> Title: Pancreatic cancer risk in relation to lifetime smoking patterns, tobacco type, and dose-response relationships

Authors: Esther Molina-Montes (1)*, Lisa van Hoogstraten (1)*, Paulina Gómez-Rubio (1), Matthias Löhr (2), Linda Sharp (3,4), Xavier Molero (5), Mirari Márquez (1), Christoph W. Michalski $(6,7)$, Antoni Farré (8), José Perea $(9,10)$, Michael O’Rorke $(11,12)$, William Greenhalf (13), Lucas Ilzarbe (14), Adonina Tardón (15), Thomas Gress (16), Victor M. Barberà (17), Tatjana Crnogorac-Jurcevic (18), Luis Muñoz-Bellvís (19), Enrique Domínguez-Muñoz (20), Joaquim Balsells (5), Eithne Costello (13), Mar Iglesias (14), Jörg Kleeff (6,7), Bo Kong (6), Josefina Mora (8), Damian O'Driscoll (3), Ignasi Poves (14), Aldo Scarpa (21), Jingru Yu (22), Weimin Ye (22), Manuel Hidalgo (23), Alfredo Carrato (24), Rita Lawlor (21), Francisco X. Real (25), Núria Malats (1) on behalf of the PanGenEU Study Investigators (26).
*Equal contributions

Authors' affiliations:

(1) Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center (CNIO), Madrid, and CIBERONC, Spain.
(2) Gastrocentrum, Karolinska Institutet and University Hospital, Stockholm, Sweden.
(3) National Cancer Registry Ireland and HRB Clinical Research Facility, University College Cork, Cork, Ireland.
(4) Newcastle University, Institute of Health \& Society, Newcastle, UK.
(5) Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Barcelona, Universitat Autònoma de Barcelona, and CIBEREHD, Spain.
(6) Department of Surgery, Technical University of Munich, Munich, Germany.
(7) Martin-Luther-University Halle-Wittenberg, Department of Visceral, Vascular and Endocrine Surgery, Halle (Saale), Germany.
(8) Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
(9) Department of Surgery, Hospital 12 de Octubre, Madrid, Spain.
(10)Department of Surgery and Health Research Institute, Fundación Jiménez Díaz, Madrid, Spain.
(11) Centre for Public Health, Belfast, Queen's University Belfast, UK.
(12) College of Public Health, The University of lowa, Iowa City, IA.
(13) Department of Molecular and Clinical Cancer Medicine, The Royal Liverpool University Hospital, Liverpool, UK.
(14) Hospital del Mar-Parc de Salut Mar, Barcelona, and CIBERONC, Spain.
(15) Department of Medicine, Instituto Universitario de Oncología del Principado de Asturias, Oviedo, and CIBERESP, Spain.
(16) Department of Gastroenterology, University Hospital of Giessen and Marburg, Marburg, Germany.
(17) Molecular Genetics Laboratory, General University Hospital of Elche, Spain.
(18) Barts Cancer Institute, Centre for Molecular Oncology, Queen Mary University of London, London, UK.
(19) General and Digestive Surgery Department, Salamanca University Hospital, Spain.
(20) Department of Gastroenterology, University Clinical Hospital of Santiago de Compostela, Spain.
(21) ARC-Net centre for Applied Research on Cancer and Department of Pathology and Diagnostics, University and Hospital trust of Verona, Verona, Italy.
(22) Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stokholm, Sweden.
(23) Madrid-Norte-Sanchinarro Hospital, Madrid, Spain; and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
(24) Department of Oncology, Ramón y Cajal University Hospital, IRYCIS, Alcala University, Madrid, and CIBERONC, Spain.
(25) Epithelial Carcinogenesis Group, Madrid, Spanish National Cancer Research Centre (CNIO), Madrid, Universitat Pompeu Fabra, Departament de Ciències Experimentals i de la Salut, Barcelona, and CIBERONC, Spain.
(26) PanGenEU Study Investigators (Supplementary Annex).

Running title: Smoking and pancreatic cancer risk

Key words: Pancreatic cancer risk; Smoking habit; Type of tobacco; Dose-response relationship; Fractional polynomials; Restricted cubic splines; Case-control study.

Funding

The work was partially supported by: Fondo de Investigaciones Sanitarias (FIS), Instituto de Salud Carlos III, Spain (\#PI11/01542, \#PI0902102, \#PI12/01635, \#PI12/00815, \#PI15/01573); Red Temática de Investigación Cooperativa en Cáncer, Spain (\#RD12/0036/0034, \#RD12/0036/0050, RD12/0036/0073); European Cooperation in Science and Technology - COST Action \#BM1204: EUPancreas EU-6FP Integrated Project (\#018771-MOLDIAG-PACA), EU-FP7-HEALTH (\#259737-CANCERALIA, \#256974-EPC-TM-Net); Associazione Italiana Ricerca sul Cancro (12182); Cancer Focus Northern Ireland and Department for Employment and Learning; and ALF (\#SLL20130022), Sweden. The work of EMM was supported by a grant from WCR (15-0391).

72 Correspondence to: Dr. Esther Molina and Dr. Núria Malats, Genetic and Molecular Epidemiology Group,
73 Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro, 3, 28029 Madrid, 74 Spain.

75 E-mail: memolina@cnio.es and nmalats@cnio.es. Phone: +34 917328000

77 Conflict of interest

78 The authors declare no conflict of interest.

80 Word count

81 Abstract: 250
82 Text (without acknowledgements, funding and references): 4,060
83 Number of tables: 5
84 Number of figures: 1
85 Number of supplementary tables: 10
86 Number of supplementary figures: 2

Abstract

BACKGROUND: Despite smoking being a well-established risk factor for pancreatic cancer (PC), there is a need to further characterize PC risk according to lifespan smoking patterns and other smoking features such as tobacco type. Our aim was to deeply investigate them within a large European case-control study. METHODS: Tobacco smoking habits and other relevant information was obtained from 2,009 cases and 1,532 controls recruited in the PanGenEU study using standardized tools. Multivariate logistic regression analysis was performed to evaluate PC risk by smoking characteristics and interactions with other PC risk factors. Fractional polynomials and restricted cubic splines were used to test for non-linearity of the doseresponse relationships and to analyse their shape.

RESULTS: Relative to never-smokers, current smokers (OR=1.72, 95\%CI: 1.39-2.12), those inhaling into the throat $(\mathrm{OR}=1.48,95 \% \mathrm{Cl}: 1.11-1.99)$, chest ($\mathrm{OR}=1.33,95 \% \mathrm{Cl}: 1.12-1.58$), or using non-filtered cigarettes ($\mathrm{OR}=1.69,95 \% \mathrm{Cl}: 1.10-2.61$), were all at an increased PC risk. PC risk was highest in current black tobacco smokers ($\mathrm{OR}=2.09,95 \% \mathrm{Cl}$: 1.31-3.41), followed by blond tobacco smokers ($\mathrm{OR}=1.43$, $95 \% \mathrm{Cl}$: 1.01-2.04). Childhood exposure to tobacco smoke relative to parental smoking was also associated with increased PC risk (OR=1.24, 95\%Cl: 1.03-1.49). Dose-response relationships for smoking duration, intensity, cumulative dose, and smoking cessation were non-linear and showed different shapes by tobacco type. Effect modification by family history of PC and diabetes was likely.

CONCLUSIONS: This study reveals differences in PC risk by tobacco type and other habit characteristics, as well as non-linear risk associations.

IMPACT: This characterization of smoking-related PC risk profiles may help in defining PC high-risk populations.

Introduction

Pancreatic cancer (PC) is one of the deadliest cancer types worldwide (5-year relative survival rate in the range $5-15 \%$) (1). Disastrously, estimates of PC incidence are increasing both in USA and Europe (2). Despite the aetiology of PC is relatively unknown, it is estimated that $10-30 \%$ of all PC cases are caused by smoking (3). Prevention of smoking is therefore a strong measure to reduce the burden of PC in the population.

While the association between smoking and PC is well-established, a detailed characterization of tobacco smoking habits in relation to PC risk is still lacking. A meta-analysis including 10,490 cases and 526,813 controls, showed that being a current smoker, jointly with a longer smoking duration and a higher smoking intensity, were associated with an increase in PC risk (4). However, the authors assumed a linear trend for PC risk associated with increasing smoking exposure, a fact that was disputed by Zou et al. in an updated analysis combining 9,044 cases and 32,039 controls that showed a non-linear dose-response relationship between several smoking characteristics and PC risk (5). In addition, the pooled analysis within the Pancreatic Cancer Case-Control Consortium (PanC4), including 6,507 cases and 12,890 controls, indicated that after a certain amount of smoking exposure PC risk levelled-off (6), shedding a different perspective on the dose-response relationship of smoking in relation to PC risk. However, in the aforementioned studies, an exploration of the shape of the association between smoking measures and PC risk was not further pursued. The shape of the dose-response relationship between cigarette smoking and PC risk was investigated in a recent meta-analysis of 38 case-control and 40 cohort studies (7). Risk patterns of PC in current versus smokers were compared in this study for smoking intensity and duration, ignoring the contribution to risk of former smokers. To understand multi-dimensional aspects of smoking in PC aetiology, there is a need to provide consistent risk estimates for all smoking groups and to address the mutual influence of smoking intensity and duration.

Moreover, several aspects of tobacco smoking habits have not been considered until now. For instance, differences in PC risk by either black or blond tobacco use have not been explored despite the presumed differences in their chemical composition and damaging effects $(8,9)$. In fact, several studies have shown that black tobacco is associated with higher risk of bladder (8), colorectal (10), oesophageal (11), and head-and-neck cancer $(12,13)$, than blond tobacco.

Therefore, we set out to investigate the association and dose-response relationship between tobacco smoking and PC risk in a large European population, considering every aspect of the smoking habit including use of black versus blond tobacco.

Methods

Study design and participants

The PanGenEU is an ongoing multicentre case-control study initiated in 2007, recruiting participants from six European countries (Germany, Ireland, Italy, Spain, Sweden and United Kingdom) across 28 centres. Newly diagnosed PC patients >18 years old and controls matched by age (± 10 years), gender, and geographical area were included if they had lived in the study area for at least 6 months. A rapid ascertainment approach was applied: PC cases with a suspicion of the disease were recruited and remained in the study if the diagnosis was verified by the treating physician. Controls, sex-, age-, and centre- individually matched to cases, were mostly hospital-based and eligible if principal diagnosis at admission was unrelated to known risk factors of PC. Conditions of admission of controls are reported in Supplementary Methods. Population-based controls (Sweden and Ireland) were eligible if history of PC was absent. Participation rates were 86.3% for cases and 77.8% for controls. The study was approved by the IRB of all participant centres and all subjects gave written informed consent. More details of the study are provided elsewhere $(14,15)$.

Variables

Personal interviews to the study subjects were conducted by trained monitors using standardized protocols and questionnaires to obtain detailed information on lifetime smoking habits, among other PC risk factors. The smoking status of the participants was categorized into never-smokers if they smoked <100 cigarettes during their lifetime; occasional smokers if they smoked ≥ 1 cigarette/day for ≥ 6 months; former smokers if they quitted smoking for >1 year; and current smokers otherwise (>100 cigarettes during lifetime without permanent smoking cessation). Information on smoking habits by tobacco type (only black, blond or both) was only collected in the Spanish centres. Smoking exposure was further assessed by the age at smoking initiation (years), age when last smoked (years), cigarettes/cigar/pipe-use (yes, no), the amount of cigarettes/cigars/pipes smoked in units of time (days, months, years), depth of inhalation (mouth, throat, chest), filter-use (filtered cigarettes, non-filtered, both), and smoking status of the parents (never- or eversmoker). From these characteristics, data on smoking duration (years), smoking intensity for cigarettes (per day) and cigars/pipes (per week), and time since cessation (years) was derived. Number of pack-years, representing cumulative dose, was calculated as (cigarettes per day/20)*smoking duration in years. Smoking variables by use of tobacco type were generated likewise. Environmental tobacco smoke (ETS) exposure during childhood was categorized according to the smoking status of the parents (none, one or both).

Statistical analysis

Imputation of missing values, assumed to be at random, was performed using the Random Forest algorithm (R package missForest). Predictor variables such as centre, country, and case-control status were kept in the imputation set. The performance of the imputation (Supplementary Table 1) was assessed by calculating the out of bag mean square error (OOB), representing the mean of squared differences between each observed value and its prediction, based on random forest trees ($\mathrm{n}=100$ was applied). The average OOB for all smoking variables was 5.27 , with categorical variables presenting a markedly lower
estimate $(\mathrm{OOB}=0.04)$, indicating a better imputation performance of the latter. Use of unimputed data of all continuous variables, for which the proportion of missing values was relatively low (6.7\%), was therefore deemed more appropriate for dose-response analyses. The performance of the imputation was also assessed with concordance rates between the observed and imputed data, considering a test dataset consisting of only subjects with complete data and missing values introduced by following the missingness rates of the original data. The concordance of all categorical variables was 94.4\%.

Differences between cases and controls regarding smoking characteristics were evaluated by x^{2} and Student's t-test (or Kruskal-Wallis test, where appropriate). Unconditional logistic regression analysis was performed to estimate odds ratios (OR) and 95\% Confidence Intervals ($95 \% \mathrm{Cl}$). Never-smokers were chosen as the reference category, except for the variables "age when last smoked" and "time since smoking cessation", where current smokers were taken as the reference. Tertiles were created for the continuous variables based on the distribution of controls. A p-value for trend was calculated by assuming ordinal variables in linear regression models. Age ($\leq 54,55-64,65-74, \geq 75$ years), gender and countryadjusted models (aOR) were considered (Model 1). For the tobacco type-specific analyses within the Spanish PanGenEU study population, the same model was applied, but replacing country by region (East, Central and Northern Spain). The attributable risk (AR) of smoking in relation to PC (population exposed: 59%) was calculated from the fitted multivariate adjusted logistic regression models (R packages attribrisk and epiR). Since heterogeneity by country ($p<0.05$) was evident for all smoking variables (for example, p value for interaction by smoking status=0.007: Supplementary Figure 1), random effects for country were applied in mixed effects models. Due to absence of heterogeneity in the Spanish study population, logistic regression models without random effects were considered.

The influence of confounding factors or effect modification on the association was assessed for several variables: gender (female, male), age (<65 years, ≥ 65 years), obesity (body mass index >30 : yes, no), diabetes (no, yes less than 2 years, yes more than 2 years), asthma (yes, no), chronic pancreatitis
(yes, no), alcohol status/consumption (never, former, current), presence of periodontitis (yes, no) and recession (yes, no), educational level as a proxy for socioeconomic status (low, medium, high), and family history of PC (yes, no). Variables changing estimates by more than 10% or having a significant influence in the model (diabetes and family history of PC in some smoking-related variables) were considered as potential confounders. The le Cessie-van Houwelingen-Copas-Hosmer unweighted sum of squares test indicated a high goodness of fit of the models (16). Effect modification was assessed in interaction and stratified analyses. Additive interaction by time-related variables such as smoking duration was also evaluated by the relative excess risk due to interaction (RERI) and Delta-method Cis $(17,18)$.

To test for interaction, a likelihood ratio (LR) test was performed comparing models with and without an interaction term between the smoking variables and the covariates (e.g., age, gender, BMI and obesity, diabetes, asthma, alcohol, periodontitis, recession, educational level, and family history of PC). Effect modification was tested further via stratified analyses. To assess interaction by time-related variables we explored the combined effect of smoking duration and other smoking characteristics such as tobacco type on PC risk. Smoking duration was categorized into $<20,20-30$, and ≥ 30 years of smoking and stratified further by tobacco type considering never-smokers as the reference category.

To assess the dose-response relationships, PC risk estimates were calculated per 1-unit of increase in continuous smoking exposure variables considering linear and non-linear models if so indicated by fractional polynomials (R package mfp) (19). In addition, restricted cubic splines were used to confirm non-linear associations and for modelling the shape of the dose-response relationships (R package splines)(20). Non-linearity of the models was tested via the likelihood-ratio test comparing the model with and without restricted cubic splines. Knots were set at the 10\%, 50% and 90% percentile of the exposure distribution, as comparable results were obtained with five knots (21).

Sensitivity analyses were performed comparing the risk estimates in magnitude and trend regarding the unimputed and imputed data, and the PanGenEU study population with and without Italy
(since Italy provided cases only). As information bias could be induced by neglecting the quantity of smoking exposure, adjustment for cumulative dose (pack-years) was considered, thereby accounting for both smoking duration and smoking intensity. Additional adjustments were made also for smoking intensity and duration separately, to assess both the individual and joined effects of smoking characteristics independent of smoking duration and/or intensity. These adjustment variables were considered on the continuous scale and modelled as fractional polynomials to account for non-linear effects. To further assess the performance of the restricted cubic splines, additional smoothing was applied by varying the degrees of freedom, allowing more flexibility into the model (22).

The threshold for statistical significance in two-sided tests was set at p-value <0.05. Data was analysed with R-project (version 3.4.1) (23).

Results

Table 1 shows the characteristics of the 2,009 cases and 1,532 controls included in this analysis. The Spanish centres contributed the most to both cases $(N=876)$ and controls ($N=762$). PC cases presented more frequently with a family history of PC and a diagnosis of diabetes or chronic pancreatitis.

Table 2 shows PC risk associated with smoking characteristics. The prevalence of smoking was higher in cases (27.4\%) than in controls (17.6\%), with a corresponding aOR of 1.72 ($95 \% \mathrm{Cl}$: 1.39-2.12) for current smokers compared to never-smokers. Furthermore, a statistically significant increased trend (pvalue<0.001) in PC risk was observed for longer smoking duration, higher smoking intensity and higher cumulative dose. The use of non-filtered cigarettes increased risk of PC more prominently ($\mathrm{aOR}=1.69$, $95 \% \mathrm{Cl}: 1.10-2.61$), although use of filtered cigarettes was also associated with an increased PC risk ($\mathrm{aOR}=1.25,95 \% \mathrm{Cl}: 1.06-1.48$). Marked increases in PC risk were also observed for inhalation into the throat (aOR=1.48, $95 \% \mathrm{Cl}: 1.11-1.99$) and chest ($\mathrm{aOR}=1.33,95 \% \mathrm{Cl}: 1.12-1.58$). Childhood exposure to ETS by smoking parents (vs. non-parental exposure) was also associated with a $24 \%(95 \% \mathrm{Cl}: 1.03-1.49)$
increased PC risk. Risk for former smokers decreased progressively with longer time since smoking cessation when compared to current smokers (aOR for $14-28$ years after cessation $=0.67,95 \% \mathrm{Cl}$: $0.51-$ 0.88). A negative trend of the risk was also observed if compared to never-smokers (PC risk was diminished from 14 years of cessation), and when considering smoking cessation time at 5 -year intervals (Supplementary Table 2). No significant associations between PC risk and pipe/cigar-use or other smoking variables were observed (Supplementary Table 3). Additional adjustment for diabetes and family history of PC led to minimal differences in risk estimates (Supplementary Table 3). Effect modification was apparent only for family history of PC and diabetes status (Supplementary Table 4), pointing towards a higher PC risk among current smokers with family history of the disease ($\mathrm{aOR}=2.24,95 \% \mathrm{Cl}: 0.66-7.61$) and former smokers with diabetes ($\mathrm{aOR}=1.44,95 \% \mathrm{Cl}: 0.91-2.28$) (p -value for interaction<0.001).

Table 3 shows PC risk estimates by tobacco type in PanGenEU-Spain. Compared to neversmokers, PC risk was significantly increased for smokers of only black tobacco (aOR=1.55, $95 \% \mathrm{Cl}$: 1.132.12) and of both tobacco types (aOR=1.58, $95 \% \mathrm{Cl}$: 1.14-2.17). Considering smokers of only blond tobacco, PC risk tended to be increased ($\mathrm{aOR}=1.23,95 \% \mathrm{Cl}$: $0.94-1.62$), though without reaching statistical significance. When further stratifying by smoking status, a significant increase in risk was observed for current smokers of only black tobacco (aOR=2.09, 95\%CI 1.31-3.41) and blond tobacco (aOR=1.43, 95\% Cl : 1.01-2.04). Former smokers of only black tobacco were at increased, though milder, PC risk ($\mathrm{aOR}=1.40,95 \% \mathrm{Cl}: 0.98-1.99$).

Table 4 shows the combined effect of smoking duration and type of tobacco on PC risk. Compared to never-smokers, smoking for ≥ 30 years of both tobacco types was associated with a higher PC risk than smoking only black or blond tobacco (aOR=2.05, 95\%CI: 1.25-3.36; RERI=0.206, 95\% $\mathrm{Cl}:-0.49-0.91$).

Table 5 shows risk estimates for continuous smoking variables associated with PC. Non-linear associations were evident for smoking duration and intensity, cumulative dose, time since cessation and age at smoking initiation. Adjusted fractional polynomials models suggested a statistically significantly
higher PC risk per 1-unit increase in smoking duration, smoking intensity and cumulative dose, and decreasing PC risks for age at smoking initiation and time since smoking cessation. Linear associations were observed for other variables such as intensity of smoking cigars/pipes (data not shown). The restricted cubic splines approximating the shape of the dose-response relationships confirmed these nonlinear associations. Compared to never-smokers, smoking for >25 years (Figure 1, A-B) and smoking >20 cigarettes/day (Figure 1, D-E) was associated with a statistically significant increase of PC risk. Similarly, a cumulative dose of >14 pack-years was associated with increased PC risk (Figure 1, C). Visual inspection for smoking intensity and cumulative dose was suggestive of plateauing of PC risk, at approximately 27 cigarettes/day or pack-years. Concerning time since smoking cessation (Figure 1, F-I), and relative to current smokers, risk appeared to decrease between 8 and 11 years of cessation and after around 18 years of cessation regardless of cumulative dose. In between these periods, the significant effect disappeared. By tobacco type, corresponding periods of significant decrease in PC risk were observed for black tobacco (after about 14 years since cessation) and for blond tobacco (between 2 and 8 years and after >20 years of cessation).

No relevant differences in the trend or magnitude of the estimates were found in sensitivity analyses (Supplementary Tables 3, 5,to 7), including further smoothing of the splines fit (Supplementary Figure 2). In analyses adjusting for smoking intensity, risk estimates decreased in magnitude but showed a similar trend. By tobacco type, this adjustment did not affect either the associations nor the shapes of the relationships despite black tobacco smokers smoked heavier and for a longer time (Supplementary Table 8). Importantly, adjustment for smoking duration led to statistically non-significant risk estimates and change in the shape of the dose-response relationships (Supplementary Table 9). Joint effect analyses of smoking intensity and duration showed that long-lasting smoking together with intense smoking increase pancreatic cancer risk, whereas for less intense smoking the association weakened (Supplementary Table 10).

Discussion

The present study confirms that, in comparison to never-smokers, being a current smoker increases the risk of PC by 72%. In terms of attributable risk, this study also endorses that around 16% ($95 \% \mathrm{Cl}$: 9.24-22.47) of all PC diagnoses could be avoided through tobacco preventive measures. A more detailed examination of smoking characteristics showed that the use of non-filtered cigarettes, deep inhalation into the throat or chest, and exposure to tobacco smoke in the parental household were all associated with increased PC risk. PC risk in black tobacco smokers was significantly higher compared to never-smokers, with blond tobacco smokers showing a less prominent risk pattern. Analysis of doseresponse relationships corraborated that a higher smoking intensity, longer smoking duration, and increased levels of cumulative dose were associated further with an increased PC risk, whereas smoking cessation led to a gradual decline in PC risk, all in a non-linear manner.

Our results are concordant with earlier studies on the same topic. Regarding the magnitude of PC risk associated with current versus never tobacco smoking, a meta-analysis and pooled analyses from the PanC4 and the Pancreatic Cancer Cohort Consortium showed similar estimates (RR=1.74, 95\%CI: 1.611.87 , $\mathrm{OR}=2.20,95 \% \mathrm{Cl}: 1.71-2.83$ and $\mathrm{OR}=1.77,95 \% \mathrm{Cl}$: $1.38-2.26$, respectively) ($4,6,24$). Similarly, our study confirmed the trends and timing of tobacco smoking (4,6), the excess risk conferred by tobacco smoking $(4,25,26)$, the non-linear tobacco-PC associations $(5,7)$, and risk due to childhood ETS (27). Compared with studies restricting ETS exposure to never-smokers, we also did not observe significant risk estimates (aOR=1.24, $95 \% \mathrm{Cl}: 0.95-1.63)(28,29)$, suggesting that smokers, possibly more likely being exposed to childhood ETS, were driving this association in the overall analyses (aOR for current smokers exposed to parental smoking vs never smoking exposure $=2.01 ; 95 \% \mathrm{Cl}$: $1.50-2.69$). In contrast to the positive association between current cigar/pipe smokers and PC risk reported before $(4,30)$, we did not observe a significant associations in our study, probably due to low statistical power.

Effect-modification factors

The higher PC risk among smokers with family history of PC was previously described in our study population (14). Although statistical significance was not reached, former smoking diabetes patients tended to have a higher PC risk too. Were this true, lifestyle changes among diabetic patients including smoking cessation, which in turn may lead to weight gain and insulin resistance (31),(32), might explain this finding. Previous studies suggested differences in smoking effects on PC risk by gender $(5,6)$, although they failed to demonstrate effect modification by this variable. Similarly, non-significant differences by gender were found in our study, which included a large female sample with a relatively high smoking prevalence.

Dose-response relationships

Non-linear relationships of the association between smoking variables and PC risk were supported by both fractional polynomials and restricted cubic splines approaches. Since fractional polynomials in regression models become imprecise with small sample sizes (22), we based the dose-response curves on results derived from restricted cubic splines, which allow a more flexible modelling (33). Concordant with the observation of non-linear associations for smoking duration, intensity, and cumulative dose, a plateuing in the dose-response relationship was apparent. This observed pattern was previously reported (5,7), and could be attributed to the saturation of the detoxification processes of tobacco carcinogens in the body (34), or to a presumably weaker inhalation of tobacco smoke but stronger DNA repair efficiency among heavy smokers $(35,36)$, amongst other factors. Non-linear associations for smoking cessation, with decreased PC risk after 20 years of smoking cessation, were also suggested (5) and confirmed by other studies (7). However, in these earlier studies, consideration was not given to the influence of smoking intensity and duration on these associations. Patterns in PC risk in our study changed after adjusting for smoking duration mainly, whereby the magnitude of the risk estimates was affected (Supplementary Table $9)$.

Black versus blond tobacco-use

Compared to never-smokers, black tobacco smokers showed a significantly higher PC risk, this tobacco type appearing to be more harmful than blond tobacco. This result is consistent with the few studies that examined the association between smoking by tobacco type in bladder $(8,37,38)$ and other cancers (10-13). Smoking both black and blond tobacco for a long time (≥ 30 years) tended to be related to higher PC risk, this also being shown in previous studies on tobacco smoking and bladder cancer (8).

The difference between the two tobacco types could be explained by their smoke composition: black tobacco mostly contains early-stage carcinogens, such as N -nitrosamines and aromatic amines including 4-amino-biphenyl and 2-naphthylamine (39), whereas blond tobacco may mostly consist of latestage carcinogens (37). It is conceivable that the two tobacco types contribute to pancreas carcinogenesis through different mechanisms: black tobacco may predominantly cause DNA mutations whereas blond tobacco may preferentially act through epigenetic change, as has been shown for LINE-1 (9). As a consequence, an immediate and significantly higher increase in PC risk could be expected in black tobacco smokers, while blond tobacco might need a longer time to trigger PC development. This may also imply that following smoking cessation of blond tobacco PC risk can keep increasing for some time, slowing down after recovery of certain DNA methylation changes. In fact, methylation changes due to smoking seem to persist up to 22 years after smoking cessation (40). For black tobacco, instead, the PC risk reduction effects might not take place or might require longer since smoking cessation. Our results support these hypotheses to some extent. Compared to never-smokers, not only did black tobacco smoking have a more detrimental effect on PC risk, but also the risk tended to increase soon after smoking initiation, whereas downward risks were observed after smoking cessation for >10 years. A similar decreasing risk with long-term smoking cessation of black tobacco has been observed in bladder cancer in some $(37,38)$, but not all (8), studies. Among blond tobacco smokers, the trend towards a reduction in PC risk became evident shortly after smoking cessation (Supplementary Table 9). The shape of dose-response curves
supported the aforementioned trends, specifically regarding smoking cessation. Thus, our study suggests that black tobacco consumption may play a role in several steps of the carcinogenic process with possibly both early and late-stage carcinogens being involved. For blond tobacco, our results point to a two-tier mechanism after smoking cessation driven by late-stage carcinogens, the first consisting of a sudden change in risk estimates with risk levels more akin to never-smokers likely due to desaturation of detoxification routes of tobacco-carcinogens (5,41), the second showing risks levelling-off after approximately 20 years of smoking cessation, once alteration of DNA methylation levels of key genes regain the state of normalcy.

Among the limitations of the study, stratifying by tobacco type might have underpowered the analyses to detect any differences. As in any other study, subgroup analyses and multiple statistical tests are prone to chance findings due to increased type I error. Also, we could not consider potential differences in the content of carcinogens because we lacked information on tobacco brands, likely to contain varying amounts of heavy metals (42) and other carcinogens (39). Residual confounding can be therefore expected, also due to lack of, or imprecise, information on other relevant data such as ETS in adulthood. Extensive efforts have been made to adjust for as much confounding as possible, thereby alleviating the bias to the highest extent possible. Moreover, differential misclassification of the exposure due to recall bias of smoking habits among either the cases or controls is possible, or because use of only black or blond tobacco smoking might not have been reliably reported. Therefore, mixed effects due to alternate use of both tobacco types cannot be ruled out. We considered only smokers of black or blond tobacco in order to keep the effects by tobacco type separate, and considered switching from one type to the other in the group of users of both tobacco types.

Major strengths of the study are the large number of PC cases representing a European-wide PC population and the degree of detail in the information collected about smoking habits. This allowed us to undertake exhaustive and solid analyses considering many aspects of the habit in relation to PC risk. In
fact, this is the first study assessing PC risk by black and blond tobacco. Also, as a novelty, the shapes of dose-response relationships have been fully characterized using different modelling strategies to account for non-linear effects of smoking on PC risk.

In conclusion, findings of this study support and add to the previous evidence that smoking increases PC risk and demonstrates, for the first time, that both blond and black tobacco smoke are key in PC aetiology, though probably acting through different genetic mechanisms. Considering these smokingrelated PC risk profiles may help to refine the definition of high-risk PC population towards screening interventions implementation. Future studies should confirm our findings on type of tobacco and shed light on the mechanisms underlying their differential association with PC risk.

Acknowledgements

407 We thank the coordinators, field and administrative workers, technicians, and study participants of the European Study into Digestive Illnesses and Genetics (PanGenEU).

References

1. Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Niksic M, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37513025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018;391:1023-75.
2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the united states. Cancer Res. 2014;74:2913-21.
3. Maisonneuve P, Lowenfels AB. Risk factors for pancreatic cancer: A summary review of metaanalytical studies. Int J Epidemiol. 2015;44:186-98.
4. lodice S, Gandini S, Maisonneuve P, Lowenfels AB. Tobacco and the risk of pancreatic cancer: a review and meta-analysis. Langenbeck's Arch Surg. 2008;393:535-45.
5. Zou L, Zhong R, Shen N, Chen W, Zhu B, Ke J, et al. Non-linear dose-response relationship between cigarette smoking and pancreatic cancer risk: evidence from a meta-analysis of 42 observational studies. Eur J Cancer. 2014;50:193-203.
6. Bosetti C, Lucenteforte E, Silverman DT, Petersen G, Bracci PM, Ji BT, et al. Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). Ann Oncol Off J Eur Soc Med Oncol. 2012;23:1880-8.
7. Lugo A, Peveri G, Bosetti C, Bagnardi V, Crippa A, Orsini N, et al. Strong excess risk of pancreatic cancer for low frequency and duration of cigarette smoking: A comprehensive review and metaanalysis. Eur J Cancer. 2018;104:117-26.
8. Samanic C, Kogevinas M, Dosemeci M, Malats N, Real FX, Garcia-Closas M, et al. Smoking and bladder cancer in Spain: effects of tobacco type, timing, environmental tobacco smoke, and gender. Cancer Epidemiol Biomarkers Prev. 2006;15:1348-54.
9. Tajuddin SM, Amaral AFS, Fernandez AF, Rodriguez-Rodero S, Rodriguez RM, Moore LE, et al.

Genetic and non-genetic predictors of LINE-1 methylation in leukocyte DNA. Environ Health Perspect. 2013;121:650-6.
10. Peppone LJ, Hyland A, Moysich KB, Reid ME, Piazza KM, Purnell JQ, et al. Examining the Association Between Cigarette Smoking and Colorectal Cancer Using Historical Case-Control Data. Cancer Epidemiol. 2009;33(3-4):182-8.
11. Launoy G, Milan C, Faivre J, Pienkowski P, Gignoux M. Tobacco type and risk of squamous cell cancer of the oesophagus in males: a French multicentre case-control study. Int J Epidemiol. 2000;29:36-42.
12. Sancho-Garnier H, Theobald S. Black (air-cured) and blond (flue-cured) tobacco and cancer risk II: Pharynx and larynx cancer. Eur J Cancer. 1993;29A:273-6.
13. De Stefani E, Boffetta P, Oreggia F, Mendilaharsu M, Deneo-Pellegrini H. Smoking patterns and cancer of the oral cavity and pharynx: a case-control study in Uruguay. Oral Oncol. 1998;34:340-6.
14. Molina-Montes E, Gomez-Rubio P, Marquez M, Rava M, Lohr M, Michalski CW, et al. Risk of pancreatic cancer associated with family history of cancer and other medical conditions by accounting for smoking among relatives. Int J Epidemiol. 2018;47:473-83.
15. Gomez-Rubio P, Zock J-P, Rava M, Marquez M, Sharp L, Hidalgo M, et al. Reduced risk of pancreatic cancer associated with asthma and nasal allergies. Gut. 2017;66:314-22.
16. Hosmer DW, Hosmer T, Cessie SLE, Lemeshow S. A comparison of goodness of-fit tests for the logistic regression model. Stat Med. 1998;16:965-80.
17. Rothman K.; Greenland S. Modern epidemiology. 2nd ed. Philadelphia: Lippincott-Raven, 1998.; 1998.
18. Hosmer DW, Lemeshow S. Confidence interval estimation of interaction. Epidemiology. 1992;3:452-6.
19. Sauerbrei W, Meier-Hirmer C, Benner A, Royston P. Multivariable regression model building by using fractional polynomials: Description of SAS, STATA and R programs. Comput. Stat. Data Anal.
2006.
20. Durrleman S, Simon R. Flexible regression models with cubic splines. Stat Med. 1989;8:551-61.
21. Harrell FE. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. New York: Springer; 2001.
22. Strasak AM, Umlauf N, Pfeiffer RM, Lang S. Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables. Comput Stat Data Anal. 2011;55:1540-51.
23. core Team; R. R: A Language and Environment for Statistical Computing [Internet]. Vienna: R Foundation for Statistical Computing; 2013. Available from: http://www.r-project.org/
24. Lynch SM, Vrieling A, Lubin JH, Kraft P, Mendelsohn JB, Hartge P, et al. Cigarette smoking and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. Am J Epidemiol. 2009;170:403-13.
25. Wienecke A, Barnes B, Lampert T, Kraywinkel K. Changes in cancer incidence attributable to tobacco smoking in Germany, 1999-2008. Int J Cancer. 2014;134:682-91.
26. Rosato V, Polesel J, Bosetti C, Serraino D, Negri E, La Vecchia C. Population attributable risk for pancreatic cancer in Northern Italy. Pancreas. 2015;44:216-20.
27. Chuang S-C, Gallo V, Michaud D, Overvad K, Tjonneland A, Clavel-Chapelon F, et al. Exposure to environmental tobacco smoke in childhood and incidence of cancer in adulthood in never smokers in the European Prospective Investigation into Cancer and Nutrition. Cancer Causes Control. 2011;22:487-94.
28. Vrieling A, Bueno-de-Mesquita HB, Boshuizen HC, Michaud DS, Severinsen MT, Overvad K, et al. Cigarette smoking, environmental tobacco smoke exposure and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer. 2010;126:2394-403.
29. Zhou J, Wellenius GA, Michaud DS. Environmental tobacco smoke and the risk of pancreatic cancer among non-smokers: a meta-analysis. Occup Environ Med. 2012;69:853-7.
30. Bertuccio P, La Vecchia C, Silverman DT, Petersen GM, Bracci PM, Negri E, et al. Cigar and pipe smoking, smokeless tobacco use and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol. 2011;22:1420-6.
31. Ohkuma T, Iwase M, Fujii H, Kaizu S, Ide H. Dose- and Time-Dependent Association of Smoking and Its Cessation with Glycemic Control and Insulin Resistance in Male Patients with Type 2 Diabetes Mellitus: The Fukuoka Diabetes Registry. PLoS Med. 2015;10:e0122023.
32. Hu Y, Zong G, Liu G, Wang M, Rosner B, Pan A, et al. Smoking Cessation, Weight Change, Type 2 Diabetes, and Mortality. N Engl J Med. 2018;379:623-32.
33. Harald B, Willi S, Patrick R. Comparison between splines and fractional polynomials for multivariable model building with continuous covariates: a simulation study with continuous response. Stat Med. 2012;32:2262-77.
34. Vineis P, Kogevinas M, Simonato L, Brennan P, Boffetta P. Levelling-off of the risk of lung and bladder cancer in heavy smokers: an analysis based on multicentric case-control studies and a metabolic interpretation. Mutat Res. 2000;463:103-10.
35. Ruano-Ravina A, Figueiras A, Montes-Martinez A, Barros-Dios JM. Dose-response relationship between tobacco and lung cancer: new findings. Eur J Cancer Prev. 2003;12:257-63.
36. Wei Q, Cheng L, Amos CI, Wang LE, Guo Z, Hong WK, et al. Repair of tobacco carcinogeninduced DNA adducts and lung cancer risk: a molecular epidemiologic study. J Natl Cancer Inst. 2000;92:1764-72.
37. Vineis P, Esteve J, Hartge P, Hoover R, Silverman DT, Terracini B. Effects of timing and type of tobacco in cigarette-induced bladder cancer. Cancer Res. 1988;48:3849-52.
38. Clavel J, Cordier S, Boccon-Gibod L, Hemon D. Tobacco and bladder cancer in males: increased risk for inhalers and smokers of black tobacco. Int J Cancer. 1989;44:605-10.
39. Patrianakos C, Hoffmann D. Chemical studies of tobacco smoke. LXIV. On the analysis of aromatic amines in cigarette smoke. Chem. 1979;3:150-4.
40. Ambatipudi A, Cuenin C, Hernandez-Vargas H, Ghantous A, Le Calvez-Kelm F, Kaaks R, et al. Tobacco smoking-associated genome-wide DNA methylation changes in the EPIC study. Epigenomics. 2016;8:599-618.
41. Slikker WJ, Andersen ME, Bogdanffy MS, Bus JS, Cohen SD, Conolly RB, et al. Dose-dependent transitions in mechanisms of toxicity. Toxicol Appl Pharmacol. 2004;201:203-25.
42. Rubio Armendariz C, Garcia T, Soler A, Gutierrez Fernandez AJ, Glez-Weller D, Luis Gonzalez G, et al. Heavy metals in cigarettes for sale in Spain. Environ Res. 2015;143:162-9.

Table 1: Baseline characteristics of the PanGenEU study population (2,009 cases and 1,532 controls).

	PanGenEU					PanGenEU - Spain				
	Cases (\%)		Controls (\%)		p -value ${ }^{2}$	Cases (\%)		Controls (\%)		p -value ${ }^{2}$
Country					<0.001					--
Spain	876	(43.6)	762	(49.7)		876	(100.0)	762	(100.0)	
England	126	(6.3)	22	(1.4)		-	-	-	-	
Germany	130	(6.5)	111	(7.3)		-	-	-	-	
Ireland	173	(8.6)	290	(18.9)		-	-	-	-	
Italy	533	(26.5)	0	(0.0)		-	-	-	-	
Sweden	171	(8.5)	347	(22.7)		-	-	-	-	
Gender					0.164					0.455
Female	871	(43.4)	701	(45.8)		384	(43.8)	349	(45.8)	
Male	1138	(56.6)	831	(54.2)		492	(56.2)	413	(54.2)	
Age					<0.001					0.086
≤ 54	413	(20.6)	262	(17.1)		157	(17.9)	155	(20.3)	
55-64	497	(24.7)	321	(21.0)		203	(23.2)	173	(22.7)	
65-74	699	(34.8)	495	(32.3)		285	(32.5)	208	(27.3)	
≥ 75	400	(19.9)	454	(29.6)		231	(26.4)	226	(29.7)	
BMI ($\mathrm{kg} / \mathrm{m}^{2}$)					0.997					0.900
<25	769	(38.3)	588	(38.4)		303	(34.6)	271	(35.6)	
25-29.99	854	(42.5)	651	(42.5)		397	(45.3)	343	(45.0)	
≥ 30	386	(19.2)	293	(19.1)		176	(20.1)	148	(19.4)	
Alcohol status ${ }^{3}$					<0.001					0.412
Never-drinker	585	(29.1)	383	(25.0)		273	(31.2)	254	(33.3)	
Light drinker	805	(40.1)	756	(49.3)		377	(43.0)	338	(44.4)	
Moderate drinker	564	(28.1)	360	(23.5)		214	(24.4)	160	(21.0)	
Heavy drinker	55	(2.7)	33	(2.2)		12	(1.4)	10	(1.3)	
Family history of PC					<0.001					<0.001
No	1882	(93.7)	1492	(97.4)		815	(93.00)	739	(97.0)	
Yes	127	(6.3)	40	(2.6)		61	(7.0)	23	(3.0)	
Ever been diagnosed with asthma					<0.001					0.014
No	1878	(93.5)	1374	(89.7)		817	(93.3)	684	(89.8)	
Yes	131	(6.5)	158	(10.3)		59	(6.7)	78	(10.2)	
Ever been diagnosed with diabetes					<0.001					<0.001
No	1515	(75.4)	1349	(88.1)		604	(68.9)	630	(82.7)	
Yes, ≤ 2 years	214	(10.7)	27	(1.7)		112	(12.8)	20	(2.6)	
Yes, >2 years	280	(13.9)	156	(10.2)		160	(18.3)	112	(14.7)	
Ever been diagnosed with chronic pancreatitis					0.004					0.460
No	1990	(99.1)	1530	(99.9)		871	(99.4)	760	(99.7)	
Yes	19	(0.9)	2	(0.1)		5	(0.6)	2	(0.3)	

521 PC: pancreatic cancer; BMI: body mass index.
522 Descriptives are shown for the imputed baseline characteristics. Descriptives of the unimputed baseline characteristics can be found in Supplementary Table 9
$523{ }^{1}$ Chi-square test applied to evaluate differences between the groups. Significance was set at p-value<0.05
$524{ }^{2}$ Light drinker: 0-1 drink/day for men and women; Moderate drinker: men: 1-5drinks/day, women: 1-2.5 drinks/day; Heavy drinker: men: ≥ 5 drinks/day, women:
$525 \geq 2.5$ drinks/day

Table 2: Association between smoking variables and pancreatic cancer risk in the PanGenEU study population (2,009 cases and 1,532 controls).

532

Table 3: Association between smoking variables and pancreatic cancer risk by tobacco type and smoking status in the PanGenEUSpain study population (876 cases and 762 controls).

	Cases (\%)		Controls (\%)			Unadjusted		Adjusted			
			p-value ${ }^{1}$	OR	(95\%CI)	aOR	(95\%CI)				
Tobacco type							0.012				
Never-smoker	355	(40.5)	360	(47.2)		1.00		1.00			
Smoker of black tobacco only	165	(18.8)	114	(15.0)		1.47	(1.11-1.94)	1.55	(1.13-2.12)		
Smoker of blond tobacco only	204	(23.3)	182	(23.9)		1.14	(0.89-1.46)	1.23	(0.94-1.62)		
Smoker of both tobacco types	152	(17.4)	106	(13.9)		1.45	(1.09-1.94)	1.58	(1.14-2.17)		
Tobacco type by smoking status					0.028						
Never-smoker	369	(42.0)	377	(49.5)		1.00		1.00			
Former											
Black tobacco	104	(11.9)	79	(10.4)		1.34	(0.97-1.87)	1.40	(0.98-1.99)		
Blond tobacco	90	(10.3)	88	(11.5)		1.04	(0.75-1.45)	1.12	(0.79-1.57)		
Both	76	(8.7)	58	(7.6)		1.34	(0.92-1.94)	1.44	(0.97-2.14)		
Current											
Black tobacco	60	(6.8)	31	(4.1)		1.98	(1.26-3.16)	2.09	(1.31-3.41)		
Blond tobacco	103	(11.8)	83	(10.9)		1.27	(0.92-1.75)	1.43	(1.01-2.04)		
Both	74	(8.5)	46	(6.0)		1.64	(1.11-2.45)	1.81	(1.19-2.76)		

535 Risk estimates are shown for the imputed smoking variables
536 Adjusted model for age ($\leq 54,55-64,65-74, \geq 75$ years), gender (male, female) and region (East, Central and Northern Spain)
$537{ }^{1}$ Chi-square test applied to evaluate differences between the groups. Significance was set at p-value <0.05
538
539
540
541
542
543

Table 4: Combined effects of smoking duration and tobacco type on pancreatic cancer risk in the PanGenEU-Spain study population (876 cases and 762 controls).

		Smoking duration of blond tobacco (years)							
		Never-smoker		<20 years		20-30 years		≥ 30 years	
		$\begin{array}{r} \text { aOR } \\ (95 \% \mathrm{Cl}) \end{array}$	Case/ Controls	$\begin{array}{r} \text { aOR } \\ (95 \% \mathrm{Cl}) \end{array}$	Case/ Controls	$\begin{array}{r} \text { aOR } \\ (95 \% \mathrm{Cl}) \end{array}$	Case/ Controls	$\begin{array}{r} \text { aOR } \\ (95 \% \mathrm{Cl}) \end{array}$	Case/ Controls
	Neversmoker	1.00	355/360	$\begin{array}{r} 1.03 \\ (0.65-1.64) \end{array}$	42/47	$\begin{array}{r} 1.27 \\ (0.81-2.00) \end{array}$	51/45	$\begin{array}{r} 1.33 \\ (0.95-1.84) \end{array}$	112/90
$\begin{aligned} & \bar{\infty} \\ & \stackrel{y}{\#} \\ & \stackrel{\otimes}{0} \end{aligned}$	<20 years	$\begin{array}{r} 1.37 \\ (0.71-2.64) \end{array}$	25/17	$\begin{array}{r} 0.84 \\ (0.66-1.07) \end{array}$	25/32	$\begin{array}{r} 0.93 \\ (0.52-1.67) \end{array}$	10/8	$\begin{array}{r} 1.43 \\ (0.54-3.76) \end{array}$	6/5
$\begin{aligned} & \stackrel{0}{0} \\ & \text { O} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 20-30 \\ & \text { years } \end{aligned}$	$\begin{array}{r} 1.68 \\ (0.92-3.09) \end{array}$	31/21	$\begin{array}{r} 1.28 \\ (0.38-4.28) \end{array}$	7/2	$\begin{array}{r} 3.91 \\ (0.79-19.33) \end{array}$	13/6	$\begin{array}{r} 2.61 \\ (0.96-7.09) \end{array}$	1/1
	$\begin{array}{r} \geq 30 \\ \text { years } \end{array}$	$\begin{array}{r} 1.58 \\ (1.11-2.27) \end{array}$	109/76	$\begin{array}{r} 1.86 \\ (0.84-4.13) \end{array}$	18/11	$\begin{array}{r} 1.83 \\ (0.79-4.26) \end{array}$	15/10	$\begin{array}{r} 2.05 \\ (1.25-3.36) \end{array}$	56/31

555 Risk estimates are shown for the imputed smoking variables
556 Adjusted OR for age ($\leq 54,55-64,65-74, \geq 75$ years), gender (male, female) and region (East, Central and Northern Spain)
557 Relative excess risk due to interaction $=$ RERI $=0.206,95 \% \mathrm{Cl}:-0.49-0.91$
558

Table 5: Non-linear association between continuous smoking variables and pancreatic cancer risk per 1-unit increase in the variables for the PanGenEU study population (2,009 cases and 1,532 controls)

	Restricted Cubic splines	Fractional polynomials	aOR (95\% CI) per 1-unit increase		
			Model 1	Model 2	Model 3
	LR test ${ }^{1}$ p -value	Formula resulting from the fractional polynomials ${ }^{2}$	aOR (95\%CI)	aOR (95\%CI)	aOR (95\%CI)
Age at smoking initiation (years)	0.031	$\left(\frac{\text { smoke first }+1}{10}\right)^{-2}$	1.11 (1.04-1.20)	1.00 (0.89-1.11)	0.96 (0.87-1.07)
Age last smoked (years)	0.008	$\left(\frac{\text { smoke last }+1}{10}\right)^{0.5}+\left(\left(\frac{\text { smoke last }+0.1}{10}\right)^{0.5}{ }^{*} \log \left(\frac{\text { smoke last }+0.1}{10}\right)\right)$	1.07 (1.04-1.10)	1.05 (1.00-1.11)	0.99 (0.93-1.06)
Smoking duration (years)	0.020	$\left(\frac{\text { duration }+0.1}{10}\right)^{3}+\left(\left(\frac{\text { duration }+0.1}{10}\right)^{3} * \log \left(\frac{\text { duration }+0.1}{10}\right)\right)$	1.04 (1.02-1.05)	1.03 (1.02-1.05)	N.A.
Smoking intensity (cigarettes per day)	0.001	$\left(\frac{\text { intensity }+0.2}{10}\right)^{0.5}$	1.29 (1.18-1.45)	N.A.	1.04 (0.88-1.23)
Cumulative dose (pack-years)	0.000	$\left(\frac{\text { pack-years }+0.1}{10}\right)^{0.5}$	1.24 (1.16-1.35)	N.A.	N.A.
Time since cessation (years) ${ }^{3}$	0.016	$\left(\frac{\text { cessation }+1}{10}\right)^{1}+\left(\frac{\text { cessation }+1}{10}\right)^{3}$	0.81 (0.74-0.88)	0.80 (0.72-0.87)	0.89 (0.71-1.05)
Time since cessation (years) for PanGenEU - Spain 3 ,4	0.073	$\left(\frac{\text { cessation }+1}{10}\right)^{1}+\left(\frac{\text { cessation }+1}{10}\right)^{3}$	0.85 (0.74-0.96)	0.85 (0.73-0.96)	0.88 (0.66-1.11)

[^0]Risk estimates are shown for the unimputed continuous smoking variables
Model 1: adjusted for age ($\leq 54,55-64,65-74, \geq 75$ years), gender (male, female) and country (Spain, England, Germany, Ireland, Italy, Sweden);
Model 2: Model 1 plus additional adjustment for smoking intensity (cigarettes per day, continuous, non-linear);
Model 3: Model 1 plus additional adjustment for smoking duration (years, continuous, non-linear)
${ }_{1}$ Likelihood ratio test (LR test) comparing two models, adjusted for age ($\leq 54,55-64,65-74, \geq 75$ years), gender (male, female), and country (Spain, England, Germany, Ireland, Italy, Sweden), with and without restricted cubic splines applied (knots at 10,50 and 90\%)
${ }_{2}$ Fractional polynomials adjusted for age ($\leq 54,55-64,65-74, \geq 75$ years), gender (male, female), and country (Spain, England, Germany, Ireland, Italy, Sweden)
${ }^{3}$ Never-smokers were removed from time since cessation variables
${ }^{4}$ The PanGenEU-Spain study population consists of 876 cases and 762 controls. The model was adjusted for age ($\leq 54,55-64,65-74, \geq 75$ years), gender (male, female) and region (East, Central and Northern Spain)

Figures

Figure 1 (A-I): Dose-response relationships between several smoking variables and the risk of PC , depicted by restricted cubic splines with knots at $10 \%, 50 \%$ and 90%, represented as dashed, vertical lines. Adjusted for age, gender and country (for the PanGenEU study population), or region (for the PanGenEU-Spain study population). Restricted cubic splines are shown for the unimputed smoking variables, and additional adjustment variables were modelled as fractional plolynomials to account for non-linear effects. The spline curve is shown as a black trend line and 95% confidence intervals are shadowed in grey. The dotted horizontal black line represents the reference odds ratio of 1. A: Smoking duration in years (PanGenEU); B: Smoking duration in years (PanGenEU), adjusted for smoking intensity (cigarettes per day); C: Cumulative dose in pack-years (PanGenEU); D: Smoking intensity in cigarettes per day (PanGenEU); E: Smoking intensity in cigarettes per day (PanGenEU), adjusted for smoking duration (years); F: Time since cessation in years (PanGenEU), adjusted for cumulative dose (pack-years); G: Time since cessation in years (PanGenEU-Spain), adjusted for cumulative dose (packyears); H: Time since cessation in years for smokers of only black tobacco (PanGenEU-Spain), adjusted for cumulative dose (pack-years); I: Time since cessation in years for smokers of only blond tobacco (PanGenEU-Spain), adjusted for cumulative dose (pack-years). PC: pancreatic cancer; RCS: restricted cubic splines

Figure 1

A. Smoking duration (years)

PanGenEU

D. Smoking intensity (cigarettes per day) PanGenEU

B. Smoking duration (years)

E. Smoking intensity (cigarettes per day)

PanGenEU | Adjusted for smoking duration (years)

G. Time since cessation (years)
H. Time since cessation, black tobacco (years)

C. Cumulative dose (pack-years)

PanGenEU

I. Time since cessation, blond tobacco (years)
I. Time since cessation, blond tobacco (years)
anGenEU-Spain | Adjusted for cumulative dose (pack-years)

Cancer Epidemiology, Biomarkers \& Prevention

 for Cancer Research
Pancreatic cancer risk in relation to lifetime smoking patterns, tobacco type, and dose-response relationships

Esther Molina-Montes, Lisa Van Hoogstraten, Paulina Gomez-Rubio, et al.
Cancer Epidemiol Biomarkers Prev Published OnlineFirst February 12, 2020.

Updated version	Access the most recent version of this article at: doi:10.1158/1055-9965.EPI-19-1027
Supplementary Material	Access the most recent supplemental material at: http://cebp.aacrjournals.org/content/suppl/2020/02/12/1055-9965.EPI-19-1027.DC1
Muthor	Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and To order reprints of this article or to subscribe to the journal, contact the AACR Publications Subscriptions Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://cebp.aacrjournals.org/content/early/2020/02/12/1055-9965.EPI-19-1027. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.

[^0]: PC: pancreatic cancer; N.A.: not applicable

