

Deciphering the complex interplay between pancreatic cancer, diabetes mellitus subtypes, and obesity/BMI through causal inference and mediation analyses

Journal:	Gut
Manuscript ID	Draft
Article Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Molina-Montes, Esther; Spanish National Cancer Research Centre, Genetic and Molecular Epidemiology; CIBERONC Coscia, Claudia; Spanish National Cancer Research Centre, Genetic and Molecular Epidemiology; CIBERONC Gomez-Rubio, Paulina; Spanish National Cancer Research Centre (CNIO), Genetic and Molecular Epidemiology; CIBERONC Fernández, Alba; Spanish National Cancer Research Centre, Genetic and Molecular Epidemiology Boenink, Rianne; Spanish National Cancer Research Centre, Genetic and Molecular Epidemiology Rava, Marta; Spanish National Cancer Research Centre, Genetic and Molecular Epidemiology Márquez, Mirari; Spanish National Cancer Research Centre; CIBERONC Molero, Xavier; Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), ; Universitat Autônoma de Barcelona, CIBEREHD, L�hr, Matthias; Karolinska Institutet and University Hospital, Gastrocentrum Sharp, Linda; National Cancer Registry Ireland; University College Cork Michalski, Christoph; TU Munich, Surgery; Martin-Luther-Universitat Halle-Wittenberg, Department of Visceral, Vascular and Endocrine Surgery Farre, Antoni; Hospital de la Santa Creu i Sant Pau, Gastroenterology and Clinical Biochemistry Perea, Jose; Hospital 12 de Octubre, Surgery; Research Institute Fundación Jiménez Díaz, Surgery O'Rorke, Michael; Queen's University Belfast, Centre for Public Health; University of Iowa, College of Public Health Greenhalf, William; Liverpool Cancer Research-UK Centre, University of Liverpool, Department of Molecular and Clinical Cancer Medicine Iglesias, Mar; Hospital del Mar, Parc de Salut Mar; CIBERONC Tardón, Adonina; Instituto Universitario de Oncología del Principado de Asturias, ; IBER Epidemiología y Salud Pública (CIBERESP), Gress, Thomas; University of Marburg, Gastroenterology Barberá, Victor M; University General Hospital of Elche, Molecular Genetics Laboratory Crnogorac-Jurcevic, Tatjana; Barts Cancer Institute, Muñoz-Bellvís, Luis; Hospital Universitario de Salamanca, Surgery Dominguez-Munoz, J.Enrique; University Hospital of Santiago d

Barcelon Costello, Medicine Ilzarbe, Gastroer Kleeff, Ja Visceral, Munich, Kong, Bo Mora, Jo Gastroer O'Drisco Cork, Cli Poves, Ia SCARPA Departm Yu, Jingi Epidemia Hidalgo, Oncolog Lawlor, I of Patho Ye, Weir Carrato, Real, Fra Carcinog Malats, I	 CIBEREND, Eithne; University of Liverpool, Molecular and Clinical Cancer Lucas; Hospital del Mar - Parc de Salut Mar, Department of oterology Derg; Martin-Luther-Universitat Halle-Wittenberg, Department of Vascular and Endocrine Surgery; Technical University of Surgery Do; TU Munich, Surgery sefina; Hospital de la Santa Creu i Sant Pau, Department of oterology and Clinical Biochemistry II, Damian; HRB Clinical Research Facility at University College nical Research Facility; National Cancer Registry Ireland gnasi; Hospital del Mar - Parc de Salut Mar, ALDO; UNIVERSITY OF VERONA, ARC-Net Research Centre and ent of Diagnostics and Public Health-Section of Pathology Tu; Karolinska Institutet and University Hospital, Medical bology and Biostatistics Manuel; Beth Israel Deaconess Medical Center, Medical y; Hospital University of Verona nin; Karolinska Institutet, Medical Epidemiology and Biostatistics Alfredo; Hospital Ramón y Cajal, Medical Oncology; CIBERONC ancisco X.; Spanish National Cancer Research Centre,
Keywords: PANCRE	ATIC CANCER, DIABETES MELLITUS, OBESITY, CANCER OLOGY

SCHOLARONE[™] Manuscripts

Gut

1	Title:	Deciphering the complex interplay between pancreatic cancer, diabetes mellitus subtypes,
2		and obesity/BMI through causal inference and mediation analyses
3		
4		
5	Autho	rs: Esther Molina-Montes (1), Claudia Coscia (1), Paulina Gómez-Rubio (1), Alba Fernández
6		(1), Rianne Boenink (1), Marta Rava (1), Mirari Márquez (1), Xavier Molero (2), Matthias
7		Löhr (3), Linda Sharp (4), Christoph W. Michalski (5), Antoni Farré (6), José Perea (7),
8		Michael O'Rorke (8), William Greenhalf (9), Mar Iglesias (10), Adonina Tardón (11),
9		Thomas Gress (12), Victor M. Barberà (13), Tatjana Crnogorac-Jurcevic (14), Luis Muñoz-
10		Bellvís (15), Enrique Domínguez-Muñoz (16), Harald Renz (17), Joaquim Balsells (2) ,
11		Eithne Costello (9), Lucas Ilzarbe (10), Jörg Kleeff (5), Bo Kong (18), Josefina Mora (6),
12		Damian O'Driscoll (19), Ignasi Poves (10), Aldo Scarpa (20), Jingru Yu (21), Manuel
13		Hidalgo (22), Rita T. Lawlor (20), Weimin Ye (21), Alfredo Carrato (23), Francisco X. Real
14		(24), Núria Malats (1) on behalf of the PanGenEU Study Investigators (25).
15		
16	Author	rs' affiliations:
17	(1)	Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO),
18		Madrid, and CIBERONC, Spain.
19	(2)	Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Barcelona, Universitat
20		Autònoma de Barcelona, and CIBEREHD, Spain.
21	(3)	Gastrocentrum, Karolinska Institutet and University Hospital, Stockholm, Sweden.
22	(4)	National Cancer Registry Ireland and HRB Clinical Research Facility, University College Cork,
23		Cork, Ireland; and Newcastle University, Institute of Health & Society, Newcastle, UK.
24	(5)	Department of Surgery, Technical University of Munich, Munich; and g, Department of Visceral,
25		Vascular and Endocrine Surgery, Martin-Luther-University Halle-WittenberHalle (Saale), Germany.

(6) Department of Gastroenterology and Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.

 Page 3 of 64

Gut

1 2		
3 4	28	(7) Department of Surgery, Hospital 12 de Octubre; and Department of Surgery and Health
5 6	29	Research Institute, Fundación Jiménez Díaz, Madrid, Spain.
7 8	30	(8) Centre for Public Health, Belfast, Queen's University Belfast, UK; and College of Public Health,
9 10	31	The University of Iowa, Iowa City, IA, USA.
11 12	32	(9) Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
13 14	33	(10) Hospital del Mar—Parc de Salut Mar, Barcelona, and CIBERONC, Spain.
15 16	34	(11) Department of Medicine, Instituto Universitario de Oncología del Principado de Asturias, Oviedo,
17 18	35	and CIBERESP, Spain.
19 20	36	(12) Department of Gastroenterology, University Hospital of Giessen and Marburg, Marburg,
21 22	37	Germany.
25 24 25	38	(13) Molecular Genetics Laboratory, General University Hospital of Elche, Spain.
25 26 27	39	(14) Barts Cancer Institute, Centre for Molecular Oncology, Queen Mary University of London,
28 29	40	London, UK.
30 31	41	(15) Department of Surgery, Hospital Universitario de Salamanca – IBSAL. Universidad de
32 33	42	Salamanca and CIBERONC, Spain.
34 35	43	(16) Department of Gastroenterology, University Clinical Hospital of Santiago de Compostela, Spain.
36 37	44	(17) Institute of Laboratory Medicine and Pathobiochemistry, Philipps University of Marburg, Marburg,
38 39	45	Germany, Member of the German Center for Lung Research (DZL) and the Universities of
40 41	46	Giessen and Marburg Lung School (UGMLC).
42 43	47	(18) Department of Surgery, Technical University of Munich, Munich, Germany.
44 45	48	(19) National Cancer Registry Ireland and HRB Clinical Research Facility, University College Cork,
40 47 49	49	Cork, Ireland.
40 49 50	50	(20) ARC-Net centre for Applied Research on Cancer and Department of Pathology and Diagnostics,
50 51 52	51	University and Hospital trust of Verona, Verona, Italy.
53 54	52	(21) Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stokholm, Sweden.
55 56	53	(22) Madrid-Norte-Sanchinarro Hospital, Madrid, Spain; and Weill Cornell Medicine, New York, USA.
57 58	54	(23) Department of Oncology, Ramón y Cajal University Hospital, IRYCIS, Alcala University, Madrid,
59 60	55	and CIBERONC, Spain.

Molina-Montes E, PanGenEU: Diabetes and PC risk (29 09 2019)

https://mc.manuscriptcentral.com/gut

Epithelial Carcinogenesis Group, Madrid, Spanish National Cancer Research Centre (CNIO), (24)

Gut

- Madrid, Universitat Pompeu Fabra, Departament de Ciències Experimentals i de la Salut, Barcelona, and CIBERONC, Spain.
 - (25) PanGenEU Study Investigators (Supplementary Annex).

- Correspondence to: Dr. Esther Molina and Dr. Núria Malats, Genetic and Molecular Epidemiology Group,
- Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro, 3, 28029 Madrid, Spain.
- E-mail: memolina@cnio.es and nmalats@cnio.es. Phone: +34 917328000
- - Word count - Abstract: 248
- to Review Only Word count - Text (excluding references): 4,005
- Number of References: 55
 - Number of Tables: 4
 - Number of Figures: 2
 - Number of supplementary tables: 17
- Number of supplementary figures: 3

Gut

3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27 20	
20	
29	
50 21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
57	
54	
55 57	
50 57	
5/	
58	
59	
60	

72 Abstract

OBJECTIVES: To characterize the association between type 2 diabetes mellitus (T2DM) subtypes (new onset-NODM or long-standing-LSDM) and pancreatic cancer (PC) risk, to explore the direction of causation
 through Mendelian randomization (MR) analysis, and to assess the mediation role of BMI.

DESIGN: Information about T2DM and related factors was collected from 2,018 PC cases and 1,540 controls
 from the PanGenEU study. A subset of PC cases and controls had glycated haemoglobin (Hb1Ac), C Peptide, and genotype data. Multivariate logistic regression models were applied to derive odds ratios (ORs)
 and 95% confidence intervals (CIs). T2DM and PC-related SNPs were used as instrumental variables (IV)
 in bidirectional MR analysis to test for two-way causal associations between PC, NODM, and LSDM. Indirect
 and direct effects of the BMI-T2DM-PC association were further explored using multivariable and mediation
 analysis.

RESULTS: T2DM was associated with an increased PC risk when compared to non-T2DM (OR=2.50,
95%CI: 2.05-3.05), the risk being greater for NODM (OR=6.39, 95%CI: 4.18–9.78) and among insulin users
(OR=3.69, 95%CI: 2.80-4.86). The causal association between T2DM (57-SNP IV) and PC was not
statistically significant. On the contrary, there was a strong causal association between PC (40-SNP IV) and
NODM (OR=2.85, 95%CI: 2.04-3.98), although genetic pleiotropy was present. Potential mediating effects
of T2DM and obesity (125 SNPs as IV) on both associations were evidenced.

89 CONCLUSION: Findings of this study do not support a causal effect of LSDM on PC, but suggest that PC
90 is the cause of NODM. The interplay between obesity and T2DM is complex.

91

94

95

96

Keywords: Pancreatic cancer risk; Diabetes mellitus type 2; Obesity; Case-control; Causal inference;
 Mendelian randomization analysis.

Molina-Montes E, PanGenEU: Diabetes and PC risk (29 09 2019)

Gut

The association between type 2 diabetes mellitus (T2DM) and risk of pancreatic cancer (PC) has

Few studies have suggested the distinct role of T2DM subtypes, new-onset T2DM (NODM) and

long-standing (LSDM), in PC aetiology; while both were associated with PC risk, they may exhibit

•

•

1. What is already known about this subject?

been evidenced in numerous studies.

a different causal relationship with PC.

104	•	Uncertainties surrounding the association between T2DM and PC risk also concern confounding
105		or mediation by obesity, T2DM medication effects, and the causal pathway linking both diseases.
106		
107	2.	What are the new findings?
108	•	This study underlines the importance of a timely and accurate T2DM diagnosis in relation to PC
109		cancer risk; it confirms the time-dependent association between T2DM and PC risk, and sheds
110		new light on some of the existing knowledge gaps about the causal relationship between the two.
111	•	Causal inference methods revealed different types of association: a non-existent causal link
112		between LSDM and PC risk and an effect of PC on NODM, suggesting a reverse causal sequence,
113		and possibly influenced by weight loss preceding PC.
114	•	The interplay of obesity in the association between LSDM and PC risk is crucial according to causal
115		pathways connecting the diseases, with LSDM likely being an intermediate step in the obesity and
116		PC risk association.
117		
118	3.	How might it impact on clinical practice in the foreseeable future?
119	•	Differences in PC risk by T2DM subtypes and mediating effects by obesity point to a complex
120		multi-pathway mechanism underlying pancreatic carcinogenesis. These mechanisms need to be
121		fully explored to pursue PC prevention efforts in the population.
	Molina-M	ontes E, PanGenEU: Diabetes and PC risk (29 09 2019) 5
		https://mc.manuscriptcentral.com/gut

Gut

1 2		
3 4	122	• Preventing obesity and related risk factors yield to valuable prevention interventions to reduce the
5 6	123	burden of PC associated with LSDM.
7 8	124	• Recently diagnosed T2DM patients, i.e., NODM, can be a target group for routine PC screening
9 10	125	and surveillance if early signs of PC disease (i.e., weight loss) is present.
11 12	120	
13	126	
15	127	
10		
18 19		
20 21		
22		
23		
24 25		
26		
27 28		
29		
30		
31 32		
33		
34 35		
36		
37		
38 39		
40		
41 42		
42		
44		
45 46		
47		
48 49		
50		
51 52		
52 53		
E A		

Page 8 of 64

128 Introduction

Pancreatic cancer (PC) has a high case-fatality rate in Western countries,[1] expected to rise in coming years if no immediate actions are taken. [2,3] Many unknowns in PC aetiology remain even regarding some of the well-established risk factors of this disease.[4] This also applies to type 2 diabetes mellitus (T2DM). despite representing an important hallmark for PC prevention given the relatively high PC incidence among T2DM patients.[5] One possible explanation is that observational epidemiological studies are prone to confounding and reverse causality bias, which makes inference about causal factors of PC impossible. Mendelian randomization (MR) overcomes this problem by using genetic variants as instrumental variable (IV) of the risk factor to estimate its causal effect on the outcome.[6,7]

Gut

Thus, while a large number of observational studies evidenced that T2DM increases PC risk.[8–10] the actual role of T2MD in pancreas carcinogenesis remains unsolved. These earlier studies have shown that the excess risk increases within the first years since the diagnosis of T2DM, decreasing thereafter and keeping the association with PC risk in the long-term. [9,11] Given this temporal relationship, it is believed that new-onset and long-standing T2DM (NODM and LSDM, respectively) could play a different role in PC aetiology.[8] In the former case, the tumour in the pancreas might induce T2DM development through tissue destruction or paracrine mechanisms. This form of diabetes has been described as pancreatogenic or type 3c.[12] The fact that up to 60-85% of newly diagnosed PC patients present T2DM or hyperglycemia,[12,13] and that T2DM frequently abates after tumour resection, [14] supports that this mechanism underpins PC-related T2DM. In the case of LSDM, however, chronic hyperinsulinemia could trigger PC development.[15] Experimental studies support this hypothesis.[16,17]

Common risk factors such as obesity could explain the association between LSDM and PC risk, but this has not yet been fully explored. Similarly, a common genetic susceptibility between both diseases also needs to be established.[18] Use of antidiabetic medication is another relevant aspect in the association between T2DM and PC risk. Insulin-users, relative to non-users, have a higher PC risk,[11] whereas PC risk lowers among metformin-users.[11,19] It remains to be determined whether this association differs between NODM and LSDM.

Gut

3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
21	
22	
~~ 72	
∠⊃ 24	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
10	
47	
48	
49	
50	
51	
52	
53	
51	
54	
22	
56	
57	
58	
59	
60	

While a MR study on the association between T2DM and PC has been published, it only partially addressed 154 the questions posed above. [20] Even though this study supported that T2DM and PC are not causally linked, 155 156 it did not assess such a relation according to T2DM subgroups.[20] Interestingly, obesity was found to be a 157 causal factor of PC in this study, but whether obesity interacts with T2DM or mediates the association between T2DM and PC risk was also not accounted for.[20] Therefore, whether NODM or LSDM, or both, 158 promote the development of PC, with or without the interplay of obesity, continues to be uncertain. In fact, 159 160 there have been few attempts to characterize both T2DM subtypes in PC pathogenesis given the likely under-ascertainment of NODM at PC diagnosis.[13] Studies reliably profiling characteristics of both T2DM 161 subtypes are still missing. 162

The aim of this study was to explore the association between LSDM and NODM and PC risk, based on selfreported data and biomarker measures. To disentangle the causal link behind these associations, we explored through MR the unbiased effect of T2DM-related genetic variants as IV on PC risk and, *vice versa*, the effect of PC-related genetic variants as IV on T2DM risk. Potential mediating and modifying effects between T2DM and BMI on the associations were also explored.

168

169 Methods

Study Population: PanGenEU study information is provided in Supplementary Methods and in previous
publications.[21] This study was conducted with ethical approvals of all the participating centres and the
subject's written consent to participate.

Data collection: Information about study protocols to collect data on PC risk factors is provided in
 Supplementary Methods. Nearly all PC cases and controls provided biological samples, among them blood,
 at enrolment.

176 Assessment of diabetes status: Participants who responded affirmatively to the question "has a doctor ever 177 told you to have diabetes or elevated glucose levels" were regarded as having diabetes. They were asked 178 further about the age at which they were first informed they had diabetes and about the use of antidiabetic 179 medication: oral medication, insulin, or no-medication but diet. This information was used to derive variables

on diabetes status by time since diagnosis of T2DM (≤2 years, and >2 years since diagnosis to distinguish
 between NODM and LSDM, respectively), age at diagnosis (<55, 55-65, and ≥65 years) and by use of
 medication (use of oral medication, insulin, diet). T2DM biomarkers, glycated haemoglobin (Hb1Ac) and C peptide, were determined in 509 PC cases and 413 controls with available non-fasting erythrocyte and
 serum samples as described in Supplementary Methods. These data allowed to refine the assessment of
 diabetes status.

Gut

SNP selection and genotyping: Details on the genotyping of the DNA samples in the PanGenEU study are provided in Supplementary Methods. A GWAS database review in the GWAS catalog [22] was performed to identify SNPs associated with T2DM in at least two independent GWAS studies and with a p-value of $\leq 5x10-5$. SNPs with a minor allele frequency (MAF) ≥ 0.05 in our study population were selected. In addition, SNPs of previous T2DM-PC association studies were also included.[23–25] A total of 57 T2DM-related SNPs were considered. Using the same approach, we selected 40 PC-related SNPs and 125 obesity-related SNPs for the analyses (Supplementary Table 1).

Statistical analysis for the observational association study: There were 2,018 PC cases and 1,540 controls available for assessing the observational association between T2DM and PC risk (Supplementary Figure 1A). Missing data were imputed as described in Supplementary Methods, whereby a high imputation yield was reached (Supplementary Table 2). Multivariate unconditional logistic regression was applied to evaluate the association between T2DM and PC risk by Odds Ratios (ORs) and 95% Confidence Intervals (CI). Models were adjusted for age, sex and country (Model 1), and subsequently for smoking and body mass index (BMI) 2 years before recruitment (Model 2). Effect modification was evaluated by adding interaction terms in the models and comparing them with models lacking this interaction via the likelihood ratio test (LRT). Effect measure modification was further evaluated in stratified analyses by strata of these variables. Dose-response and trend analysis was conducted by fitting a T2DM ordinal score in the logistic models. The dose-response curve was evaluated by applying restricted cubic splines.[26] Interaction by centre but not by country was apparent; therefore, random centre effects in mixed models when appropriate were applied.[27] Further details are provided in Supplementary Methods.

Molina-Montes E, PanGenEU: Diabetes and PC risk (29 09 2019)

Page 11 of 64

Gut

Mediation analysis: As outlined in Supplementary Methods, the counterfactual mediation model for binary 207 mediators and outcomes was used to explore mediation by estimating the natural indirect and direct effect 208 of the associations (NIE and NDE, respectively).[28] We explored whether obesity leading to T2DM, and 209 subsequently to PC, could explain the observational association between T2DM and PC. Similarly, potential 210 mediating effects of body fat measures on the association between T2DM and PC risk were explored.

Mendelian Randomisation Analysis (MR): The causal effect of T2DM subtypes on PC (Supplementary Figure 1 B) was estimated using several MR tests (Wald ratio, 2-stage least squares -TSLS, inverse variance weighted method-IVW, and simple median),[29,30] adjusting estimates for potential confounders. Supplementary Methods detail how the genetic IV for T2DM was built. In addition, the weighted median estimation and the MR-Egger approach were applied to detect and correct bias due to pleiotropy.[29,31,32] Bidirectional MR: The same procedure was used to explore the causal effect of PC on T2DM (Supplementary Figure 1 C). We kept 33 PC-related SNPs for the analyses after removing SNPs in LD and those associated with other traits (Supplementary Tables 1 and 3). The association of the IV with PC was estimated in non-T2DM individuals, followed by its association with T2DM in all subjects.

MR using pleiotropic genetic variants: Causal assessment of obesity (at two time points: age 50 and 2 years before the interview) and PC was explored considering an IV of 85 obesity-related SNPs (41 SNPs were removed due to LD and pleiotropy: Supplementary Tables 1 and 3). Multivariable MR was used to disentangle further the causal effect of T2DM and obesity on PC using T2DM-SNPs as IV, or PC-SNPs as IV in the opposite direction (Supplementary Figure 1 D and E). The IVW, TSLS, and Egger methods were applied in these analyses. [33,34] To extend the aforementioned mediation analyses, potential mediating effects of obesity or T2DM (mediators) were explored considering separate IVs for the exposure and mediator variables (Supplementary Figure 1 F and G).[35] NIE and NDE were likewise estimated using the counterfactual method.[28]

Sensitivity analyses regarding imputation and other issues are detailed in Supplementary Methods. For
 instance, we evaluated pleiotropy and unmeasured confounding using several approaches,[31,36,37,38]
 Results are presented as OR and 95% CI, considering p-values <0.05 as statistically significant. Statistical

Page 12 of 64

Gut

analyses were conducted using software R-project (version 3.3.0).[39] Mediation models were fitted with the
 paramed module in Stata version 14.[40]

235 Results

Baseline characteristics of cases and controls are displayed in Supplementary Table 4. Cases and controls
with genetic or biomarker data had similar baseline characteristics (data not shown). By T2DM subtypes,
subjects with LSDM were diagnosed with T2DM at younger ages, and were more frequent users of
antidiabetic oral medication than subjects with NODM (Supplementary Table 5).

Observational association study: The association between T2DM and PC risk is shown in Table 1. T2DM (vs non-T2DM) was associated with a 2.5-fold higher risk of PC (95%CI:2.05;3.05). PC risk was higher for NODM (OR=6.39; 95%CI:4.18;9.78) and notably lower for LSDM (OR=1.86; 95%CI:1.49;2.32). A significant positive trend of the association by time since diagnosis and age at T2DM diagnosis was observed (p-trend=6.3E-07). The PC risk nonlinear curve of time since T2DM showed a peak at two years following a gradual decrease of the risk (Supplementary Figure 2). Statistical significance persisted until nearly 30 years since T2DM diagnosis. Regarding T2DM control measure, the insulin use or non-use of oral medication, were both significantly associated with a higher PC risk among diabetic patients (OR=3.69 and 2.94. respectively) compared to non-T2DM. Adjustment for insulin use led to an attenuation of the risk estimates compared to that observed for age, sex and country-adjusted models (Supplementary Table 6). When adjusting for time since T2DM diagnosis, intriguingly, risk estimates turned non-significant, except for NODM (OR=2.64; 95%CI:1.40;4.97) and diabetic patients using insulin (OR=1.61; 95%CI:1.01;2.58). Family history (FH) of T2DM (vs no FH) was also associated with a significantly increased PC risk (OR=1.22; 95%CI:1.03;1.48).

When T2DM status was established upon self-reported and Hb1Ac data (Table 2), the prevalence of T2DM increased by 15% among PC cases at the expenses of NODM (from 13% to 26%). Accordingly, the PC risk estimates when considering reclassified T2DM subtypes with biomarker data were OR=4.63 and 1.97 for NODM and LSDM, respectively (Supplementary Table 7). Assessment of T2DM status based on both data was associated with a 3-fold (95%CI:2.21;4.07) higher PC risk, with this risk being mainly driven by

Molina-Montes E, PanGenEU: Diabetes and PC risk (29 09 2019)

Gut

uncontrolled and undiagnosed T2DM (OR=3.58; 95%Cl:2.53;5.11). Increasing levels of Hb1Ac were also associated with increased PC risk (per 1-unit increase OR=1.49; 95%Cl:1.30;1.70 and ≥6.5 vs <5.5 Hb1Ac levels OR=3.99; 95%Cl:2.64;6.01, *p-trend*=2E-16), whereas C-Peptide levels were inversely associated with PC risk. Indeed, a remarkable PC risk (OR=8.38; 95%Cl:4.71;16.11) was seen for Type 3c-like diabetes (vs non-T2DM) when both markers were considered.

Several factors appeared to modify the association between T2DM and PC risk (Table 3). PC risk was considerably higher in diabetic patients with a higher educational degree than in those with lower education attainment (p-het by education=0.004), for either T2DM subtype and irrespective of the type of control measure used. There was evidence for effect modification by smoking status, with former smokers with T2DM exhibiting the highest PC risk (p-het by smoking=0.03). By gender, there was a significantly increased PC risk in males with FH of T2DM, though not in females (*p-het* by gender=0.007). Estimates were similar across obese and non-obese subjects. Obesity was not associated with PC risk, except in subgroups of men (p-het by gender=0.03) (data not shown). There was no indication of effect modification by selected covariates on the association between Hb1Ac and C-Peptide levels and PC risk (data not shown).

By T2DM subtypes, there were differences in risk estimates across the strata of gender, smoking status, educational level and post-50s weight-loss compared to non-T2DM (Table 4). For NODM, PC risk appeared to be higher in men (OR=10.42) than in women (OR=3.73; p-het by gender=0.02); in former smokers (OR=11.51) than in never (OR=6.21), or current smokers (OR=3.09; *p-het* by smoking=0.04); and among those who lost weight (OR=13.06) compared to those who did not (OR=4.76, p-het by weight loss=0.04). By contrast, in LSDM, a slightly increased PC risk was seen with higher (OR=2.88) vs lower educational level (OR=1.49; p-het by educational level=0.006). While an interaction could not be established for other diabetes-related variables, risk of PC tended to be higher in NODM treated with insulin or if oral medication was not taken. This trend was less apparent for LSDM. Also, there was a borderline significant interaction effect with BMI in LSDM (Supplementary Table 8). The significance of some of these associations were lost (e.g., weight loss and gender) when the biomarker data were used to reclassify NODM (data not shown). A closer evaluation of the association between T2DM subtypes with PC risk revealed that certain subgroups with NODM (males, insulin users or non-users of oral medication) were more likely to develop PC, whereas

for LSDM this risk pattern differed (e.g., FH of PC, former alcohol drinkers, and insulin users were at higher
 PC risk) (Supplementary Table 9). There were no significant gender, smoking, body fat measures, or
 treatment differences between type-3 like NODM, NODM, and LSDM (data not shown).

Gut

Mendelian Randomization Analyses: Estimates for the causal association between T2DM and PC risk are shown in Figure 1 and Supplementary Table 10. The genetic score (IV) for T2DM was significantly associated with both NODM (p-value=1.7E-04) and LSDM (p-value=1.2E-05). However, the causal association between the IV and PC was not statistically significant for any T2DM subtypes and this finding was consistent when causal estimates were obtained with the MR-Egger regression. In the opposite direction, the PC genetic IV score was associated with PC (p-value=9.3E-09) as well as with NODM (p-value=2E-04), though not with LSDM (p-value=0.121). This resulted in a statistically significant causal association between PC and NODM (OR_{TSLS}=2.52; 95%CI:2.18;2.88). However, pleiotropy was present in MR-Egger (Intercept=0.09, p-value=0.03) and weighted median regression; these methods did not reach the level of statistical significance. Similar results were observed for the association between PC and Type 3c (OR_{TSLS}=2.29, p-value=0.02) (data not shown). In multivariable MR, using the T2DM-IV to assess causal effects on PC risk, comparable results were observed (Supplementary Table 11). Conversely, estimates were largely affected in the opposite direction, suggesting that PC has causal effects on T2DM risk independent of the potential pleiotropic effects of obesity (OR_{TSLS} = 1.58; 95%CI:1.15;2.17), though still not supported by MR-Egger regression. Thus, obesity was likely to drive the observed pleiotropy, despite a causal association with PC risk not being observed (Supplementary Table 12).

Mediation analyses results are shown in Figure 2 and Supplementary Table 13. There was an indication for mediation by overweight/obesity 2 years before recruitment in the T2DM and PC risk association for both NODM and LSDM though in opposite directions. The association between NODM and PC risk was mediated by recent weight loss (NIE=0.55), whereas indirect effects by overweight/obesity were less noticeable in the LSDM-PC risk association. When exploring mediator effects of T2DM, a significant association between several obesity measures and either NODM or LSDM was seen, but the total effect did not reach the statistical significance except for overweight/obesity at age 50. Interestingly, NODM was not an intermediate step in the association between overweight/obesity at age 50 and PC risk, whereas LSDM seemed to be a

Gut

potential mediator in this association (NIE=1.04). These causal pathways were confirmed whenimplementing the use of IVs.

Sensitivity analyses: The overall results were not altered in sensitivity analyses (Supplementary Tables 14 316 and 15). Asymmetry in the funnel plots confirmed the presence of pleiotropy in the PC-NODM association 317 (Supplementary Table 16; Figure 3), but unmeasured confounding was unlikely (Supplementary Table 17).

319 Discussion

In this large and standardized case-control study, T2DM was associated with an increased PC risk, with NODM being associated with a higher risk than LSDM. About 34% of PC patients presented with diabetogenic levels of Hb1Ac (>6.5%) at diagnosis, which entails a 3.3-fold increase in PC risk in comparison with normal blood levels. The proportion of undiagnosed T2DM in PC patients was notable (15%), showing the importance of assessing T2DM status with biomarkers at PC diagnosis. This study also showed that PC risk gradually increased from pre-diabetes range levels. A causal association between LSDM and PC risk was not observed in MR, whereas estimates derived from bidirectional analyses suggested a causal effect of PC on NODM risk, though affected by potential pleiotropy. A complex biological interplay between obesity and LSDM or NODM in PC aetiology was confirmed in mediation analyses.

Pre-existing studies based the assessment of T2DM on self-reports, which is prone to misclassification bias given that under-diagnosis of T2DM is likely. In case-control studies on PC, this bias is aggravated in view of the fact that around 30% of PC patients can present undiagnosed T2DM at diagnosis.[41] Moreover, pre-diabetes Hb1Ac levels can represent an important warning sign of subclinical PC, as evidenced in risk prediction models of PC for diabetic patients. [42] In our study, we used information on Hb1Ac and C-Peptide levels to reclassify T2DM status and to explore PC risk from pre-diabetes range levels. By doing so, we assessed more appropriately PC risk associated with T2DM status and Hb1Ac and C-Peptide levels. Only one previous study within the European Prospective Investigation into Cancer and Nutrition cohort (466 PC cases and matched controls) assessed PC risk by Hb1Ac levels.[43] Like us, this study also found that pre-diabetes was associated with an increased PC risk. Chari et al., also showed that elevated T2DM biomarker

https://mc.manuscriptcentral.com/gut

Page 16 of 64

levels (e.g., fasting glucose) 2-3 months prior to PC diagnosis were associated with a higher PC risk in a
cohort of 848 PC patients.[44]

Gut

Our findings on the observational association between T2DM and PC risk are concordant with previous studies. Various meta-analyses have shown that T2DM is associated with an approximately two-fold increased risk of PC (summary RRs ranged from 1.82 to 1.94).[8,10] Also consistent with previous studies, e.g., the Pancreatic Cancer Case Control Consortium (PanC4) including 8,305 cases and 13,987 controls, PC risk differs upon timing of T2DM diagnosis, with T2DM lasting less than 2 years (NODM) posing a greater PC risk than LSDM.[45] Cohort studies using incident T2DM data also support that NODM and LSDM are two distinct entities in PC aetiology.[9,46,47] As reported within the PanC4 study, our study also evidenced differing PC risks in men and women with NODM, with men being at a greater PC risk. [45] However, in our study, this difference turned non-significant when considering reclassified NODM using biomarker data, probably because of lack of statistical power. By type of medication used to control T2DM, we also observed that among diabetic patients, non-use of oral antidiabetic agents or use of insulin conferred a higher PC risk.[45] Nonetheless, our study provides a more thorough assessment of PC risk by T2DM subtypes and reveals remarkable differences between them. For instance, NODM remained positively associated with PC risk irrespective of time since T2DM diagnosis (within a 2-year period) and was related to a more frequent use of insulin. This type of T2DM, if type 3c diabetes, has been previously associated with an earlier insulin treatment initiation due to a faster or more aggressive disease progression by inducing beta-cell dysfunction and insulin resistance, as well as by impairing proinsulin processing.[14,48]

A genetic link between T2DM and PC risk has been explored in three case-control studies, without finding any significantly associated T2DM-related variant with PC risk.[18,23,49] The causal link between both diseases has been previously investigated using MR.[20] Our findings on the absence of a causal association between T2DM and PC risk are in agreement with this study. In contrast, and as a new finding, in our study we performed a bidirectional MR in both T2DM subtypes and established their causal association with PC risk. This approach enabled a more appropriate dissection of the directional association between T2DM and PC. Thereby, we have elucidated that LSDM is not causally linked to PC, whereas PC may cause NODM, if the influencing effects of body weight are ruled out. However, our study does not

Gut

support the causal or observational association between BMI and PC risk, possibly due to reverse causation, a common bias in case-control studies, survival-selection bias, or misclassification of obesity.[50,51] Indeed, obesity measures were self-reported by the participants at recruitment. Adipose tissue loss in the early development of PC may explain this lack of association and support reverse causation.[52] In fact, the presence of coexisting PC and NODM has been related to weight loss prior to PC diagnosis.[53] This is also supported by a recent study in mouse models showing that adipose wasting is related to altered exocrine function in early PC.[54] In mediation analyses we could confirm that there is a 'cross-talk' between obesity and T2DM in relation to PC risk. Our findings suggest that weight loss related to NODM are related to the development of PC, whereas LSDM may mediate the association between obesity and PC risk.

Among the limitations of our study there is pleiotropic effects, i.e. genetic confounding, in the association study between PC and NODM, despite we accounted for potential pleiotropic associations in multivariable MR.[33] Thus, pleotropic effects may still have an influence effect on this association. Also, our study may be prone to confounding bias, although the likelihood of unmeasured confounder effects was low according to Evalue estimates. We used one-sample data rather than summarized data due to lack of information on summary statistics for NODM and LSDM in public GWAS databases. Therefore, when MR approaches for summarized data were applied, we accounted for the correlation between the variants associated with the exposure and the outcome. In addition, we provided causal estimates using the T2LS method, which is more convenient for one-sample MR.[32] We considered bidirectional MRA, but this approach also assumes that the causal association occurs in one direction, such that the impact of feedback loops between the exposure and outcome cannot be addressed.[29] Our study only included subjects with European ancestry, which may limit generalizability to other racial/ethnic groups.

The strengths of our study include a relatively large sample size, inclusion of a large number of standardized T2DM-related variables, accounting for biomarker data on Hb1Ac and C-Peptide levels to establish T2DM status, and the use of MR approaches to assess causal effects between T2DM and PC in both potential causal directions. We considered two T2DM subtypes and explored their role in PC aetiology, which was not done before. However, NODM definition was time-based (from self-reports) and misclassification is likely. Indeed, whether all NODM comprise type 3c diabetes cannot be established due to lack of dynamic

biomarkers.⁴⁰ However, using C-Peptide data we could better define this subtype and conduct a more proper
assessment of PC risk. In addition, there might be other T2DM subtypes involved in this disease. Indeed,
one study using medical claims data have identified relevant T2DM subtypes,[55] with possibly different
effect measures in PC disease.

Gut

In conclusion, while this study confirms the association between T2DM and PC risk, it does not support a causal effect of T2DM on PC development. Our findings suggest that T2DM is likely to be either a consequence of an adverse milieu created during the progressive growth of pancreatic cancer cells in the case of NODM, or a mediator in the causal pathway between obesity and PC in the case of LSDM, rather than a cause of PC. This study also highlights the importance of diabetogenic levels of Hb1Ac not only for a proper classification of T2DM status in PC, but also as a predictor of PC risk. These findings, if confirmed in future studies, may have implications to achieve a breakthrough towards PC prevention.

405 Acknowledgements:

The authors are thankful to the coordinators, field and administrative workers, technicians and study participants of the European Study into Digestive Illnesses and Genetics (PanGenEU) study.

409 Funding:

The work was partially supported by Fondo de Investigaciones Sanitarias (FIS), Instituto de Salud Carlos
III, Spain (#PI11/01542, #PI0902102, #PI12/01635, #PI12/00815, #PI15/01573); Red Temática de
Investigación Cooperativa en Cáncer, Spain (#RD12/0036/0034, #RD12/0036/0050, #RD12/0036/0073);
WCR (15-0391); European Cooperation in Science and Technology - COST Action #BM1204: EUPancreas.
EU-6FP Integrated Project (#018771-MOLDIAG-PACA), EU-FP7-HEALTH (#259737-CANCERALIA,
#256974-EPC-TM-Net); Associazione Italiana Ricerca sul Cancro (12182); Cancer Focus Northern Ireland
and Department for Employment and Learning; and ALF (#SLL20130022), Sweden.

Competing interests: None

Molina-Montes E, PanGenEU: Diabetes and PC risk (29 09 2019)

Page 19 of 64

1

Gut

2 3 4	419	Refer	ences
5 6	420	1	Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000-14
7	421		(CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18
8 9	422		cancers from 322 population-based registries in 71 countries. Lancet (London, England)
10 11	423		2018; 391 :1023–75.
12 13	424	2	Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: The
14	425		unexpected burden of thyroid, liver, and pancreas cancers in the united states. Cancer Res
15 16	426		2014; 74 :2913–21.
17 18	427	3	Ferlay J, Partensky C, Bray F. More deaths from pancreatic cancer than breast cancer in the EU by
19 20	428		2017. Acta Oncol (Madr) 2016; 55 :1158–60.
21 22	429	4	Maisonneuve PLA. Risk factors for pancreatic cancer: a summary review of meta-analytical studies.
23 24	430		Int J Epidemiol J Epidemiol 2015;44:186–98.
24 25 26	431	5	Chari ST, Leibson CL, Rabe KG et al. Probability of Pancreatic Cancer Following Diabetes: a
26 27	432		population-based study. Gastroenterology 2005; 192 :504–11.
28 29	433	6	Sheehan N a., Didelez V, Burton PR, et al. Mendelian randomisation and causal inference in
30 31	434		observational epidemiology. <i>PLoS Med</i> 2008; 5 :1205–10.
32 33	435	7	Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic
34 35	436		variants using summarized data. Genet Epidemiol 2013;37:658–65.
36	437	8	Batabyal P, Vander Hoorn S, Christophi C, et al. Association of diabetes mellitus and pancreatic
37 38	438		adenocarcinoma: a meta-analysis of 88 studies. Ann Surg Oncol 2014; 21 :2453–62.
39 40	439	9	Song S, Wang B, Zhang X, et al. Long-term diabetes mellitus is associated with an increased risk
41 42	440		of pancreatic cancer: A meta-analysis. <i>PLoS One</i> 2015; 10 :1–27.
43 44	441	10	Ben Q, Xu M, Ning X, et al. Diabetes mellitus and risk of pancreatic cancer: A meta-analysis of
45 46	442		cohort studies. <i>Eur J Cancer</i> 2011; 47 :1928–37.
47	443	11	Bosetti C, Rosato V, Li D, et al. Diabetes, antidiabetic medications, and pancreatic cancer risk: an
48 49	444		analysis from the International Pancreatic Cancer Case-Control Consortium. Ann Oncol
50 51	445		2014; 25 :2065–72.
52 53	446	12	Sah RP, Nagpal SJS, Mukhopadhyay D, et al. New insights into pancreatic cancer-induced
55 54	447		paraneoplastic diabetes. Nat Rev Gastroenterol Hepatol 2013;10:423–33.
55 56	448	13	Aggarwal G, Kamada P, Chari ST. Prevalence of Diabetes Mellitus in Pancreatic Cancer Compared
57 58	449		to Common Cancers. Pancreas 2013;42:198–201.
59 60	450	14	Balzano G, Dugnani E, Pasquale V, et al. Clinical signature and pathogenetic factors of diabetes

Gut

3	451		associated with pancreas disease (T3cDM): a prospective observational study in surgical patients.
4 5	452		Acta Diabetol 2014; 51 :801–11.
6	450	15	Zhang AM Magyill I. Winter T.I. do at al. Endegenous insulin contributes to personalis concer
7 8	453	15	Zhang AM, Magnii J, Winter TJJ de, <i>et al.</i> Endogenous insulin contributes to pancreatic cancer
9	454		development. Cell Metab 2019;:pii: S1550-4131(19)30376-6.
10 11	455	16	Rahn S, Zimmermann V, Viol F, et al. Diabetes as risk factor for pancreatic cancer : Hyperglycemia
12	456		promotes epithelial-mesenchymal-transition and stem cell properties in pancreatic ductal epithelial
13	457		cells Cancer Lett 2018 415 129–50
14 15			
16	458	17	Sciacca, L; Vigneri, R; Tumminia, A; Frasca, F; Squatrio, S; Frittitta, L; Vigneri P. Clinical and
17 18	459		molecular mechanisms favoring cancer initiation and progression in diabetic patients. Nutr Metab
19	460		Cardiovasc Dis 2013; 23 :808–15.
20 21	161	18	Wull Rabe KG Peterson GM Do variants associated with suscentibility to pancreatic cancer and
21	401	10	tras 2 disk stas as size as live first risk 2 Di = 0.000 2045 10 :1.42
23	462		type 2 diabetes reciprocally affect risk? PLoS One 2015;10:1–13.
24 25	463	19	Wang Z, Lai S, Xie L, et al. Metformin is associated with reduced risk of pancreatic cancer in patients
26	464		with type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Res Clin Pract
27 28	465		2014: 106 :19–26
28 29			
30	466	20	Carreras-Torres R, Johansson M, Gaborieau V, et al. The role of obesity and metabolic factors in
31 32	467		pancreatic cancer: A Mendelian randomization study. <i>J Natl Cancer Inst</i> 2017; 109 (9).
33	468	21	Gomez-Rubio P. Zock J-P. Rava M. et al. Reduced risk of pancreatic cancer associated with asthma
34 35	400	21	and paged allerging. Cut 2017: 66 :214, 22
36	409		
37	470	22	Buniello A, Macarthur JAL, Cerezo M, et al. The NHGRI-EBI GWAS Catalog of published genome-
38 39	471		wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res
40	472		2019; 47 :D1005–12.
41 42			
43	473	23	Pierce BL, Austin MA AH. Association study of type 2 diabetes genetic susceptibility variants and
44	474		risk of pancreatic cancer: an analysis of PanScan-I data. Cancer Causes {&} Control 2011;22:877-
45 46	475		83.
47	176	24	Kuruma S. Edawa N. Kurata M. et al. Case-control study of diabetes-related depetic variants and
48 49	470	27	Rendrid o, Egawa N, Renard M, et al. Castroanters 2014;20:17450. Co
50	477		pancreatic cancer risk in Japan. World J Gastroenterol 2014;20:17456–62.
51	478	25	Tang H, Wei P, Duell EJ, et al. Genes-environment interactions in obesity- and diabetes-associated
5∠ 53	479		pancreatic cancer: A GWAS data analysis. Cancer Epidemiol Biomarkers Prev 2014;23:98–106.
54	400	00	Durdemen O. Oimen D. Elevible representen medele ville er bis er lines. Ota Mad 4000 0 554-04
55 56	480	20	Dumeman S, Simon K. Flexible regression models with cubic splines. Stat Med 1989;8:551–61.
57	481	27	Neuhaus JM, McCulloch CE BR. Estimation of covariate effects in generalized linear mixed models
58 50	482		with a misspecified distribution of random intercepts and slopes. Stat Med 2013;32:2419–29.
59 60			

Page 21 of 64

1

Gut

2			
3 4	483	28	VanderWeele T. Mediation Analysis: A Practitioner's Guide. Annu Rev Public Health 2016;17–32.
5	484	29	Haycock PC, Burgess S, Wade KH, et al. Best (but oft-forgotten) practices: The design, analysis,
7	485		and interpretation of Mendelian randomization studies. Am J Clin Nutr 2016;103:965–78.
8 9 10	486	30	Yavorska OO, Burgess S. MendelianRandomization: an R package for performing Mendelian
11	487		randomization analyses using summarized data. Int J Epidemiol 2017;46:1734–9.
12 13	488	31	Burgess S, Burgess S. Interpreting findings from Mendelian randomization using the MR-Egger
14 15	489		method. <i>Eur J Epidemiol</i> 2017; 32 :377–89.
15 16 17	490	32	Bowden J, Davey Smith G, Haycock PC, et al. Consistent Estimation in Mendelian Randomization
17 18	491		with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol 2016;40:304-
19 20	492		14.
21	493	33	Burgess S, Thompson SG. Multivariable Mendelian randomization: The use of pleiotropic genetic
22	494		variants to estimate causal effects. Am J Epidemiol 2015; 181 :251–60.
24 25	495	34	Rees JMB, Wood AM, Burgess S. Extending the MR-Egger method for multivariable Mendelian
26 27	496		randomization to correct for both measured and unmeasured pleiotropy. Stat Med 2017;36:4705-
28 29	497		18.
30 31	498	35	Burgess S, Daniel RM, Butterworth AS, et al. Network Mendelian randomization: Using genetic
32	499		variants as instrumental variables to investigate mediation in causal pathways. Int J Epidemiol
33 34	500		2015; 44 :484–95.
35 36	501	36	Staley JR, Blackshaw J, Kamat MA, et al. PhenoScanner: A database of human genotype-
37 38	502		phenotype associations. <i>Bioinformatics</i> 2016; 32 :3207–9.
39	503	37	Hemani G, Zheng J, Elsworth B, et al. The MR-base platform supports systematic causal inference
40 41	504		across the human phenome. <i>Elife</i> 2018; 7 :e34408.
42 43	505	38	Vanderweele TJ, Ding P. Sensitivity Analysis in Observational Research: Introducing the E-Value.
44 45	506		Ann Intern Med 2017; 167 :268–74.
46 47	507	39	R Core Team. R: a language and environment for statistical computing. R Found. Stat. Comput.
48 49	508		2014. http://www.r-project.org/.
50 51	509	40	StataCorp.2011. Stata Statistical Software: Release 12. 2011.
52 53	510	41	Roeyen G, Jansen M, Chapelle T, et al. Diabetes mellitus and pre-diabetes are frequently
54	511		undiagnosed and underreported in patients referred for pancreatic surgery. A prospective
55 56	512		observational study. <i>Pancreatology</i> 2016; 16 :671–6.
57 58	513	42	Boursi B, Finkelman B, Giantonio BJ, et al. A Clinical Prediction Model to Assess Risk for Pancreatic
59 60	514		Cancer Among Patients With New-Onset Diabetes. Gastroenterology 2017;152:840850.e3.

Gut

1 2 3

60

3 1	515	43	Grote VA, Rohrmann S, Nieters A, et al. Diabetes mellitus, glycated haemoglobin and C-peptide
5	516		levels in relation to pancreatic cancer risk: A study within the European Prospective Investigation
6 7	517		into Cancer and Nutrition (EPIC) cohort. <i>Diabetologia</i> 2011; 54 :3037–46.
8	518	44	Sharma A, Smyrk TC, Levy MJ, et al. Fasting Blood Glucose Levels Provide Estimate of Duration
9 10	519		and Progression of Pancreatic Cancer Before Diagnosis. Gastroenterology 2018;155:490–500.e2.
11 12	F 20	15	Posetti C. Desete V. Li D. et el. Dichetes, entidichetic medications, and nonerrotic concer rick; en
12	520	45	Bosetti C, Rosato V, Li D, et al. Diabetes, antidiabetic medications, and pancreatic cancer risk: an
14	521		analysis from the International Pancreatic Cancer Case-Control Consortium. Ann Oncol Off J Eur
15 16	522		Soc Med Oncol 2014; 25 :2065–72.
17	523	46	Pang Y, Kartsonaki C, Guo Y, et al. Diabetes, plasma glucose and incidence of pancreatic cancer:
18 19	524		A prospective study of 0.5 million Chinese adults and a meta-analysis of 22 cohort studies. Int J
20	525		Cancer 2017: 140 :1781–8.
21 22			
23	526	47	Setiawan VW, Stram DO, Porcel J, et al. Pancreatic Cancer Following Incident Diabetes in African
24 25	527		Americans and Latinos: The Multiethnic Cohort. JNCI J Natl Cancer Inst 2018;111:27–33.
26	528	48	Mizuno S, Nakai Y, Isayama H, et al. Risk factors and early signs of pancreatic cancer in diabetes:
27 28	529		screening strategy based on diabetes onset age J Gastroenterol 2013:48:238–46
28 29	525		
30	530	49	Tang H, Dong X, Hassan M, et al. Body mass index and obesity- and diabetes-associated genotypes
31 32	531		and risk for pancreatic cancer. <i>Cancer Epidemiol Biomarkers Prev</i> 2011; 20 :779–92.
33	532	50	Hu Z-H. Connett JE. Yuan J-M. et al. Role of survivor bias in pancreatic cancer case-control studies.
34 35	522		Ann Epidemiol 2016: 26 :50–6
36	555		
37 38	534	51	Sperrin M, Candlish J, Badrick E, et al. Collider bias is only a partial explanation for the obesity
39	535		paradox. Epidemiology 2016; 27 :525–30.
40	536	52	Sah RP Sharma A Nagnal S et al Phases of Metabolic and Soft Tissue Changes in Months
41	530	02	Braceding a Diagnosis of Panerestic Ductal Adenocarcinoma, Castroontorology 2010: 156 :1742
43	557		receding a Diagnosis of Fancieatic Ductar Adenocarcinoma. Gastroenterology 2019, 130.1742-
44 45	538		52.
46	539	53	Hart PA, Kamada P, Rabe KG, et al. Weight loss precedes cancer-specific symptoms in pancreatic
47 48	540		cancer-associated diabetes mellitus. Pancreas 2011;40:768–72.
49		F 4	Densit M. Dekis A. Describet Mill of al Allend encoder function and data effective
50	541	54	Danai L V., Babic A, Rosenthal MH, et al. Altered exocrine function can drive adipose wasting in
52	542		early pancreatic cancer. <i>Nature</i> 2018; 558 :600–4.
53	543	55	Li L, Cheng W-Y, Glicksberg BS, et al. Identification of type 2 diabetes subgroups through
54 55	544		topological analysis of patient similarity. Sci Transl Med 2015;7:311ra174 LP-311ra174.
56			
57 58	545		
59			

Molina-Montes E, PanGenEU: Diabetes and PC risk (29 09 2019)

Gut

1		
2 3 4	547	Tables
5 6	548	Table 1: Association between diabetes-related variables and PC risk in the PanGenEU study (2,018 cases
7 8 9	549	and 1,540 controls).
10 11	550	Table 2: Association between diabetes status based on biomarker levels and PC risk in the Spanish
12 13 14	551	PanGenEU biomarker study (509 cases and 413 controls).
15 16	552	Table 3: Association between diabetes-related variables and PC risk by gender, educational level, obesity
17 18	553	and smoking status in the PanGenEU study (2,018 cases and 1,540 controls).
19 20 21	554	Table 4: Association between diabetes and PC risk according to T2DM subtypes among different subgroups
22 23	555	in the PanGenEU study (2,018 cases and 1,540 controls).
24 25 26	556	
27 28	557	Figures
29 30 21	558	Figure 1: Forest plot of estimated results (OR and 95%CI) from the observational study and Mendelian
32 33	559	randomisation (MR) analysis, conducted among 1,162 cases and 752 controls with epidemiological and
34 35	560	genetic data.
36 37	561	The point estimates are represented by a bullet along with the 95% confidence intervals. LSDM and NODM
38 39	562	were evaluated in comparison to T2DM-free individuals (1,489 subjects: 851 PC cases and 638 controls),
40 41	563	with subjects classified as either NODM (N=136) or LSDM (N=289) being removed, respectively. All
42 43	564	estimates were adjusted for age (<55, 55-65, 65-75, ≥75 years), gender, BMI (<25, 25-30, ≥30 kg/m2),
44 45 46	565	smoking (never-smokers and tertiles of pack-years), country and the first five principal components for
47 48	566	population ancestries. A and B refer to the directional association between T2DM and PC risk. The allele
49 50	567	score (IV) included 35 T2DM-SNPs. Mr-Egger Intercept: 0.006 (p-value=0.964) and -0.022 (p-value=0.468),
51 52	568	for NODM and LSDM, respectively. C and D refer to the directional association between PC and T2DM risk.
53 54	569	The allele score (IV) included 33 PC-SNPs. Mr-Egger Intercept: 0.090 (p-value=0.027) and 0.07 (p-
55 56 57	570	value=0.807), for NODM and LSDM, respectively.
57 58 59	571	

Molina-Montes E, PanGenEU: Diabetes and PC risk (29 09 2019)

Figure 2: Directed acyclic graphs showing results of causal mediation analyses evaluating mediator effects of obesity or T2DM on the PC risk associations by T2DM subtypes. Results are shown for overweight/obesity assessed 2 years before recruitment for NODM or at age 50 for LSDM. The natural indirect (NIE), direct (NDE) and total effect (TE) of the associations are shown with corresponding ORs [95% CIs]. Estimates are , 118 case Jobesity or NODM and , i in association analyses between derived from counterfactual models (2,018 cases and 1,540 controls) and IV mediation analyses (1,162 cases and 752 controls with epidemiological and genetic data). A and B for LSDM or obesity (mediators) in association analyses between obesity or NODM and PC risk, respectively. C and D for LSDM or overweight/obesity (mediators) in association analyses between overweight/obesity or NODM and PC risk,

respectively.

Table 1: Association between diabetes-related variables and PC risk in the PanGenEU study (2,018 cases

582 and 1,540 controls).

	Cas N=2.0	es 018	Cont N=1.	rols 540		Mode		Model 2	
	Ň	%	Ň	%	p-value ¹	OR	[95%CI]	OR	[95%CI]
Diabetes status:					. <0.001		• •		
no diabetes	1480	73.30	1342	87.10		Ref.		Ref.	
yes	538	26.70	198	12.90		2.56	[2.10;3.11]	2.50	[2.05;3.05]
Family history of diabetes ²	!				<0.001				
no diabetes	1210	65.58	879	72.32		Ref.		Ref.	
yes	635	34.42	371	29.68		1.25	[1.05;1.49]	1.22	[1.03;1.48]
Diabetes by age at diagnos	sis (years) ³				<0.001				
no diabetes	1480	73.30	1342	87.10		Ref.		Ref.	
≤ 55 y	162	8.03	82	5.32		1.56	[1.15;2.11]	1.5	[1.11;2.04]
55 to ≤ 65 y	173	8.57	57	3.70		2.68	[1.92;3.73]	2.59	[1.85;3.63]
> 65 y	203	10.10	59	3.83		4.06	[2.94;5.60]	4.06	[2.93;5.62]
					p-trend	2E-16		2E-16	•
Diabetes by time since diag	gnosis (yea	rs)³			<0.001				
no diabetes	1480	73.30	1342	87.10		Ref.		Ref.	
≤1 y	159	7.88	12	0.78		11.14	[6.09;20.37]	11.28	[6.16;20.68]
1 to ≤2 y	41	2.03	15	0.97		2.64	[1.40;4.97]	2.47	[1.31;4.66]
2 to ≤5 y	72	3.57	32	2.08		2.40	[1.54;3.73]	2.35	[1.50;3.68]
5 to ≤10 y	125	6.19	41	2.66		2.67	[1.81;3.93]	2.60	[1.76;3.84]
10 to ≤20 y	89	4.41	53	3.44		1.59	[1.09;2.32]	1.57	[1.07;2.30]
>20 y	52	2.58	45	2.92		1.19	[0.76;1.85]	1.16	[0.74;1.81]
,					p-trend	9.6E-08		6.3E-07	• / •
Diabetes status by subtype	9				<0.001				
no diabetes	1480	73.30	1342	87.10		Ref.		Ref.	
yes, ≤ 2 years (NODM)	200	9.91	27	1.75		6.49	[4.25;9.90]	6.39	[4.18;9.78]
yes, > 2 years (LSDM)	338	16.70	171	11.10		1.90	[1.53;2.37]	1.86	[1.49;2.32]
Diabetes control measures	;								
Diet					< 0.001				
no diabetes	1480	73.30	1342	87.10		Ref.		Ref.	
yes	420	20.80	149	9.68		2.60	[2.09;3.24]	2.53	[2.03;3.16]
no use	118	5.85	49	3.18		2.43	[1.69;3.49]	2.40	[1.67;3.46]
Use of oral medication					<0.001				
no diabetes	1480	73.30	1342	87.10		Ref.		Ref.	
yes	398	19.70	148	9.61		2.41	[1.93;3.00]	2.35	[1.88;2.95]
no use	140	6.94	50	3.25		3.01	[2.13;4.26]	2.94	[2.07;4.17]
Use of insulin					<0.001				
no diabetes	1480	73.30	1342	87.10		Ref.		Ref.	
yes	343	17.00	79	5.13		3.76	[2.85;4.95]	3.69	[2.80;4.86]
no use	195	9.66	119	7.73		1.77	[1.37;2.29]	1.72	[1.33;2.23]

583 ¹ Differences between groups evaluated by the Chi-square test.

² Information on family history of diabetes was not collected in Ireland; results are based on data for 1,845 cases and 1,250 controls.

³ Linear association for age since T2DM diagnosis and nonlinear association for time since T2DM (Supplementary Figure 1)

587 Model 1: adjusted for age (<55, 55-65, 65-75, ≥75 years), gender, country.

588 Model 2: Model 1 also adjusted for pack years (never-smokers and tertiles of pack-years) and BMI (<25, 25-30, ≥30 kg/m²).

5839 590 Table 2: Association between diabetes status based on biomarker levels and PC risk in the Spanish PanGenEU biomarker study (509 cases and 413 controls).

	Cases		Conti	ols					
	N=509		N=413	5		Mode	1	Model2	
	P50	IQR	P50	IQR	p- value¹	OR	[95%CI]	OR	[95%CI]
HbA1c (%) ² per 1 unit increase	6.1	5.6;6.9	5.6	5.4;6.0	<0.001	1.50	[1.31;1.71]	1.49	[1.30;1.70]
C-Peptide (µg/L) ² per log2 increase	2.3	1.4;3.7	4.2	2.5;6.4	<0.001	0.46	[0.39;0.54]	0.46	[0.39;0.53]
	Ν	%	Ν	%					
Diabetogenic status by HbA1c levels					<0.001				
HbA1c <6.5%	336	66.00	354	85.70		Ref.		Ref.	
HbA1c ≥6.5%	173	34.00	59	14.30		3.29	[2.34;4.62]	3.27	[2.32;4.60]
Biomarker and self-reported diabe	tes status				<0.001				
no diabetes	286	56.20	322	78.00		Ref.		Ref.	
self-reported but normal Hb1Ac (<6.5%)	50	9.80	32	7.70		1.90	[1.18;3.10]	1.92	[1.19;3.13]
self-reported and HbA1c ≥6.5%	173	34.00	59	14.30		3.59	[2.55;5.11]	3.58	[2.53;5.11]
Reclassified diabetes status					<0.001				
no diabetes	286	56.20	322	78.00		Ref.		Ref.	
self-reported and/or HbA1c	223	43.80	91	22.00		2.99	[2.21;4.06]	2.99	[2.21;4.07]
≥6.5%									
Reclassified diabetes status by									
subtype ³									
no diabetes	286	56.20	322	78.00		Ref.		Ref.	
NODM	130	25.50	34	8.20		4.63	[3.08;7.12]	4.63	[3.07;7.15]
LSDM	93	18.30	57	13.80		1.98	[1.35;2.90]	1.97	[1.35;2.90]
Biomarker Hb1Ac levels					<0.001				
<5.5%	100	19.60	129	31.20		Ref.		Ref.	
5.5-5.8%	72	14.10	121	29.30		0.71	[0.47;1.06]	0.71	[0.47;1.06]
5.8-6.0%	50	9.90	51	12.50		1.26	[0.78;2.04]	1.23	[0.76;1.99]
6.0-6.5%	114	22.40	53	13.00		2.75	[1.80;4.24]	2.72	[1.77;4.17]
≥6.5%	173	34.00	59	14.00		4.03	[2.69;6.08]	3.99	[2.64;6.01]
					p-trend	2E-16		2E-16	
Reclassified NODM into type 3c-lik diabetes ⁴	e				<0.001				
no diabetes	286	56.20	322	77.97		Ref.		Ref.	
NODM and C-Peptide >4.2 µg/L	37	7.20	21	5.08		2.30	[1.31;4.13]	2.28	[1.30;4.10]
NODM and C-Peptide <4.2 µg/L (T3c)	93	18.30	13	3.15		8.31	[4.69;15.93]	8.38	[4.71;16.11]
LSDM	93	18.30	57	13.80		1.99	[1,36:2.92]	1.98	[1,35:2.92]

² Linear association for Hb1Ac and non-linear for C-Peptide levels (Supplementary Figure 1).

48 ³ NODM and LSDM was classified with questionnaire and Hb1Ac biomarker data in the biomarker study population. NODM and LSDM 49 assessment based on questionnaire data only or with

⁴ NODM based on self-reported and Hb1Ac biomarker data was additionally reclassified into NODM and type 3c-like diabetes (T3C) with Cpeptide biomarker data.

Hb1Ac data in PanGenEU-Spain and PanGenEU is shown in Supplementary Table 6.

Model 1: adjusted for age (<55, 55-65, 65-75, ≥75 years), sex and center (Spain) or country.

Model 2: Model 1 also adjusted for pack years (never-smokers and tertiles of pack-years) and BMI (<25, 25-30, ≥30 kg/m2).

50 51

1

Page 27 of 64

4 5

		Ge	ender ¹			Educatio	nal lev	el		Ob	ese ^{1,2}				Smol	king status ¹		
	Female	es (N=1,578)	Mal	es (N=1,980)	<5-9 ye	ars (N=1,405)	≥10 y	ears (N=2,153)	No	(N=2,872)	Ye	es (N=686)	Neve	er (N=1,451)	Form	er (N=1,246)	Curr	ent (N=861)
	OR	[95%CI]	OR	[95%CI]	OR	[95%CI]	OR	[95%CI]	OR	[95%CI]	OR	[95%CI]	OR	[95%CI]	OR	[95%CI]	OR	[95%CI]
Diabetes status by subtype																		
no diabetes	Ref.		Ref.		Ref.		Ref.		Ref.		Ref.		Ref.		Ref.		Ref.	
yes, ≤ 2 years (NODM)	3.67	[2.05;6.58]	10.35	[5.44;19.67]	4.22	[2.38;7.49]	9.54	[5.01;18.16]	6.84	[4.14;11.3]	5.12	[2.28;11.49]	6.07	[3.17;11.89]	11.66	[5.21;26.08]	3.08	[1.44;6.61]
yes, > 2 years (LSDM)	1.71	[1.19;2.46]	2.03	[1.54;2.67]	1.39	[1.02;1.89]	2.64	[1.92;3.62]	1.66	[1.29;2.15]	2.36	[1.52;3.67]	1.58	[1.12;2.21]	2.58	[1.80;3.70]	1.49	[0.90;2.45]
p-value for interaction				0.078				0.004				0.310				0.028		
FH of diabetes ³																		
no	Ref.		Ref.		Ref.		Ref.		Ref.		Ref.		Ref.		Ref.		Ref.	
yes	0.93	[0.72;1.21]	1.50	[1.19;1.89]	1.22	[0.95;1.58]	1.23	[0.97;1.56]	1.31	[1.08;1.59]	0.95	[0.64;1.39]	1.03	[0.78;1.34]	1.59	[1.19;2.15]	1.19	[0.83;1.70]
p-value for interaction				0.007				0.971				0.263				0.070		
Diabetes by age at diagnosis					ľ (
no diabetes	Ref.		Ref.		Ref.		Ref.		Ref.		Ref.		Ref.		Ref.		Ref.	
≤ 55 y	1.53	[0.88;2.62]	1.53	[1.06;2.21]	1.03	[0.65;1.63]	2.06	[1.37;3.11]	1.35	[0.95;1.92]	1.97	[1.05;3.65]	1.29	[0.75;2.20]	2.23	[1.35;3.67]	1.22	[0.88;1.68]
55 to ≤ 65 y	2.14	[1.24;3.83]	2.99	[1.98;4.50]	1.42	[0.88;2.28]	4.55	[2.80;7.39]	2.47	[1.66;3.69]	2.72	[1.44;5.12]	1.69	[1.00;2.87]	4.01	[2.30;7.01]	2.78	[1.32;5.85]
> 65 y	2.62	[1.69;4.06]	6.57	[4.00;10.81]	3.05	[2.02;4.60]	6.27	[3.62;10.86]	3.93	[2.71;5.71]	4.25	[2.17;8.32]	3.43	[2.20;5.36]	5.11	[3.00;8.70]	4.92	[1.59;15.23]
<i>p-value</i> for interaction				0.073				4.7E-4				0.682				0.115		
Diabetes controlled with diet																		
no diabetes	Ref.		Ref.		Ref.		Ref.		Ref.		Ref.		Ref.		Ref.		Ref.	
yes	2.13	[1.51;2.92]	2.91	[2.18;3.89]	1.86	[1.38;2.55]	3.48	[2.55;4.76]	2.38	[1.85;3.07]	2.87	[1.81;4.52]	2.05	[1.46;2.82]	3.76	[2.62;5.39]	2.00	[1.21;3.3]
no	2.37	[1.24;4.39]	2.52	[1.61;3.94]	1.61	[1.01;2.59]	4.08	[2.27;7.35]	2.27	[1.47;3.49]	2.7	[1.35;5.38]	2.52	[1.43;4.44]	2.85	[1.51;5.39]	1.62	[0.8;3.28]
<i>p-value</i> for interaction				0.419				0.002				0.669				0.054		
Diabetes and oral medication																		
no diabetes	Ref.		Ref.		Ref.		Ref.		Ref.		Ref.		Ref.		Ref.		Ref.	
yes	2.14	[1.5;3.01]	2.54	[1.96;3.40]	1.64	[1.23;2.23]	3.51	[2.52;4.88]	2.27	[1.75;2.96]	2.47	[1.6;3.81]	1.72	[1.23;2.42]	3.69	[2.52;5.42]	2.06	[1.25;3.42]
no	2.25	[1.25;3.87]	3.60	[2.31;5.63]	2.31	[1.40;3.80]	3.82	[2.34;6.23]	2.56	[1.74;3.77]	4.7	[2.04;10.82]	4.36	[2.33;8.16]	3.27	[1.93;5.55]	1.51	[0.75;3.05]
<i>p-value</i> for interaction				0.496				0.003				0.354				0.005		
Diabetes and insulin																		
no diabetes	Ref.		Ref.		Ref.		Ref.		Ref.		Ref.		Ref.		Ref.		Ref.	
yes	3.24	[2.05;5.14]	3.95	[2.79;5.60]	2.92	[1.97;4.34]	4.56	[3.1;6.71]	3.42	[2.5;4.67]	4.62	[2.51;8.49]	3.42	[2.24;5.33]	4.66	[3;7.25]	2.64	[1.45;4.81]
no	1.51	[1.01;2.25]	1.99	[1.42;2.78]	1.17	[0.82;1.67]	2.78	[1.89;4.08]	1.58	[1.16;2.15]	1.98	[1.21;3.23]	1.45	[0.98;2.14]	2.64	[1.7;4.09]	1.34	[0.77;2.35]
<i>p-value</i> for interaction				0.723				0.003				0.498				0 094		

Gut

¹ Odds ratios (ORs) adjusted for age (<55, 55-65, 65-75, ≥75 years), gender, country, pack years (never-smokers and tertiles of pack-years) and BMI (<25, 25-30, ≥30 kg/m²) (Model 2), except: sex in analyses stratified by sex, BMI in analyses stratified by obesity and pack-years in analyses stratified by smoking status.

² Obesity status defined based on BMI 2 years before recruitment.
 ³ Information on family history (FH) of diabetes was not collected in Ireland; results based on data for 1,845 cases and 1,250 controls.

Molina-Montes E, PanGenEU: Diabetes and PC risk (29 09 2019)

Table 4: Association between diabetes and PC risk according to T2DM subtypes among different subgroups in the PanGenEU study (2,018 cases and 1,540 controls).

	No diabetes (Ref.)	NODM		LSDM	
	Cases;Controls	Cases;Controls	OR ¹ [95%CI]	Cases;Controls	OR¹ [95%CI]
Gender					
females	691;624	67;16	3.73 [2.13;6.86]	115;65	1.75 [1.22;2.51]
males	789;718	133;11	10.42 [5.74;20.89]	223;106	2.03 [1.54;2.68]
0.4.4.4.2	<i>p-value</i> for interaction	0.0213		0.5704	
<30 kg/m ²	1228-1094	15 <u>4</u> ·19	6 91 14 29.11 741	2 <i>44</i> ·129	1 76 [1 36.2 27]
$>30 \text{ kg/m}^2$	252.248	/6·8	5 01 [2 3/.12 0/]	QA·12	2 37 [1 53:3 71]
=50 kg/m	<i>p-value</i> for interaction	0.5862	5.01 [2.04, 12.04]	0.2048	2.57 [1.55,5.71]
Smoking status					
never	573;601	67;11	6.21 [3.3;12.79]	120;79	1.58 [1.13;2.23]
former	457;494	87;7	11.51 [5.5;28.17]	139;62	2.55 [1.79;3.67]
current	450;247	46;9	3.09 [1.49;7.04]	79;30	1.52 [0.93;2.53]
	<i>p-value</i> for interaction	0.0418		0.0699	
Family history diabe	tes ³	105.12	6 66 13 68.13 101	162.00	1 61 [1 10:2 10]
ΠΟ	1003,1009	105,12	0.00 [3.00, 13.10]	102,90	1.01 [1.19,2.19]
yes	n-value for interaction	95,15	0.07 [3.49,11.20]	0 1825	2.12[1.52;2.90]
Diabetes controlled	with diet	0.0200		0.1025	
yes	0	156;18	7.31 [4.51;12.55]	264;131	1.89 [1.49;2.42]
no	0	44;9	4.61 [2.28;10.32]	74;40	1.89 [1.25;2.88]
Dichotoo with oral m	<i>p-value</i> for interaction	NA		NA	
Ves		120.19	4 63 [2 83 7 94]	278.129	2 03 [1 59:2 59]
no	0	80.8	10 71 [5 42.24 37]	60:42	1 48 [0 97.2 27]
no	n-value for interaction	NA	10.11 [0.42,24.01]	00,42 ΝΔ	1.40 [0.07,2.27]
Diabetes with insuli	<i>p-value</i> for interaction	INA.		INA.	
yes	0	123;6	16.97 [7.98;43.91]	220;73	2.60 [1.93;3.52]
no	0	77;21	3.45 [2.12;5.85]	118;98	1.36 [1.01;1.83]
	p-value for interaction	NA		NA	
Diabetes by age at d	liagnosis	00 F	4 47 14 70 40 051	400.75	4 00 14 04 4 041
≤ 55 y	0	32;5	4.47 [1.78;13.65]	128;75	1.39 [1.01;1.91]
$55 \text{ to} \le 65 \text{ y}$	0	56;7	6.47 [3.03;16.01]	121;52	2.13 [1.47;3.11]
> 65 y	0	112;15	7.02 [4.11;12.82]	89;44	2.60 [1.76;3.80]
Educational level	<i>p-value</i> for interaction	NA		NA	
	230.132	30.5	5 54 [2 21:16 87]	74.40	1 10 10 02.2 1/1
sto 0 v	250,152	55,5	2 02 11 04 0 11	79,40	1.45 [0.52,2.44]
0 10 9 y	555,526	00,11	5.02 [1.94,0.11]	78,00	1.55 [0.69,2.04]
10 to 13 y	517;456	61;8	0.9 [3.35, 10.14]	120;44	2.50 [1.70;3.90]
≥14 y	380;426	45;3	16.34 [5.75;68.71]	66;27	2.88 [1.76;4.79]
Waight lace sizes -	<i>p-value</i> for interaction	0.1533		0.0059	
	286:390	65.6	13 06 [6 05:34 11]	121.55	2 23 [1 61:3 11]
yes	00/.050	135.01	A 76 [2 50.0 27]	017·116	1 67 [1 15.2 /5]
ΠU	554,952	100,21	4.10 [2.09,9.07]	217,110	1.07 [1.10,2.40]
	<i>p-value</i> for interaction	0.0441		0.2868	

¹ Odds ratios (ORs) adjusted for age (<55, 55-65, 65-75, ≥75 years), gender, country, pack years (never-smokers and tertiles of pack-years) and BMI (<25, 25-30, ≥30 kg/m²), except: sex in analyses stratified by sex, BMI in analyses stratified by obesity and pack-years in analyses stratified by smoking status.

² Obesity status defined based on BMI 2 years before recruitment.

³ Information on family history (FH) of diabetes was not collected in Ireland; results based on data for 1,845 cases and 1,250 controls.

1 6g1

4

6**0**# 38 6**95**

6040 6046

42 43

44 45 46

5	A: NODM->PC	
6	Observational association	OF
7	T2DM and PC	6.10
8	T2DM-allele score and T2DM	1.31
9	T2DM-allele score and PC	1.02
10	Causal estimates (MRA)	OF
11	MRA Wald	1.06
12	T2LS	1 07
13		0.02
14	MR Egger	0.00
15	Weighted median	1.00
10		1.00
17	Simple median	1.0
10		
20		
21	Observational association	
22	PC and T2DM	6.09
23	PC allele seers and PC	1 10
24		1.10
25	PC-allele score and 12DM	1.05
26	Causal estimates (MRA)	UH OH
27	MRA Wald	2.52
28	T2LS	2.52
29	IVW	1.57
30	MR-Egger	0.94
31	Weighted median	1.36
32 22	Simple median	2.37
23 24		
602 605		
36		

B: LSDM->PC

D: PC->LSDM

PC and T2DM

MRA Wald

MR-Egger

Weighted median

Simple median

T2LS

IVW

Observational association

PC-allele score and PC

PC-allele score and T2DM

Causal estimates (MRA)

Gut

Observational association	OR	
T2DM and PC	1.43	
T2DM-allele score and T2DM	1.15	
T2DM-allele score and PC	1.01	
Causal estimates (MRA)	OR	
MRA Wald	1.08	
T2LS	1.08	
IVW	0.90	
MR-Egger	0.98	
Weighted median	0.94	
Simple median	0.83	

2.0 0.50 1.0 5.0

Molina-Montes E, PanGenEU: Diabetes and PC risk (29 09 2019)

7.0

Gut

42 43

Molina-Montes E, PanGenEU: Diabetes and PC risk (29 09 2019)

Deciphering the complex interplay between pancreatic cancer, diabetes mellitus subtypes, and obesity/BMI through causal inference and mediation analyses. Molina-Montes E et al.

Supplementary material

Supplemental Table 1: Selected genetic variants of T2DM, PC, and obesity
Supplemental Table 1: Selected genetic variants of T2DM, PC, and obesity
Supplemental Table 2: Evaluation of the performance of the missing data imputation
Supplemental Table 3: Genetic variants associated individually at p-value level <0.05 with T2DM and PC as well as with selected covariates in the study population (752 controls).
Supplemental Table 4: General characteristics of the study population. PanGenEU study (2,018 cases an 1,540 controls). Imputed data. Supplemental Table 5: Baseline characteristics of NODM and LSDM in the PanGenEU study (538 cases and 198 controls). Imputed data. Supplemental Table 6: Association between diabetes-related variables and PC risk in the PanGenEU study
Supplemental Table 5: Baseline characteristics of NODM and LSDM in the PanGenEU study (538 case and 198 controls). Imputed data
Supplemental Table 6: Association between diabetes-related variables and PC risk in the PanGenEU stud
2,018 cases and 1,540 controls) when adjusting for T2DM treatment and duration of the disease16
Supplemental Table 7: Association between T2DM status based on Hb1Ac levels and questionnaire data and PC risk in the PanGenEU study
Supplemental Table 8: Association between T2DM and PC risk by T2MD subtypes and other covariates n the PanGenEU study (2,018 cases and 1,540 controls).
Supplemental Table 9: Factors associated with PC risk among patients with NODM and LSDM in the PanGenEU study (2,018 cases and 1,540 controls)
Supplemental Table 10: Estimates for the observational and causal association between T2DM and PC and <i>viceversa</i> , applying different MRA methods, conducted among 1,162 cases and 752 controls with epidemiological and genetic data. T2DM status based on self-reported (SR) data
Supplemental Table 11: Estimates for the causal association between T2DM and PC and <i>viceversa</i> applying different Multivariable MRA methods, conducted among 1,162 cases and 752 controls with appldemiological and genetic data. T2DM status based on self-reported (SR) data
Supplemental Table 12: Estimates for the observational and causal association between obesity measure and PC, applying different MRA methods, conducted among 1,162 cases and 752 controls with epidemiological and genetic data2!
Supplemental Table 13: Results of causal mediation analyses evaluating mediator effects of T2DM on the obesity and PC association considering different obesity measures, and mediator effects of obesity on the T2DM and PC association. Estimates are derived from counterfactual models (2,018 cases and 1,54) controls) and MRA (1,162 cases and 752 controls with epidemiological and genetic data)
Supplemental Table 14: Association between diabetes-related variables and PC risk in the PanGenEU study (2,018 cases and 1,540 controls). Unimputed data2:

Review Only

Gut

Spanish National Cancer Resear	ch Centre (CNIO), Madrid, Spain: Núria Malats ¹ , Francisco X Real ¹ ,
Evangelina López de Maturana, I	Paulina Gómez-Rubio, Esther Molina-Montes, Lola Alonso, Mirari
Márquez, Roger Milne, Ana Alfar	o, Tania Lobato, Lidia Estudillo.
Verona University, Italy: Rita Law	rlor¹, Aldo Scarpa, Stefania Beghelli.
National Cancer Registry Ireland	. Cork, Ireland: Linda Sharp ¹ , Damian O'Driscoll.
Hospital Madrid-Norte-Sanchinar	ro, Madrid, Spain: Manuel Hidalgo ¹ , Jesús Rodríguez Pascual.
Hospital Ramon y Cajal, Madrid,	Spain: Alfredo Carrato ¹ , Carmen Guillén-Ponce, Mercedes Rodríg
Garrote, Federico Longo-Muñoz,	Reyes Ferreiro, Vanessa Pachón, M Ángeles Vaz.
Hospital del Mar, Barcelona, Sp	<u>ain</u> : Mar Iglesias¹, Cristina Álvarez-Urturi, Xavier Bessa, Felipe E
Lucas Ilzarbe, Lucía Márquez, Ig	nasi Poves + , Fernando Burdío, Luis Grande, Javier Gimeno.
Hospital Vall d'Hebron, Barcelon	a, <u>Spain</u> : Xavier Molero¹, Luisa Guarner + , Joaquin Balcells.
Technical University of Munich, C	Sermany: Christoph Michalski ¹ , Jörg Kleeff, Bo Kong.
Karolinska Institute, Stockholm, S	Sweden: Matthias Löhr¹, Jiaqui Huang, Weimin Ye, Jingru Yu.
Hospital 12 de Octubre, Madrid,	Spain: José Perea ¹ , Pablo Peláez.
Hospital de la Santa Creu i San	<u>t Pau, Barcelona, Spain</u> : Antoni Farré ¹ , Josefina Mora, Marta Ma
Vicenç Artigas, Carlos Guarner, I	Francesc J Sancho, Mar Concepción, Teresa Ramón y Cajal.
The Royal Liverpool University H	ospital, UK: William Greenhalf ¹ , Eithne Costello.
Queen's University Belfast, UK: N	∕lichael O'Rorke¹, Liam Murray + , Marie Cantwell.
Laboratorio de Genética Molecul	<u>ar, Hospital General Universitario de Elche, Spain</u> : Víctor M Barbe
Javier Gallego.	
Instituto Universitario de Oncolo	gía del Principado de Asturias, Oviedo, Spain: Adonina Tardón ¹ ,
Barneo.	
Hospital Clínico Universitario de	<u>Santiago de Compostela, Spain</u> : Enrique Domínguez Muñoz¹, Ant
Lozano, Maria Luaces.	
Hospital Clínico Universitario de	<u>Salamanca, Spain</u> : Luís Muñoz-Bellvís¹, J.M. Sayagués, M.L.
Gutíerrrez Troncoso, A. Orfao de	Matos.
University of Marburg, Departmer	<u>at of Gastroenterology, Phillips University of Marburg, Germany</u> : Tho
Gress ¹ , Malte Buchholz, Albrecht	Neesse.
Queen Mary University of Lon	don, UK: Tatjana Crnogorac-Jurcevic ¹ , Hemant M Kocher, Sat
Bhattacharya, Ajit T Abraham, Da	arren Ennis, Thomas Dowe, Tomasz Radon
Scientific advisors of the PanGer	n <u>EU Study</u> : Debra T Silverman (NCI, USA) and Douglas Easton (I
Cambridge, UK)	

Supplementary Methods

 Study population: PanGenEU (the European Study into Digestive Illnesses and Genetics) is a mostly hospital-based casecontrol study of PC conducted in six European countries (Spain, Germany, Ireland, United Kingdom, Italy and Sweden) and 28 centers, designed to evaluate environmental and genetic factors associated with PC. Recruitment of PC cases and corresponding controls matched by region, sex and age (± 10 years) took place from 2007 to 2014 in all participating centers, except in those from Italy were only cases were ascertained. Inclusion criteria were cases diagnosed or suspected of having PC, who had lived in one of the study areas and aged older than 18 years. All medical records were reviewed to ensure the PC diagnosis for study entry. Participants incapable of participating in the study due to impairment of physical ability were excluded. Response rates varied by center and were on average 76% among cases and 85% among controls.

Data collection: A standardized epidemiological questionnaire including self-reported socio-demographic and anthropometric data (location of body fat, height and weight at different ages: age 20 and 50 years, 2 years before recruitment and at PC diagnosis), the likely fat accumulation zone (abdominal, hips, all equally, no extra weight gain), family history of cancer including PC, medical history (e.g., chronic pancreatitis, diabetes and others) including regular use of specific medication, and lifestyle behaviors (e.g., smoking and alcohol habits) was administered by trained personnel in a face-to-face interview. This information was used as input to generate other variables such as body mass index (BMI: weight in kg / height in m²: <25, 25-30, ≥30 kg/m²) at different ages (20, 50 and two years before recruitment). Weight gain (> 5 or 10 kg) between young and old adulthood (20 and 50 years, respectively), and weight loss since age 50 until two years before recruitment, was also derived (younger than 50 years, yes weight gain/loss, no weight gain/loss).

T2DM biomarker assays: Non-fasting erythrocyte and serum samples collected at subject recruitment and stored at -80°C from 509 PC cases and 413 controls of the Spanish PanGenEU study were analysed blinded to the disease status. All individuals had epidemiological information; 356 cases and 298 controls also participated in the genetic study. Glycated haemoglobin or Hb1Ac (as percentage of haemoglobin and mmol/mol) was measured with an automated HPLC analyzer (Menarini Diagnostics, Spain) at the Hospital 12 de Octubre, Madrid (Spain). Mean intra-batch and inter-batch coefficients of variations were 0.42% and 8.46%, respectively. Diabetes status based on Hb1Ac data was established for values above 6.5%. Undiagnosed T2DM, most likely NODM, was identified on this basis. Other predefined levels of Hb1Ac were considered to distinguish between prediabetes (\geq 6% and <6.5%) and non-diabetes (<6%). Furthermore, undiagnosed or uncontrolled T2DM (Hb1Ac \geq 6.5%), or HbA1c levels <6.5% but self-reported T2DM diagnosis, i.e., controlled T2DM patients, were considered in separate categories. C-peptide was measured at University Hospital Giessen and Marburg using a Cobas e411 (Roche Diagnostics, Mannheim, Germany) by means of Electro-chemiluminescence immune assay. Coefficients of variations were <5%. Type 3c-like diabetes was defined as NODM with C-peptide levels below the median (4.2 µg/L in controls).

SNP selection and genotyping: Consistent quality SNP data was available for 1,162 cases and 540 controls who provided blood samples. DNA samples were genotyped on the Infinium OncoArray-500K at the CEGEN (Spanish National Cancer Research Centre, CNIO). The genotype data was filtered for call rate, relatedness, European ancestry <80% and sex chromosome abnormalities. Overall, 451,883 SNPs passed these quality filters and underwent imputation of missing genotypes using IMPUTE v2. The control group was enlarged with 212 controls participating in two Spanish bladder cancer case-control studies (EPICURO and ISBIaC), with analogous characteristics to the source population (Spanish PC cases; 44% females and mean age=64.7 years) and with genotype and epidemiological data available. Similar protocols for data collection and genotyping were used in all studies. Genotype distributions of each SNP and deviation from Hardy-Weinberg equilibrium were assessed separately in each of the geographical areas. Principal components to control for population stratification were calculated with the *prcomp* function in *R*.

Imputation: Missing data (9.8% in the dataset containing 63 variables with predictors to improve the imputation performance), assumed to be at random, was substituted by the *random forest* (RF) imputation algorithm. RF tress (n=100) trained on the observed values of the data set predicted the missing values of the data. The out-of-bag error (OOB) was considered as a measure of the imputation error. A further test of imputation performance consisted of comparing observed imputed values *versus* the expected values (% of concordance) in a test set resembling the pattern of missingness of the original data. Mean OOB error (0.05) and concordance estimates (92.5%) demonstrated good imputation performance (Supplementary Table 2).

4

5

6

7

8

9

Statistical analysis for the observational association study: There were 2.018 PC cases and 1.540 controls available for assessing the observational association between T2DM and PC risk (Supplementary Figure 1A). Descriptive statistics by case-control status were performed, evaluating differences between the groups via Pearson chi-square and Student's t-test or Mann-Whitney test, where appropriate. Multivariate unconditional logistic regression was applied to evaluate the association between T2DM and PC risk by Odds Ratios (ORs) and 95% Confidence Intervals (CIs). The influence of smoking, obesity (BMI variables), alcohol status, asthma and/or allergies, educational level, and family history of PC, was evaluated in age, sex and country-adjusted models (Model 1), whereby only smoking (non-smokers and smokers in tertiles 10 of pack-years) proved to be a confounder (>10% change of the risk estimators). The lowest Akaike's Information Criterion 11 value was reached by further including BMI 2 years before recruitment (normal weight/overweight/obese) (Model 2). 12

Effect modification by country, center, age, gender, smoking and alcohol status, and BMI variables was evaluated by adding 13 interaction terms in the models, and comparing them with models lacking this interaction (likelihood ratio test, LHR). Effect 14 measure modification was further evaluated in stratified analyses by subgroups of these variables. 15

Dose-response and trend analysis was conducted by fitting the categorized variables (time since T2DM, age at T2DM) 16 diagnosis and Hb1Ac levels) as an ordinal score in the logistic models. The dose-response curve was evaluated by applying 17 restricted cubic splines (3 knots at the 10%, 50% and 90% percentile).²⁴ Linearity tests were performed by comparing via 18 19 the LHR test the continuous variable models as nonlinear or as linear. Interaction by centre but not by country was apparent; 20 therefore, random centre effects in mixed models when appropriate were applied.²⁵ 21

22 Mediation analysis; The counterfactual mediation model for binary mediators and outcomes was used to explore mediation 23 effects on the associations.²⁶ We explored whether obesity leading to T2DM, and subsequently to PC, could explain the 24 observational association between T2DM and PC. With this method, we estimated the total effect (TE) of obesity on PC by 25 determining a natural direct effect (NDE) of obesity on PC and a natural indirect effect (NIE) of obesity on T2DM accounting 26 by the influence of confounders. Standard errors were generated using Monte Carlo bootstrapping with 1,000 replications. 27 Similarly, potential mediating effects of obesity on the association between T2DM and PC risk were explored. 28

29 Mendelian Randomization Analysis (MRA): The causal effect of T2DM subtypes on PC (Supplementary Figure 1 B) was 30 estimated using several MRA approaches (Wald ratio, 2-stage least squares -TSLS, inverse variance weighted method-31 IVW, and simple median),²⁷ adjusting estimates for the aforementioned potential confounders. Some of these methods were 32 applied via the MendelianRandomization R package.²⁸ A total of 16 variants in high LD (R²>0.8) were removed for these 33 analyses (Supplementary Table 1). Since genetic variants for T2DM can be confounded by BMI effects due to sharing of 34 variants (i.e., pleiotropy), we tested for the association between the variants and BMI, as well as other confounders, and 35 removed those variants showing an association with other traits (Supplementary Table 3). After removing them, 35 T2DM-36 SNPs remained to build the IV. The genetic association of this IV with T2DM was estimated in controls only, and 37 subsequently with PC in the case-control setting. Logistic regression models adjusted for age, sex and five principal 38 components to control for population stratification were used to assess the per allele effect of each SNP and of the genetic 39 score. In addition, the weighted median estimation and the MR-Egger approach were applied to detect and correct bias due 40 41 to pleiotropy.^{27,29,30} The weighted median estimator reflects the median of the distribution of weighted Wald ratio estimates. 42 This test is less sensitive to the influence of pleiotropic variants since less weight is given to outlying estimates.^{29,30} The MR-43 Egger approach performs a weighted linear regression of the genetic associations with the outcome on the genetic 44 associations with the exposure, while keeping the intercept unconstrained. This test provides evidence for directional 45 pleiotropy when the intercept differs from zero.²⁹ 46

Bidirectional MRA: The same procedure was used to explore the causal effect of PC on T2DM (Supplementary Figure 1 C). We kept 33 PC-related SNPs for the analyses after removing SNPs in LD and those associated with other traits (Supplementary Tables 1 and 3). The association of the IV with PC was estimated in non-T2DM, followed by its association with T2DM in all subjects.

MRA using pleiotropic genetic variants: Causal assessment of obesity (at age 50 and 2 years before the interview) and PC was explored considering 85 obesity-related SNPs (41 SNPs were removed due to LD and associations with other traits: Supplementary Tables 1 and 3). Multivariable MRA was used to disentangle further the causal effect of T2DM and obesity on PC using T2DM-SNPs as IV (Supplementary Figure 1 D), or PC-SNPs as IV in the opposite direction (Supplementary Figure 1 E). The IVW, TSLS and Egger methods were applied in these analyses.^{31,32} In line with the aforementioned mediation analyses, we explored potential mediating effects of obesity or T2DM (mediators) using separate IVs (Supplementary Figure 1 F and G).³³ Direct and indirect effects were estimated using the counterfactual method.²⁶

47

48

49

50

51 52

53

54

55

Sensitivity analyses: We compared estimates from the unimputed and imputed data to assess the robustness of the results. Although heterogeneity by country was absent, we evaluated the consistency of the results across countries by removing each country at a time from the analyses. This was particularly relevant for PC cases from Italy due to the lack of matched controls. Sensitivity analyses also comprised the assessment of T2DM status based on questionnaire, i.e. self-reported (SR) data, or biomarker data in different study settings. In MRA, to further detect potential pleiotropic variants, we also removed SNPs that were outliers based on Cook's distances and removed additional variants potentially associated with other phenotypes.²⁹ The latter were identified in publicly available data from GWAS studies (PhenoScanner database).³⁴ The MR-base platform was also used to inspect the presence of pleiotropy. For instance, scatter plots of the gene-outcome and gene-exposure associations and for the SNP risk increase against the strength of instrumental SNPs were constructed, along with leave-one out analyses funnel plots for visual assessment of pleitropy.³⁵ In addition, since unmeasured confounding is a major concern of causal inference in observational studies, we tested by estimating the E-Value how strong such confounders would have to be related to the exposure and the outcome to explain away the observed association.³⁶ High E-Values reflect less impact of these confounders on the observed associations.

Gut

Results were comparable to those seen in analyses of the original data, regarding the use of unimputed missing data (Supplementary Tables 14), country-specific data (data not shown), reclassified T2DM status with biomarker data (e.g., Supplementary Table 15), and in analyses of the influence of pleiotropic effects in MRA (Supplementary Table 16 and Supplementary Figure 3). The E-value for the causal effect between NODM or LSDM with PC risk (E-value = 12.29 and UNIMELL) NODM (Suppr.) 3.12, respectively) suggested that unmeasured confounders are unlikely to explain away the effect of the observed association, especially with regard to NODM (Supplementary Table 17).

1 2
3 4 5
6 7 8
9 10
11 12 13
14 15
16 17 19
18 19 20
21 22
23 24 25
26 27
28 29 30
31 32
33 34 35
36 37
38 39 40
41 42
43 44 45
46

Supplemental Table 1: Selected	genetic variants of T2DM_PC_and obesity	

5		T2DM			PC			Obesity		
6	ID	SNP	Chr	Position	SNP	Chr	Position	SNP	Chr	Position
7	1	rs2641348	1	120437884	rs13303010	1	894573	rs11208659	1	65979280
8	2	rs340874	1	214159256	rs1747924	1	64538961	rs3101336	1	72751185
, 10	3	rs13414140	2	43671176	rs351365	1	113046395	rs2568958	1	72765116
11	4	rs243021	2	60584819	rs10919791	1	199965168	rs7531118	1	72837239
12	5	rs2943641	2	227093745	rs2816938	1	199985368	rs1993709	1	72838529
13 14	6	rs780094	2	27741237	rs3790844	1	200007432	rs1514177	1	74991402
14	7	rs1801282	3	12393125	rs962856	2	67593803	rs1514174	1	74993063
16	8	rs1470579	3	185529080	rs1486134	2	67639769	rs17381664	1	78048331
17	9	rs4402960	3	185511687	rs12478462	2	153654720	rs12408810	1	106640943
18	10	rs11708067	3	123065778	rs9854771	3	189508471	rs17024258	1	110147321
20	11	rs2877716	3	123094451	rs6537481	4	148396094	rs633715	1	177852580
21	12	rs4411878	3	64703665	rs2736098	5	1294086	rs12130212	1	209727257
22	13	rs6802898	3	12391207	rs35226131	5	1295373	rs2605100	1	219644224
23	14	rs10012946	4	6293350	rs401681	5	1322087	rs6429082	1	235600129
24	15	rs7708285	5	76425867	rs31490	5	1344458	rs12145833	1	243483754
26	16	rs9472138	6	43811762	rs17688601	7	40866663	rs6711012	2	624034
27	17	rs1535500	6	39284050	rs73328514	7	47488569	rs12463617	2	629244
28	18	rs4712523	6	20657564	rs6971499	7	130680521	rs11127485	2	632028
30	19	rs10946398	6	20661034	rs2941471	8	76470404	rs10189761	2	646364
31	20	rs7754840	6	20661250	rs10094872	8	128719884	rs10182181	2	25150296
32	21	rs7766070	6	20686573	rs1561927	8	129568078	rs17025867	2	40578559
33 34	22	rs7756992	6	20679709	rs10991043	9	106797388	rs6726292	2	55156630
35	23	rs13234407	7	130438214	rs2417487	9	106887581	rs6731302	2	58833493
36	24	rs1635852	7	28189411	rs687289	9	136137106	rs887912	2	59302877
37	25	rs2191348	7	15064255	chr9_136149229	9	136149229	rs7581710	2	121195181
38	26	rs4607517	7	44235668	rs7310409	12	121424861	rs16867321	2	181362379
40	27	rs13266634	8	118184783	chr12_121454622	12	121454622	rs7603514	2	206836612
41	28	rs3802177	8	118185025	rs9554197	13	28476978	rs2943650	2	227105921
42	29	rs896854	8	95960511	rs9581943	13	28493997	rs11680012	2	238672425
43	30	rs2383208	9	22132076	rs9543325	13	73916628	rs12635698	3	16408489
44	31	rs10811661	9	22134094	chr16_75263661	16	75263661	rs1435703	3	25560231
46	32	rs10512085	9	81924713	rs7200646	16	86335351	rs13078807	3	85884150
47	33	rs7903146	10	114758349	rs4795218	17	36078510	rs7638110	3	138903985
48	34	rs5015480	10	94465559	rs77038344	17	38644214	rs1516725	3	185824004
49 50	35	rs1111875	10	94462882	chr17_70400166	17	70400166	rs9816226	3	185834499
51	36	rs7901695	10	114754088	rs7214041	17	70401476	rs13130484	4	45175691
52	37	rs11257655	10	12307894	rs1517037	18	56878274	rs10938397	4	45182527
53 54	38	rs11603334	11	72432985	rs6073450	20	43086648	rs4833407	4	113311790
55	39	rs1552224	11	72433098	rs450960	22	18316304	rs10433903	4	118093137
56	40	rs5215	11	17408630	rs16986825	22	29300306	rs4864201	4	130731284
57	41	rs5219	11	17409572				rs925642	4	187678866
58	42	rs10830963	11	92708710				rs2307111	5	75003678
60	43	rs2237892	11	2839751				rs2112347	5	75015242

rs374748	5	127699375
rs9328321	6	5600438
rs4712652	6	22078615
rs999943	6	33624733
rs2274459	6	33762242
rs2206277	6	50798526
rs987237	6	50803050
rs734597	6	50836279
rs2207139	6	50845490
rs2807278	6	131809920
rs10953454	7	104503813
rs545854	8	10002570
rs17150703	8	9745798
rs17126232	8	17977650
rs4735692	8	76615663
rs10968576	9	28414339
rs1412239	9	28425515
rs16933812	9	36969205
rs2275848	9	95887320
rs10508503	10	16299951
rs16923476	10	23858211
rs7474896	10	37982097
rs10999409	10	72332440
rs2116830	10	78646536
rs11042023	11	8662516
rs297325	11	16389594
rs4756846	11	16403511
rs12295638	11	26605331
rs988712	11	27563382
rs2030323	11	27728539
rs564343	11	65895166
rs1048466	12	551550
rs3782724	12	6466081
rs10875976	12	50226467
rs7138803	12	50247468
rs11109072	12	97901270
rs9568856	13	54064981
rs9568867	13	54107352
rs17081231	13	66967622
rs534870	13	80959207
rs7989336	13	97017548
rs1957894	14	61908111
rs699363	14	72692493
rs11624704	14	78786077
rs7141420	14	79899454
rs2370983	14	79903376

2						
3	44	rs1387153	11	92673828		rs374748
4	45	rs2334499	11	1696849		rs9328321
5	46	rs231362	11	2601471		rs4712652
7	47	rc1353362	10	71612076		re000043
8	41	1810000Z	12	71015270		15999940
9	48	rs2612067	12	66170163		rszz/4459
10	49	rs7965349	12	121471931		rs2206277
11	50	rs1359790	13	80717156		rs987237
12	51	rs2028299	15	90374257		rs734597
13	52	rs7172432	15	62396389		rs2207139
15	53	rs4778582	15	80420966		rs2807278
16	54	rs8042680	15	91521337		rs1095345
17	55	rs8050136	16	53816275		rs545854
18	56	rs9939609	16	53820527		rs1715070
19	57	rs4430796	17	36098040		rs1712623
20	50	101100100	17	00000040		rc/735602
21	J0 50					1547 55092
23	59					151090007
24	60					rs1412239
25	61					rs1693381
26	62					rs2275848
27	63					rs1050850
28	64					rs1692347
30	65					rs7474896
31	66					rs1099940
32	67					rs2116830
33	68					rs1104202
34	60					re207325
35	70					ro/7560/6
37	70					154/ 00040
38	/1					rs1229563
39	72					rs988712
40	73					rs2030323
41	74					rs564343
42	75					rs1048466
43	76					rs3782724
44 45	77					rs1087597
46	78					rs7138803
47	79					rs1110907
48	80					re9568856
49	00					155500050
50	01					15900007
51 52	82					rs1/08123
52 53	83					rs534870
54	84					rs7989336
55	85					rs1957894
56	86					rs699363
57	87					rs1162470
58	88					rs7141420
59						

60

1

2					
3	90	rst	3028313	15	68043057
4 5	91	rst	970843	15	98876029
6	92	rs2	2531995	16	4013467
7	93	rs1	2446554	16	19935073
8	94	rs1	12446632	16	19935389
9 10	95	rs1	1639988	16	19944363
11	96	rsī	498665	16	28883241
12	97	rsī	/184597	16	28921809
13	98	rs1	1421085	16	53800954
14 15	99	rs1	1558902	16	53803574
16	100	rs1	121980	16	53809247
17	101	rs1	17817449	16	53813367
18	102	rsE	3043757	16	53813450
19 20	103	rs	3050136	16	53816275
20	104	rsi	7185735	16	53822651
22	105	rsS	9941349	16	53825488
23	106	rsS	9923451	16	78952439
24	107	rs ¹	1424233	16	79682751
25	108	rsī	7187365	16	86511915
27	109	rs)299	17	46669430
28	110	rsi	7503807	17	78591111
29	111	rs ¹	1805081	18	21140432
31	112	rs ⁴	17697518	18	38765659
32	113		1631486	18	53026357
33	114	rs ⁴	17700144	18	57811982
34	115	rst	538656	18	57850422
36	116	rs ⁴	17782313	18	57851097
37	117	rs ⁴	10871777	18	57851763
38	118	rs ²	176828	18	57852587
39	119	rs ¹	11152213	18	57852948
40 41	120		17773430	18	57963117
42	121	rs ⁴	1800437	19	46181392
43	122		0423928	19	46182304
44	123	rsf	3110577	20	15335754
45 46	124	rs ⁴	13041126	20	51092996
47	125	rc ⁴	1088859	21	22689344
48	126	ref	5762430	22	28378472
49	SNDo in L)50126 roE2	15	

Gut

SNPs in LD (>0.8) for T2DM-related variants: rs4712523, rs10946398, rs7754840, rs7756992, rs9939609, rs8050136, rs5215, rs1552224, rs11603334, rs5015480, rs7903146, rs10811661, rs3802177, rs1801282, rs2877716, rs1470579

 51
 SNPs in LD (>0.8) for PC-related variants: rs31490, rs9554197

 52
 SNPs in LD (>0.8) for Obesity-related variants: rs2568958, rs7

SNPs in LD (>0.8) for Obesity-related variants: rs2568958, rs7531118, rs1514174, rs12463617, rs11127485, rs10189761, rs10938397, rs2112347, rs987237, rs734597, rs2207139, rs1412239, rs7184597, rs1558902, rs1121980, rs17817449, rs8043757, rs8050136, rs7185735, rs9941349, rs9923451, rs12446554, rs12446632, rs11639988, rs538656, rs17782313, rs10871777, rs476828, rs11152213, rs10423928

Supplemental Table 2: Evaluation of the performance of the missing data imputation.

Gut

Variable	Proportion of missings (%)	OOB Error Test ¹ in test set	Imputed values	Proportion of concordance ()	OOB Error Tes in full set
status	0.00	0.0000	Ó	NA	0.0000
country	0.00	0.0000	0	NA	0.0000
gender	0.11	0.1315	2	50	0.1320
smoking status	3.29	0.0103	30	96.67	0.0015
alcohol status	1.83	0.4893	21	57.14	0.4117
chronic pancreatitis status	3.71	0.0052	37	100	0.0053
diabetes by type	2.67	0.0031	26	100	0.0003
educational level	2.22	0.6254	21	47.62	0.5677
FH of pancreatic cancer	3.57	0.0576	26	100	0.0498
FH of diabetes ²	20.15	0.4210	226	100	0.3537
periodontitis	26.39	0.1903	257	81.71	0.1745
recession	37.16	0.4041	362	67.96	0.2862
diabetes diet control	3.99	0.0031	41	100	0.0000
diabetes oral medication	3.23	0.0021	42	97.62	0.0000
diabetes insulin control	3.65	0.0021	29	100	0.0000
Pancreatitis type	3.71	0.0294	46	93.48	0.0330
asthma status	9.33	0.0215	113	100	0.0015
nasal allergies	8.63	0.0088	94	98.94	0.0018
cancer	8.12	0.1393	86	90.70	0.1367
diabetes status	1.60	0.0000	15	100.00	0.0000
metabolic syndrome	18.27	0.0061	182	97.25	0.0007
center	0.00	0.0000	0	NA	0.0000
weighton body site	8.68	0.0621	96	91.67	0.0160
BMI 2 years before	4.86	0.0000	42	100	0.0000
BMI at age 20	19.93	0.0447	192	95.31	0.0074
BMI at age 50	27.18	0.0351	257	94.55	0.0108
pack-years in tertiles	10.20	0.0055	90	96.67	0.0006
age in categories	0.37	0.0643	2	100	0.0220
place fat deposition	8.68	0.0132	92	97.83	0.0031
weight gain 5 kg	32.66	0.0029	309	95.15	0.0008
weight gain 10 kg	32.66	0.0000	324	94.75	0.0004
weight at age 20 in tertiles	18.94	0.0109	173	98.27	0.0010
weight at age 50 in tertiles	25.74	0.0202	257	94.55	0.0019
Weight since age 50	26.45	0.0000	250	98.00	0.0000
hypertension	9.19	0.0044	96	94.79	0.0009
cholesterol	10.85	0.0000	116	98.28	0.0022
height in tertiles	2.22	0.0206	27	100	0.0040
smoking duration in tertiles	9.47	0.0143	90	97.78	0.0053
smoking intensity in tertiles	3,20	0.0145	31	100	0.0044

NA=not applicable

FH=family history

Covariates used to improve imputation were case-control status, country, center, medical history (cancer, asthma, allergies, chronic pancreatitis), smoking variables (intensity and duration) and weight and height.

¹ Out of bag (OOB) error rates: normalized squared error for continuous variables (e.g. age) and proportion of falsely classified entries for categorical variables. Values close to zero indicated good performance and values close to one indicated bad performance.

² Concordance test applied to the study population without Ireland since this country did not collect information on family history of the disease.

 Gut

Supplemental Table 3: Genetic variants associated individually at p-value level <0.05 with T2DM and PC, as well as with selected covariates in the study population (752 controls).

				1 14
NODM	LSDM	PC	smoking	obesity
any	rs2943641	rs2191348	rs2641348	rs10830963
	(p=0.018)	(p=0.015)	(p=0.006)	(p=0.044)
	rs1801282	rs13266634	rs13234407	rs4430796
	(p=0.051)	(p=0.006)	(p=0.011)	(p=0.031)
	rs7901695	rs3802177	rs1111875	
	(p=0.045)	(p=0.005)	(p=0.018)	
	rs7903146	rs7965349	rs5015480	
	(p=0.016)	(p=0.011)	(p=0.020)	
			rs2334499	
			(p=0.043)	
PC-SNPs		1	1	-
NODM	LSDM	PC	smoking	obesity
rs2816938.199985368.T.A	any	rs351365.113046395	rs6537481.148396094	rs1747924.64538961
(p=0.006)		(p=0.002)	(p=0.001)	(p=0.011)
rs7310409		rs2816938.199985368		rs2816938.199985368
(p=0.016)		(p=0.001)		(p=0.012)
chr12_121454622_C_T		rs1486134.67639769		rs2736098.1294086
(p=0.005)		(p=0.049)		(p=0.005)
		rs31490		rs17688601.40866663
		(p=0.029)		(p=0.026)
		rs73328514.47488569		
		(p=0.024)		
	•	rs6971499		
		(p=0.007)		
		rs2941471.76470404		
		(p=0.031)		
		rs9543325		
		(p=0,003)		
		chr16 75263661		
		(n=0.001)		
		chr17 70400166		
		(n=0.005)		
		rs7214041 70401476		
		(n=0.005)		
IA: not applicable		- (p - 0.000)		1

Supplemental Table 4: General characteristics of the study population. PanGenEU study (2,018 cases and 1,540 controls). Imputed data.

Gut

		Cases N=2018		Controls N=1540				
		Ν	%	Ν	%	p-value	OR	[95%CI]
Country						<0.001		
	Spain	884	43.80	770	50.00			
	England	126	6.24	22	1.43			
	Germany	131	6.49	111	7.21			
	Ireland	173	8.57	290	18.80			
	Italy	533	26.40	0	0.00			
	Sweden	171	8.47	347	22.50			
Gender						0.143		
	females	873	43.30	705	45.80		Ref.	
	males	1145	56.70	835	54.20		1.11	[0.97;1.27]
Age (years	5)	64.3	12.10	66.8	12.50	<0.001	0.98	[0.98;0.99]
Age in cate	egories					<0.001		
	<55 y	409	20.30	261	16.90		Ref.	
	55-65 y	500	24.80	323	21.00		0.99	[0.80;1.22]
	65-75 y	708	35.10	500	32.50		0.90	[0.74;1.10]
	≥75 y	401	19.90	456	29.60		0.56	[0.46;0.69]
BMI 2 year	s before					0.971		
	<25	761	37.70	575	37.30		Ref.	
	25-29.99	868	43.00	668	43.40		0.98	[0.85;1.14]
	≥30	389	19.30	297	19.30		0.99	[0.82;1.19]
BMI at age	20					0.263		
	<25	1750	86.70	1330	86.40		Ref.	
	25-29.99	228	11.30	189	12.30		0.92	[0.75;1.13]
	≥30	40	1.98	21	1.36		1.44	[0.85;2.51]
BMI at age	50					<0.001		
	<25	620	30.70	612	39.70		Ref.	
	25-29.99	929	46.10	604	39.20		1.52	[1.30;1.77]
	≥30	468	23.20	324	21.00		1.43	[1.19;1.71]
Weight gai	in >5kg (age 20-50)					0.343		
	no	391	19.40	319	20.70		Ref.	
	yes	1627	80.60	1221	79.30		1.09	[0.92;1.28]
Weight gai	in >10kg (age 20-50))				< 0.001		
	no	742	36.80	676	43.90		Ref.	
	yes	1276	63.20	864	56.10		1.35	[1.18;1.54]
Weight los	s since age 50					0.012		
	no	1346	66.70	1089	70.70		Ref.	
	yes	672	33.30	451	29.30		1.21	[1.04;1.39]
Smoking s	status					<0.001		
	never	760	37.70	691	44.90		Ref. 🦳	
	former	683	33.80	563	36.60		1.10	[0.95;1.28]
	current	575	28.50	286	18.60		1.83	[1.53;2.18]
Pack-years	s in tertiles					<0.001		
	never smokers	760	37.70	691	44.90		Ref.	
	[0.05,12.95]	259	12.80	269	17.50		0.88	[0.72;1.07]
	[13,36]	583	28.90	327	21.20		1.62	[1.37;1.92]
	[36.3,240]	416	20.60	253	16.40		1.49	[1.24;1.80]
Ale - 1 - 1 - 1	-4					-0.004		
AICONOI ST	ลเนร					<0.001		

	never	599	29.70	390	25.30		Ref.	
	former	508	25.20	234	15.20		1.41	[1.16;1.73]
	current	911	45.10	916	59.50		0.65	[0.55;0.76]
Pancreatitis	s type					<0.001		
	no	1918	95.00	1523	98.90		Ref.	
	acute	81	4.01	15	0.97		4.25	[2.51;7.71]
	chronic	19	0.94	2	0.13		7.06	[2.03;48.0]
Educationa	I level (years of e	ducation)				<0.001		
	<5 y	343	17.00	177	11.50		Ref.	
	6 to 9 y	486	24.10	399	25.90		0.63	[0.50;0.79]
	10 to 13 y	698	34.60	508	33.00		0.71	[0.57;0.88]
	≥14 y	491	24.30	456	29.60		0.56	[0.44;0.69]
Family histo	ory of PC					<0.001		
	no	1889	93.60	1499	97.30		Ref.	
	yes	129	6.39	41	2.66		2.49	[1.76;3.60]
Periodontiti	is					0.643		
	no	1744	86.40	1340	87.00		Ref.	
	yes	274	13.60	200	13.00		1.05	[0.87;1.28]
Recession						0.003		
	no	1481	73.40	1197	77.70		Ref.	
	yes	537	26.60	343	22.30		1.27	[1.08;1.48]
Asthma						<0.001		
	no	1887	93.50	1381	89.70		Ref.	
	yes	131	6.49	159	10.30		0.60	[0.47;0.77]
Nasal allerg	jies					<0.001		
	no	1771	87.80	1236	80.30		Ref.	
	yes	247	12.20	304	19.70		0.57	[0.47;0.68]
Hypertensio	on					<0.001		
	no	1324	65.60	913	59.30		Ref.	
	yes	694	34.40	627	40.70		0.76	[0.67;0.88]
Cholesterol						<0.001		
	no	1459	72.30	1000	64.90		Ref.	
	ves	559	27.70	540	35.10		0.71	[0.61:0.82]

Differences between cases and controls evaluated via Chi-squared test (categprocal variables) and Student's t-test or Mann-Whitney (continuous variables). d unconditional logistic resgression models.

Odds Ratios (OR) derived from unadjusted unconditional logistic resgression models.

Data of all variables was self-reported.

Supplemental Table 5: Baseline characteristics of NODM and LSDM in the PanGenEU study (538 cases and 198 controls). Imputed data.

	LSD M N=509	1 1	NODM N=227	0/		OR	95%CI
	N	70	N	%	<i>p-value</i>	NOL	JIVI VS LSDIVI
<55	37	7.27	28	12.30	<0.001	Ref.	
55-65	92	18.10	67	29.50		1.04	[0.58:1.86]
65-75	213	41.80	83	36.60		1.94	[1.11;3.37]
≥75	167	32.80	49	21.60		2.57	[1.42;4.63]
Gender					0.818		
females	180	35.40	83	36.60		Ref.	
males	329	64.60	144	63.40		1.05	[0.76;1.46]
Smoking status					0.441		
never	199	39.10	78	34.40		Ref.	
former	201	39.50	94	41.40		0.84	[0.58;1.20]
current	109	21.40	55	24.20		0.78	[0.51;1.18]
Alcohol status					0.127		
never	155	30.50	57	25.10		Ref.	
former	140	27.50	78	34.40		0.66	[0.44;1.00]
current	214	42.00	92	40.50		0.86	[0.58;1.26]
Chronic pancreatitis					0.298		
no	504	99.00	222	97.80		Ref.	
yes	5	0.98	5	2.20	0.000	0.44	[0.12;1.65]
Educational level (years)					0.632		
<5 y	114	22.40	44	19.40		Ref.	
6 to 9 y	138	27.10	66	29.10		0.81	[0.51;1.27]
10 to 13 y	164	32.20	69	30.40		0.92	[0.58;1.43]
≥14 y	93	18.30	48	21.10		0.75	[0.46;1.23]
Family history PC					0.318		
no	478	93.90	218	96.00		Ref.	
yes	31	6.09	9	3.96		1.55	[0.75;3.54]
Family history Diabetes					0.667		
no	252	49.50	117	51.50		Ref.	
yes Devia devitie	257	50.50	110	48.50		1.08	[0.79;1.48]
Periodontitis		~~ -~			0.221		
no	421	82.70	197	86.80		Ref.	FO 00 0 (71
yes	88	17.30	30	13.20	0.007	1.37	[0.88;2.17]
Recession	004	74.00	474	70 70	0.667		
no	381	74.90	1/4	76.70		Ref.	[0 77:4 00]
yes Dishataa aga diagnaaja	128	25.10	53	23.30	10.004	1.1	[0.77;1.60]
	207	40.70	27	16.20	<0.001	Def	
\geq DDY	207	40.70	37	10.30			IO 20:0 751
$5510 \ge 059$	107	32.00	100	27.00		0.40	[0.30,0.75]
Diabetes with diet	155	20.50	121	55.90	0 770	0.19	[0.12,0.29]
	205	77 60	174	76 70	0.770	Dof	
yes	595 114	22.40	F2	22.20			10 65.1 201
Diabetes with oral medication	114 M	22.40	55	23.30	<0.001	0.95	[0.00,1.38]
	/// //7	80.00	120	61 20	0.001	Pof	
yes	407 102	20.00	129	20 20 20 20		κei. 04	10 28·0 561
ΠU	102	20.00	00	50.00	0 916	0.4	[0.20,0.30]

Page 45 of 64

Diabetes wi	ith insulin							
	yes	293	57.60	129	56.80		Ref.	
	no	216	42.40	98	43.20		0.97	[0.71;1.3
Asthma						0.135		
	no	467	91.70	216	95.20		Ref.	
	yes	42	8.25	11	4.85		1.75	[0.91;3.
Nasal allerg	jies					0.46		
	no	453	89.00	197	86.80		Ref.	
	yes	56	11.00	30	13.20		0.81	[0.51;1.
Metabolic s	vndrome					0.116		
	Any one	146	28.70	58	25.60	0.110	Ref.	
	Any two	170	33 40	96	42 30		0.7	[0 47·1
	Any three	151	29.70	60	26.40		1	[0.65.1
	All four	42	8 25	13	5 73		1 27	[0.65.2
BMI 2 years	before		0.20	10	0.10	0.172	1.21	[0.00,2
-	<25	128	25.10	47	20.70		Ref.	
	25-29.99	245	48.10	126	55.50		0.72	[0.48;1.
	≥30	136	26.70	54	23.80		0.93	- [0.58;1.
BMI at age 2	20					0.713		-
	<25	421	82.70	184	81.10		Ref.	
	25-29.99	72	14.10	37	16.30		0.85	[0.55;1
	≥30	16	3.14	6	2.64		1.15	[0.46;3
BMI at age	50					0.99		
	<25	110	21.60	48	21.10		Ref.	
	25-29.99	241	47.30	108	47.60		0.97	[0.64;1
	≥30	158	31.00	71	31.30		0.97	[0.62;1
Pack-years	in tertiles					0.585		
	never							
	smokers	199	39.10	78	34.40		Ref.	
	[0.05,12.95]	51	10.00	27	11.90		0.74	[0.43;1
	[13,36]	129	25.30	64	28.20		0.79	[0.53;1
\\/.:	[36.3,240]	130	25.50	58	25.60	0.043	0.88	[0.59;1
weightgain	>5Kg (age 20-50)			~-	11.00	0.943	5 (
	no	58	11.40	27	11.90		Ref.	10 0 4 4
Weightgein	yes	451	88.60	200	88.10	0 797	1.05	[0.64;1
Weigingani	no	155	30 50	72	31 70		Ref	
	Ves	354	69 50	155	68 30		1 06	[0 75.1
Hypertensio	on	004	09.00	100	00.00	0.596	1.00	[0.70,1
11.11.11.11.11.11.11.11.11.11.11.11.11.	no	241	47.30	113	49.80	0.000	Ref.	
	ves	268	52.70	114	50.20		1.1	[0.81:1
Cholesterol	, 		•			0.981		L,
	no	316	62.10	140	61.70		Ref.	
	yes	193	37.90	87	38.30		0.98	[0.71:1.
Weight los	s since age 50					0.429		
-	no	333	65.4	156	68.7		Ref.	
	Ves	176	34.6	71	31.3		1 16	[0.83.1

Differences between cases and controls evaluated via Chi-squared test (categprocal variables) and Student's t-test (continuous variables). Odds Ratios (OR) derived from unadjusted unconditional logistic resgression models.

Supplemental Table 6: Association between diabetes-related variables and PC risk in the PanGenEU study (2,018 cases and 1,540 controls) when adjusting for T2DM treatment and duration of the disease.

	Age, sex, c adjusted (N	ountry- Iodel 1)	Model 1 medicat	+ use of oral ion	Model 1 insulin	+ use of	Model 1 diabetes	+ duration of
	OR	[95%CI]	OR	[95%CI]	OR	[95%CI]	OR	[95%CI]
Diabetes status:								
no diabetes	Ref.		Ref.		Ref.		Ref.	
yes	2.56	[2.10;3.11]	3.01	[2.13;4.26]	1.77	[1.37;2.29]	1.19	[0.76;1.85]
Diabetes status by subtype								
no diabetes	Ref.		Ref.		Ref.		Ref.	
yes, ≤ 2 years (NODM)	6.49	[4.25;9.90]	6.36	[3.95;10.26]	4.51	[2.88;7.06]	2.64	[1.4;4.97]
yes, > 2years (LSDM)	1.90	[1.53;2.37]	1.85	[1.25;2.73]	1.27	[0.96;1.69]	1.19	[0.76;1.85]
Family history of diabetes ¹								
no diabetes	Ref.		Ref.		Ref.		Ref.	
yes	1.25	[1.05;1.49]	1.07	[0.89;1.28]	1.07	[0.89;1.28]	1.07	[0.89;1.28]
Diabetes by age at diagnosis								
(years) ²								
no diabetes	Ref.		Ref.		Ref.		Ref.	
≤ 55 y	1.56	[1.15;2.11]	1.83	[1.21;2.76]	0.91	[0.62;1.32]	1.17	[0.75;1.83]
55 to ≤ 65 y	2.68	[1.92;3.73]	3.23	[2.02;5.15]	1.81	[1.25;2.61]	1.50	[0.79;2.86]
> 65 y	4.06	[2.94;5.60]	4.75	[3.13;7.28]	2.79	[1.96;3.97]		• • •
	p-trend	2E-16	p-trend	1.2E-05	p-trend	6.6E-07	p-trend	0.122
Diabetes by time since							•	
diagnosis (years) ²								
no diabetes	Ref.		Ref.		Ref.		Ref.	
≤1 y	11.14	[6.09;20.37]	11.04	[5.83;20.93]	7.24	[3.89;13.5]	NA	NA
1 to ≤2 y	2.64	[1.40;4.97]	2.61	[1.3;5.22]	1.72	[0.89;3.35]	NA	NA
2 to ≤5 y	2.40	[1.54;3.73]	2.36	[1.35;4.14]	1.73	[1.09;2.76]	NA	NA
5 to ≤10 y	2.67	[1.81;3.93]	2.63	[1.57;4.47]	1.73	[1.14;2.66]	NA	NA
10 to ≤20 y	1.59	[1.09;2.32]	1.56	[0.94;2.62]	0.91	[0.58;1.42]	NA	NA
>20 y	1.19	0.76;1.85]	1.17	[0.69;1.98]	0.61	[0.36;1.04]	NA	NA
,	p-trend	9.6E-08	p-trend	5.5E-10	p-trend	1.4E-11	p-trend	NA
Diabetes controlled with diet								
no diabetes	Ref.		Ref.		Ref.		Ref.	
ves	2.60	[2.09;3.24]	3.08	[2.14;4.43]	1.75	[1.32;2.32]	1.22	[0.78;1.92]
no use	2.43	1.69:3.49	2.84	[1.81;4.47]	1.82	1.24;2.69	1.04	0.6;1.82]
Use of oral medication						. / .		. ,]
no diabetes	Ref.		Ref.		Ref.		Ref.	
ves	2.41	[1.93;3.00]	NA	NA	1.74	[1.33;2.28]	1.19	[0.75;1.9]
no use	3.01	[2.13;4.26]	NA	NA	1.89	[1.25:2.85]	1.17	[0.69;1.98]
Use of insulin		. / 3						
no diabetes	Ref.		Ref.		Ref.		Ref.	
yes	3.76	[2.85;4.95]	3.96	[2.71;5.79]	NA	NA	1.61	[1.01;2.58]
no use	1.77	1.37:2.291	1.89	[1.25:2.85]	NA	NA	0.61	0.36:1.041

¹ Information on family history of diabetes was not collected in Ireland; results are based on data for 1,845 cases and 1,250 controls

² Linear associations for age since T2DM diagnosis and nonlinear association for time since T2DM (Supplemental Figure 1)

Model 1: adjusted for age (<55, 55-65, 65-75, ≥75 years), gender, country.

Model 2: Model 1 also adjusted for use of oral medication.

Model 3: Model 1 also adjusted for use of insulin.

Model 4: Model 1 also adjusted for duration of T2DM.

NA=not applicable

	Cases		Co	ntrols		Crude M	odel	Model1		Model2	
	P50	IQR	P50	IQR	p-value ¹	OR	[95%CI]	OR	[95%CI]	OR	[95%CI]
HbA1c (%) ^{2,3} per 1 unit increase	6.1	5.6;6.9	5.6	5.4;6.0	<0.001	1.48	[1.30;1.69]	1.50	[1.31;1.71]	1.49	[1.30;1.70]
C-Peptide ^{2,3} per log2 increase	2.3	1.4;3.7	4.2	2.5;6.4	<0.001	0.45	[0.38;0.56]	0.46	[0.39;0.54]	0.46	[0.39;0.53]
	Ν	%	Ν	%							
Diabetogenic status by HbA1c levels ³					<0.001						
HbA1c <6.5%	336	66	354	85.7		Ref.		Ref.		Ref.	
HbA1c ≥6.5%	173	34	59	14.3		3.08	[2.22;4.32]	3.29	[2.34;4.62]	3.27	[2.32;4.60]
Biomarker and self-reported diabetes status					<0.001						
no diabetes	286	56.2	322	78		Ref.		Ref.		Ref.	
self-reported but normal Hb1Ac levels	50	9.8	32	7.7		1.76	[1.10;2.84]	1.9	[1.18;3.10]	1.92	[1.19;3.13]
self-reported and HbA1c ≥6.5%	173	34	59	14.3		3.3	[2.37;4.65]	3.59	[2.55;5.11]	3.58	[2.53;5.11]
Diabetes status ³					<0.001						
no diabetes	350	68.7	341	82.6		Ref.		Ref.		Ref.	
yes	159	31.3	72	17.40		2.15	[1.57;2.96]	2.26	[1.64;3.15]	2.26	[1.64;3.15]
Reclassified diabetes status ³					<0.001						
no diabetes	286	56.2	322	78		Ref.		Ref.		Ref.	
self-reported and/or HbA1c ≥6.5%	223	43.8	91	22		2.76	[2.07;3.70]	2.99	[2.21;4.06]	2.99	[2.21;4.07]
Diabetes status by subtype ³					<0.001						
no diabetes	350	68.7	341	82.6		Ref.		Ref.		Ref.	
NODM	66	13	15	3.6		4.29	[2.47;7.93]	4.53	[2.59;8.42]	4.58	[2.61;8.55]
LSDM	93	18.3	57	13.8		1.59	[1.11;2.29]	1.65	[1.14;2.41]	1.64	[1.13;2.40]
Reclassified diabetes status by subtypes ³					<0.001						
no diabetes	286	56.2	322	78		Ref.		Ref.		Ref.	
NODM	130	25.5	34	8.2		4.3	[2.89;6.57]	4.63	[3.08;7.12]	4.63	[3.07;7.15]
LSDM	93	18.3	57	13.8		1.84	[1.28;2.66]	1.98	[1.35;2.90]	1.97	[1.35;2.90]
Biomarker Hb1Ac levels ³					<0.001		•				•
<5.5	100	19.6	129	31.2		Ref.		Ref.		Ref.	
5.5-5.8	72	14.1	121	29.3		0.77	[0.52;1.14]	0.71	[0.47;1.06]	0.71	[0.47;1.06]
5.8-6.0	50	9.9	51	12.5		1.26	[0.79;2.03]	1.26	[0.78;2.04]	1.23	[0.76;1.99]
6.0-6.5	114	22.4	53	13		2.76	[1.83:4.22]	2.75	[1.80:4.24]	2.72	[1.77:4.17]

https://mc.manuscriptcentral.com/gut

2	≥6.5	173	34	59	14		3.77	[2.55;5.62]		4.03
3						p-trend	2.70E-10		p-trend	2.00E-16
4	Reclassified NODM into type 3c-like diabete	es ³								
5	no diabetes	286	56.20	322	77.97		Ref.			Ref.
6	NODM and C-Peptide >4.2 µg/L	37	7.20	21	5.08		1 98	11 15:3 521		2.30
7	NODM and C-Peptide $<4.2 \mu g/L$ (T3c)	93	18.30	13	3.15		8.05	[4 57.15 37]		8.31
8 9	LSDM	93	18.30	57	13.80		1 84	[1 28.2 66]		1.99
10	Diabetes status ⁴					<0.001		[1.20,2.00]		
11	no diabetes	1480	73.3	1342	87.1	0.001	Ref.			Ref.
12	ves	538	26.7	198	12.9		2 46	[2 06:2 95]		2.56
13	Reclassified diabetes status ⁴	000	20.1	100	12.0	<0.001	2.10	[2.00,2.00]		2.00
14	no diabetes	1416	70.2	1323	85.9	0.001	Ref			Ref
15	self-reported and/or HbA1c >6 5%	602	29.8	217	14 1		2 59	[2 18:3 08]		2.85
17	Diabetes status hy subtyne PanGenEII ⁴	002	20.0			<0.001	2.00	[2.10,0.00]		2.00
18	no diabetes	1480	73 3	1342	87 1	-0.001	Def			Ref
19	NODM	200	0.01	10 1 2 07	1 75		Ref.	[1 52.10 3]		6.40
20		200	3.91 16 7	171	1.70		0.00	[4.02,10.0]		1.0
21	LODM Declaration disketse status hv subtyres4	330	10.7	171	11.1	-0.001	1.79	[1.47,2.19]		1.9
22	Reclassified diabetes status by subtypes*	1110	70.0	1000	05.0	<0.001	Def			Def
23 24	no diabetes	1416	/0.2	1323	85.9		Ref.			Ref.
24 25	NODM	264	13.1	46	3		5.36	[3.93;7.49]		5.74
26	LSDM	338	16.7	171	11.1		1.85	[1.52;2.26]		2.03
27	Reclassified NODM into type 3c-like diabetes⁴					<0.001				
28	no diabetes	1416	70.2	1323	85.9		Ref.			Ref.
29	NODM and C-Peptide >4.2 µg/L	171	8.5	33	2.2		4.84	[3.36;7.20]		4.65
30	NODM and C-Peptide <4.2 µg/L (T3c)	93	4.6	13	0.8		6.68	[3.86;12.58]		8.83
31	LSDM	338	16.7	171	11.1		1.85	[1.52;2.26]		2.06
32	diabetes status ⁵					<0.001				
33 34	no diabetes	596	67.4	628	81.6		Ref.			Ref.
35	yes	288	32.6	142	18.4		2.14	[1.70;2.70]		2.09
36	Reclassified diabetes status⁵					<0.001				
37	no diabetes	532	60.2	609	19.1		Ref.			Ref.
38	self-reported and/or HbA1c ≥6.5%	352	39.8	161	80.9		2.5	[2.01;3.12]		2.57
39	Diabetes status by subtype⁵		-		-	<0.001		. / .		
40										

41

42 43

44 45 46 18

Gut

2.30

[2.69;6.08]

[1.31;4.13]

[2.10;3.11]

[2.36;3.45]

[4.25;9.90]

[1.53;2.37]

[4.14;8.11]

[1.62;2.53]

[3.16;7.02]

[5.06;1.67]

[1.65;2.56]

[1.64;2.66]

[2.04;3.24]

8.31 [4.69;15.93]

1.99 [1.36;2.92]

3.99

Ref.

2.28

Ref.

2.5

Ref. 2.79

Ref.

6.39

1.86

Ref.

5.67

1.98

Ref.

4.51

8.86

2.00

Ref.

2.07

Ref. 2.54

p-trend 2.00E-16

[2.64;6.01]

[1.30;4.10]

[2.05;3.05]

[2.31;3.39]

[4.18;9.78]

[1.49;2.32]

[4.09;8.03]

[1.59;2.48]

[3.06;6.83]

[5.07;1.68]

[1.61;2.51]

[1.62;2.64]

[2.01;3.22]

8.38 [4.71;16.11] 1.98 [1.35;2.92]

https://mc.manuscriptcentral.com/gut

no diabetes	596	67.4	628	81.6		Ref.		Ref.		Ref.	
NODM	109	12.2	20	2.6		5.74	[3.60:9.63]	5.7	[3.54:9.62]	5.67	[3.52:9.60]
LSDM	179	20.3	122	15.8		1.55	[1.20:2.00]	1.47	[1.12:1.93]	1.45	[1.11:1.91]
Reclassified diabetes status by subtypes ⁵					<0.001		,		[,]		L , - J
no diabetes	532	60.2	609	79.1		Ref.		Ref.		Ref.	
NODM	173	19.6	39	5.1		5.08	[3.56;7.42]	5.4	[3.75;7.94]	5.35	[3.71;7.88]
LSDM	179	20.2	122	15.8		1.68	[1.30;2.18]	1.63	[1.24;2.15]	1.62	[1.23;2.14]
Reclassified NODM into type 3c-like diabetes ⁵											
no diabetes	532	60.2	609	79.1		Ref.		Ref.		Ref.	
NODM and C-Peptide >4.2 µg/L	80	9.1	26	3.4		3.52	[2.26;5.66]	3.49	[2.21;5.68]	3.41	[2.15;5.57]
NODM and C-Peptide <4.2 µg/L (T3c)	93	10.5	13	1.7		8.19	[4.70;15.50]	9.46	[5.40;17.96]	9.47	[5.40;18.02]
LSDM	179	20.2	122	15.8		1.68	[1.30;2.18]	1.65	[1.26;2.18]	1.63	[1.24;2.16]

Gut

¹ Differences between groups evaluated by the Chi-square test (categorical variables) and Mann-Whitney test (continuous variables).

² Linear association for Hb1Ac levels and non-linear for C-Peptide (Supplemental Figure 1).

³NODM and LSDM was classified with questionnaire and biomarker data in the biomarker study population (509 cases and 413 controls).

⁴ NODM and LSDM was classified with questionnaire and biomarker data in the entire study population (2,018 cases and 1,540 controls).

⁵ NODM and LSDM was classified with questionnaire and biomarker data in the PanGenEU-Spain study population (884 cases and 770 controls).

Crude Model: unadjusted.

Model 1: adjusted for age (<55, 55-65, 65-75, ≥75 years), sex and center (Spain) or country.

Model 2: Model 1 also adjusted for pack years (never-smokers and tertiles of pack-years) and BMI (<25, 25-30, ≥30 kg/m2).

https://mc.manuscriptcentral.com/gut

Supplemental Table 8: Association between T2DM and PC risk by T2MD subtypes and other covariates in the PanGenEU study (2,018 cases and 1,540 controls).

	No diabetes (Ref.)	NODM		LSDM	
	Cases;Controls	Cases;Controls	OR ¹ [95%Cl]	Cases;Controls	OR ¹ [95%CI]
Alcohol status					
never	451;326	47;10	3.62 [1.81;7.90]	101;54	1.43 [0.95;2.16]
former	329;195	71;7	6.59 [3.09;16.33]	108;32	2.61 [1.66;4.20]
current	700;821	82;10	8.21 [4.30;17.34]	129;85	1.71 [1.24;2.37]
	p-value for interaction	0.3530		0.3914	
Chronic pancreatitis	s				
no	1469;1342	195;27	6.31 [4.2;9.83]	335;169	1.92 [1.55;2.40]
yes	11;0	5;0	NA	3;2	NA
	p-value for interaction	NA		NA	
Family history PC					
no	1378;1305	191;27	6.26 [4.16;9.77]	311;167	1.88 [1.50;2.35]
yes	93;37	9;0	NA	27;4	2.79
	n-value for interaction	0 2209		0 4220	[0.90;10.72]
Asthma				0.4220	
no	1378.1207	192.24	6 83 [4 46 10 9]	317.150	2 [1 59 2 52]
Ves	102.135	8:3	2 56 [0 6.13 26]	21.21	1 34 [0 61 2 9]
you	p-value for interaction	0 1853	2.00 [0.0, 10.20]	0 1832	1.01 [0.01, 2.0]
Nasal allergies				0.1002	
no	1292:1065	172:25	5.5 [3.59: 8.75]	307:146	1.84 [1.46: 2.34]
Ves	188:277	28:2	17.39 [4.92: 110.72]	31:25	2.1 [1.14: 3.88]
,	p-value for interaction	0.1131		0.8289	[,]
BMI 2 years before	P				
<25	635;524	45:2	20.35 [6.11;126.34]	79;49	1.22 [0.79;1.87]
25-29.99	593;570	109;17	5.41 [3.2;9.65]	165;80	2.16 [1.57;2.99]
≥30	252;248	46:8	5.01 [2.34;12.04]	94;42	2.37 [1.53;3.71]
	p-value for interaction	0.1222		0.0496	. , ,
BMI at age 20					
<25	1311;1162	163;21	6.72 [4.26;11.12]	271;147	1.78 [1.40;2.26]
25-29.99	143;161	31;6	5.06 [2.08;14.28]	53;19	3.11 [1.69;5.93]
≥30	26;19	6;0	NA	11;5	2.69
					[0.63;13.71]
	p-value for interaction	0.5767		0.3708	
BMI at age 50					
<25	516;562	39;9	4.21 [2.04;9.57]	66;44	1.58 [1.02;2.44]
25-29.99	665;517	100;8	11.03 [5.55;25.21]	164;77	1.93 [1.39;2.70]
≥30	299;263	61;10	4.98 [2.48;10.92]	108;50	2.14 [1.40;3.28]
	p-value for interaction	0.1333		0.635	
Age categorized:					
<55	356;249	24;4	4.73 [1.69;16.79]	29;8	3.17 [1.42;7.78]
55-65	369;295	61;6	7.94 [3.56;21.15]	70;22	2.20 [1.28;3.86]
65-75	482;430	75;8	7.54 [3.72;17.45]	151;62	2.18 [1.54;3.11]
≥75	273;368	40;9	4.74 [2.27;10.89]	88;79	1.34 [0.93;1.94]
	p-value for interaction	0.7985		0.2534	

Gut

Place fat deposition					
Never carried	90;72	4;1	4.95 [0.59;111.11]	10;4	2.71 0 77:11 101
Abdominal	966;927	140;20	6.24 [3.87;10.53]	239;134	1.78 [1.38;2.30]
Hips	127;120	10;2	7.52 [1.66;53.69]	12;5	4.94 [1.55:18.11]
All over equally	297;223	46;4	8.9 [3.43;30.4]	77;28	2.05 [1.24;3.47]
	p-value for interaction	0.8896		0.5682	
Weight gain >5kg be	etween age 20-50				
no	326;299	26;1	19.9 [4.08;359.30]	39;19	1.64 [0.89;3.10]
yes	1154;1043	174;26	6.12 [4.02;9.67]	299;152	2.04 [1.61;2.59]
	p-value for interaction	0.1841		0.4969	
Weight gain >10kg l	between age 20-50				
no	578;613	62;10	6.08 [3.17;12.90]	102;53	2.06 [1.42;3.01]
yes	902;729	138;17	6.62 [3.98;11.66]	236;118	1.87 [1.42;2.46]
	p-value for interaction	0.8334		0.7456	

¹ Odds ratios (ORs) adjusted for age (<55, 55-65, 65-75, ≥75 years), gender, country, pack years (never-smokers and tertiles of pack-years) and BMI (<25, 25-30, ≥30 kg/m²), except: sex in analyses stratified by sex, BMI in analyses stratified by obesity and pack-years in analyses stratified by smoking status.

² Obesity status defined based on BMI 2 years before recruitment.

		NODM (N=227)			LSDM (N=509)				(N=310)				
		Cases; Controls	OR ¹	[95%CI]	p- value	Cases; Controls	OR ¹	[95%CI]	p- value	Cases; Controls	OR ¹	[95%CI]	p- value
Gender	females	67;16	Ref.			115;65	Ref.			103;22	Ref.		
	males	133;11	2.59	[1.07;6.32]	0.04	223;106	1.07	[0.7;1.63]	0.75	161;24	1.2	[0.62;2.35]	0.59
Age groups	<65y	85;10	Ref.			99;30	Ref.			106;17	Ref.		
	≥65y	115;17	3.94	[0.8;19.44]	0.09	239;141	1.33	[0.67;2.67]	0.42	158;29	1.73	[0.54;5.60]	0.36
Pbese ²	no	154;19	Ref.			244;129	Ref.			207;32	Ref.		
	yes	46;8	0.6	[0.22;1.61]	0.31	94;42	1.22	[0.78;1.93]	0.39	57;14	0.56	[0.27;1.19]	0.13
Smoking status	never	67;11	Ref.			120;79	Ref.			96;18	Ref.		
	former	87;7	1.03	[0.32;3.32]	0.96	139;62	1.46	[0.88;2.40]	0.14	108;15	0.87	[0.36;2.1]	0.76
	current	46;9	0.52	[0.15;1.74]	0.29	79;30	1.25	[0.69;2.28]	0.46	60;14	0.56	[0.22;1.46]	0.24
Alcohol status	never	47;10	Ref.			101;54	Ref.			69;16	Ref.		
	former	71;7	1.97	[0.59;6.60]	0.27	108;32	1.91	[1.06;3.43]	0.03	91;13	1.64	[0.66;4.06]	0.29
	current	82;10	1	[0.29;3.45]	1	129;85	0.76	[0.45;1.3]	0.32	104;17	1.27	[0.51;3.14]	0.61
Family history PC	no	191;27	Ref.			311;167	Ref.			252;44	Ref.		
	yes	9;0	NA	NA	A1	27;4	3.98	[1.33;11.93]	0.01]	12;2	1.34	[0.27;6.61]	0.72
Family history diabetes	no	105;12	Ref.			161;90	Ref.			154;26	Ref.		
	yes	95;15	1.02	[0.42;2.47]	0.97	176;81	1.34	[0.89;2.02]	0.16	110;20	1.07	[0.54;2.10]	0.84
Periodontitis	no	175;22	Ref.			280;141	Ref.	5.		234;37	Ref.		
	yes	25;5	0.48	[0.15;1.57]	0.22	58;30	1.01	[0.60;1.70]	0.98	30;9	0.5	[0.2;1.22]	0.13
Diabetes with diet ³	yes	156;18	Ref.			264;131	Ref.	4	2	156;18	Ref.		
	no	44;9	0.8	[0.3;2.12]	0.66	74;40	1.04	[0.65;1.67]	0.86	44;9	NA		
Diabetes with oral medication ³	yes	120;19	Ref.			278;129	Ref.			120;19	Ref.		
	no	80;8	2.75	[1.04;7.26]	0.04	60;42	0.73	[0.46;1.18]	0.2	80;8	NA		
Diabetes with insulin³	yes	123;6	Ref.			220;73	Ref.			123;6	Ref.		
	no	77;21	0.2	[0.07;0.55]	0	118;98	0.52	[0.35;0.78]	0	77;21	NA		
Diabetes age at diagnosis ³	<55	32;5	Ref.			130;77	Ref.			32;5	Ref.		
	55-65	56;7	2.02	[0.17;24.06]	0.58	117;50	1.81	[1.06;3.08]	0.03	56;7	NA		

Supplemental Table 9: Factors associated with PC risk among patients with NODM and LSDM in the PanGenEU study (2,018 cases and 1,540 controls).

Gut

Gut

	>65	112;15	10.48	3 [0.41;270.43	8]0.16	91;44	3.15	[1.74;5.69]	0	112;15	NA		
Educational level	<5 y	61;9	Ref.			74;40	Ref.			61;9	Ref.		
	6 to 9 y	70;16	0.39	[0.11;1.4]	0.15	78;60	0.57	[0.32;1.01]	0.06	70;16	0.49	[0.19;1.28]	0.15
	10 to 13 y	70;13	0.78	[0.18;3.34]	0.74	120;44	0.97	[0.51;1.84]	0.93	70;13	0.65	[0.23;1.85]	0.42
	≥14 y	63;8	1.52	[0.29;7.96]	0.62	66;27	1.17	[0.59;2.30]	0.65	63;4	0.92	[0.29;2.87]	
BMI 2 years before ²	normal	45;2	Ref.			79;49	Ref.			66;8	Ref.		
	over	109;17	0.2	[0.04;0.99]	0.05	165;80	1.59	[0.97;2.62]	0.07	141;24	0.57	[0.24;1.4]	0.22
	obese	46;8	0.17	[0.03;0.94]	0.04	94;42	1.62	[0.93;2.84]	0.09	57;14	0.38	[0.14;1.03]	0.06
BMI at age 20	normal	163;21	Ref.			274;147	Ref.			218;37	Ref.		
	over	31;6	0.64	[0.22;1.88]	0.42	53;19	1.48	[0.81;2.69]	0.2	38;7	0.79	[0.33;1.92]	0.61
	obese	6;0	NA	NA	۹1	11;5	1.22	[0.38;3.89]	0.74	8;2	0.94	[0.10;8.55]	0.96
BMI at age 50	normal	39;9	Ref.			66;44	Ref.			60;17	Ref.		
	over	100;8	3.62	[1.12;11.75]	0.03	164;77	1.29	[0.78;2.13]	0.33	129;13	2.48	[1.07;5.74]	0.03
	obese	61;10	1.28	[0.43;3.79]	0.66	108;50	1.09	[0.62;1.89]	0.77	75;16	1	[0.44;2.29]	0.99
Weight gain >5kg	no	26;1	Ref.	Q		39;19	Ref.			39;7	Ref.		
	yes	174;26	0.24	[0.03;1.95]	0.18	299;152	0.9	[0.48;1.68]	0.74	225;39	0.97	[0.39;2.39]	0.94
Weight gain >10kg	no	62;10	Ref.			102;53	Ref.			90;20	Ref.		
	yes	138;17	1.17	[0.47;2.89]	0.74	236;118	0.81	[0.53;1.25]	0.35	174;26	1.27	[0.65;2.47]	0.49
Weight loss since age 50	yes	135;21	Ref.			217;116	Ref.			175;36	Ref.		
	no	65;6	0.4	[0.13;1.21]	0.1	121;55	0.72	[0.45;1.15]	0.17	89;10	0.43	[0.2;0.96]	0.04

¹Odds ratios (ORs) adjusted for age (<55, 55-65, 65-75, ≥75 years), gender, country, pack years (never-smokers and tertiles of pack-years) and BMI (<25, 25-30, ≥30 kg/m²), except: sex in analyses stratified by sex, BMI in analyses stratified by obesity and pack-years in analyses stratified by smoking status. ²Obesity status defined based on BMI 2 years before recruitment.

³The association with PC risk could not be evaluated in reclassified NODM for diabetes-related variables due to lack of information on these variables.

Supplemental Table 10: Estimates for the observational and causal association between T2DM and PC and *viceversa*, applying different MRA methods, conducted among 1,162 cases and 752 controls with epidemiological and genetic data. T2DM status based on self-reported (SR) data.

	SR-based class	ification o	f T2DM status			SR-based class	ification o	f T2DM status	
Diabetes>PC	LSDM (N=289) ¹	n valuo	NODM (N=136) ¹	n valuo	PC>Diabetes	LSDM (N=289) ¹	n valuo	NODM (N=136) ¹	n valuo
Observational association study	OK [93 %CI]-	p-value	OK [93 %CI]-	p-value	Observational association study		p-value	OK [93 /6CI]-	p-value
T2DM and PC	1.43 [1.09;1.88]	0.011	6.10 [3.45;10.8]	5.40E-13	PC and T2DM	1.45 [1.10;1.91]	0.008	6.08 [3.44;10.7]	4.80E-10
T2DM-allele score ³ and T2DM in controls	1.15 [1.09;1.21]	1.20E-05	1.31 [1.15;1.47]	0.0007	PC-allele score ⁴ and PC (without T2DM)	1.10 [1.06;1.13]	9.30E-09	1.10 [1.06;1.14]	4.10E-09
T2DM-allele score ³ and PC	1.01 [0.98;1.04]	0.5	1.02 [0.98;1.05]	0.315	PC-allele score ⁴ and T2DM	1.03 [0.99;1.06]	0.121	1.09 [1.04;1.14]	0.0002
Causal estimates: MR study					Causal estimates: MR study				
MRA_Wald	1.08 [0.86;1.29]	0.5	1.06 [0.95;1.17]	0.315	MRA_Wald	1.32 [0.97;1.67]	0.121	2.52 [2.07;3.03]	0.0002
TSLS Estimates	1.08 [0,87;1.33]	0.5	1.07 [0.96;1.20]	0.239	TSLS Estimates	1.31 [0.97;1.66]	0.123	2.52 [2.18;2.88]	0.0002
Inverse-variance weighted method (IVW)	0.90 [0.77;1.07]	0.238	0.98 [0.96;1.02]	0.692	Inverse-variance weighted method (IVW)	1.12 [0.89;1.41]	0.326	1.57 [1.13;2.12]	0.007
Mr-Egger regression	0.98 [0.74;1.30]	0.918	0.98 [0.96;1.02]	0.694	Mr-Egger regression	1.09 [0.78;1.51]	0.614	0.94 [0.57;1.55]	0.804
Mr-Egger Intercept	-0.022 (0.030)	0.468	0.006 (0.018)	0.964	Mr-Egger Intercept	0.007 (0.028)	0.807	0.090 (0.042)	0.027
Weighted median	0.94 [0.73;1.22]	0.649	0.99 [0.98;1.02]	0.905	Weighted median	1.18 [0.85;1.65]	0.323	1.36 [0.85;2.16]	0.197
Simple median	0.83 [0.60;1.06]	0.117	1.03 [0.94;1.13]	0.496	Simple median	1.50 [1.00;2.26]	0.049	2.37 [1.78;2.96]	<0.001

¹LSDM and NODM was evaluated in comparison to non-diabetics (1,489 subjects: 851 PC cases and 638 controls), with subjects classified as either NODM (N=136) or LSDM (N=289) being removed, respectively.

² All estimates were adjusted for age (<55, 55-65, 65-75, ≥75 years), gender, BMI (<25, 25-30, ≥30 kg/m2), smoking (never-smokers and tertiles of pack-years), country and the first five principal components for population ancestries. ³ From the 57 T2DM-SNPs, 16 were excluded due to high LD with other SNPs (r2>0.8) (Supplementary Table 1), and 6 SNPs were excluded due to their association with BMI (rs10830963, rs4430796) and smoking (rs2641348,

rs13234407, rs1111875, rs2334499). The allele score, as instrumental variable, included the remaining 35 SNPs.

⁴ From the 40 PC-SNPs, 2 were excluded due to high LD (r2>0.8) (Supplementary Table 1), and 5 SNPs were excluded due to their association with BMI (rs1747924.64538961, rs2816938.199985368, rs2736098.1294086, rs17688601.40866663) and smoking (rs6537481.148396094). The allele score, as instrumental variable, included the remaining 33 SNPs.

		SR-base	ed classification of T2DM statu	IS
	Single MRA		Multivariable MRA	
	OR [95%CI] ¹	OR [95%CI] ¹	OR [95%CI] ¹	OR [95%CI] ¹
Diabetes>PC	LSDM (N=289) ²	NODM (N=136) ²	LSDM ² (X1) + BMI (X2) -> PC	NODM ² (X1) + BMI (X2) -> PC
TSLS Estimates	1.08 [0,87;1.33]	1.07 [0.96;1.20]	1.08 [0.84;1.41]	1.06 [0.95;1.19]
Inverse-variance weighted method (IVW)	0.90 [0.77;1.07]	0.98 [0.96;1.02]	0.94 [0.80;1.10]	1.00 [0.99;1.01]
Mr-Egger regression	0.98 [0.74;1.30]	0.98 [0.96;1.02]	1.00 [0.76;1.30]	1.00 [0.99;1.01]
Mr-Egger Intercept	′-0.022; p=0.468	0.006; p=0.964	′-0.014; p=0.54	0.001; p=0.93
PC>Diabetes			PC (X1) + BMI (X2) -> NODM	PC (X1) + BMI (X2) -> LSDM
TSLS Estimates	1.03 [0.99;1.06]	2.52 [2.05;3.03]	1.05 [0.90;1.20]	1.31 [1.10;1.52]
Inverse-variance weighted method (IVW)	1.12 [0.89;1.41]	1.57 [1.13;2.12]	1.20 [0.98;1.48]	1.58 [1.15;2.17]
Mr-Egger regression	1.09 [0.78;1.51]	0.94 [0.57;1.55]	1.21 [0.87;1.69]	1.19 [0.72;1.96]
Mr-Egger Intercept	0.007; p=0.81	0.090; p=0.027	′-0.002; p=0.93	0.063; p=0.14
PC>Diabetes (without outliers) ³	3		PC (X1) + BMI (X2) -> NODM	PC (X1) + BMI (X2) -> LSDM
TSLS Estimates	1.38 [0.95;1.99]	2.85 [2.04;3.98]		
Inverse-variance weighted method (IVW)	1.18 [0.93;1.51]	1.52 [1.08;2.13]	1.19 [0.97;1.42]	1.77 [1.46;2.08]
Mr-Egger regression	1.18 [0.84;1.66]	1.36 [0.80;2.32]	1.28 [0.87;1.87]	1.65 [0.98;2.77]
Mr-Egger Intercept	0.001; p=0.96	0.023; p=0.6	′-0.01; p=0.645	0.01; p=0.73

From the 57 T2DM-SNPs, 16 were excluded due to high LD with other SNPs (r2>0.8) (Supplementary Table 1), and 4 SNPs was excluded due to its association with smoking (rs2641348, rs13234407, rs1111875, rs2334499). The allele score, as instrumental variable, included the remaining 37 SNPs. SNPs associated with obesity were not excluded.

From the 40 PC-SNPs, 2 were excluded due to high LD (r2>0.8) (Supplementary Table 1), and 1 SNPs was excluded due to its association with smoking (rs6537481.148396094). The allele score, as instrumental variable, included the remaining 37 SNPs. SNPs associated with obesity were not excluded.

¹ All estimates were adjusted for age (<55, 55-65, 65-75, ≥75 years), gender, BMI (<25, 25-30, ≥30 kg/m2), smoking (never-smokers and tertiles of pack-years), country and the first five principal components for population ancestries.

² LSDM and NODM was evaluated in comparison to non-diabetics (1,489 subjects: 851 PC cases and 638 controls), with subjects classified as either NODM (N=136) or LSDM (N=289) being removed, respectively. BMI to define obesity (yes, no) two years before recruitment.

³ Outliers removed: "rs1747924:64538961:C:A", "rs1486134:67639769:G:T", "rs17688601:40866663:C:A" for LDSM and "rs6971499" and "rs7310409" for NODM

Gut

Supplemental Table 12: Estimates for the observational and causal association between obesity measures and PC, applying different MRA methods, conducted among 1,162 cases and 752 controls with epidemiological and genetic data.

	SR-based classification	n of obesity s	status			
BMI>PC Observational association study BMI and PC BMI-allele score ² and BMI in controls BMI-allele score ² and PC Causal estimates: MR study MRA_Wald TSLS Estimates Inverse-variance weighted method (IVW) Mr-Egger regression Mr-Egger Intercept Weighted median	BMI 2 years (N=343 ob	ese)	BMI 50 years (N=401 obese)			
BMI>PC	OR [95%CI] ¹	p-value	OR [95%CI] ¹	p-value		
Observational association study						
BMI and PC	0.89 [0.69;1.14]	0.356	0.83 [0.64;1.07]	1.41E-0		
BMI-allele score ² and BMI in controls	1.11 [1.08;1.15]	3.06E-09	1.16 [1.12;1.21]	1.71E-1		
BMI-allele score ² and PC	1.01 [0.98;1.02]	0.927	1.01 [0.99;1.03]	0.31		
Causal estimates: MR study						
MRA_Wald	1.01 [0.98;1.03]	0.927	1.07 [0.94;1.21]	0.31		
TSLS Estimates	1.01 [0,85;1.20]	0.927	1.09 [0.95;1.25]	0.29		
Inverse-variance weighted method (IVW)	1.01 [0.90;1.15]	0.828	1.03 [0.93;1.14]	0.54		
Mr-Egger regression	0.98 [0.74;1.30]	0.794	0.97 [0.82;1.15]	0.70		
Mr-Egger Intercept	0.009(0.015)	0.573	0.016 (0.017)	0.34		
Weighted median	0.96 [0.80;1.32]	0.688	1.03 [0.88;1.20]	0.72		
Simple median	1.10 [0.92;1.32]	0.278	1.05 [0.90;1.22]	0.55		

¹ All estimates were adjusted for age (<55, 55-65, 65-75, ≥75 years), gender, smoking (never-smokers and tertiles of pack-years), country and the first five principal components for population ancestries.

⁴ From the 126 obesity-SNPs, 30 were excluded due to high LD (r2>0.8) (Supplementary Table 1), and 11 SNPs were excluded due to their association with T2DM and smoking. The allele score, as instrumental variable, included the remaining 85 SNPs.

There were few obese subjects at age 20 years; BMI at this age was therefore not considered.

 Gut

Supplemental Table 13: Results of causal mediation analyses evaluating mediator effects of T2DM on the obesity and PC association considering different obesity measures, and mediator effects of obesity on the T2DM and PC association. Estimates are derived from counterfactual models (2,018 cases and 1,540 controls) and MRA (1,162 cases and 752 controls with epidemiological and genetic data).

	OR ¹	[95%CI]	OR ¹	[95%CI]	OR ¹	[95%CI]	OR ¹	[095%CI]	OR ¹	[95%CI]	OR ¹	[95%CI]
Counterfactual model	NDE		NIE		TE		NDE		NIE		TE	
NODM mediator							LSDM	mediator				
Obese ²	0.90	[0.73;1.10]	1.04	[1.01;1,11]	0.94	[0.77;1.17]	0.95	[0.80;1.15]	1.05	[1.02;1.10]	1.00	[0.84;1.22]
Overweight/obese ²	0.83	[0.71;0.98]	1.09	[1.08;1,13]	0.91	[0.79;1.11]	0.92	[0.80;1.08]	1.03	[1.01;1.06]	0.95	[0.82;1.11]
Weight gain > 5 kg³	0.82	[0.66;0.97]	1.08	[1.07;1.10]	0.89	[0.72;1.07]	0.86	[0.70;1.03]	1.05	[1.03;1.08]	0.89	[0.74;1.08]
Weight loss ³	1.04	[0.85;1.38]	0.95	[0.73;1.02]	1.00	[0.83;1.19]	0.98	[0.82;1.15]	1.02	[1.00;1.04]	1.00	[0.84;1.17]
Obese at age 50 ³	0.83	[0.67;1.01]	1.07	[1.04;1,13]	0.89	[0.73;1.08]	0.88	[0.72;1.07]	1.07	[1.04;1.15]	0.94	[0.78;1.14]
Overweight/obese at age 503	1.21	[1.01;1.44]	1.03	[0.98;1.08]	1.25	[1.07;1.51]	1.18	[1.01;1.37]	1.04	[1.03;1.07]	1.23	[1.06;1.43]
Obese ² mediator							Overweigh	t/obese² med	ator			
NODM	5.92	[3.69;9.14]	0.97	[0.78;1.01]	5.72	[3.76;9.11]	10.14	[5.48;22.69]	0.55	[0.23;0.92]	5.58	[3.65;8.92]
LSDM	1.65	[1.34;2.03]	1.02	[0.99;1.07]	1.68	[1.37;2.06]	1.61	[1.31;2.00]	1.03	[1.01;1.08]	1.67	[1.35;2.06]
Obese at age 50 ³ mediator				0			Overweigh	t/obese at age	e 50³ m	nediator		
NODM	4.99	[2.54;10.87]	0.87	[0.43;1.04]	4.35	[2.35;9.65]	4.27	[2.14;8.08]	1.08	[1.03;1.12]	4.63	[2.66;10.82]
LSDM	1.53	[1.13;2.09]	0.99	[0.87;1.07]	1.50	[1.14;2.17]	1.38	[1.08;1.94]	1.09	[1.03;1.15]	1.49	[1.17;2.02]
Counterfactual IV	NDE		NIE		TE		NDE		NIE		TE	
NODM mediator						~	LSDM	mediator				
Obese ²	0.83	[0.63;1.15]	1.03	[1.00;1.11]	0.85	[0.68;1.24]	0.88	[0.63;1.27]	1.02	[0.99;1.04]	0.89	[0.68;1.27]
Overweight/obese ²	0.93	[0.72;1.12]	1.05	[1.00;1.08]	0.97	[0.81;1.26]	0.98	[0.81;1.27]	1.01	[0.99;1.02]	0.98	[0.79;1.27]
Weight gain > 5 kg³	1.15	[0.68;1.53]	1.03	[1.00;1.07]	1.19	[0.68;1.56]	1.16	[0.94;1.58]	1.02	[1.00;1.03]	1.18	[0.95;1.78]
Weight loss ³	1.20	[0.96;1.69]	0.94	[0.90;0.98]	1.13	[0.92;1.48]	1.13	[0.88;1.35]	1.01	[0.99;1.02]	1.14	[0.88;1.39]
Obese at age 50 ³	0.82	[0.66;1.22]	1.06	[1.00;1.12]	0.87	[0.70;1.31]	0.84	[0.66;1.12]	1.02	[1.00;1.06]	0.86	[0.68;1.13]
Overweight/obese at age 503	1.44	[1.18;1.89]	1.03	[1.00;1.06]	1.49	[1.23;1.96]	1.47	[1.17;1.88]	1.02	[1.01;1.03]	1.49	[1.19;1.90]
Obese ² mediator							Overweigh	t/obese ² med	ator			
NODM	E 00	[3,15:13,19]	0.92	[0.40;1.01]	4.67	[2.97;9.77]	8.21	[6.64;11.58]	0.53	[0.38;0.75]	4.37	[3.02;7.75]
	5.00	[0110,10110]						· · ·		• • •		• · •
LSDM	5.06 1.46	[1.02;1.91]	1.02	[0.97;1.07]	1.47	[1.07;2.01]	1.45	[1.12;2.18]	1.01	[0.94;1.04]	1.46	[1.22;2.29]
LSDM Obese at age 50 ³ mediator	1.46	[1.02;1.91]	1.02	[0.97;1.07]	1.47	[1.07;2.01]	1.45 Overweigh	[1.12;2.18] t/obese at aqu	1.01 e 50 3 m	[0.94;1.04] nediator	1.46	[1.22;2.29]
LSDM Obese at age 50 ³ mediator NODM	5.06	[1.02;1.91]	1.02	[0.97;1.07]	1.47 4.32	[1.07;2.01]	1.45 Overweigh 4.28	[1.12;2.18] it/obese at age [2.72;9.79]	1.01 e 50 ³ m 1.09	[0.94;1.04] nediator [1.05;1.20]	1.46 4.68	[1.22;2.29]

CI, confidence interval; TE, marginal total effect; NDE, natural direct effect; NIE, natural indirect effect;

¹ All estimates were adjusted for age (<55, 55-65, 65-75, ≥75 years), gender, smoking (never-smokers and tertiles of pack-years), country, and the first five principal components for population ancestries in network MRA

² Obesity status defined based on BMI 2 years before recruitment

³ Obesity-related variables based on information collected at age 50 years, such as weight gain from age 20 to 50 and weight loss since age 50 years

56 Significant estimates are marked in bold.

	Cas	ies	Cont	rols					
	N=2,	018	N=1,	540		Model1		Model2	
	N	%	N	%	p-value ¹	OR	[95%CI]	OR	[95%CI]
Diabetes status	1170	72 20	1240	97.00	<0.001	Def		Def	
no diabetes	1479	73.30 24.70	1340	07.00		Ref.	10 12.2 101	Ref.	10 01.2 101
yes Micsing	490	24.70	104	1 0/		2.00	[2.13,3.10]	2.00	[2.04,3.10]
Diabetes status by subtype	41	2.05	10	1.04	<0.001				
no diabetes	1/70	73 30	13/0	87 00	NU.001	Rof		Rof	
$V_{OD} \leq 2 V_{OD} $ (NODM)	200	0.01	27	1 75		6 /1	[1 2.0 70]	6.43	11 06.10 2
yes, $rac{2}{2}$ years (NODW)	200	13 10	152	0.87		1 82	[4.2,9.79] [1.45·2.3]	1 77	[4.00, 10.2]
yes, > zyears (LODINI) Missing	203	3.67	21	1.36		1.02	[1.45,2.5]	1.77	[1.57,2.20]
Family history of diabetes ²	14	5.07	21	1.50					
no diabotos	1060	58.0	801	65.7		Pof		Dof	
no ulabeles	1009 504	20.0	0Z I 257	00.7		1.04	[1 04.1 40]	1 1 <i>1</i>	1 00.1 20
yes Missing	100	32.2	307	20.0		1.24	[1.04,1.49]	1.14	[1.00,1.30]
Nissilly Diabatas by aga at diagnos	102	9.9	12	5.0	<0.001				
Diabetes by age at utagilos	1470	72 20	1240	07.00	<0.001	Def		Def	
	1479	6.00	1340	07.00		1 66	1 01.0 001	1 50	1 10.0 06
\geq 55 years	141	0.99	12	4.00		1.00	[1.21,2.20]	1.09	[1.12,2.20]
$55 10 \ge 65 \text{ years}$	100	0.04	50	3.20		2.40	[1.74,3.33]	2.40	[1.09,3.04]
> oo years	197	9.70	00	3.11	a fas a d	3.97	[2.88,5.54]	3.79	[2.07;5.44
MISSING Dishetes by time since dia	63 100	3.12	20	1.30	p-trena	2E-16		2E-16	
Diabetes by time since diag	JUDSIS	70.00	1010	07.0	<0.001	Def		D-f	
no diabetes	1479	73.30	1340	87.0		Ref.	10 00 001	Ref.	15 00 47 0
≤] 1 0	159	7.88	12	0.78		10.98	[6;20.09]	9.39	[5.08;17.3
1 to ≤2	41	2.03	15	0.97		2.64	[1.4;4.97]	3.19	[1.56;6.52
2 to ≤5	/1	3.52	32	2.08		2.38	[1.54;3.75]	2.43	[1.52;3.94
5 to ≤10	86	4.26	36	2.34		2.43	[1.60;3.73]	2.41	[1.52;3.86
10 to ≤20	56	2.78	40	2.60		1.50	[0.96;2.33]	1.38	[0.85;2.25
>20	52	2.58	44	2.86		1.21	[0.78;1.90]	1.11	[0.67;1.81]
Missing	74	3.67	21	1.36	p-trend	1.5E-06		4.5E-05	
Diabetes control measures									
Diet			10.10		<0.001			_ /	
no diabetes	1479	73.30	1340	87.00		Ref.		Ref.	
yes	297	14.70	133	8.64		2.50	[1.98;3.15]	2.44	[1.9;3.14]
no use	118	5.85	49	3.18		2.41	[1.68;3.46]	2.38	[1.6;3.55]
Missing	124	6.14	18	1.17					
Use of oral medication					<0.001				
no diabetes	1479	73.30	1340	87.00		Ref.		Ref.	
yes	304	15.10	130	8.44		2.36	[1.86;2.99]	2.24	[1.73;2.9]
no use	140	6.94	50	3.25		3.00	[2.12;4.24]	3.21	[2.17;4.74
Missing	95	4.71	20	1.30					
Use of insulin					<0.001				
no diabetes	1479	73.30	1340	87.00		Ref.		Ref.	
yes	236	11.70	59	3.83		4.26	[3.12;5.81]	4.18	[2.97;5.89
no use	195	9.66	119	7.73		1.77	[1.37;2.28]	1.77	[1.34;2.35
Missing	108	5.35	22	1.43					

Supplemental Table 14: Association between diabetes-related variables and PC risk in the PanGenEU study (2,018 cases and 1.5/0 controls). Unimputed data

¹ Differences between groups evaluated by the Chi-square test ² Information on family history of diabetes was not collected in Ireland; results are based on data for 1,845 cases and 1,250 controls

³ Linear association for age since T2DM diagnosis and nonlinear association for time since T2DM (Supplemental Figure 1) Model 1: adjusted for age (<55, 55-65, 65-75, ≥75 years), gender, country. Model 2: Model 1 also adjusted for pack years (never-smokers and tertiles of pack-years) and BMI (<25, 25-30, ≥30 kg/m²)

 Supplemental Table 15: Estimates for the observational and causal association between T2DM and PC and vice versa, applying different MRA methods, conducted among 1,162 cases and 752 controls with epidemiological and genetic data. T2DM status based on self-reported (SR) and biomarker data.

(SR + biomarker	-based cla	ssification of T2	DM status		SR + biomarker -based classification of T2DM status					
	LSDM (N=289) ¹		NODM (N=190) ¹			LSDM (N=289) ¹		NODM (N=190) ¹			
Diabetes>PC	OR [95%CI] ²	p-value	OR [95%CI] ²	p-value	PC>Diabetes	OR [95%CI] ²	p-value	OR [95%CI] ²	p-value		
Observational association study					Observational association study						
T2DM and PC	1.50 [1.14;1.98]	0.003	5.08 [3.27;7.90]	4.40E-13	PC and T2DM	1.51 [1.15;2.00]	0.003	5.15 [3.31;8.00]	3.22E-13		
T2DM-allele score ³ and T2DM in controls	1.11 [1.05;1.16]	3.73E-04	1.23 [1.13;1.33]	4.74E-05	PC-allele score ⁴ and PC (without T2DM)	1.10 [0.75;1.45]	1.54E-08	1.09 [1.07;1.13]	1.54E-08		
T2DM-allele score ³ and PC	1.02 [0.99;1.05]	0.146	0.99 [0.96;1.02]	0.461	PC-allele score ⁴ and T2DM	1.03 [0.99;1.06]	0.119	1.07 [1.03;1.11]	0.0014		
Causal estimates: MR study					Causal estimates: MR study						
MRA_Wald	1.21 [0.95;1.47]	0.146	0.95 [0.96;1.02]	0.461	MRA_Wald	1.32 [0.97;1.67]	0.12	2.01 [1.58;2.43]	0.0014		
T2LS Estimates	1.19 [0.92;1.54]	0.194	0.95 [0.84;1.08]	0.461	T2LS Estimates	1.03 [0.99;1.06]	0.12	2.86 [2.07;3.97]	2.37E-10		
Inverse-variance weighted method (IVW)	1.06 [0.79;1.42]	0.708	0.99 [0.93;1.05]	0.725	Inverse-variance weighted method (IVW)	1.12 [0.89;1.41]	0.316	1.29 [0.98;1.70]	0.078		
Mr-Egger regression	1.31 [0.80;2.15]	0.278	1.00 [0.94;1.06]	0.921	Mr-Egger regression	1.05 [0.76;1.47]	0.756	0.83 [0.55;1.26]	0.382		
Mr-Egger Intercept	´-0.049 (0.045)	0.283	´-0.019 (0.029)	0.538	Mr-Egger Intercept	0.015 (0.028)	0.604	0.095 (0.034)	0.005		
Weighted median	0.97 [0.72;1.30]	0.823	1.00 [0.96;1.04]	0.812	Weighted median	1.22 [0.88;1.17*	0.238	1.16 [0.78;1.75]	0.446		
Simple median	1.20 [0.86;1.70]	0.284	1.00 [0.85;1.17]	0.95	Simple median	1.55 [1.00;2.32]	0.05	1.56 [0.96;2.54]	0.075		

¹ LSDM and NODM was evaluated in comparison to non-diabetics after reclassifying T2DM status with the biomarker data (obtained for 654 subjects with epidemiological and genetic data), with subjects reclassified as either NODM (N=190) or LSDM (N=289) being removed, respectively.

² All estimates were adjusted for age (<55, 55-65, 65-75, ≥75 years), gender, BMI (<25, 25-30, ≥30 kg/m2), smoking (never-smokers and tertiles of pack-years), country and the first five principal components for population ancestries. ³ From the 57 T2DM-SNPs, 16 were excluded due to high LD with other SNPs (r2>0.8) (Supplementary Table 1), and 6 SNPs were excluded due to their association with BMI (rs10830963, rs4430796) and smoking (rs2641348.

rs13234407, rs1111875, rs2334499). The allele score, as instrumental variable, included the remaining 35 SNPs.

⁴ From the 40 PC-SNPs, 2 were excluded due to high LD (r2>0.8), and 5 SNPs were excluded due to their association with BMI (rs1747924.64538961, rs2816938.199985368, rs2736098.1294086, rs17688601.40866663) and smoking (rs6537481.148396094). The allele score, as instrumental variable, included the remaining 33 SNPs.

Removal of SNPs potentially associated with other traits (at p-value 10-8) according to PhenoScanner database led to similar results.

Supplemental Table 16: Estimates for the observational and causal association between T2DM and PC and vice versa, after removing other potential pleiotropic variants and outliers (based on Cook's distances) and applying different MRA methods, conducted among 1,162 cases and 752 controls with epidemiological and genetic data. T2DM status based on self-reported (SR) data.

	SR-based classification of T2DM status				SR-based classification of T2DM status						
Diabetes>PC	LSDM (N=289) ¹ OR [95%Cl] ²	p-value	NODM (N=136) ¹ OR [95%CI] ²	p-value	PC>Diabetes	LSDM (N=289) ¹ OR [95%Cl] ²	p-value	NODM (N=136) ¹ OR [95%CI] ²	p-value		
Observational association study		O			Observational association study						
T2DM and PC	1.43 [1.09;1.88]	0.011	6.10 [3.45;10.8]	<0.001	PC and T2DM	1.45 [1.10;1.91]	0.008	6.08 [3.44;10.7]	4.80E-10		
T2DM-allele score ³ and T2DM in controls	1.16 [1.09;1.22]	1.42E-05	1.32 [1.15;1.48]	0.001	PC-allele score ⁴ and PC (without T2DM)	1.10 [1.06;1.13]	4.10E-08	1.10 [1.06;1.13]	3.10E-08		
T2DM-allele score ³ and PC	1.00 [0.97;1.03]	9.93E-01	1.01 [0.98;1.05]	0.389	PC-allele score ⁴ and T2DM	1.03 [1.00;1.06]	0.09	1.08 [1.03;1.13]	0.0023		
Causal estimates: MR study					Causal estimates: MR study						
MRA_Wald	1.00 [0.79;1.22]	0.273	1.05 [0.99;1.09]	0.389	MRA_Wald	1.38 [0.99;1.74]	0.09	2.47 [1.71;2.74]	0.00053		
TSLS Estimates	0.98 [0.79;1.22]	0.864	1.05 [0.93;1.19]	0.39	TSLS Estimates	1.38 [0.95;1.99]	0.09	2.85 [2.04;3.98]	2.80E-09		
Inverse-variance weighted method (IVW)	0.92 [0.79;1.08]	0.315	1.00 [0.96;1.02]	0.538	Inverse-variance weighted method (IVW)	1.18 [0.93;1.51]	0.16	1.52 [1.08;2.13]	0.016		
Mr-Egger regression	1.00 [0.77;1.20]	0.992	0.98 [0.96;1.02]	0.534	Mr-Egger regression	1.18 [0.84;1.66]	0.348	1.36 [0.80;2.32]	0.251		
Mr-Egger Intercept	0.019 (0.025)	0.448	0.001 (0.018)	0.936	Mr-Egger Intercept	0.001 (0.028)	0.963	0.023 (0.043)	0.06		
Weighted median	0.96 [0.74;1.24]	0.481	1.01 [0.95;1.04]	0.966	Weighted median	1.18 [0.84;1.67]	0.321	1.43 [0.88;2.33]	0.15		
Simple median	0.86 [0.69;1.07]	0.174	1.02 [0.92;1.11]	0.735	Simple median	1.51 [1.00;2.27]	0.052	2.84 [2.27;3.41]	<0.001		

¹ LSDM and NODM was evaluated in comparison to non-diabetics (1,489 subjects: 851 PC cases and 638 controls), with subjects classified as either NODM (N=136) or LSDM (N=289) being removed, respectively. ² All estimates were adjusted for age (<55, 55-65, 65-75, ≥75 years), gender, BMI (<25, 25-30, ≥30 kg/m2), smoking (never-smokers and tertiles of pack-years), country and the first five principal components for population ancestries. ³ From the 57 T2DM-SNPs, 16 were excluded due to high LD with other SNPs (r2>0.8) (Supplementary Table 1), and 6 SNPs were excluded due to their association with BMI (rs10830963, rs4430796) and smoking (rs2641348,

rs13234407, rs1111875, rs2334499). In addition, 3 SNPs potentially being outliers were removed (rs2191348, rs13266634, rs7965349). The allele score, as instrumental variable, included the remaining 32 SNPs.

⁴ From the 40 PC-SNPs, 2 were excluded due to high LD (r2>0.8) (Supplementary Table 1), and 5 SNPs were excluded due to their association with BMI (rs1747924.64538961, rs2816938.199985368, rs2736098.1294086, rs17688601.40866663) and smoking (rs6537481.148396094). In addition, 2 SNPs potentially being outliers were removed (chr12_121454622, chr16_75263661). The allele score, as instrumental variable, included the remaining 31 SNPs.

Supplemental Table 17: Magnitudes of the E-value for different combinations of the Exposure-Confounder Association

RREU and the Confounder-Outcome Association RRUD for the estimation of the causal effect of NODM on PC (OR=6.39 (4.18;9.78)) and of LSDM on PC (OR=1.86 (1.49;2.32)).

E-value	RR _{uD}										
		3.5	6.5	9.5	12.5	15.5	18.5	21.5	24.	5	27.5
	3.5	2,04	2,53	2,77	2,92	3,01	3,08	3,14	3,1	8	3,21
	6.5	2,53	3,52	4,12	4,51	4,80	5,01	5,18	5,3	1	5,42
	9.5	2,77	4,12	5,01	5,65	6,14	6,51	6,81	7,0	5	7,26
RR _{EU}	12.5	2,92	4,51	5,65	6,51	7,18	7,71	8,14	8,5	1	8,81
	15.5	3,01	4,80	6,14	7,18	8,01	8,69	9,26	9,7	4	10,15
	18.5	3,08	5,01	6,51	7,71	8,69	9,51	10,20	10,7	79	11,31
	21.5	3,14	5,18	6,81	8,14	9,26	10,20	11,01	11,7	71	12,32
	24.5	3,18	5,31	7,05	8,51	9,74	10,79	11,71	12,5	51	13,21
	27.5	3,21	5,42	7,26	8,81	10,15	11,31	12,32	13,2	21	14,00
_SDM											
E-value		RR _{uD}									
		1.5	2.5	3.5	4.5	5.5	6.5	7.5	8.5	9.5	10.
	1.5	1,13	1,25	1,31	1,35	1,38	1,39	1,41	1,42	1,43	1,4
	2.5	1,25	1,56	1,75 🔍	1,88	1,96	2,03	2,08	2,13	2,16	2,1
	3.5	1,31	1,75	2,04	2,25	2,41	2,53	2,63	2,70	2,77	2,8
	4.5	1,35	1,88	2,25	2,53	2,75	2,93	3,07	3,19	3,29	3,3
DD	5.5	1,38	1,96	2,41	2,75	3,03	3,25	3,44	3,60	3,73	3,8
INNEU	6.5	1,39	2,03	2,53	2,93	3,25	3,52	3,75	3,95	4,12	4,2
	7.5	1,41	2,08	2,63	3,07	3,44	3,75	4,02	4,25	4,45	4,6
	8.5	1,42	2,13	2,70	3,19	3,60	3,95	4,25	4,52	4,75	4,9
	9.5	1,43	2,16	2,77	3,29	3,73	4,12	4,45	4,75	5,01	5,2
	10.5	1,43	2,19	2,83	3,38	3,85	4,27	4,63	4,96	5,25	5,5

Supplemental Figure 1: Directed acyclic graphs illustrating the single MR and multivariable and network MR approaches used to explore causal associations and mediation in the causal pathways between T2DM, obesity and PC.

A: Observational association between T2DM (Exposure) and PC (Outcome)

U

- B: Single Mendelian Randomization (MR) between T2DM (Exposure) and PC (Outcome)
- C: Single Mendelian Randomization (MR) between PC (Exposure) and T2DM (Outcome) bidirectional MR
- D: Multivariable Mendelian Randomization (MR) between T2DM (Exposure) and PC (Outcome)
- E: Multivariable Mendelian Randomization (MR) between PC (Exposure) and T2DM (Outcome) bidirectional MR
- F: Network Mendelian Randomization (MR) between T2DM (Exposure), Obesity (Mediator) and PC (Outcome)
- G: Network Mendelian Randomization (MR) between Obesity (Exposure), T2DM (Mediator) and PC (Outcome)

Δ

Supplemental Figure 2: Linear and Non-linear association between T2DM-related continuous variables and pancreatic cancer risk, with non-diabetics as a reference group: (A) time since T2DM diagnosis; (B) age at T2DM diagnosis; (C) Hb1Ac levels and (D) C-Peptide levels with the minimum value (Hb1Ac=4; C-Peptide=0.05) as the reference group.

Gut

3

4

5 6

Supplemental Figure 3: Pleiotropy visualization plots regarding the directional association between PC and NODM risk.

A: funnel plot for IV made up of SNPs without SNPs in LD and SNPs associated with obesity and smoking. B: funnel plot for IV excluding further SNPs that were outliers (based on Cooks distances). Y-axes represent SNP to outcome effect corrected by SNP to exposure standard error of the effect. X-axes (SNP to exposure effect) are in logarithmic scale. C: Correlation plot of per-allele associations (genetic score of the IV) with the outcome and exposure. D: Forest plot of per-allele MR effect size for exposure on outcome and E: leave-one-out analyses.

