
Speed-up credit exposure calculations for pricing and risk
management

Kathrin Glau1⇤, Ricardo Pachon2†, Christian Pötz1‡
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Abstract

We introduce a new method to calculate the credit exposure of European
and path-dependent options. The proposed method is able to calculate accu-
rate expected exposure and potential future exposure profiles under the risk-
neutral and the real-world measure. Key advantage of is that it delivers an
accuracy comparable to a full re-evaluation and at the same time it is faster
than a regression-based method. Core of the approach is solving a dynamic
programming problem by function approximation. This yields a closed form
approximation along the paths together with the option’s delta and gamma.
The simple structure allows for highly e�cient evaluation of the exposures,
even for a large number of simulated paths. The approach is flexible in the
model choice, payo↵ profiles and asset classes. We validate the accuracy of
the method numerically for three di↵erent equity products and a Bermudan
interest rate swaption. Benchmarking against the popular least-squares Monte
Carlo approach shows that our method is able to deliver a higher accuracy in
a faster runtime.
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1 Introduction

The credit exposure resulting from two counterparties facing each other on a deriva-
tives deal is the main input in a growing list of calculations, all crucial since the
financial crisis of 2007–2008. Credit exposures are used to estimate, for example,
counterparty credit risk (and consequently the regulatory capital of financial firms),
initial margins of collateralized trades, Credit Valuation Adjustments (CVA), Debit
Valuation Adjustments (DVA) and, more recently, Funding Valuation Adjustments
(FVA).

The exposure of a trade at time t is defined as

Et(Xt) = max{Vt(Xt), 0},

where Xt is the risk factor that drives the price Vt at time t of a portfolio of deriva-
tives. In essence, the credit exposure calculation projects forward in time the dis-
tributions of relevant underlying assets, which follow appropriate stochastic models,
and obtains the associated distributions of the values of the derivatives in scope, up
to their longest maturity. The specifics of this calculation vary with each applica-
tion. For example, for CVA and DVA the calculation is performed at netting set
while for FVA is done at portfolio level. For CVA, negative exposures are floored
to zero before taking a discounted average under the risk-neutral pricing measure
Q. In contrast, in order to quantify credit risk, one needs to assess the distribution
of the exposure Et(Xt) under the real-world measure P. For instance, the upper
quantiles at the level of 95, 97.5 or 99% are standard quantities in risk management.

The mentioned distributions are usually obtained through Monte Carlo simu-
lation: On some chosen time points, the derivatives are re-evaluated on various
scenarios, randomly drawn from the distribution of the underlying asset, and from
the resulting distribution the required metric is extracted. See Gregory (2010) and
Green (2015) for an overview of credit exposure and its calculation. The crux of
the calculation is the repeatedly call of the pricers which can be computationally
expensive. When their is no closed form solution for the price of the derivative,
e.g. for path-dependent options, a straightforward approach would lead to nested
Monte Carlo simulations. Moreover, a often a high number of scenario simulations is
required to obtain stable results, precisely for tail distributions. In credit risk man-
agement an additional challenge arises from the change of measure, i.e. scenarios
are generated under the real-world measure, nonetheless pricing is done under the
risk-neutral measure. Hence, additionally to simulating the paths of the underlying
under Q the scenario paths need to be simulated under P. A naive simplification
would be to assemble the risk quantities also under the pricing measure Q. As
reported in Stein (2016), ”since the banks are already heavily invested in CVA cal-
culations, it is becoming popular to take this shortcut”. The analysis of Stein (2016)
clearly shows the perils of this approach and emphasis the importance of calculating
credit risk quantities under the real-world measure.

In the literature regression based methods are studied in order to avoid nested
Monte Carlo simulation, see for instance Schöftner (2008), who calculate the ex-
posure and CVA for derivatives without analytic solution (e.g. Bermudan options)
based on a modification of the least-squares Monte Carlo approach of Longsta↵ and
Schwartz (2001). For the exposure calculation under the real-world measure in a
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Black-Scholes type model a change of measure using the Radon–Nikodym density
is employed. Furthermore, Karlsson et al. (2016) and Feng et al. (2016) apply the
stochastic grid bundling method (SGBM) of Jain and Oosterlee (2015) to credit ex-
posure calculation and compare it to a least-squares Monte Carlo algorithm. Their
comparison reveals severe deficiencies of the L-S approach. Namely, the L-S price
introduces numerical noise that leads to inaccurate exposure, especially in its tail
distribution. While the bundling technique in the SGBM is able to reduce the Monte
Carlo noise and produce more accurate results, it comes at a significant higher cost.
A di↵erent method is investigated in Shen et al. (2013), who calculate the exposure
for Bermudan options on one asset, based on the COS method for early-exercise
options of Fang and Oosterlee (2009). The method produces accurate results under
Q and P without any change of measure. However, due to its higher runtimes it is
mostly suitable for benchmarking.

In this article we propose a new approach to e�ciently compute credit exposures
of path-dependent options under both, the risk-neutral and the real-world measure.
Our ansatz is based on the dynamic programming formulation of the pricing prob-
lem. In each step of the backward time-stepping we approximate the price function
by a weighted sum of basis functions as proposed in Glau et al. (2019). In the latter
article it is shown that highly accurate and fast prices can be obtained by this ap-
proach based on a suitable approximation technique such as Chebyshev polynomial
interpolation. The approximation of option prices by Chebyshev interpolation has
some outstanding qualities: it can be quickly constructed from a few evaluations on
a grid of asset values; it is robust and e�cient to evaluate; and its accuracy can be
tuned even for high orders. More generally, in recent years the promising proper-
ties of Chebyshev interpolation have been exploited in several areas, see Trefethen
(2013) and the chebfun project at www.chebfun.org.

Our numerical investigation confirms that the proposed method is able to pro-
duce accurate exposure profiles under the risk-neutral and the real-world measure.
One major advantage of the approach is that it applies to a large variety of prod-
ucts and models, namely, European and path-dependent options in di↵erent asset
classes. More specifically, in our numerical experiments we validate the method
for three di↵erent equity products (European, barrier and Bermudan option) and a
Bermuda interest rate swaption. As models we cosider the Black-Scholes and the
Merton jump-di↵usion stock price models and the Hull-White short rate model. We
benchmark our method against a least-squares Monte Carlo approach. The numeri-
cal comparison reveals that the proposed method is able to deliver a higher accuracy
in an even faster runtime. Comparison with a full re-evaluation shows that the error
for both, the expected exposure and the potential future exposure is negligible in
relation to the scenario simulation error.

To summarize, the proposed method combines the accuracy of a full re-evaluation
with a speed even faster than regression based methods. Therefore, replacing a
least-squares Monte Carlo approach by the proposed method enables a considerable
more precise quantification of counterparty credit risk. On the level of a whole
trading book this will lead to reliable counterparty risk estimates in a reasonable
computing time. For an individual bank accurate assessment of counterparty risk
results in lower capital requirements. From the regulator’s perspective this reduces
systematic risk in the banking sector.
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The structure of this paper is as follows. In Section 2, we present the definitions
of credit exposure for pricing and risk management. In Section 3 we introduce the
new approach and we provide algorithms for the exposure calculation under the risk-
neutral and the real-world measure and discuss implementational aspects. Section
4 is devoted to the numerical experiments and Section 5 provides a conclusion and
outlook.

2 Credit exposure for pricing and risk management

For risk and capital calculation purposes, the expected exposure (EE) is defined as

(2.1) EErisk
0 (t) = EP(max(Vt, 0)|F0),

where P refers to the real-world measure, F0 is the filtration at t = 0, and Vt is the
value of the derivative at time t. The potential future exposure of a derivative is
defined as

PFErisk
0 (t) = inf{y : P(max(Vt, 0)  y) � ↵}.(2.2)

for a level ↵ 2 (0, 1). The class of path-dependent derivatives that we consider in
this paper are characterised by a set of exercise dates t0, . . . , tn = T , and the value
function Vtu(x) of the form

VT (x) = g(x),

Vtu(x) = f
⇣
g(tu, x),EQ[D(tu, tu+1)Vtu+1(Xtu+1)|Xtu = x]

⌘
,

(2.3)

where f : R⇥R ! R is a Lipschitz continuous function, and g : [0, T ]⇥R ! R, with
g(T, x) = g(x). Here Xt is the underlying risk factor, and D(tu, tu+1) = Btu/Btu+1

is the discount factor between tu and tu+1, where B(t) is the bank account

B(t) = B(0) exp
⇣Z t

0
r(s)ds

⌘
with B(0) = 1.(2.4)

with r the money markets continuously compounded interest rate, and t < T .
Among the derivatives that can be expressed in the above form, we highlight three
that we will use to test our methodology: Classical European options, early-exercise
options (Bermudan options) and barrier options.

Bermudan options:

In this case the value function is given as

Vtu(x) = max
n
g(x),EQ ⇥D(tu, tu+1)Vtu+1(Xtu+1)|Xtu = x

⇤o
.

European options:

European options correspond to Bermudan options with no early exercise. In this
case the value function becomes

Vtu(x) = EQ ⇥D(tu, tu+1)Vtu+1(Xtu+1)|Xtu = x
⇤
.
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Barrier options:

Discretely monitored up-and-out barrier option with barrier B can be written in the
same form with value function

Vtu(x) = EQ ⇥D(tu, tu+1)Vtu+1(Xtu+1)|Xtu = x
⇤
1xB.

Similarly, we can use the framework for down-and-out barrier options.

The expected exposure also appears when pricing the basis between the counter-
party risk-free value of a trade and its valuation when accounting for counterparty
risk. This di↵erence arises from the risk that a trade is in favour of one counterparty
but the other one defaults before the trade matures. This Credit Valuation Adjust-
ment (CVA) is equivalent to the price of a contingent CDS, whose value follows from
the fundamental arbitrage theorem:

CVA0

B(0)
= EQ

"Z s=T

s=0

max(Vs, 0) · d1(⌧s)

B(s)

#
=

Z s=T

s=0
EQ

"
max(Vs, 0) · d1(⌧s)

B(s)

#
,

where Q is the associated risk-neutral measure and 1(⌧s) is the default indicator for
the counterparty which equals 1 if s is less than the default time ⌧ and 0 otherwise.
The integral over time can be discretized over time buckets, and in the special
case that the value of the derivative and the default event are independent, the
expectation can be expressed as the product of two terms, one accounting exclusively
for the default probability and the other one for the positive exposure of the trade.
This exposure is calculated as

(2.5) EEprice
0 (t) = EQ

⇣max(Vt, 0)

B(t)

���F0

⌘
= D(0, t)EQ(max(Vt, 0)|F0),

assuming that B(0) = 1. Moreover, we define the Q-counterpart of PFErisk as

PFEprice
0 (t) = inf{y : Q(D(0, t)max(Vt, 0)  y) � ↵}.(2.6)

The di↵erences between the risk and the pricing exposures, i.e., expressions (2.1) and
(2.5), is that the former uses the real-world measure for di↵using the risk factors,
while the later uses the risk-neutral measure (the pricing of Vt in both cases, of
course, uses Q). Additionally, for pricing exposures we also incorporate a discount
factor at time point t. As we will see in Section 3.3.1 and 3.3.2, the structure of our
methodology does not change much when calculating either one of them.

3 A unified approach for exposure calculation

In this section we presented a unified approach for the calculation of credit exposure
for di↵erent types of path-dependent options. The core idea of our approach is
to write the option price as a solution of a Dynamic Programming problem and to
approximate the solution with a suitable set of basis functions. The proposed ansatz
is based on the dynamic Chebyshev algorithm of Glau et al. (2019). This method
was presented as a pricing method and can be very easily extended to calculate
expected exposures of options.
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3.1 Calculating credit exposures using dynamic programming

For many (portfolios of) derivatives the expected exposure as defined in Section 2
cannot be calculated analytically and simulation approaches come into play. The risk
factors Xi

t , i = 1, . . . ,M are simulated and the expected exposure is approximated
by

EEt(x) = EP[max{Vt(Xt), 0}] ⇡
1

M

MX

i=1

max{Vt(X
i
t), 0}.

Hence, the values Vt(Xi
t) of the derivative have to be calculated for a large number

M of simulated risk factors. Typically, there is no analytic solution available and the
evaluation becomes computationally demanding. This is especially the case when
the value function Vt at time point t depends on the conditional expectation of the
value function at t+ 1.

In order to address this issue we propose to approximate the function x 7! Vt(x)
with a weighted sum of basis functions, i.e.

Vt(x) ⇡ bVt(x) =
NX

j=0

cjpj(x)

with weights/coe�cients cj . Then we replace the value function with its approxi-
mation in the exposure calculation

EEt(x) = EP[max{Vt(Xt), 0}] ⇡
1

M

MX

i=1

max{bVt(X
i
t), 0}.(3.1)

Even for a large number of simulated risk factors the sum of basis functions can be
evaluated e�ciently.

In order to introduce the algorithm, we start with the pricing of a Bermudan
option. The value of a Bermudan option with payo↵ g and exercise dates t0, . . . , tn =
T is given by the optimal stopping problem

Vt0(x) = sup
t0tuT

B(t0)EQ
hg(Xtu)

B(tu)

���Xt0 = x
i

where B(t) is the bank account given by (2.4). The principle of Dynamic Program-
ming yields the backward induction

VT (x) = g(x)

Vtu(x) = max
n
g(x),EQ ⇥D(tu, tu+1)Vtu+1(Xtu+1)|Xtu = x

⇤o

for the discount factor D(tu, tu+1) = Btu/Btu+1 . More generally, we obtain the
dynamic programming problem (2.3) for the value function Vtu(x)

Vtu(x) = f
⇣
g(tu, x),EQ ⇥D(tu, tu+1)Vtu+1(Xtu+1)|Xtu = x

⇤⌘
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for a Lipschitz continuous function f : R⇥R ! R and a function g : [0, T ]⇥R ! R
with g(T, x) = g(x). This formulation includes also the pricing of European and
barrier options, as stated in Section 2.

We will solve the backward induction on the finite domain X = [x, x]. Assume we
have at tu+1 an approximation bVtu+1 with Vtu+1(x) ⇡ bVtu+1(x) =

P
j cj(tu+1)pj(x).

We solve the problem on a set of nodal points xk, k = 0, . . . , N and use the function
values at these points to calculate new coe�cients cj . In this case the backward
induction becomes

Vtu(xk) = f
⇣
g(tu, xk),EQ ⇥D(tu, tu+1)Vtu+1(Xtu+1)|Xtu = xk

⇤⌘

⇡ f
⇣
g(tu, xk),EQ

h
D(tu, tu+1)

NX

j=0

cj(tu+1)pj(Xtu+1)|Xtu = xk
i⌘

= f
⇣
g(tu, xk),

NX

j=0

cj(tu+1)EQ ⇥D(tu, tu+1)pj(Xtu+1)|Xtu = xk
⇤ ⌘

,

where we exploited the linearity of the conditional expectation. Here, we see that the
coe�cients cj carry the information of the payo↵, and the conditional expectations
EQ ⇥D(tu, tu+1)pj(Xtu+1)|Xtu = xk

⇤
carry the information of the stochastic process.

Since the conditional expectations are independent of the backward induction they
can be pre-computed in an o✏ine step before the actual pricing. In the section
section, we will propose a suitable set of nodal points and basis function and explain
how to obtain the coe�cients cj in every time step.

The presented procedure is a pricing method for a large class of option pricing
problems which can be written in the form of (2.3). This includes di↵erent option
types, payo↵ profiles as well as di↵erent asset classes and models.

Now, we are in a position to e�ciently evaluate the exposure in formula (3.1).
Assume we have simulated M paths of the underlying risk factor. Then we price
the option along the paths using the closed form approximation

Vtu(X
i
tu) ⇡

NX

j=0

cj(tu)pj(X
i
tu) for i = 1, . . . ,M and u = 0, . . . , n.

These values can now be used to calculate the expected exposure or the potential
future exposure for a given level ↵. In the case of a Bermudan option one has to
take into account that by exercising the option at tu the exposure becomes zero.
Similarly, if the barrier option is knocked out the exposure at all future time steps
is zero. These two e↵ects yield a decreasing exposure for both types of options.

Discounting:

If he interest rate is our risk factor, i.e. r(t) = r(t,Xt), we simplify the expectation
of the discounted basis function in the following way. Assume that the time stepping
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�t = tu+1 � tu is small, then we can write

EQ ⇥D(tu, tu+1)pj(Xtu+1)|Xtu = xk
⇤

= EQ

exp

⇣
�
Z tu+1

tu

r(s,Xs)ds
⌘
pj(Xtu+1)|Xtu = xk

�

⇡ EQ ⇥exp
�
��tr(tu, Xtu)

�
pj(Xtu+1)|Xtu = xk

⇤

= exp
�
��tr(tu, xk)

�
EQ ⇥pj(Xtu+1)|Xtu = xk

⇤
,

where we assume that the discount factor is constant on a small interval. Otherwise,
if the discount factor is deterministic we can simply write

EQ ⇥D(tu, tu+1)pj(Xtu+1)|Xtu = xk
⇤
= D(tu, tu+1)EQ ⇥pj(Xtu+1)|Xtu = xk

⇤
.

In both cases, we only need to pre-compute the expectations EQ ⇥pj(Xtu+1)|Xtu = xk
⇤
.

3.2 Choice of basis function and grid points

Crucial for an e�cient algorithm is the choice of an appropriate approximation
method, i.e. the choice of basis functions pj and nodal points xk. The chosen approx-
imation method should be able to satisfy di↵erent requirements. The approximation
error of the method should converge uniformly for a large class of (value) functions.
A smooth value function should yield a fast error decay and good approximation
results for a relatively low number of nodal points. The method should provide an
e�cient way to compute the coe�cients cj , ideally using an explicit formula. For the
exposure calculation, the evaluation of the sum

P
j cjpj needs to be done in a fast

and numerically stable way even for large sets of input values. A suitable choice for
this task is Chebyshev polynomial interpolation as proposed by Glau et al. (2019).

3.2.1 Chebyshev polynomial interpolation

The one-dimensional Chebyshev interpolation is a polynomial interpolation of a
function f in the interval [�1, 1] of degree N in the N + 1 Chebyshev points
zk = cos(⇡k/N). These points are not equidistantly distributed but cluster at �1
and 1. The interpolant can be written as a sum Chebyshev polynomials Tj(z) =
cos(j acos(z)) with an explicit formula for the coe�cients, i.e. for a function f :
[�1, 1] ! R we obtain

IN (f)(z) =
NX

j=0

cjTj(z) with cj =
21{0<j<N}

N

NX

k=0

00
f(zk)Tj(zk)

where
P 00

indicates the summand is multiplied by 1/2 if k = 0 or k = N . In order
to evaluate the interpolation e�ciently one can exploit the following alternative
definition of the Chebyshev polynomials

Tn+1(z) = 2zTn(z)� Tn�1(z), T1(z) = z and T0(z) = 1.(3.2)

Based on this recurrence relation Clenshaw’s algorithm provides an e�cient frame-
work to evaluate the Chebyshev interpolant IN (f)

bk(x) = ck + 2xbk+1(x)� bk+2(x), for k = n, . . . , 1

IN (f)(x) = c0 + xb1(x)� b2(x)
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with starting values bn+1(x) = bn+2(x) = 0.
In order to interpolate functions on an arbitrary rectangular X = [x, x], we

introduce a transformation ⌧X : [�1, 1] ! X defined by

⌧X (z) = x+ 0.5(x� x)(1� z).(3.3)

The Chebyshev interpolation of a function f : X ! R can be written as

IN (f)(x) =
NX

j=0

cjpj(x) with cj =
21{0<j<N}

Ni

NX

k=0

00
f(xk)Tj(zk)(3.4)

for x 2 X with transformed Chebyshev polynomials pj(x) = Tj(⌧
�1
X (x))1X (x) and

transformed Chebyshev points xk = ⌧X (zk). The one-dimensional interpolation has
a tensor based extension to the multivariate case, see e.g. Sauter and Schwab (2010).

The Chebyshev interpolation provides promising convergence results and explicit
error bounds. The interpolation converges for all Lipschitz continuous functions and
for analytic functions the interpolation converges exponentially fast. See Trefethen
(2013) for the one-dimensional case and for a multivariate version Sauter and Schwab
(2010). Moreover, the convergence is of polynomial order for di↵erentiable functions
and the derivatives converge as well, see Gaß et al. (2018).

The Chebyshev interpolation is implemented in the open-source MATLAB pack-
age chebfun available at www.chebfun.org.

3.3 The Dynamic Chebyshev algorithm for exposure calculation

Using Chebyshev interpolation as approximation technique, the time step in the
backward induction looks as follow. Assume we have the nodal values Vtu(xk) at the
Chebyshev points xk, k = 0, . . . , N . Then, the explicit formula for the coe�cients
of the Chebyshev interpolation yields

cj(tu) =
210<j<N

N

NX

k=0

00
Vtu(xk)Tj(zk),

and we obtain a closed form approximation of the option price

Vtu(x) ⇡ bVtu(x) =
NX

j=0

cj(tu)pj(x).

Note that we presented the framework for an option on one underlying. In case of
multiple underlyings we only need to replace the one-dimensional Chebyshev inter-
polation with its multivariate extension. The more general multivariate version of
the algorithm is presented in Glau et al. (2019).

The resulting pricing algorithm is for all three option types (Bermudan, barrier,
European) essentially the same. However, the e�ciency of the method is directly
related to the smoothness of the value function. As a result the number of nodal
points required for a given accuracy varies, compare Section 5.2 and 5.3 in Glau
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et al. (2019). Moreover, the size of the interpolation domain influences the number
of nodal points that a required for a target accuracy.

The resulting algorithm for exposure calculation under the pricing measure and
under the real-world measure with the dynamic Chebyshev method is presented in
the following two sections.

3.3.1 Exposure calculation for pricing

Here, we consider the computation of the exposure under the pricing measure Q.
The main application is the computation of the expected exposure EEprice

0 as an
ingredient of the CVA calculation.

Algorithm: Exposure of Bermudan options under Q
This algorithm provides a framework to calculate the expected exposure and the
potential future exposure for a Bermudan option. A European option can be seen
as a special case and falls also in the scope of this algorithm.

1. Simulation of risk factors:
Simulate M paths of the underlying risk factor Xi

t0 , . . . , X
i
tn , i = 1, . . . ,M under the

pricing measure Q.

2. Preparation of the pricing algorithm:
Find a suitable interpolation domain X = [x, x] and calculate the nodal points
xk = ⌧X (cos(k⇡/N)), k = 0, . . . , N for this domain. Pre-compute the conditional
expectations of the basis function under the pricing measure Q

�k,j = EQ [pj(X�t)|X0 = xk] .

3. Initialization of the pricing algorithm:
Start pricing at maturity T and compute nodal values bVT (xk) = g(T, xk) for all
k = 0, . . . , N for the payo↵ function g(T, xk). Calculate Chebyshev coe�cients
cj(T ) using the nodal values bVT (xk). For all paths compute the exposure Ei

T =
max{g(T,X i

T ), 0}.

4. Exposure calculation via backward induction:
Iterative time stepping tu+1 ! tu: Assume we have a Chebyshev approximation
Vtu+1(x) ⇡ bVtu+1(x) =

P
j cj(tu+1)pj(x)

• compute nodal values

bVtu(xk) =

(
max{g(xk), Du(xk)

PN
j=0 cj(tu+1)�k,j}, if tu is exercise day,

Du(xk)
PN

j=0 cj(tu+1)�k,j , otherwise

with discount factor Du(xk) = D(tu, tu+1, xk)

• calculate new coe�cients cj(tu) using nodal values bVtu(xk),

• price the option for all simulation paths V i
tu = bVtu(X

i
tu) =

P
j2J cj(tu)pj(X

i
tu),
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• calculate exposure Ei
tu = D(0, tu)max{V i

tu , 0},

• if the option is exercised (i.e V i
tu = g(Xi

tu)), update the exposure at all future
time steps on this path Ei

tj , j = u+ 1, . . . , n.

5. Calculation of expected exposure:
Obtain an approximation of the expected future exposures

EEprice
0 (tu) = EQ [D(tu)max{Vtu , 0}] ⇡

1

M

MX

i=1

D(tu)E
i
tu ,

and an approximation of the potential future exposures

PFEprice
0 (tu) = inf

�
y : Q

�
Et(x)  y

�
� ↵

 
⇡ inf

�
y :

#{Ei
tu  y}
M

� ↵
 
.

for all u = 0, . . . , n.

Modification of the algorithm for barrier options

The presented algorithm Bermudan option can be modified to calculate the exposure
of barrier options. In this case the interpolation domain is chosen depending on the
barrier. There is no early exercise, however, we need to take care of the knock-out
feature. For an up-and-out option with barrier B and b = log(B), the following
modifications are added to the algorithm. First, the interpolation domain is set as
X = [x, b]. Second, the iterative time stepping from tu+1 ! tu is modified in the
following way. Assume we have a Chebyshev approximation Vtu+1(x) ⇡ bVtu+1(x) =P

j cj(tu+1)pj(x),

• compute nodal values bVtu(xk) = Du(xk)
PN

j=0 cj�k,j and new coe�cients cj(tu),

• price the option for all simulation paths V i
tu = bVtu(X

i
tu) =

P
j2J cj(tu)pj(X

i
tu)

if Xi
tu  b and V i

tu = 0 otherwise,

• calculate the exposure Ei
tu = D(0, tu)max{V i

tu , 0},

• if the option is knocked-out, i.e if Xi
tu > b update the exposure at all future

time steps on this path Ei
tj , j = u+ 1, . . . , n.

3.3.2 Exposure calculation for risk management

In this section we present an algorithm for the exposure calculation under the real-
world measure P.

Algorithm: Exposure of Bermudan options under P
This algorithm provides a framework to calculate the expected exposure and the
potential future exposure for a Bermudan option. 1. Simulation of risk factors:
Simulate M paths of the underlying risk factor Xi

t0 , . . . , X
i
tn , i = 1, . . . ,M under the

real-world measure P.
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2. Preparation of the pricing algorithm:
Find a suitable interpolation domain X = [x, x] and calculate the nodal points
xk = ⌧X (cos(k⇡/N)), k = 0, . . . , N for this domain. Pre-compute the conditional
expectations of the basis function under the pricing measure Q

�k,j = EQ [pj(X�t)|X0 = xk] .

3. Initialization of the pricing algorithm:
Start pricing at maturity T and compute nodal values bVT (xk) = g(T, xk) for all
k = 0, . . . , N for the payo↵ function g(T, xk). Calculate Chebyshev coe�cients
cj(T ) using the nodal values bVT (xk). For all paths compute the exposure Ei

T =
max{g(T,X i

T ), 0}.

4. Exposure calculation via backward induction:
Iterative time stepping tu+1 ! tu: Assume we have a Chebyshev approximation
Vtu+1(x) ⇡ bVtu+1(x) =

P
j cj(tu+1)pj(x)

• compute nodal values

bVtu(xk) =

(
max{g(xk), Du(xk)

PN
j=0 cj(tu+1)�k,j}, if tu is exercise day,

Du(xk)
PN

j=0 cj(tu+1)�k,j , otherwise

with discount factor Du(xk) = D(tu, tu+1, xk)

• calculate new coe�cients cj(tu) using nodal values bVtu(xk),

• price the option for all simulation paths V i
tu = bVtu(X

i
tu) =

P
j2J cj(tu)pj(X

i
tu),

• calculate exposure Ei
tu = max{V i

tu , 0},

• if the option is exercised (i.e V i
tu = g(Xi

tu)), update the exposure at all future
time steps on this path Ei

tj , j = u+ 1, . . . , n.

5. Calculation of expected exposure:
Obtain an approximation of the expected future exposures

EErisk
0 (tu) = EP [D(tu)max{Vtu , 0}] ⇡

1

M

MX

i=1

D(tu)E
i
tu ,

and an approximation of the potential future exposures

PFErisk
0 (tu) = inf

�
y : P

�
Et(x)  y

�
� ↵

 
⇡ inf

�
y :

#{Ei
tu  y}
M

� ↵
 
.

for all u = 0, . . . , n.

Similarly to the exposure calculation for pricing we can modify the algorithm or
barrier options.

A comparison with the algorithms in the previous section shows that the exposure
calculation under Q and P has the same structure. The di↵erence is that the paths
of the risk factor(s) are simulated under a di↵erent measure and the calculation of
EEprice

0 (t) requires the discount factor at time point t. Moreover, if we are interested
in the PFE we need a higher number of simulation paths since the PFE is a tail
measure.
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3.4 Conceptional benefits of the method

The presented algorithms provide e�cient solutions for the exposure calculation.
Moreover, the structure of the new approach comes with conceptual benefits, which
can be exploited in practice.

Error analysis

Let "t := kVt�bVtk1 = maxx2X |Vt(x)�bVt(x)| be the error of the dynamic Chebyshev
method and assume that the truncation error for this domain is negligible. From
Glau et al. (2019) we obtain the following result for the convergence of the dynamic
Chebyshev method. If the value function x 7! Vt(x) is analytic, the log-error decays
nearly linearly in the number of nodal points N , i.e.

log("t)  �c1N + c2 log(log(N)) + c3(3.5)

for constants c1, c2, c3 > 0. If the value function is p-times continuously di↵erentiable
the log-error decays nearly linearly in the logarithm of the number of nodal points
N , i.e.

log("t)  �p log(N) + c2 log(log(N)) + c3.(3.6)

The analyticity of the value function holds for European and barrier options, whereas,
the value function of a Bermudan option is only continuously di↵erentiable.

In practice, a convenient approach to assess convergence a posteriori is to in-
vestigate the decline of the absolute values of the estimated coe�cients |cj |, see for
instance the implementation of the chebfun package on www.chebfun.org.

The error analysis for the pricing can be directly applied to the exposure calcu-
lation. Assume the error kVt � bVtk1 < " for some " > 0. For the expected exposure
of an option EEt = E[Vt(Xt)|Xt = x0] holds

���E[Vt(Xt)|Xt = x0]�
1

M

MX

i=0

bVt(X
i
t)
���


���E[Vt(Xt)|Xt = x0]�

1

M

MX

i=0

Vt(X
i
t)
���+

���
1

M

MX

i=0

�
Vt(X

i
t)� bVt(X

i
t)
����


���E[Vt(Xt)|Xt = x0]�

1

M

MX

i=0

Vt(X
i
t)
���+

1

M

MX

i=0

��Vt(X
i
t)� bVt(X

i
t)
��.

The first term is the Monte Carlo error of the scenario simulation which decays with
M�1/2. This error is the same for the full re-evaluation approach and our dynamic
Chebyshev approach. The second term is the actual pricing error between a full
re-evaluation and our method and is bounded by ". This derivation holds under
both measures Q and P and hence for EEprice

t and EErisk
t .

In the same way the error for the potential future exposure splits into the scenario
simulation error and the pricing error. Here, the PFE using a full re-evaluation and
the dynamic Chebyshev method are given by

y? := inf
�
y :

#{Vt(Xi
t)  y}

M
� ↵

 
, and by? := inf

�
y :

#{bVt(Xi
t)  y}

M
� ↵

 
.
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We assume M↵ is an integer and obtain the equality

#{Vt(X
i
t)  y?} = #{bVt(X

i
t)  by?} = #{Vt(X

i
t)  by? +�V i}  #{Vt(X

i
t)  by? + "}

with �V i = Vt(Xi
t)� bVt(Xi

t). It follows that y?  by? + " and similarly, exchanging
the roles of Vt and bVt yields by?  y? + ". Hence we obtain the di↵erence of the
estimated potential future exposure |y? � by| < ".

Remark 3.1. The di↵erence between the expected exposure computed via Chebyshev
approximation and via full re-evaluation is bounded by the pricing error kVt� bVtk1.
The same holds for the potential future exposure. The pricing error kVt � bVtk1 de-
cays nearly exponentially in the number of points for European and barrier options
and nearly algebraically for Bermudan options.

Closed form expression for the conditional expectations

The conditional expectations of the Chebyshev polynomials EQ ⇥pj(Xtu+1)|Xtu = xk
⇤

depend only on the underlying process and can be pre-computed prior to the time-
stepping. Here two di↵erent cases have to be distinguished.
If the underlying process Xtu+1 |Xtu = x is normally distributed the conditional
expectations of the Chebyshev polynomials can be calculated analytically. Examples
are the Black-Scholes model (with log-stock price Xt), the Vasicek model or the one
factor Hull-White model (both with interest rate Xt). More generaly, assume for
instance the underlying process is modelled via an SDE of the form

dXt = ↵(t,Xt)dt+ �(t,Xt)dWt

for a standard Brownian motion Wt with Euler–Maruyama approximation

Xtu+1 ⇡ x+ ↵(tu, x)(tu+1 � tu) + �(tu, x)
p
tu+1 � tuZ =: bXx

tu+1
Z ⇠ N (0, 1)

and the right hand side is thus normally distributed. The following proposition
provides an analytic formula for the conditional moments EQ[pj( bXxk

tu+1
)].

Proposition 3.2. Assume that Xt is a stochastic process with Xtu+1 |Xtu = xk ⇠
N (xk + �t µ,�t�2) with �t = tu+1 � tu. Then the conditional moments can be
written as

E[pj(Xtu+1)|Xtu = x] = E[Tj(Y )1[�1,1](Y )]

Y ⇠ N
⇣
1� 2

x� x

x� x
+

2

x� x
�tµ,

� 2

x� x

�2
�t�2

⌘
.

Proof. From the properties of a Brownian motion with drift follows

E[pj(Xtu+1)|Xtu = x] = E[pj(x+ (Xtu+1 �Xtu))] = E[pj(x+X�t)].

The definition of pj and the inverse of the linear transformation ⌧[x,x] yield

E[pj(x+X�t)] = E[Tj(⌧
�1
[x,x](x+X�t)1[x,x](x+X�t)]

= E[Tj(1� 2
x� (x+X�t)

x� x
)1[x,x](x+X�t)]

= E[Tj(1� 2
x� x

x� x
+

2

x� x
X�t)1[x,x](x+X�t)]

= E[Tj(Y )1[�1,1](Y )]
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with Y defined as

Y = 1� 2
x� x

x� x
+

2

x� x
X�t

and we used that for a linear transformation holds

1[x,x](x+X�t)] = 1[⌧�1
[x,x](x),⌧

�1
[x,x](x)]

(⌧�1
[x,x](x+X�t)) = 1[�1,1](Y ).

The properties of a normally distributed variable yields our claim.

Proposition 3.3. Let Y ⇠ N (µ,�2) be a normally distributed random variable
with density f and distribution function F . The truncated generalized moments
µj = E[Tj(Y )1[�1,1](Y )] are recursively defined by

µn+1 = 2µµn � 2�2
�
f(1)� f(�1)Tn(�1)� 2n

n�1X

j=0

0
µj1(n+j) mod 2=1

�
� µn�1

for n � 1 and starting values µ0 = F (1)� F (�1), µ1 = µµ0 � �2(f(1)� f(�1) and
where

P 0
indicates that the first term is multiplied with 1/2.

Proof. The proof can be found in the appendix.

For a large model class for which the underlying process is conditionally normally
distributed or can be approximated by such a process, the conditional moments can
thus be e�ciently computed by an analytic formula.

If the underlying process is not normally distributed numerical approximation
techniques come into play. Glau et al. (2019) give an overview of di↵erent approaches
which can be used to calculate the conditional expectations. For example numerical
quadrature techniques using the density or characteristic function of the process or
with the help of Monte Carlo simulations. The possibility to use di↵erent approaches
gives us the flexibility to apply the method in a variety of models.

When we use an equidistant time stepping tu+1 � tu = �t the problem can be
further simplified. Assuming

EQ ⇥pj(Xtu+1)|Xtu = xk
⇤
= EQ [pj(X�t)|X0 = xk] ,(3.7)

the pre-computation step becomes independent of the maturity T and the number
of time steps n. We only have to simulate the underlying at �t. Equation (3.7)
holds if the process (Xt)0tT has stationary increments.

Delta and Gamma as by-product of the method

Generally, the e�ciency of the method allows a fast computation of sensitivities via
bump and re-run. For Delta and Gamma the polynomial structure of the Chebyshev
approximation allows for a direct computation without re-running the time-stepping.
Instead we only need to di↵erentiate a polynomial. For Delta we obtain

@Vt

@x
(x) ⇡

NX

j=0

ctj
@pj
@x

(x),
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which is again a polynomial with degree N � 1 and for Gamma we obtain

@2Vt

@x2
(x) ⇡

NX

j=0

ctj
@2pj
@x2

(x),

a polynomial of degree N � 2. These formulas can be used to calculate the deriva-
tive of Vt with respect to xt. For the derivative w.r.t. x0 we obtain via chain rule
@Vt/@x0 = @Vt/@xt · @xt/@x0. Similarly, if y is the market risk factor, we use the
chain rule to compute @Vt/@y = @Vt/@x0 · @x0/@y. One example would be if x is
the log-stock price and we are interested in the derivative w.r.t. to the stock price
S = exp(x). Alternatively, if @x0/@y is not available, we can use bump and re-run
to compute the derivative. The e�ciency of the new pricing method makes a bump
and re-run equally e�cient.

Several options on one underlying:

The structure of the dynamic Chebyshev algorithm for exposure calculation exhibits
additional benefits for the complex derivative portfolios. For instance, consider non-
directional strategies and structured products that o↵er di↵erent levels of capital
protection or enhanced exposure. They are typically constructed from a combi-
nation of European options, with di↵erent strikes and maturities, together with
Bermudan options and barrier options. Such structures are essentially a portfo-
lio of derivatives on the same underlying asset, and in this case, the pricing and
exposure calculation can be simplified by choosing the same interpolation domain.
First, we only need to compute the conditional moments once and then we can
use them for all options. Second, we require less computation in the exposure cal-
culation. Assume we have two options and we are in the time stepping of the
Dynamic Chebyshev algorithm at step tu. We have two Chebyshev approximations
bV 1
tu =

P
c1j (tu)pj and bV 2

tu =
P

c2j (tu)pj . For the exposure calculation we need to

compute bV 1/2
tu (Xi

tu) =
P

c1/2j (tu)pj(Xi
tu) for all risk factors i = 1, . . . ,M . Hence the

evaluation of the Chebyshev polynomials pj at the risk factors Xi
tu is the same and

has only to be done once. In summary, with low additional e↵ort, we can calculate
the exposure of several options on one underlying.

3.5 Implementational aspects of the DC method for exposure cal-
culation

In this section, we discuss several implementational aspects which can help to achieve
a high performance.

Choice of interpolation domain:

The choice of a suitable interpolation domain is an important step to ensure a high
e�ciency of the method. In general the choice of the domain is a trade-o↵ between
speed (small domain, low number of nodal points) and accuracy (larger domain,
more nodal points). In general, we want to choose the interpolation domain in
dependence of the underlying distribution. A suitable choice for the lower boundary
is the p-quantile for a small p (e.g. 10�4, 10�5) and similarly the 1 � p quantile
as the upper boundary. If the underlying risk factor is normally distributed with
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XT bv ⇠ N (µT ,�2
T ) we define the interval

[x, x] = [µT � k · �, µ+ k · �]

for some k > 0. For most applications k = 4 or k = 5 is su�cient.
If Xi

tu /2 [x, x] one can explore additional knowledge of the specific product. First
we consider a Bermudan put option. Here we know that the value of the option
converges towards zero if the (log-) price of the underlying goes to infinity. The
upper bound x is therefore no problem and if we have a risk factor with Xi

tu > x we
can simply set Vtu(X

i
tu) = 0. For very low values of x the option is always exercised

and thus we set Vtu(X
i
tu) = g(Xi

tu) if X
i
tu < x.

For an European call or put option we can use the Call-Put parity Ct(x)�Pt(x) =
ex � e�r(T�t)K to find a suitable interpolation domain. The price of a call option
converges towards zero for small x and towards ex�e�r(T�t)K for large x. We choose
x, x such that Ct(x) and Pt(x) are su�ciently small. Then we can set Vtu(X

i
tu) = 0

for Xi
tu < x and Vtu(X

i
tu) = eX

i
tu � e�r(T�t)K for Xi

tu > x.
As our last example we consider an up-and-out call option with barrier b. Here b

is the logical upper bound of the interpolation domain and for x we proceed similarly
to the European call option case.

Smoothing:

If the payo↵ of the option has a kink or discontinuity the approximation with Cheby-
shev polynomials is not e�cient. In this case we can modify the algorithm and im-
prove convergence by a ”smoothing” of the first time step. We can exploit that the
continuation value at tn�1 is exactly the value of a European option with duration
�t = tn � tn�1, i.e.

Vtn�1(x) = max{g(x), PEU (x)} with PEU (x) = EQ[g(Xtn)|Xtn�1 = x].(3.8)

Often, it is more e�cient to compute directly the European option price EQ[g(Xtn)|Xtn�1 =
xk] at the nodal points xk, k = 0, . . . , N . Hence, there is no interpolation error in the
first step and we start with the interpolation of the (smooth) function Vtn�1 . We use
this technique for all our numerical experiments. The influence of this modification
on the error decay is investigated in Glau et al. (2019).

Splitting of the interpolation domain:

If the value function is not analytic or the interpolation domain is large the degree
of the Chebyshev domain N increases. This makes the evaluation of the closed form
approximation in each time step more costly. In this case it is often beneficial to
split the domain into two subdomains and interpolate on each of the subdomains.
On each of the subdomains, we require significantly less nodal points and the inter-
polation becomes more e�cient. A suitable choice for the splitting point is the strike
K of the option (or k = log(K)) for an equity option. By doing so the smoothing
mentioned in the previous section is no longer required.

The splitting changes the dynamic Chebyshev algorithm in the following way.
Assume the value function at time point tu+1 is approximated by two Chebyshev
interpolants, i.e. Vtu+1 = bV 1

tu+1
1[x,k] + bV 2

tu+1
1(k,x]. In order to approximate Vtu we
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require the nodal values for two sets of nodal points x1k and x2k given by

Vtu(x
1
k) = f

⇣
g(tu, x

1
k),

N1X

j=0

c1j (tu+1)EQ ⇥pj(Xtu+1)1[x,k]|Xtu = x1k
⇤

+
N2X

j=0

c2j (tu+1)EQ ⇥pj(Xtu+1)1(k,x]|Xtu = x1k
⇤ ⌘

and the equivalent expression for the values Vtu(x
2
k). Hence, in the pre-computation

step we calculate four di↵erent sets of conditional expectations for polynomials
pj1[x,k] and pj1(k,x] and starting values x1k and x2k. In comparison to a Cheby-
shev interpolation on the whole domain [x, x] with N points we can choose a lower
N1, N2. If we set N1 = N2 = N/2, the number of conditional expectations which we
have to compute in the pre-computation step is exactly the same. For the exposure
calculation we need to divide the paths Xtu into the ones below the splitting point
and the ones above the splitting point.

4 Numerical experiments

In this section, we investigate the dynamic Chebyshev method numerically by calcu-
lating the credit exposure profiles of European and path-dependent equity options
and a Bermudan swaption. We analyse the accuracy of the exposure profiles pro-
duced by the dynamic Chebyshev method by comparing them to a full re-evaluation.
Then we investigate the method’s performance and compare it to the popular LSM
approach. Moreover, we check the influence of the proposed splitting of the domain
on the method’s performance.

4.1 Description of the experiments

For the numerical experiments we consider four di↵erent products: A European put
option and an up-and-out barrier call option in the Black-Scholes model, a Bermudan
put option in the Merton jump di↵usion model and a Bermudan receiver swaption
in the Hull-White short rate model. In the Black-Scholes and the Hull-White model
the risk factor is normally distributed and we can use the analytic formula for the
conditional expectations of the Chebyshev polynomials.

We compute the expected exposure EEprice
t under the pricing measure Q and the

expected exposure EErisk
t under the real-world measure P as well as the potential

future exposures PFEprice
t and PFErisk

t under both measures. For the calculation of
the exposure measures we use 50000 and 150000 simulation paths of the underlying
risk factors and a time discretization of 50 time steps per year. The relatively high
number of simulation paths is needed to obtain a stable estimate of the PFE over
the lifetime of the derivative. Since the PFE is a tail measure it is more sensitive to
the number of simulations than the expected exposure.

We run the dynamic Chebyshev method for a di↵erent number of nodal points
N and the dynamic Chebyshev with splitting approach with N1 = N2 = N/2 nodal
points. For the LSM we use the monomials up to degree 5 plus the payo↵ of the
product as basis functions in the regression. The pricing is done using 150000 path of
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the underlying risk factors and then we use a second set of paths for the calculation of
the exposure. Using two di↵erent sets of paths for pricing and exposure calculation
reduces the bias of the LSM. See Karlsson et al. (2016) for a description on how to
use the LSM approach to calculate credit exposures under the pricing and the real-
world measure. In our implementation of the LSM approach for exposure calculation
we use 7 basis functions for the European and Bermudan equity options, 8 for the
barrier option and 5 basis function for the Bermudan swaptions. For the pricing we
use a separate set of 150000 simulation paths of the underlying risk factor.

For the experiments we introduce the following three asset price models and ex-
plain how we compute the corresponding generalized moments.

The Black-Scholes model

In the classical model of Black and Scholes (1973) the stock price process is modelled
by the SDE

dSt = µStdt+ �StdWt.

with drift µ and volatility � > 0 under the real-world measure P. Under the
pricing measure Q the drift equals r. Exploiting the fact that the log-returns
Xt = log(St/S0) are normally distributed we can use the analytic formula for the
generalized moments �k,j . As model parameter we fix volatility � = 0.25, real-world
drift µ = 0.1, interest rate r = 0.03 and initial stock price S0 = 100.

The Merton jump di↵usion model

The jump di↵usion model introduced by Merton (1976) adds jumps to the classical
Black-Scholes model. The log-returns follow a jump di↵usion with volatility � and
added jumps arriving at rate � > 0 with normal distributed jump sizes according to
N (↵,�2). The stock price under P is modelled by the SDE

dSt = µStdt+ �StdWt + dJt

for a compound Poisson process Jt with rate �. The characteristic function of the
log-returns Xt = log(St/S0) under the pricing measure Q is given by

'(z) = exp

✓
t

✓
ibz � �2

2
z2 + �

✓
eiz↵�

�2

2 z2 � 1

◆◆◆

with risk-neutral drift

b = r � �2

2
� �

✓
e↵+

�2

2 � 1

◆
.

In our experiments we calculate the conditional expectations �k,j using numerical
integration and the Fourier transforms of the Chebyshev polynomials along with the
characteristic function of Xt. We fix the parameters

� = 0.25, ↵ = �0.5, � = 0.4, � = 0.4 r = 0.03 and µ = 0.1

and initial stock price S0 = 100.
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The Hull-White model

The Hull-White model as described in Chaper 3.3 of Brigo and Mercurio (2007)
is a short rate model where the rate process (rt)t�0 is a mean reverting Orn-
stein–Uhlenbeck process described by the SDE

drt = (✓(t)� art)dt+ �dWt

where the long term mean ✓(t) can be fitted to the term structure of the market
and the speed of mean reversion a and the volatility � are constant. One can write
rr = ↵(t) + xt for a deterministic function ↵(t) given by

↵(t) = fM (0, t) +
�2

2a2
(1� e�at)2

where fM (0, t) is the market forward rate for maturity T obtained from market
discount factors PM (0, T ) via

fM (0, T ) = �@ ln(PM (0, T ))

@T
.

The process (xt)t�0 is modelled by the SDE

dxt = �axtdt+ �dWt x0 = 0

and xt|xs = x0 is normally distributed with

E[xt|xs = x0] = x0e
�a(t�s), and Var[xt|xs = x0] =

�2

2a
(1� e�2a(t�s)).

As parameters we fix aq = 0.02 and �q = 0.02 under Q and ap = 0.015 and �p = 0.01
under P and we assume a flat forward rate fM (0, t) = 0.01. All parameters are taken
from Feng et al. (2016).

4.2 European option in the Black-Scholes model

In this section, we calculate the expected exposure and the potential future exposure
of a European put option in the Black-Scholes model. In this case, we have an ana-
lytic formula for the option price Vt at any time point t and we can investigate the
accuracy of the dynamic Chebyshev method for exposure calculation. We consider
an at-the-money option with strike K = 100 and maturity T = 1.

Figure 4.1 shows the resulting exposure profiles and Table 4.1 shows the values
of the exposures at maturity. The expected exposure under the pricing measure is
constant since

EEprice
t = D(0, t)EQ[max{Vt(Xt), 0}]

= D(0, t)EQ[D(t, T )EQ[g(XT )|Xt]]

= D(0, T )EQ[g(XT )] = V0

for all European options. Under the real-world measure the positive drift of the
underlying yields a decreasing exposure for a put option. The PFE increases under
both measures since it is mainly driven by the di↵usion term in the model.
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We observe that the exposure profiles of the dynamic Chebyshev method and the
true exposure profile are indistinguishable. In Table 4.2 we see the corresponding
relative errors for di↵erent Chebyshev N’s. Here, the notation DCN refers to the
dynamic Chebyshev method of degree N and DCN1,N2 refers to the dynamic Cheby-
shev method with domain splitting of degree N1 and N2. The error is calculated
as the maximum over the simulation period and displayed in relative terms with
respect to the initial option price. For N = 128 the error is below 10�4 for both
quantities and under both measures. Already for N = 64 nodal points or, if splitting
is applied, N1 = N2 = 16 the error is below 1% in each cases. Figure 4.2 shows
the error in the exposure profiles over the option’s lifetime of the dynamic Cheby-
shev method with N = 128 and compares it with the LSM approach. Whereas the
dynamic Chebyshev method is able to produce stable results, the LSM is only able
to produces accurate prices at t = 0 but adds additional simulation noise over the
option’s lifetime. For the PFE, the LSM has an relative error of nearly 2%.

Table 4.3 shows the corresponding runtimes for M = 50000 and M = 150000
simulation paths of the underlying risk factor. The runtimes of the dynamic Cheby-
shev method increases approximately linearly in M and is in the same region as the
runtime of the analytic pricer. Moreover, the measure under which the risk factors
are simulated has no influence on the runtime of the method. The fact that the new
numerical method is competitive in comparison to a analytic formula indicates a
high e�ciency of the approach. In in comparison to the LSM, the dynamic Cheby-
shev method for exposure calculation is as fast or faster and, as already seen, able to
produce more accurate results. For example, the dynamic Chebyshev method with
N1 = N2 = 32 is in all cases more accurate than the LSM but also always faster.
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Figure 4.1: Expected exposure (left figure) and potential future exposure (right figure) of a European
put option in the Black-Scholes model, calculated under the pricing measure Q and the real world
measure P using M = 150000 simulations.
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Figure 4.2: Relative error of the expected exposure (left figure) and potential future exposure (right
figure) of a European put option in the Black-Scholes model of the dynamic Chebyshev method
and the least-squares method. Calculated under the pricing measure Q and the real world measure
P using M = 150000 simulations.

Price EEprice
T PFEprice EErisk

T PFErisk

8.3930 8.3338 37.6163 6.0530 34.5426

Table 4.1: Reference values for option price, EE and PFE of a European put option in the Black-
Scholes model using M = 150000 simulations.

Price EEprice PFEprice
T EErisk PFErisk

T

DC32 0.0020 0.0095 0.0020 0.0138 0.0020
DC64 0.0011 0.0012 0.0011 0.0017 0.0011
DC128 0.0000 0.0000 0.0000 0.0000 0.0000
DC16,16 split 0.0003 0.0003 0.0020 0.0003 0.0020
DC32,32 split 0.0000 0.0000 0.0011 0.0000 0.0011
DC64,64 split 0.0000 0.0000 0.0000 0.0000 0.0000
LSM 0.0002 0.0019 0.0188 0.0025 0.0172

Table 4.2: Maximal relative error of option price, EE and PFE of a European put option in the
Black-Scholes model for M = 150000 simulations. Comparison of the dynamic Chebyshev approach
for di↵erent N with an analytic formula.

Sim. DC32 DC64 DC128 DC16,16 DC32,32 DC64,64 LSM BS

Q 50k 0.16s 0.17s 0.25s 0.18s 0.20s 0.22s 0.49s 0.17s
150k 0.53s 0.58s 0.76s 0.59s 0.62s 0.67s 0.77s 0.63s

P 50k 0.17s 0.19s 0.26s 0.20s 0.21s 0.24s 0.49s 0.18s
150k 0.54s 0.60s 0.71s 0.59s 0.62s 0.68s 0.77s 0.63s

Table 4.3: Runtimes of the exposure calculation using the dynamic Chebyshev method for di↵erent
N . Comparison with the analytic Black-Scholes formula.

Overall, the experiment confirms that the new approach is able to produce ac-
curate credit exposure profiles both under the pricing measure Q and the real-world
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measure P. Moreover, we have seen that the computations under the real-world mea-
sure are as fast as the computation under the pricing measure. For the European
put option the runtimes were comparable to using the analytic Black-Scholes for-
mula. Building on these very promising results we will investigate the performance
for derivatives which are path-dependent and therefore in general more di�cult to
price.

4.3 Barrier option in the Black-Scholes model

In this section, we calculate the expected exposure and the potential future expo-
sure of a discretely monitored up-and-out barrier call option in the Black-Scholes
model. Due to the additional barrier the option becomes path-dependent and there
is no longer an analytic solution. In order to compute reference prices we use the
COS method provided in the benchmarking project of von Sydow et al. (2015). We
consider an option with strike K = 100, barrier B = 130 and maturity T = 1.
We assume that the barrier option is discretely monitored and the monitoring dates
coincide with dates for the exposure calculation.

Figure 4.3 shows the resulting exposure profiles and Table 4.4 shows the values
of the exposures at maturity. The expected exposure under the pricing measure is
constant over time which can be justified by the same arguments as for the European
option. Under the real-world measure, the expected exposure increases slightly and
for the PFE we observe also an increase. In comparison to the European option we
see a slower increase in the beginning and a faster increase close to maturity. Here,
we observe the e↵ect of the barrier which means that an increase in the stock price
also leads to a higher risk of triggering the barrier and a zero exposure afterwards.
This e↵ect is more problematic for longer a time to maturity. As for the European
option, the exposure profiles of the dynamic Chebyshev method and the exposure
profile of the full re-evaluation are indistinguishable. Figure 4.4 shows the error of
the exposure profiles computed with the dynamic Chebyshev method for N = 64
and with the least squares Monte Carlo approach. For the least squares Monte Carlo
approach we added an additional basis function compared to the European version
to better fit the barrier. In Table 4.5 we see the corresponding relative errors for
di↵erent Chebyshev N’s and the error of the LSM. The error is calculated as the
maximum over the simulation period and displayed in relative terms. For N = 64
the error is below 10�4 for both quantities. Figure 4.4 shows the relative error of the
dynamic Chebyshev method and the LSM over the option’s lifetime. We can again
observe that a strong fluctuation in the error of the LSM and a stable and very low
error for the dynamic Chebyshev method.

Table 4.6 shows the corresponding runtimes for M = 50000 and M = 150000
simulation paths of the underlying risk factor. We observe that the dynamic Cheby-
shev method is more than 100 times faster than doing a full-revaluation approach
using an already competitive pricer. Compared to the LSM the dynamic Cheby-
shev method produces more accurate estimates while also being faster. The barrier
yields a smaller interpolation domain and therefore a lower number of interpolation
nodes for the dynamic Chebyshev method. On the other side, the LSM does not
profit from the barrier but we had to add an additional basis function to achieve a
satisfying accuracy.
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Figure 4.3: Expected exposure (left figure) and potential future exposure (right figure) of a barrier
call option in the Black-Scholes model, calculated under the pricing measure Q and the real world
measure P using M = 150000 simulations.
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Figure 4.4: Relative error of the expected exposure (left figure) and potential future exposure (right
figure) of a barrier up-and-out call option in the Black-Scholes model of the dynamic Chebyshev
method and the least-squares method. Calculated under the pricing measure Q and the real world
measure P using M = 150000 simulations.

Price EEprice
T PFEprice EErisk

T PFErisk

2.6453 2.6678 21.3718 3.0641 22.9297

Table 4.4: Reference values for option price, EE and PFE of a barrier call option in the Black-Scholes
model using M = 150000 simulations.

Price EEprice PFEprice
T EErisk PFErisk

T

DC16 0.0067 0.0172 0.0081 0.0133 0.0069
DC32 0.0000 0.0006 0.0001 0.0004 0.0001
DC64 0.0000 0.0000 0.0000 0.0000 0.0000
LSM 0.0006 0.0050 0.0380 0.0047 0.0428

Table 4.5: Maximal relative error of option price, EE and PFE of a barrier call option in the Black-
Scholes model for M = 150000 simulations. Comparison of the dynamic Chebyshev approach for
di↵erent N and the LSM approach with a full re-evaluation.
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Sim. DC16 DC32 DC64 LSM Full re-eval

Q 50k 0.17s 0.17s 0.19s 1.28s 24.2s
150k 0.58s 0.60s 0.66s 2.11s 70.8s

P 50k 0.18s 0.19s 0.21s 1.29s 22.8s
150k 0.59s 0.62s 0.68s 2.03s 66.5s

Table 4.6: Runtimes of the exposure calculation of a barrier call option using the dynamic Chebyshev
method for di↵erent N . Comparison with a full re-evaluation using the COS method.

4.4 Bermudan option in the Merton jump-di↵usion model

Here, we consider a Bermudan put option in the Merton jump-di↵usion model. The
early-exercise feature makes the option path-dependent and the jump component
of the stock price model poses an additional computational challenge. Similar to
the barrier option we can again use the COS method provided in the benchmarking
project of von Sydow et al. (2015) for the calculation of reference prices. We consider
an option with strike K = 100, maturity T = 1 and we assume that the dates used
for the exposure calculation are also the exercise dates of the option.

Figure 4.5 shows the resulting exposure profiles and Table 4.7 shows the values
of the exposures at maturity. We observe a decreasing expected exposure under
both measures due to the early exercise feature of the option. For the PFE we
observe an increasing exposure in the beginning resulting from the di↵usion term
and a decreasing exposure afterwards. As for the European option, the exposure
profiles of the dynamic Chebyshev method and the exposure profile of the full re-
evaluation are indistinguishable. In Table 4.8 we see the corresponding relative errors
for di↵erent Chebyshev N’s. Due to the early-exercise feature, a higher number of
nodal points is required for a similar accuracy of the option prices. Moreover, an
exact estimation of the exercise barrier is critical for a correct estimation of the
exposure. A miscalculation of the exercise barrier at time point tu does not only
influence the exposure EEtu but also the exposure at all future time points. For
example, a barrier that is too low means that the option is exercised for too many
paths and the exposure at future time points is underestimated. Figure 4.6 shows
the relative error of the dynamic Chebyshev method and the LSM over the option’s
lifetime. We can see that the LSM struggles to provide accurate estimations in the
tail and thus an accurate value for the PFE. In contrast, the dynamic Chebyshev
method produces stable and accurate results for both quantities.

Table 4.9 shows the corresponding runtimes forM = 50000 andM = 150000 sim-
ulation paths of the underlying risk factor. We observe that the dynamic Chebyshev
method is more than 100 times faster than doing a full-revaluation. The comparison
to the LSM shows again that the dynamic Chebyshev method is able to deliver both,
more accurate results and faster runtimes.
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Figure 4.5: Expected exposure (left figure) and potential future exposure (right figure) of a Bermu-
dan put option in the Merton jump-di↵usion model, calculated under the pricing measure Q and
the real world measure P using M = 150000 simulations.
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Figure 4.6: Relative error w.r.t. to the initial stock price of the expected exposure (left figure) and
potential future exposure (right figure) of a Bermudan put option in the Merton jump-di↵usion
model of the dynamic Chebyshev method and the least-squares method. Calculated under the
pricing measure Q and the real world measure P using M = 150000 simulations.

Price EEprice
T PFEprice EErisk

T PFErisk

14.0739 0.3144 4.1404 0.3601 4.6307

Table 4.7: Reference values for option price, EE and PFE of a Bermudan put option in the Merton
jump-di↵usion model using M = 150000 simulations.
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Price EEprice PFEprice
T EErisk PFErisk

T

DC128 0.0001 0.0032 0.0433 0.0039 0.0568
DC256 0.0000 0.0005 0.0028 0.0007 0.0032
DC512 0.0000 0.0001 0.0007 0.0001 0.0007
DC64,64 0.0000 0.0020 0.0098 0.0023 0.0125
DC128,128 0.0000 0.0003 0.0018 0.0005 0.0028
DC256,256 0.0000 0.0001 0.0008 0.0001 0.0006
LSM 0.0069 0.0277 0.1463 0.0331 0.1533

Table 4.8: Maximal relative error w.r.t. to the initial stock price of option price, EE and PFE of a
Bermudan put option in the Merton jump-di↵usion model for M = 150000 simulations. Comparison
of the dynamic Chebyshev approach for di↵erent N and the LSM approach with a full re-evaluation.

Sim. DC128 DC256 DC512 DC64,64 DC128,128 DC256,256 LSM full

Q 50k 0.51s 0.64s 1.01s 0.51s 0.62s 0.84s 1.99s 55s
150k 1.45s 1.70s 2.39s 1.47s 1.64s 1.99s 3.20s 162s

P 50k 0.46s 0.61s 0.93s 0.48s 0.59s 0.83s 1.97s 57s
150k 1.45s 1.70s 2.35s 1.46s 1.63s 1.99s 3.17s 163s

Table 4.9: Runtimes of the exposure calculation of a barrier call option using the dynamic Chebyshev
method for di↵erent N . Comparison with a full re-evaluation using the COS method.

4.5 Bermudan swaption in the Hull-White model

Here, we consider a Bermudan receiver swaption in the Hull-White model. Similar
to the equity case, the early-exercise feature makes the option path-dependent and
poses an additional computational challenge. Additionally, the payo↵ function is
more complex and requires the pricing of a reciever swap. In the Hull-White model
the prices of zero coupon bonds and swaps are still available analytically, see Brigo
and Mercurio (2007). We consider a swaption with strike K = 0.01094 and maturity
T which can be exercised yearly starting at T1 = 1 and the swap ends terminates
at T + 1 and payments are also exchanged on a yearly basis. A detailed description
of the pricing problem can be found in Feng et al. (2016). From this paper we also
obtain a reference price of V0 = 5.463. We assume that the swaption is cash-settled
and hence there is no credit exposure after the option is exercised.

Figure 4.7 shows the resulting exposure profiles and Table 4.10 shows the price
and the values of the exposures at maturity. The price of the dynamic Chebyshev
method is the same as the reference price V0. Similarly to the equity Bermudan
option, the expected exposure decreases over time and the PFE increases first and
then decreases. The di↵erence in the profiles comes from the number of exercise
dates. Here, the swaption is only exerciseable once per year and the exposure jumps
down at these days. In Table 4.11 we see the corresponding relative errors for
di↵erent Chebyshev N’s. Here we used a dynamic Chebyshev method with higher
accuracy to compute reference prices. As for an equity Bermudan option, an exact
estimation of the exercise barrier is critical for a correct estimation of the exposure
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and leads to a higher N . However, since the volatility is lower, the interpolation
domain is smaller and we need less nodes than for the Bermudan equity option.
Figure 4.8 shows the relative error of the dynamic Chebyshev method and the LSM
over the option’s lifetime.

Table 4.12 shows the corresponding runtimes for M = 50000 and M = 150000
simulation paths of the underlying risk factor. Overall the runtime a slightly slower
than for the equity products since the maturity is with five years much longer.
The comparison of the dynamic Chebyshev method with the LSM reveals again
a significantly higher e�ciency. This is especially the case when it comes to the
computation of the tail measure PFE.
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Figure 4.7: Expected exposure (left figure) and potential future exposure (right figure) of a Bermu-
dan put option in the Merton jump-di↵usion model, calculated under the pricing measure Q and
the real world measure P using M = 150000 simulations.
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Figure 4.8: Relative error w.r.t. to the initial option price of the expected exposure (left figure) and
potential future exposure (right figure) of a Bermudan receiver swaption in the Hull-White model
of the dynamic Chebyshev method and the least-squares method. Calculated under the pricing
measure Q and the real world measure P using M = 150000 simulations.

Price EEprice
T PFEprice EErisk

T PFErisk

5.4628 0.0771 1.2489 0.0540 0.8348

Table 4.10: Reference values for option price, EE and PFE of a Bermudan receiver swaption in the
Hull-White model using M = 150000 simulations.
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Price EEprice PFEprice
T EErisk PFErisk

T

DC32 0.0148 0.0165 0.0444 0.0245 0.0351
DC64 0.0026 0.0026 0.0069 0.0031 0.0166
DC128 0.0005 0.0005 0.0016 0.0005 0.0032
DC16,16 0.0010 0.0022 0.0323 0.0034 0.0563
DC32,32 0.0005 0.0005 0.0015 0.0006 0.0026
DC64,64 0.0002 0.0002 0.0016 0.0002 0.0014
LSM 0.0069 0.0277 0.1463 0.0331 0.1533

Table 4.11: Maximal relative error w.r.t. to the initial stock price of option price, EE and PFE of a
Bermudan put option in the Merton jump-di↵usion model for M = 150000 simulations. Comparison
of the dynamic Chebyshev approach for di↵erent N and the LSM approach with a full re-evaluation.

Sim. DC32 DC64 DC128 DC16,16 DC32,32 DC64,64 LSM DC ref.

Q 50k 0.76s 0.83s 1.20s 1.06s 1.12s 1.27s 5.55s 1.83s
150k 2.58s 2.83s 3.56s 3.06s 3.22s 3.55s 8.56s 4.77s

P 50k 0.66s 0.76s 1.16s 0.97s 1.02s 1.17s 5.47s 1.88s
150k 2.30s 2.56s 3.38s 2.79s 2.93s 3.24s 8.46s 4.76s

Table 4.12: Runtimes of the exposure calculation of a barrier call option using the dynamic Cheby-
shev method for di↵erent N .

4.6 Summary of the experiments

In this section, we analysed the dynamic Chebyshev method for credit exposure
calculation numerically.

Glau et al. (2019) have validated the method for the pricing of options in di↵er-
ent asset models. The experiments of this section show that the method is more-
over well suited for credit exposure calculation of path-dependent options such as
Bermudan and barrier equity options and Bermudan swaptions. Our examples show
that the method can be applied to di↵erent models which require di↵erent numeri-
cal techniques for the calculation of the conditional expectations of the Chebyshev
polynomials.

The experiments show that the dynamic Chebyshev method is able to produce
stable and accurate results even for the tail measure, the potential future exposure.
It can handle the measure change from the pricing measure to the real-world measure
without an additional computational e↵ort and is therefore suited for the credit
exposure calculation in both, pricing and risk management.

The comparison with the popular LSM approach revealed the e�ciency of the
method in terms of accuracy versus runtime. This is especially the case for the
computation of the potential future exposure. The LSM was not able to produce
accurate prices in the tail for early-exercise options, which has also been observed in
Feng et al. (2016). Pricing methods based on Monte Carlo simulation and regression
add additional simulation noise to the exposure calculation which is omitted in the
new approach. Another methods that can improve the accuracy of the exposure
in comparison to the LSM is the stochastic grid bundling method, as applied in
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Karlsson et al. (2016) and Feng et al. (2016). The experiments in Feng et al. (2016)
however show, that this method is more than a factor of two times slower for the
exposure calculation of a Bermudan swaption in the Hull-White model compared to
a least-squares Monte Carlo approach. This allows us to conclude that the method
will also be slower than the dynamic Chebyshev method.

Moreover, the experiments show that introducing an additional splitting in the
dynamic Chebyshev method reduces the number of nodal points and can improve
the e�ciency of the exposure calculation further. This is mainly interesting for large
interpolation domains and early-exercise options.

5 Conclusion and Outlook

In this paper we have introduced a new method for the pricing and exposure calcu-
lation of European, Bermudan and barrier options based on the dynamic Chebyshev
method of Glau et al. (2019). The numerical experiments in Section 4 show that the
method is well-suited for the exposure calculation and reveal several advantages.

• Flexibility : The method o↵ers a high flexibility, it applies to pricing and credit
exposure calculation. The structure of the method allows us to explore addi-
tional knowledge of the model by choosing di↵erent techniques to compute the
conditional expectations in a the pre-computation step. If the underlying is
conditionally normally distributed there is a closed form expression for these
conditional expectations.

• Accuracy: The method produces accurate exposure profiles and the approxi-
mation error is stable over the option’s lifetime. In contrast to a least-squares
Monte Carlo approach, the accuracy holds also in the tail of the distribution
and for risk-measures such as the potential future exposure. The accuracy
achieved is comparable to the one of a full re-evaluation.

• Speed : The comparison with the least-squares Monte Carlo approach showed
the dynamic Chebyshev method is faster for all tested products and for both
quantities, the expected exposure and the potential future exposure. As shown
in Feng et al. (2016) the least-squares Monte Carlo is already competitive
fast and outperforms the stochastic grid bundling method in terms of speed.
For each simulated scenario, only a weighted sum of polynomials needs to
be evaluated. Compared to a full re-evaluation repeated calls of a numerical
pricing routine are avoided. This leads to a speed-up between one and two
orders of magnitude in our experiments.

Overall, the combination of flexibility, accuracy and speed makes the dynamic
Chebyshev method a highly e�cient approach to compute credit exposure profiles
for pricing and risk management.

Besides the confirmed quantitative advantages the method also admits several
qualitative advantages. In Section 3 we provided an error analysis for the method
which shows that the pricing error in the maximums norm decreases exponentially
fast for analytic pricing functions. Moreover, Chebyshev interpolation exhibits al-
gebraic convergence for di↵erentiable functions and the derivatives converge as well.
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These estimates hold also true for the expected exposure and the potential future
exposure.

The polynomial structure of the approximation of the value function allows not
only a fast evaluation but enables also an e�cient computation of the option’s sen-
sitivities Delta and Gamma in every time step. Additionally, the structure can be
exploited to calculate the exposure of several options on the same underlying in one
run of the price. Moreover, it allows the aggregation of credit exposures on di↵erent
levels and facilitates the e�cient computation of CVA and other risk metrics on a
portfolio level.

In this paper we focussed on the exposure calculation for products which depend
only on one main risk factor. As a next step one can extend the presented approach
for the exposure calculation to options which have more than one main risk factor.
This can be tackled by tensorized Chebyshev interpolation for two or three risk
factors. For higher dimensional problems, dimension reduction techniques such as
sparse grids and low-rank tensor techniques can be exploited in the combination
with Chebyshev interpolation. Moreover instead of multivariate Chebyshev interpo-
lation other function approximation techniques can be used, for instance with kernel
techniques We expect that these approaches achieve an accuracy comparable to a
full re-evaluation in a significantly lower runtime.

The resulting reliable exposure profiles can further be used to learn counterparty
credit risk measures on a portfolio level. The benefit of the presented method and
its multivariate extensions would be the avoidance of nested Monte Carlo simulation
in the trainings phase.

A Proof of Proposition 4.2

Proof. We define µj := E[Tj(Y )1[�1,1](Y )] as the generalized moments and µ0
j =

E[T 0
j(Y )1[�1,1]] as the expectations of the derivatives of the Chebyshev polynomials.

The first three Chebyshev polynomials are given by T0(x) = 1, T1(x) = x and
T2(x) = 2x2 � 1 with derivatives T 0

0(x) = 0, T 0
1(x) = 1 = T0(x) and T 0

2(x) = 4x =
4T1(x). This yields

µ0 = E[1[�1,1](Y )] = P (�1  Y  1) = F (1)� F (�1).

Before we consider the first moment we need the following property of the density
f of the normal distribution,

f 0(x) =
1p
2⇡�

e�
(x�mu)2

2�2 (�2
(x� µ)

2�2
) = f(x)(�2

(x� µ)

2�2
) = (� 1

�2
)xf(x) +

µ

�2
f(x),

and hence xf(x) = µf(x)� �2f 0(x).

Using this property we obtain for the first moment µ1 = E[Y 1[�1,1](Y )]

µ1 =

Z 1

�1
yf(y)dy = µ

Z 1

�1
f(y)dy � �2

Z 1

�1
f 0(y)dy = µµ0 � �2(f(1)� f(�1)).

Assume we know µj , µ0
j , j = 0, . . . , n. The Chebyshev polynomials and their deriva-

tive are recursively given by

Tn+1(x) = 2xTn(x)� Tn�1(x) T 0
n+1(x) = 2(n+ 1)Tn(x) +

n+ 1

n� 1
T 0
n�1(x).
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From the latter easily follows that

µ0
n+1 = E[T 0

n+1(Y )1[�1,1](Y )]

= 2(n+ 1)E[Tn(Y )1[�1,1](Y )] +
n+ 1

n� 1
E[T 0

n�1(Y )1[�1,1](Y )]

= 2(n+ 1)µn +
(n+ 1)

(n� 1)
µ0
n�1

for n � 2. For the generalized moments we obtain

µn+1 = E[Tn+1(Y )1[�1,1](Y )] = 2E[Y Tn(Y )1[�1,1](Y )]� E[Tn�1(Y )1[�1,1](Y )].

The second term is simply µn�1 and for the first term we obtain
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n

�
.

Altogether we obtain

µn+1 = 2E[Y Tn(Y )1[�1,1](Y )]� E[Tn�1(Y )1[�1,1](Y )]

= 2
�
µµn � �2

�
Tn(1)f(1)� Tn(�1)f(�1)� µ0

n

��
� µn�1.

It remains to find an expression for µ0
n.

We will prove by induction that

µ0
n+1 = 2(n+ 1)

nX

j=0

0
µj1(n+j) mod 2=0, n � 0(A.1)

where
P 0

indicates that the first term is multiplied with 1/2. For n = 0, we obtain

µ0
1 = 2

0X

j=0

0
µj1(0+j) mod 2=0 = 2

1

2
µ0 = 10 mod 2=0 = µ0.

which shows (A.1). Assume (A.1) holds for j = 0, . . . , n. Then we obtain

µ0
n+1 = 2(n+ 1)µn +

(n+ 1)

(n� 1)
µ0
n�1

= 2(n+ 1)µn +
(n+ 1)

(n� 1)
2(n� 1)

n�2X

j=0

0
µj1(n�2+j) mod 2=0

= 2(n+ 1)
⇣
µn1(n+n) mod 2=0 + µn�11(n+n�1) mod 2=0 +

n�2X

j=0

0
µj1(n+j) mod 2=0

⌘

= 2(n+ 1)
nX

j=0

0
µj1(n+j) mod 2=0.
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We use that (n + j) mod 2 = (2 + j � 2) mod 2. For the generalized moments we
thus obtain

µn+1 = 2µµn � 2�2
�
f(1)� f(�1)Tn(�1)� 2n

n�1X

j=0

0
µj1(n+j) mod 2=1

�
� µn�1

which was our claim.
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Glau, K., M. Mahlstedt, and C. Pötz (2019). A new approach for American option
pricing: The Dynamic Chebyshev method. SIAM Journal on Scientific Comput-
ing 41 (1), B153–B180.

Green, A. (2015). XVA: Credit, Funding and Capital Valuation Adjustments. John
Wiley & Sons.

Gregory, J. (2010). Counterparty credit risk: The new challenge for global financial
markets, Volume 470. John Wiley & Sons.

Jain, S. and C. W. Oosterlee (2015). The stochastic grid bundling method: Ef-
ficient pricing of bermudan options and their greeks. Applied Mathematics and
Computation 269, 412–431.

Karlsson, P., S. Jain, and C. W. Oosterlee (2016). Counterparty credit exposures
for interest rate derivatives using the stochastic grid bundling method. Applied
Mathematical Finance 23 (3), 175–196.

Longsta↵, F. A. and E. S. Schwartz (2001). Valuing American options by simulation:
A simple least-squares approach. The review of financial studies 14 (1), 113–147.

Merton, R. C. (1976). Option pricing when underlying stock returns are discontin-
uous. Journal of financial economics 3 (1-2), 125–144.

33



Sauter, S. and C. Schwab (2010). Boundary Element Methods, Translated and ex-
panded from the 2004 German original, Volume 39. Springer Series Computational
Mathematics.
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