
| 324 | Weibye, P.C. (1848) Beiträge zur topographischen Mineralogie Norwegens. Archiv für                                                                                                                                      |
| 325 | Mineralogie, Geognosie Bergbau und Hüttenkunde, 22, 465–544 (in German).                                                                                                                                                |

| 326 | Yefimov, A.F., Dusmatov, V.D., Ganzeyev, A.A. and Katayeva, Z.T. (1971) Cesium kupletskite, |
|-----|---------------------------------------------------------------------------------------------|
| 327 | a new mineral. Doklady of the Academy of Sciences U.S.S.R., Earth Sciences, 197,            |
| 328 | 140–143.                                                                                    |
| 329 |                                                                                             |

| Figure captions                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------|
| Fig. 1. The HOH block in the crystal structure of astrophyllite [atom coordinates of Sn-rich                               |
| astrophyllite are taken from Cámara et al. (2010)]: (a) the O sheet and H sheets viewed                                    |
| perpendicular to the plane of the sheets, (b) the HOH block viewed down [100]. The $M(1)$ , $M(2)$ ,                       |
| M(3) and M(4) octahedra in the O sheet (C-group of atoms) are labelled 1, 2, 3 and 4. The Mn-                              |
| and Fe <sup>2+</sup> -dominant octahedra are magenta and green. The T(=Si) tetrahedra and D(=Ti,Nb)                        |
| octahedra are orange and pale yellow. The OH groups and F atoms at the $X^{O}_{A}$ and $X^{P}_{D}$ sites are               |
| shown as small red and yellow spheres. In (a), the unit cell is shown in red.                                              |
|                                                                                                                            |
| Fig. 2. Astrophyllite: (a) general view of the crystal structure and (b) the position of the A and B                       |
| sites with regard to the H sheet. Legend as in Fig. 1; K and Na atoms at the A and B sites are                             |
| shown as green and navy blue spheres. The position of the intermediate layer (m = 1, where m                               |
| is a number of intermediate layers) is shown by a turquoise line.                                                          |
|                                                                                                                            |
| Fig. 3. Nalivkinite: (a) general view of the crystal structure and (b) the short-range order of K                          |
| [ $A(1)$ site] and Li [ $A(2)$ site] plus H <sub>2</sub> O [ $W$ site] in the I block. Legend as in Fig. 2; K and Li atoms |
| at the A(1) and A(2) sites are shown as green and larger yellow spheres, H <sub>2</sub> O groups are shown                 |
| as larger red spheres.                                                                                                     |
|                                                                                                                            |
| Fig. 4. General view of the crystal structures of (a) lobanovite, (b) sveinbergeite and (c)                                |
| devitoite. Legend as in Fig. 2; the Mg and Na octahedra are pink and navy blue, the [5]-                                   |
| coordinated $Fe^{3+}$ polyhedra are yellow; Ca (at the B site in sveinbergeite) and Ba (at the A and                       |
| $B$ sites in devitoite) atoms and $H_2O$ groups (at the $A$ , $B$ and $X^P_D$ sites in sveinbergeite) are                  |
| shown as pink, raspberry and red spheres, respectively; PO <sub>4</sub> tetrahedra are purple, CO <sub>3</sub> groups      |
| are shown as small black spheres (C atoms) bonded to small red spheres (O atoms of CO <sub>2</sub>                         |

- groups). The positions of the intermediate layer in lobanovite and sveinbergeite and the three
- intermediate layers in devitoite are shown by turquoise lines.

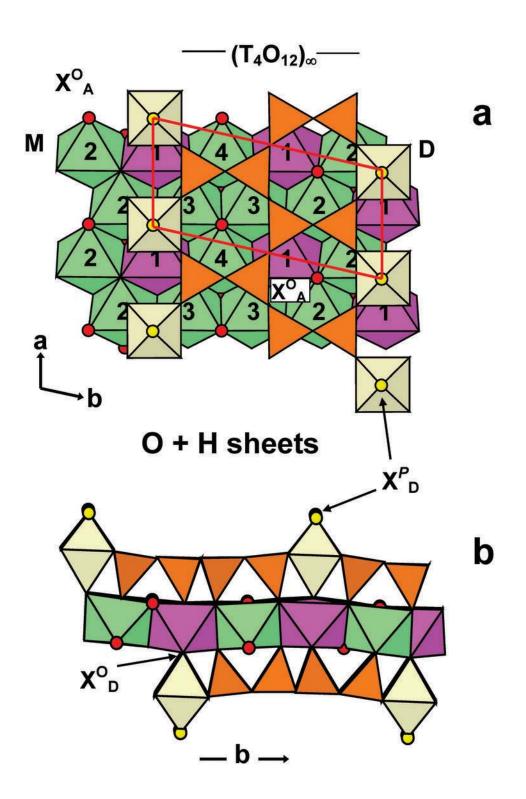
Table 1. Ideal formulae\* and unit-cell parameters for the astrophyllite-supergroup minerals.

| Mineral           | Endmember formula                                                                                                           | a (Å)<br>α(°)            | b (Å)<br>β (°)          | c (Å)<br>γ (°)     | Space group | Z | Ref.    |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|--------------------|-------------|---|---------|
| Astrophyllite gro | <b>DUP</b> HOH blocks connect via D-X <sup>P</sup> <sub>D</sub> -D bridges,                                                 | Fe <sup>2+</sup> is domi | nant at C <sub>7</sub>  |                    |             |   |         |
| Astrophyllite     | $K_2NaFe^{2+}_7Ti_2(Si_4O_{12})_2O_2(OH)_4F$                                                                                | 5.3866<br>113.019        | 11.8821<br>94.578       | 11.6794<br>103.120 | <i>P</i> 1  | 1 | (1,2)   |
| Niobophyllite     | $K_2NaFe^{2+}_7(Nb,Ti)(Si_4O_{12})_2O_2(OH)_4(O,F)$                                                                         | 5.4022<br>112.990        | 11.8844<br>94.588       | 11.6717<br>103.166 | <i>P</i> 1  | 1 | (3,2)   |
| Zircophyllite     | $K_2NaFe^{2+}_7Zr_2(Si_4O_{12})_2O_2(OH)_4F$                                                                                | 5.447<br>112.950         | 11.966<br>94.690        | 11.789<br>103.116  | <i>P</i> 1  | 1 | (4,5)   |
| Tarbagataite      | $(K\Box)CaFe^{2+}_{7}Ti_{2}(Si_{4}O_{12})_{2}O_{2}(OH)_{5}$                                                                 | 5.3868<br>112.978        | 11.9141<br>94.641       | 11.7171<br>103.189 | <i>P</i> 1  | 1 | (6)     |
| Nalivkinite       | $\text{Li}_2\text{NaFe}^{2+}_7\text{Ti}_2(\text{Si}_4\text{O}_{12})_2\text{O}_2(\text{OH})_4\text{F}(\text{H}_2\text{O})_2$ | 5.374<br>113.360         | 11.948<br>94.538        | 11.676<br>103.01   | <i>P</i> 1  | 1 | (7,8)   |
| Bulgakite         | $Li_2(Ca,Na)Fe^{2+}_7Ti_2(Si_4O_{12})_2O_2(OH)_4(O,F)(H_2O)_2$                                                              | 5.374<br>113.457         | 11.965<br>94.533        | 11.65<br>103.08    | <i>P</i> 1  | 1 | (8)     |
| Kupletskite grou  | <b>IP</b> HOH blocks connect via $D-X_D^P-D$ bridges,                                                                       | Mn <sup>2+</sup> is domi | inant at C <sub>7</sub> |                    |             |   |         |
| Kupletskite-1A    | $K_2NaMn_7Ti_2(Si_4O_{12})_2O_2(OH)_4F$                                                                                     | 5.3784<br>112.964        | 11.9085<br>94.697       | 11.7236<br>103.112 | <i>P</i> 1  | 1 | (9)     |
| Kupletskite-2M    | $K_2NaMn_7Ti_2(Si_4O_{12})_2O_2(OH)_4F$                                                                                     | 5.4022                   | 23.226<br>95.246        | 21.1782            | C2/c        | 4 | (9)     |
| Niobokupletskite  | $K_2NaMn_7(Nb,Ti)(Si_4O_{12})_2O_2(OH)_4(O,F)$                                                                              | 5.4303<br>112.927        | 11.924<br>94.750        | 11.747<br>103.175  | <i>P</i> 1  | 1 | (10)    |
| Kupletskite-(Cs)  | $Cs_2NaMn_7Ti_2(Si_4O_{12})_2O_2(OH)_4F$                                                                                    | 5.3850<br>113.117        | 11.9350<br>94.614       | 11.7793<br>103.075 | <i>P</i> 1  | 1 | (11,2)  |
| Devitoite group   | HOH blocks do not connect via $D-X_D^P-D$ by                                                                                | ridges                   |                         |                    |             |   |         |
| Devitoite         | $Ba_6Fe^{2+}_{7}Fe^{3+}_{2}(Si_4O_{12})_2(PO_4)_2(CO_3)O_2(OH)_4$                                                           | 5.3437<br>91.337         | 11.6726<br>96.757       | 14.680<br>103.233  | <i>P</i> 1  | 1 | (12)    |
| Sveinbergeite     | $(H_2O)_2[Ca(H_2O)](Fe^{2+}_{6}Fe^{3+})Ti_2(Si_4O_{12})_2O_2(OH)_4$ $[OH(H_2O)]$                                            | 5.329<br>101.140         | 11.803<br>98.224        | 11.822<br>102.442  | <i>P</i> 1  | 1 | (13)    |
| Lobanovite        | $K_2Na(Fe^{24}_4Mg_2Na)Ti_2(Si_4O_{12})_2O_2(OH)_4$                                                                         | 5.3327                   | 23.1535<br>99.615       | 10.3775            | C2/m        | 2 | (14,15) |

<sup>\*</sup>The ideal formula is of the form A<sub>2p</sub>B<sub>r</sub>C<sub>7</sub>D<sub>2</sub>(T<sub>4</sub>O<sub>12)2</sub>IX<sup>o</sup><sub>D2</sub>X<sup>o</sup><sub>A4</sub>X<sup>p</sup><sub>Dn</sub>W<sub>A2</sub> (see text); References (description of a new mineral, the latest work on the structure): (1) Weibye (1848); (2) Cámara *et al.* (2010); (3) Nickel *et al.* (1964); (4) Kapustin (1972); (5) Sokolova *et al.* (in preparation); (6) Stepanov *et al.* (2012); (7) Agakhanov *et al.* (2008); (8) Agakhanov *et al.* (2015); (9) Piilonen *et al.* (2001); (10) Piilonen *et al.* (2000); (11) Yefimov *et al.* (1971); (12) Kampf *et al.* (2010); (13) Khomyakov *et al.* (2011); (14) Sokolova *et al.* (2015); (15) Sokolova and Cámara (2008).

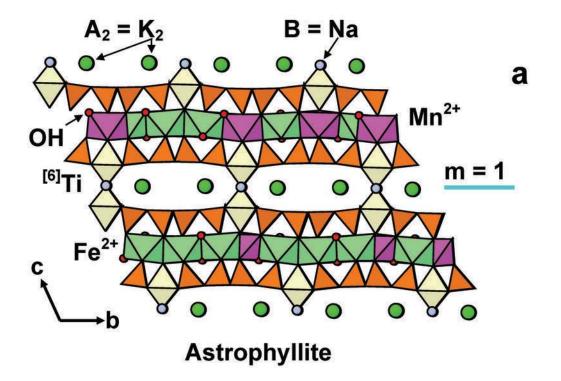
Table 2. Cation and anion sites in the structures of the astrophyllite-supergroup minerals.

|                  |                               |                                  |                               | — н              | OH blo         | ck                |                                              |                        | I                                                                  | (Intermediat                                 | e) block                        |                                                       | Ref. |
|------------------|-------------------------------|----------------------------------|-------------------------------|------------------|----------------|-------------------|----------------------------------------------|------------------------|--------------------------------------------------------------------|----------------------------------------------|---------------------------------|-------------------------------------------------------|------|
| Mineral          |                               |                                  | — О s                         | heet —           |                |                   | 2H                                           | sheets                 | _                                                                  |                                              |                                 |                                                       |      |
| C <sub>7</sub> : | 2M(1)                         | 2M(2)                            | 2M(3)                         | M(4)             | $2X_D^O$       | 4X <sup>O</sup> A | 2D                                           | $nX^P_{D}$             | $pA_2$                                                             | rB                                           | $2W_A$                          | 1                                                     |      |
| Astrophyllite gi | roup                          |                                  |                               |                  |                |                   |                                              |                        |                                                                    |                                              |                                 |                                                       |      |
| Astrophyllite    | $Mn^{2+}_{2}$                 | Fe <sup>2+</sup> <sub>2</sub>    | $Fe^{2+}_{2}$                 | Fe <sup>2+</sup> | $O_2$          | (OH) <sub>4</sub> | Ti <sub>2</sub>                              | F                      | $^{[12]}K_2$                                                       | <sup>[10]</sup> Na                           |                                 |                                                       | (1)  |
| Niobophyllite    | $\mathrm{Mn}^{2+}_{2}$        | $Fe^{2+}_{2}$                    | Fe <sup>2+</sup> 2            | Fe <sup>2+</sup> | $O_2$          | (OH) <sub>4</sub> | $(Nb,Ti)_2$                                  | (O,F)                  | $^{[13]}K_2$                                                       | <sup>[10]</sup> Na                           |                                 |                                                       | (1)  |
| Zircophyllite    | Mn <sup>2+</sup> <sub>2</sub> | Fe <sup>2+</sup> 2               | Fe <sup>2+</sup> <sub>2</sub> | Fe <sup>2+</sup> | O <sub>2</sub> | (OH) <sub>4</sub> | Ti <sub>2</sub>                              | F                      | $^{[13]}$ K $_2$                                                   | <sup>[10]</sup> Na                           |                                 |                                                       | (2)  |
| Tarbagataite     | Mn <sup>2+</sup> <sub>2</sub> | Fe <sup>2+</sup> 2               | Fe <sup>2+</sup> <sub>2</sub> | Fe <sup>2+</sup> | $O_2$          | (OH) <sub>4</sub> | Ti <sub>2</sub>                              | ОН                     | <sup>[12]</sup> (K□)                                               | <sup>[10]</sup> Ca                           |                                 |                                                       | (3)  |
| Nalivkinite      | $Fe^{2+}_{2}$                 | Fe <sup>2+</sup> <sub>2</sub>    | Fe <sup>2+</sup> <sub>2</sub> | Fe <sup>2+</sup> | $O_2$          | (OH) <sub>4</sub> | Ti <sub>2</sub>                              | F                      | Li <sub>2</sub>                                                    | <sup>[10]</sup> Na                           | (H <sub>2</sub> O) <sub>2</sub> |                                                       | (4)  |
| Bulgakite        | Fe <sup>2+</sup> <sub>2</sub> | $Fe^{2+}_{2}$                    | $Fe^{2+}_{2}$                 | Fe <sup>2+</sup> | $O_2$          | (OH) <sub>4</sub> | Ti <sub>2</sub>                              | (O,F)                  | Li <sub>2</sub>                                                    | <sup>[10]</sup> (Ca,Na)                      | (H <sub>2</sub> O) <sub>2</sub> |                                                       | (4)  |
| Kupletskite gro  | ир                            |                                  |                               |                  |                |                   |                                              |                        |                                                                    |                                              |                                 |                                                       |      |
| Kupletskite      | $Mn^{2+}_{2}$                 | $\mathrm{Mn}^{2^+}_{2}$          | $\mathrm{Mn}^{2+}_{2}$        | Mn <sup>2+</sup> | $O_2$          | (OH) <sub>4</sub> | Ti <sub>2</sub>                              | F                      | $^{[12]}K_2$                                                       | <sup>[10]</sup> Na                           |                                 |                                                       | (5)  |
| Niobokupletskite | Mn <sup>2+</sup> 2            | $\mathrm{Mn}^{2+}_{2}$           | $Mn^{2+}_{2}$                 | Mn <sup>2+</sup> | $O_2$          | (OH) <sub>4</sub> | $(Nb,Ti)_2$                                  | (O,F)                  | $^{[8,9]}K_2$                                                      | <sup>[10]</sup> Na                           |                                 |                                                       | (6)  |
| Kupletskite-(Cs) | $\mathrm{Mn}^{2+}_{2}$        | Fe <sup>2+</sup> <sub>2</sub>    | $\mathrm{Mn}^{2+}_{2}$        | Zn               | $O_2$          | (OH) <sub>4</sub> | Ti <sub>2</sub>                              | F                      | <sup>[13]</sup> Cs <sub>2</sub>                                    | <sup>[10]</sup> Na                           |                                 |                                                       | (1)  |
| Devitoite group  | ,                             |                                  |                               |                  |                |                   |                                              |                        |                                                                    |                                              |                                 |                                                       |      |
| Devitoite        | Fe <sup>2+</sup> <sub>2</sub> | Fe <sup>2+</sup> 2               | Fe <sup>2+</sup> <sub>2</sub> | Fe <sup>2+</sup> | O <sub>2</sub> | (OH) <sub>4</sub> | <sup>[5]</sup> Fe <sup>3+</sup> <sub>2</sub> | $\square_2$            | <sup>[12]</sup> Ba <sub>2</sub><br><sup>[12]</sup> Ba <sub>2</sub> | <sup>[9-11]</sup> Ba<br><sup>[9-11]</sup> Ba |                                 | (PO <sub>4</sub> ) <sub>2</sub><br>(CO <sub>3</sub> ) | (7)  |
| Sveinbergeite    |                               | - (Fe <sup>2+</sup> <sub>6</sub> | Fe <sup>3+</sup> ) —          |                  | $O_2$          | (OH) <sub>4</sub> | Ti <sub>2</sub>                              | [OH(H <sub>2</sub> O)] | (H <sub>2</sub> O) <sub>2</sub>                                    | [ <sup>9]</sup> Ca(H <sub>2</sub> O)]        |                                 |                                                       | (8)  |
| Lobanovite*      | Na                            | Fe <sup>2+</sup> <sub>2</sub>    | Fe <sup>2+</sup> <sub>2</sub> | $Mg_2$           | $O_2$          | (OH) <sub>4</sub> | <sup>[5]</sup> Ti <sub>2</sub>               |                        | $^{[10]}K_{2}$                                                     | <sup>[8]</sup> Na                            |                                 |                                                       | (9)  |


 $X^{O}$ : anions of the O sheet;  $X^{P}$ : peripheral anions of the HOH block;  $X^{O}_{D}$ : common anions for three M cations in the O sheet and a D cation in the H sheet;  $X^{O}_{A}$ : monovalent anions common for three M cations in the O sheet;  $X^{P}_{D}$ : apical (anions or  $H_{2}O$  groups) of D cations at the periphery of the HOH block; (), [] cations and anions are disordered and substitute for each other; coordination numbers (CN) for cations are shown where CN  $\neq$  6; n = 0, 1, 2; p = 1, 2; r = 1, 2.
\*M(1), 2M(2), 2M(3), 2M(4).

References: (1) Cámara et al. (2010); (2) Sokolova et al. (in preparation); (3) Stepanov et al. (2012); (4) Agakhanov et al. (2015); (5) Piilonen et al. (2001); (6) Piilonen et al. (2000); (7) Kampf et al. (2010); (8) Khomyakov et al. (2011); (9) Sokolova and Cámara (2008).

Table 3. Detailed ideal formulae of the form  $A_{2p}B_rC_7D_2(T_4O_{12})_2IX^O_{D2}X^O_{A4}X^P_{Dn}W_{A2}$  for the astrophyllite-supergroup minerals\*.


| Mineral             |                 |                        | Ide                                                | al formula           |                                                 |                                                    |                                     |                   |                             |                 |   |   |   |
|---------------------|-----------------|------------------------|----------------------------------------------------|----------------------|-------------------------------------------------|----------------------------------------------------|-------------------------------------|-------------------|-----------------------------|-----------------|---|---|---|
|                     | A <sub>2</sub>  | В                      | <b>C</b> <sub>7</sub>                              | D <sub>2</sub>       | (T <sub>4</sub> O <sub>12</sub> ) <sub>2</sub>  | 1                                                  | <b>X</b> <sup>O</sup> <sub>D2</sub> | X <sup>O</sup> A4 | X <sup>P</sup> <sub>D</sub> | W <sub>A2</sub> | р | r | n |
| Astrophyllite group |                 |                        |                                                    |                      |                                                 |                                                    |                                     |                   |                             |                 |   |   |   |
| Astrophyllite       | $K_2$           | Na                     | Fe <sup>2+</sup> <sub>7</sub>                      | Ti <sub>2</sub>      | (Si <sub>4</sub> O <sub>12</sub> ) <sub>2</sub> |                                                    | $O_2$                               | (OH) <sub>4</sub> | F                           |                 | 1 | 1 | 1 |
| Niobophyllite       | $K_2$           | Na                     | Fe <sup>2+</sup> <sub>7</sub>                      | (Nb,Ti) <sub>2</sub> | (Si <sub>4</sub> O <sub>12</sub> ) <sub>2</sub> |                                                    | $O_2$                               | (OH) <sub>4</sub> | (O,F)                       |                 | 1 | 1 | 1 |
| Zircophyllite       | $K_2$           | Na                     | Fe <sup>2+</sup> <sub>7</sub>                      | $Zr_2$               | (Si <sub>4</sub> O <sub>12</sub> ) <sub>2</sub> |                                                    | $O_2$                               | (OH) <sub>4</sub> | F                           |                 | 1 | 1 | 1 |
| Tarbagataite        | (K□)            | Ca                     | Fe <sup>2+</sup> <sub>7</sub>                      | Ti <sub>2</sub>      | (Si <sub>4</sub> O <sub>12</sub> ) <sub>2</sub> |                                                    | $O_2$                               | (OH) <sub>4</sub> | (OH)                        |                 | 1 | 1 | 1 |
| Nalivkinite         | Li <sub>2</sub> | Na                     | Fe <sup>2+</sup> <sub>7</sub>                      | Ti <sub>2</sub>      | (Si <sub>4</sub> O <sub>12</sub> ) <sub>2</sub> |                                                    | $O_2$                               | (OH) <sub>4</sub> | F                           | $(H_2O)_2$      | 1 | 1 | 1 |
| Bulgakite           | Li <sub>2</sub> | (Ca,Na)                | Fe <sup>2+</sup> <sub>7</sub>                      | Ti <sub>2</sub>      | (Si <sub>4</sub> O <sub>12</sub> ) <sub>2</sub> |                                                    | $O_2$                               | (OH) <sub>4</sub> | (O,F)                       | $(H_2O)_2$      | 1 | 1 | 1 |
| Kupletskite group   |                 |                        |                                                    |                      |                                                 |                                                    |                                     |                   |                             |                 |   |   |   |
| Kupletskite         | $K_2$           | Na                     | $\mathrm{Mn}^{2+}_{7}$                             | Ti <sub>2</sub>      | (Si <sub>4</sub> O <sub>12</sub> ) <sub>2</sub> |                                                    | $O_2$                               | (OH) <sub>4</sub> | F                           |                 | 1 | 1 | 1 |
| Niobokupletskite    | $K_2$           | Na                     | $Mn^{2+}_{7}$                                      | $(Nb,Ti)_2$          | (Si <sub>4</sub> O <sub>12</sub> ) <sub>2</sub> |                                                    | $O_2$                               | (OH) <sub>4</sub> | (O,F)                       |                 | 1 | 1 | 1 |
| Kupletskite-(Cs)    | $Cs_2$          | Na                     | $Mn^{2+}_{7}$                                      | Ti <sub>2</sub>      | (Si <sub>4</sub> O <sub>12</sub> ) <sub>2</sub> |                                                    | $O_2$                               | (OH) <sub>4</sub> | F                           |                 | 1 | 1 | 1 |
| Devitoite group     |                 |                        |                                                    |                      |                                                 |                                                    |                                     |                   |                             |                 |   |   |   |
| Devitoite           | Ba <sub>4</sub> | Ba <sub>2</sub>        | Fe <sup>2+</sup> <sub>7</sub>                      | Fe <sup>3+</sup> 2   | (Si <sub>4</sub> O <sub>12</sub> ) <sub>2</sub> | (PO <sub>4</sub> ) <sub>2</sub> (CO <sub>3</sub> ) | $O_2$                               | (OH) <sub>4</sub> | $\square_2$                 |                 | 2 | 2 | 0 |
| Sveinbergeite       | $(H_2O)_2$      | [Ca(H <sub>2</sub> O)] | $(Fe^{2+}_{6}Fe^{3+})$                             | Ti <sub>2</sub>      | (Si <sub>4</sub> O <sub>12</sub> ) <sub>2</sub> |                                                    | $O_2$                               | (OH) <sub>4</sub> | [(OH)(H <sub>2</sub> O)]    |                 | 1 | 2 | 2 |
| Lobanovite          | $K_2$           | Na                     | (Fe <sup>2+</sup> <sub>4</sub> Mg <sub>2</sub> Na) | Ti <sub>2</sub>      | (Si <sub>4</sub> O <sub>12</sub> ) <sub>2</sub> |                                                    | O <sub>2</sub>                      | (OH) <sub>4</sub> |                             |                 | 1 | 1 | 0 |

<sup>\*</sup>Data are taken from the structure work (see references in Table 2).



**HOH block** 

Fig. 1



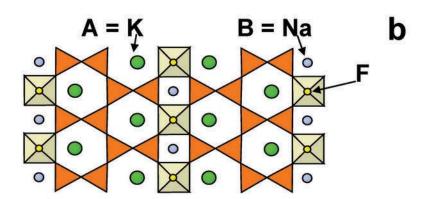
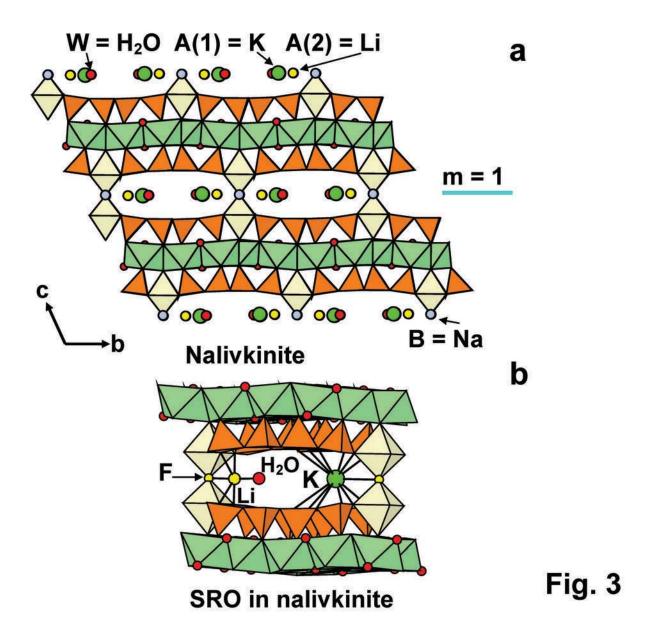




Fig. 2



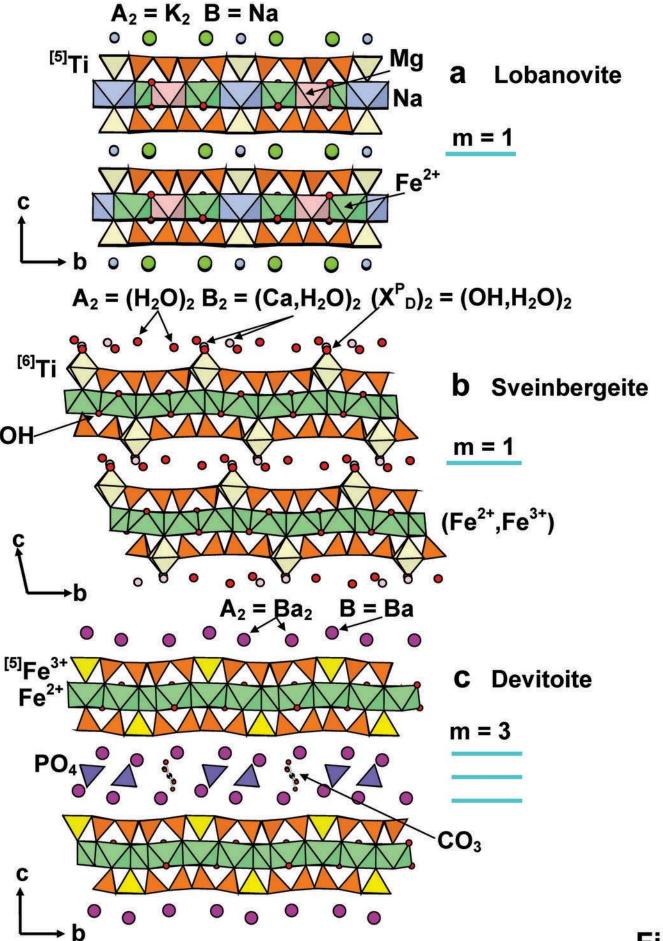



Fig. 4