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We report on the latest additions to our open-source, block-grid adaptive framework
MPI-AMRVAC, which is a general toolkit for especially hyperbolic/parabolic partial
differential equations (PDEs). Applications traditionally focused on shock-dominated,
magnetized plasma dynamics described by either Newtonian or special relativistic (mag-
neto)hydrodynamics, but its versatile design easily extends to different PDE systems.
Here, we demonstrate applications covering any-dimensional scalar to system PDEs, with
e.g. Korteweg–de Vries solutions generalizing early findings on soliton behavior, shallow
water applications in round or square pools, hydrodynamic convergence tests as well as
challenging computational fluid and plasma dynamics applications. The recent addition
of a parallel multigrid solver opens up new avenues where also elliptic constraints or
stiff source terms play a central role. This is illustrated here by solving several multi-
dimensional reaction–diffusion-type equations. We document the minimal requirements
for adding a new physics module governed by any nonlinear PDE system, such that
it can directly benefit from the code flexibility in combining various temporal and
spatial discretization schemes. Distributed through GitHub, MPI-AMRVAC can be used
to perform 1D, 1.5D, 2D, 2.5D or 3D simulations in Cartesian, cylindrical or spherical
coordinate systems, using parallel domain-decomposition, or exploiting fully dynamic
block quadtree-octree grids.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In contemporary astrophysical research, numerical modeling forms a vital ingredient, almost invariably handling
trongly nonlinear flows and plasma dynamics (i.e., the fourth and most abundant state of known matter in our universe).
any open source codes [e.g 1–8] are actively developed and used, which focus on shock-dominated scenarios in
ases or plasmas, enriched by radiative processes, gravitational interactions, as well as various (energy) transport and
xchange mechanisms, where the equations of (magneto)hydrodynamics or (M)HD form the core application. These
M)HD equations, covered in various textbooks [e.g. 9], return in many aerodynamical or engineering scenarios. This
ontinuously drives the need for advanced numerical techniques to handle (also transsonic and supersonic) flows about
bstacles (airplanes or satellite re-entry problems), ventilation flows through ducts, or the generic behavior of electrically
onducting fluids.
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Many astrophysical applications must handle a vast range of spatial scales, so it is customary to incorporate adap-
ivity in the numerical solution, where different strategies exist: dynamically relocating a fixed number of grid points
r-refinement, see e.g. [10]); using a dynamic means to increase or decrease the number of grid cells by varying the cell
izes (h-refinement); or ensuring that the local polynomial representation of the solution throughout a grid cell employs
differing order (p-refinement). Various open source codes [e.g. 2–4,7,11,12] exploit h-refinement, where the mesh has
arious levels of successively finer grids, organized in a hierarchical manner. We will specify the further discussion to
PI-AMRVAC1 [8,11,13,14], which evolved from a patch-based adaptive mesh refinement (AMR) framework [15], to a
urely block-octree AMR implementation [8,11].

.1. MPI-AMRVAC code basics

MPI-AMRVAC has been in continued development for more than a decade [15], with modern applications ranging
rom magnetospheric physics at Earth [16] or in the Jovian system [17], over solar physics challenges [18–20], to more
xotic astrophysical processes such as those encountered in supergiant X-ray binaries [21]. The code has heritage to the
riginal Versatile Advection Code (hence VAC) [22–24], which solved (near) conservative sets of mainly hyperbolic
artial differential equations (PDEs), and specialized in MHD problems [e.g. 25–27]. In this paper, we demonstrate
hat MPI-AMRVAC is well suited to handle fairly diverse systems of PDEs, that may even deviate from being
dvection-dominated problems. Indeed, the modular design makes it easy to introduce PDE systems of the form

∂tU + ∇ · F(U) = S(U, ∂xU, ∂2
xxU, . . . , x, t) , (1)

where the set of variables U is subject to fluxes F and source terms S, where all variables U = (U1,U2, . . . ,Um) are to be
solved for their spatiotemporal Ui(x, t) behavior. The spatial coordinates x may be 1D, 2D or 3D Cartesian coordinates, or
could be polar, cylindrical or spherical in nature.

The HD system in particular has (conservative) variables U = (ρ, ρv, E)T consisting of density ρ, momentum density
vector ρv (with velocity v) and total energy density E (combining kinetic with internal energy in ρv2/2 + p/(γ − 1)
with pressure p and parameter γ > 1). In the hyperbolic PDE system for HD, the fluxes F typically split up into an
dvection Fad ≡ vU and a non-advective flux Fna, and speed magnitudes v ≡ |v| may be below, equal or above the local
hysical sound speed. In MHD, also the magnetic field vector B enters as a variable. To handle discontinuous, shocked
low problems in (M)HD, it is imperative to use conservative numerical schemes [e.g. 9,28,29], which usually handle
luxes F in a manner exploiting the (approximate) solution of local Riemann problems (i.e., initial conditions separating
wo constant states Ul and Ur, to the left and right of the discontinuity, respectively). For both the HD and the MHD
quation set, in their Newtonian as well as special relativistic variant [11,30], codes like MPI-AMRVAC offer a wide variety

of spatio-temporal discretizations, to advance initial conditions augmented with boundary prescriptions, in 1D, 2D or 3D
configurations. For MPI-AMRVAC, the Fortran source code is documented at amrvac.org, and available on GitHub.
Making use of Doxygen,2 the inline documentation is automatically turned into dependency graphs, flow charts, and
searchable source code, which is updated daily to reflect the current status of the code development.

1.2. Adding a new PDE system

Any system of the form given by Eq. (1) may be added to the framework, whose source code is typically located in
amrvac/src (and an environment variable AMRVAC_DIR is to be set to locate this amrvac directory). The minimal
requirement for adding a new system is to create a corresponding system module (a subdirectory
amrvac/src/newsystem) quantifying the variables U, fluxes F and source terms S. In the generic physics module
amrvac/src/physics/mod_physics.t, procedure pointers are initialized and their calling interface is predefined,
for use in the PDE systems to implement. Among other procedures, this generic module contains phys_get_flux and
phys_add_source interfaces, which must be fully provided in the module amrvac/src/newsystem/mod_newsystem_
phys.t of a newly added system. For example, the available (M)HD systems are found in amrvac/src/hd and
amrvac/src/mhd, where the system-specific initializations are handled by an mod_hd.t and mod_mhd.t activation
module, while the actual equations (variable definitions, fluxes, sources and corresponding time step constraints) are to
be found in mod_hd_phys.t and mod_mhd_phys.t. Besides the mentioned interfaces for providing fluxes and sources,
other procedures of interest are

• phys_add_source_geom for the handling of geometric source terms, needed when solving the same system in
polar, cylindrical or spherical coordinates;

• phys_get_v_idim to specify an advection velocity in the idim direction, when an advective flux Fad is to be used.
Note that this direction refers to x, y or z in Cartesian cases, while it is e.g. r , ϕ in a polar grid;

• phys_get_dt to provide a system-specific time step constraint, that would be in addition to the usual
Courant–Friedrichs–Lewy (CFL) limit for explicit time stepping schemes;

1 http://amrvac.org.
2 http://www.doxygen.nl.

http://amrvac.org
http://www.doxygen.nl
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• phys_get_cmax and phys_get_cbounds to quantify the maximal physical propagation speed and any minimal
and maximal bound on that speed, useful for computing the CFL timestep limit, or in use for the simplest of any
approximate Riemann solver methods (i.e. the local Lax–Friedrich or TVDLF method [23,31], as well as its HLL
extension [32], which are used heavily in (M)HD applications).

If the system of equations differentiates between conservative U and primitive variables V, like the set V = (ρ, v, p)T
ith pressure p for the set of U = (ρ, ρv, E) in HD, one can provide conversion formulas from conservative to primitive

n the procedure phys_to_primitive, while its reverse phys_to_conserved switches primitive variables back to
onservative ones. To benefit optimally from the dimension-independent implementation of our code, these routines
est exploit the LASY syntax [33], which means writing the coordinate array x as

(ixI^S,1:^ND)

hich will expand the segment ˆS when the dimensionality ˆND=2 to

(ixImin1:ixImax1,ixImin2:ixImax2,1:2)

.3. Adaptive mesh refinement and parallelization

When implementing a new system in MPI-AMRVAC according to the procedure just explained, one can directly benefit
rom its dimension-independent way to solve the system (1) with a variety of time stepping schemes, splitting strategies
or handling sources, and exploit its parallel implementation to run efficiently on laptops to the most modern super-
omputers. The Message Passing Interface or MPI based parallelization can always exploit a domain-decomposition
y specifying block sizes that equally divide up the computational domain (e.g., one may decide to use a 200 × 200
D mesh, divided into 400 blocks of size 10 × 10). The AMR stands for Adaptive Mesh Refinement, where one relies
n a block-based quadtree-octree (in 2D-3D) means of hierarchically adjusting the computational mesh to the evolving
olution. The blocksize can be specified and adjusted by the user. A fair variety of automated as well as user-specific
eans to set (de)refine criteria is available, and they work for all dimensionalities and coordinate systems provided. The
xcellent scaling of the parallel implementation has been demonstrated in previous work [14], while the specification of a
ew system of equations is essentially devoid of any MPI procedures, except for trivial mpistop(‘‘error_message’’)
nterfaces to MPI_ABORT calls for catching erroneous input parameter specifications.

The AMR strategy operates as follows. The user specifies a block size block_nx1, block_nx2, . . . for each
imension of the problem at hand, and a conforming domain size in number of grid cells domain_nx1, domain_nx2,
. . at the lowest resolution. The actual domain physical extent is specified by coordinate pairs, such as xprobmin1,
probmax1 for the minimal and maximal x-coordinate, respectively. A maximal number of refinement levels is set
hrough refine_max_level, and actual adaptive runs imply that this maximal refinement level is ≥ 2, while a unit
alue realizes a pure domain-decomposition computation. When adaptivity is turned on, all blocks at grid levels below
efine_max_level evaluate a user-selected refinement criterion in every grid cell. The default refinement criterion is
Lohner type estimator [34], where we essentially quantify local weighted second derivatives (for details, see [11]), and
his for a user-selected set of variables. This then provides an error in all grid cells of the evaluated blocks. A block is
hen refined using a fixed refinement ratio of 2 (in 2D this implies splitting the block in 4, in 3D each block creates 8
hildren blocks) as soon as it has a single point whose error exceeds a user-set tolerance. For a block to be coarsened, all
ts cells must have the error below a user-set fraction of the previous tolerance. Our implementation also allows the user
o intervene with the automated refinement, either overruling or enforcing refinement when necessary.

In this paper, some exemplary problems are presented, where our flexible means of post-processing multi-dimensional
ata is exploited. The latter comprises possibilities to convert data files on the fly (or after the computation is completed)
o data formats directly importable in open-source visualization software like Paraview3 or VisIt.4 Alternatively, one
ay use the many provided python scripts to e.g. regrid the hierarchically meshed data to a uniform coverage, and use

ree plotting packages.

.4. Multigrid functionality

The idealized (M)HD systems which feature in many astrophysical applications are hyperbolic in nature, but when
ffects like thermal conduction, viscosity, or resistivity are incorporated, parabolic source terms appear. Typical diffusion
erms may well render the standard explicit time stepping strategies impractical, as then the time step constraint scales
ith ∆t ∝ h2, for grid spacing h, prohibiting the use of ultra-high resolution. This is in direct conflict with the usual
dvantage offered by an AMR code, allowing for extreme resolutions at affordable costs. To alleviate this drawback, a
ecent extension of our code is its coupling to a fast elliptic solver [13]. The block-adaptive grid used in MPI-AMRVAC

3 https://www.paraview.org.
4 https://wci.llnl.gov/simulation/computer-codes/visit.

https://www.paraview.org
https://wci.llnl.gov/simulation/computer-codes/visit
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suggests the use of a (geometric) multigrid strategy, where Poisson or Helmholtz equations, with variable coefficients, can
be solved in a highly scalable fashion. This recent addition is e.g. useful for handling the Maxwell equation ∇ · B = 0 in
ulti-dimensional MHD problems, but may also be used to implement particular implicit–explicit (IMEX) discretizations
f PDEs containing stiff sources (as demonstrated further on), to handle any typical parabolic terms, to implement
ncompressible (M)HD equations, or to solve astrophysical applications involving self-gravity. In the next section, we
nclude cases where the multigrid functionality proves helpful to efficiently compute PDE solutions.

. Example applications

.1. Korteweg–de Vries computations

As a first demonstration, we present 1D and 2D solutions for a nonlinear scalar equation known as the Korteweg–de
ries equation. This equation combines nonlinear advection with a source term containing a third-order derivate,

∂tρ + ∇ · (
1
2
ρ2e) = −δ2

D∑
i=1

∂xxxiρ , (2)

where e =
∑D

i=1 êi in a D-dimensional setup, with Cartesian unit vectors êi. In 1D, this recovers the original Korteweg–de
Vries or KdV equation

∂tρ + ρ∂xρ + δ2∂xxxρ = 0 , (3)

where δ is a fixed parameter. For δ = 0, we get the nonlinear Burgers equation, which can be used to test shock formation
through wave steepening and its numerical realization [35]. In [36], the 1D KdV equation (3) was solved numerically on
a periodic domain x ∈ [0, 2], with δ = 0.022, and initial condition provided by ρ(x, t = 0) = cos(πx). This classic
paper [36] documented how the numerical solution showed the spontaneous development and interaction of multiple
solitons, where the nonlinear term causing wave steepening is balanced by the dispersive source term to maintain their
integrity.

In MPI-AMRVAC, the scalar Eq. (2) is implemented in a amrvac/src/nonlinearmodule, and a Boolean kdv_source_
term can activate the addition of the dispersive source term. This source term can be evaluated using a fourth order
central difference evaluation, requiring three ghost cells to each block when a domain-decomposition strategy is used.
We solved the KdV equation on a time interval t ∈ [0, 5], using 600 grid points, subdivided into 10-cell blocks. This
test was run without AMR. A Courant number of 0.9 is used for the CFL condition, where the local absolute value of the
scalar ρ sets the maximal signal speed. An additional time step limit is enforcing ∆t ≤ 0.9(∆x)3/(3

√
3δ2/2), where we

follow a prescription specified by [37]. For the handling of fluxes, we use a conservative finite difference scheme using
a fifth-order, monotonicity preserving MP5 reconstruction [for details, see14, and references therein]. The combination
of the conservative finite difference scheme, a three-step Runge–Kutta time integrator, and the central difference source
evaluation, makes that the numerical solution conserves

∫ 2
0 ρ dx exactly, which is a known property of the KdV equation.

In Fig. 1, we show the solution ρ(x, t) in a contour plot view on the left, where one recognizes how the original cosine
variation leads to three sharply peaked solitons that eventually travel forward through the domain, while five weaker
backward propagating solitons emerge somewhat later. Their repeated interactions as they pass periodically across the
boundaries are very well represented. At right in Fig. 1, selected instantaneous ρ(x) profiles at times t = 0.5, 1.25 and
2.5 are provided.

As stated, any multi-dimensional variant of Eq. (2) can now easily be simulated as well, and we compare 2D solutions
for a Burgers equation (where δ = 0) to the 2D version of the previous KdV test (δ = 0.022). The double periodic
domain [0, 2] × [0.2] is initialized with ρ(x, y) = cos(πx) sin(πy), using a 200 × 200 grid in blocks of 10 × 10, again in
domain-decomposition mode without AMR for simplicity, since the computational cost for solving a single scalar equation
is rather small. We use the same scheme combination as before, only reducing the source-related time step limit to
∆t ≤ 0.4(∆x)3/(3

√
3δ2/2). In Fig. 2, snapshots of the density profile at t = 0.4 (left column) and t = 1 (right column)

are compared for the Burgers equation (top row) versus the KdV system (bottom row). Note the clear shock-dominated
solution for the 2D Burgers variant, while the KdV equation again shows soliton-like features developing spontaneously.
The patterns observed in the KdV solutions remind us of ripples in (shallow) water and their interactions. This is not
surprising, since the original KdV equation arose from analyzing a specific limit of the shallow water equations, to which
we turn attention next.

2.2. Shallow water test problems

The shallow water equations can be formulated as

∂t

(
h

)
+ ∇ ·

(
vh

1 2

)
= S , (4)
hv vvh + 2h I
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Fig. 1. A 1D KdV simulation, showing ρ(x, t) at left in a contour view, with selected ρ(x) variations obtained at the times indicated.

where one solves for the height profile h(x, y, t) with (height-averaged) speeds v =
(
vx(x, y, t), vy(x, y, t)

)
affected by

ravity. I is the unit tensor. The above formulation exploits a dimensionless form of the shallow water equations, where
engths are scaled as h̄ = h/a and times t̄ = t

√
g/a, where a is a reference length unit (e.g. a can be set to 1 meter) and

arth’s gravitational acceleration is g = 9.8m/s2. Eq. (4) is to be read with h → h̄ and similarly for all quantities, while
he source term S may introduce resistance to the flow and bottom topology [38,39]. The shallow water equations make
ense in 2D, and they can be solved on either a Cartesian domain, or a polar (r, ϕ) grid. The latter introduces geometric
ource terms, in particular a source ( 12h

2
+ hv2

ϕ)/r for the radial momentum hvr , as well as a term −hvrvϕ/r for the
zimuthal component hvϕ . These geometric source terms are then in addition to possible resistance or flow bed topology
erms encoded in S.

In MPI-AMRVAC, the above equation set is in fact available within the HD module, where one recognizes the fact that
ystem (4) is identical to the subset of mass and momentum conservation laws in the Euler equations, with the ‘pressure’
iven by h2/2. Hence, a switch to avoid using an energy variable E is introduced in our amrvac/src/hd system, in
hich case the ‘pressure’ p = cadργ , where a polytropic relation between density ρ and pressure introduces two free
arameters, cad and γ . The ‘sound’ signal speed (squared) is then c2 = γ cadργ−1, and the shallow water system arises for

the identification ρ ≡ h, cad = 0.5 and γ = 2. In fact, our HD system module has various switches for handling either
subcases of the full Euler system (or Navier–Stokes when activating viscosity), or extensions of the Euler system where
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Fig. 2. Instantaneous solutions at t = 0.4 (left panels (a) and (c)) and t = 1 (right panels (b) and (d)), comparing Burgers (top (a) and (b)) with
dV (bottom (c) and (d)).

dditional ‘dust’ species are handled as pressureless fluids, coupled to the Euler gas by means of drag terms [14,40]. Hence,
particular equation module can serve multiple purposes.
As a stringent test of the shallow water implementation, we target the reference test introduced by [41] and discussed

n [38], mimicking a circular dam break where there are no extra source terms S. The test is in fact a 1D Riemann problem
in a cylindrical configuration, having water height hin = 2.5m inside a circular dam of radius rdam = 2.5m, while the
exterior has a water height of hext = 0.5m. We choose to solve this problem twice, once on a 2D polar grid on a disk of
radius 20 m, and once in a 2D Cartesian domain of size 40m × 40m. The solutions must obviously agree, but the latter
one could suffer from artificial deformations when solving an azimuthally symmetric problem on a square grid. In this
problem, we use AMR and exploit a total of 3 refinement levels in both the polar and the Cartesian setup.

In Fig. 3, we show at right the solution at dimensionless time t = 15 (physical time t = 4.79 s), as a contour plot of the
h(r, ϕ) solution. At left, the same solution, as well as several earlier snapshots (between t = 0 and t = 15) are plotted as
a scatter plot where all gridcells are visualized. The symmetry (i.e. the 1D nature of this problem) is perfectly preserved,
as each dot in the scatter plot is simply repeated for as many azimuthal grid cells as used. We actually adopted a base
grid level of 100 × 100 in (r, ϕ), augmented with two additional refinement levels, triggered on height and momentum
variations, effectively showing a 400 × 400 resolution. Block sizes of 10 × 10 are used, and the boundary conditions
use a π-periodic treatment across the r = 0 pole [42], periodicity in ϕ, and a zero gradient (Neumann) extrapolation at
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Fig. 3. A circular dam break problem, solved on a polar adaptive grid. Left: scatter plots of h(r) at selected times. Right: contour plot of h(r, ϕ) at
= 15.

Fig. 4. The same as Fig. 3, but now solved on an adaptive Cartesian grid.

= 20. As spatio-temporal integration method, we combined an HLL scheme [32], a threestep Runge–Kutta, and a Koren
imiter [43] based reconstruction procedure, with a Courant number of 0.9.

The same problem, now solved on a Cartesian grid, under otherwise identical settings (except for adjusting the domain
nd the boundary condition on the y-borders), is displayed in the same fashion in Fig. 4. Note how the contour plot at
= 15 is visually indistinguishable from its polar variant, while the Cartesian grid now obviously samples the radial
rofile more frequently when plotted as a scatter plot of h(r) (left panel). For both the polar and Cartesian realization, the
MR that originally locates at the initial discontinuity essentially spreads across the full domain, capturing the outward
ropagating shock front and the rapid central height variation within r ≤ 5 as seen in the left panels of both figures.
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Fig. 5. The azimuthal velocity profile (left panel) for the Gresho–Chan vortex test, at increasing resolutions, in a scatter plot from the Cartesian 2D
data. The inset quantifies the 1-norm for the rotation profile deviation (solid circles) and the 2-norm error in the pressure profile (squares) and we
find better than 1st and up to second order convergence. The right panel shows the density distribution at time t = 2. The variation in density is
minute (order 1/10000), but a physically meaningful pattern emerges, indicating the liability of this equilibrium to a linear instability.

2.3. Hydrodynamical tests

In this section, we show two example tests for the HD system, where now the equation for the energy density variable
E = ρv2/2 + p/(γ − 1) is included. We set γ = 5/3, the standard value for an ideal monoatomic gas. In the first
est, a convergence study of an Euler solution is made on uniform grids, while the second test shows solutions for the
ompressible Navier–Stokes system, using AMR in combination with embedded boundaries.

.3.1. Gresho-Chan vortex
In the astrophysics literature, one finds many implementations of the HD system which exploit Smooth Particle

ydrodynamics (or SPH) techniques. These are meshless treatments of the governing conservation laws, and are in
ommon use for large-scale cosmological simulations. A frequent test for any novel SPH variant, or for general new HD
odes [e.g. 44–47], is the so-called Gresho–Chan vortex [48], which is believed to be a stationary solution to the Euler
ystem where a pressure gradient balances the centrifugal force of a rotating gas. The initial condition generally has the
orm

p =

⎧⎪⎨⎪⎩
1

γM2 + 12.5r2 0 ≤ r < 0.2
1

γM2 + 12.5r2 + 4 (1 − 5r − ln(0.2) + ln(r)) 0.2 < r ≤ 0.4
1

γM2 − 2 + 4 ln(2) r > 0.4
, (5)

for the pressure, while the rotation velocity is simply

vϕ =

{ 5r 0 ≤ r < 0.2
2 − 5r 0.2 < r ≤ 0.4

0 r > 0.4
. (6)

A uniform density ρ = 1 completes the setup, where the Mach number M can be varied, a typical value is M = 0.34641 =√
3/5. We use a square domain [−0.5, 0.5]×[−0.5, 0.5], translating the flow setup to vx and vy velocities, and use a one-

step high-order TVD method with a Monotonized Central (or ‘woodward’) limiter [23]. This scheme exploits the full
approximate Roe solver that is aware of the characteristic decomposition in its flux computation. We solve up to t = 2,
with a Courant number of 0.9. This problem is solved on uniform meshes (no AMR), of size 32 × 32, 64 × 64, 128 × 128
and 256 × 256, respectively (our block size is always 8 × 8) to demonstrate proper convergence. Info on the solution
obtained is in Fig. 5, where the left panel shows a scatter plot of the radial profile of vϕ(r) (similar to the Cartesian version
of our dam break problem in Fig. 4), this time for all the mesh sizes exploited. One can see that the azimuthal velocity
nicely converges to the analytic initial condition, and the convergence behavior is quantified in the inset in the left panel,
where the 1-norm of the error in the obtained azimuthal velocity profile is shown with circular symbols, while the 2-norm
for the error in the pressure profile is shown with squares. To guide the eye, dotted lines indicating first as well as second
order convergence are also provided. One observes that the pressure profile converges with second order accuracy, while
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he azimuthal velocity also behaves better than 1st order as soon as sufficient grid points are exploited (the 32 × 32 run
as roughly 12 grid points through the disk radius). Modern SPH variants demonstrate typically a N−0.8 convergence rate

in 1-norm [45], where N is then the equivalent 1D grid size, and hence only reveal sublinear convergence.
At right, the density profile at t = 2 for the highest resolution simulation is shown as well. To appreciate the scale, the

density ranges between [1.0001473, 0.9998174]. The density variation obtained suggests that the stationary equilibrium
configuration, which is typified by two specific radii where derivatives behave discontinuously, may well be subject to
a higher m-mode instability, with a variation in azimuth angle ∝ mϕ, and indeed the longer term evolution eventually
deviates from the initial setup. A rigorous stability analysis of the 1D rotating equilibrium confirms that the equilibrium
is liable to a number of unstable linear eigenmodes, with e.g. a global overstable m = 2 mode. It is pointed out here that
many of the published results obtained with SPH variants report a lesser degree of convergence, and ignore the fact that
the setup may be intrinsically unstable, casting doubt on quantifying errors at even later times than those used here.

2.3.2. Kármán vortex streets
A final HD test problem adds viscous source terms to the momentum and energy equations, where we intend to

simulate viscous, time-dependent flow about a cylindrical obstacle. We coded up viscosity terms corresponding to

∂t (ρv) = −∇ · (νΠ̂ ) , (7)
∂tE = −∇ · (v · νΠ̂ ) , (8)

where we introduce the traceless part of the kinetic pressure dyad through

Π̂ = −
(
(∇v) + (∇v)T

)
+

2
3
I(∇ · v) . (9)

Note that we do treat these terms as sources, although their divergence-form would also allow one to include them in the
flux definitions. As these source terms are identical for hydrodynamic and MHD applications, the viscous source terms
are encoded in a module amrvac/src/physics/mod_viscosity.t, which is then shared between the HD and MHD
systems.

For incompressible HD, where the velocity field is constrained by ∇·v = 0, it is known from experimental observations
that only the Reynolds number Re is relevant in determining the flow properties downstream of the obstacle [49]. For
a typical flow speed v0 and lengthscale l0, the Reynolds number sets the viscosity coefficient ν through Re = v0l0/ν. As
initial condition, we set units through l0 = 1, v0 = 1, and set up left–right symmetric potential flow about the cylinder,
which has radius r0 = l0/2. The detailed profiles are given by

vx = 1 +
r20
r2

−
2x2r20
r4

, (10)

vy = −
2xyr20
r4

, (11)

p = p0 +
1
2

(
2r20 cos(2θ )

r2
−

r40
r4

)
, (12)

here r2 = x2 + y2 along with cos(θ ) = x/r . The density is uniform and ρ = 1 initially, while p0 = 1/γM2, introducing a
ach number M when simulating this setup with the compressible HD system. To remain close to the expected behavior

for incompressible flow, we set M = 0.1. We simulated three cases, which only differ in the Reynolds number Re, varied
from 50, 100, to 200. The left inlet boundary exploits Dirichlet boundary conditions, setting a uniform horizontal inflow
corresponding to the far-field solution where ρ = 1, p = p0 and vx = 1. The other three lateral boundaries use a zero
gradient extrapolation. Special to this setup is an approximate treatment of the internal region r < 0.5 for the cylinder:
we actually nullify the full flow field within this radius, mimicking the vanishing of the flow components (in a viscous
boundary layer) expected for a Navier–Stokes evolution. We further use a domain [−5, 25]× [−5, 5], employ a base level
grid of 300 × 100, and use AMR allowing 3 refinement levels in total. We enforce full refinement manually about the
cylinder, and let the remainder of the domain regrid on the basis of variations in density and horizontal momentum ρvx.

A strong stability preserving Runge–Kutta scheme [14], combined with an HLL flux [32] and Koren reconstruction [43]
is used, and we show the obtained solutions at t = 85 in Fig. 6. Note that these figures show the density variation,
different from the incompressible situation where the density is uniform throughout. However, we do recover the correct
transition to turbulent flows, as the Reynolds number increases, which shows how gradual symmetry breaking occurs for
higher Reynolds numbers. The Re = 50 solution settles on a steady state, where the original left–right symmetry of the
potential flow is broken, but the up–down symmetry preserved. Higher Reynolds numbers break the up–down symmetry
spontaneously, first showing fairly regular, periodic vortex shedding (Re = 100), while even this transits to more chaotic
behavior as Re reaches 200. This is the typical behavior of Kármán vortex streets [49]. Our compressible simulations also
show some sound wave related background variations in density induced by artificial reflections (at inlet and at the
cylinder).

The same setup can also be simulated on a 2D polar AMR mesh, where the boundary conditions for vanishing flow

at the cylinder radius can be enforced exactly. An impression of a M = 0.1, Re = 200 simulation is given in Fig. 7. In
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Fig. 6. Compressible hydro simulations of flow about a cylinder, for fixed Mach number M = 0.1, at varying Reynolds number Re = 50, 100, to 200.
We show the density variation at t = 85.

this setup, the outer radial boundary treatment is less trivial (potential inflow is enforced, while open flow conditions at
the right half prevail). The pressure distribution as a function of polar angle along the cylinder radius can be compared
to actual flow measurements, as this setup has been studied extensively in terms of the drag coefficient. The variation
of the flow properties for increasing Reynolds number can then be verified, studying e.g. vortex shedding frequencies
(i.e. Strouhal number). The use of AMR helps to affordably achieve a high resolution, capturing all details in the boundary
layer (such as the separation angle, possible transitions to turbulence) and the wake region.

2.4. MHD blast wave

As an example MHD run, we use a frequently quoted MHD blast wave configuration [e.g. 50–53], which is in spirit
similar to the circular dam break setup, but where the initially uniform magnetic field B now introduces a clear anisotropy.
We use the exact setup recently demonstrated in 2D in [51], where ρ = 1, γ = 5/3, the domain is [−0.5.0.5]2 and the
magnetic field is B = (1/

√
2, 1/

√
2). A central circular region of radius rblast = 0.1 has an overpressure pin = 10, in

contrast to the exterior pext = 0.1. The plasma beta, quantifying the dimensionless ratio β = 2p/B2 (exploiting units
where the vacuum permeability µ0 = 1) ranges from 0.2 (outside) to 20 (inside the blast). The simulation is run till time
t = 0.2.

As there is no real exact solution known, we simply show plots in a format that allows direct comparison with
published 2D results. We use this setup to showcase the dimension and coordinate flexibility of our software, hence
we will run it in 2D (on [−0.5.0.5]2) and 3D Cartesian (then on [−0.5.0.5]3) setups, as well as on a 2D polar and a
3D spherical grid. In [52], similar 2D and 3D results for (nearly) identical setups were shown, on both Cartesian versus
polar (2D) and spherical grids (3D). [52] demonstrated the adaptation of a modern space–time conservation element
and solution element (CESE) scheme on otherwise fixed, but on general curvilinear grids. This CESE scheme was also
demonstrated with AMR and general curvilinear grids on MHD blast waves in [54]. In 2D polar setups, we use r ∈ [1, 2]
and ϕ ∈ [−0.12π, 0.12π ], with the initial blast at r = 1.5, ϕ = 0, as in [52]. Similarly, for the 3D Cartesian run, we
set the initial field B = (1/

√
3, 1/

√
3, 1/

√
3) to retrieve the same plasma beta regime. In the 3D spherical run, we will

simulate on a shell r ∈ [0.1, 1.1], while polar angle ϑ ∈ [0.2π, 0.8π ] and angular variation ϕ ∈ [0.7π, 1.3π ] is used. In
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Fig. 7. Compressible flow about a cylinder, computed on a polar AMR mesh, for Mach M = 0.1, at Reynolds number Re = 200. We show the density
variation at t = 85 in grayscale, and the flow field using arrows, along with the grid structure.

this spherical setup, we initialize B = (1/
√
2, 1/

√
2, 0), while putting the blast perturbation at rb = 0.6, ϑb = π/2 and

b = π . We will use AMR in all runs.
We always use a three-step time integration, an HLLC flux computation [28,55], and the third order Cada limiter [56]

n the reconstruction. A Courant parameter of 0.9 is used, but the first 10 discrete timesteps are reduced gradually. At
= 0.2, the perturbation has not yet reached any lateral boundary, so the boundary conditions are fairly irrelevant: we
sed periodic sides in the Cartesian setups, and fixed all quantities in the polar and spherical case. The 2D runs have base
esolution 64 × 64, with 3 additional refinement levels hence reaching 5122 thanks to the AMR, while the 3D runs use
43, up to effective resolutions 2563 thanks to the AMR.
In Fig. 8, the pressure (left) and density (right) are shown in contour views, where the grid structure is visible in the

ensity panel. In this setup, the initial magnetic field is oriented along the diagonal, and the various MHD wave signals
ause intricate patterns. Note in particular the pressure–density fluctuations in the north-east and south-west disturbed
egions in between the outermost (fast) shock front and the more elliptical shaped signal (outlined by the blueish color in
he pressure view). When repeating the simulation on a polar grid, shown in Fig. 9, the same details emerge, although in
hat case, the south-west part is slightly more resolved than the north-east perturbation, due to the natural r-dependence
n the polar grid structure. Our Fig. 8 compares favorably with the results shown in [51], who computed on a fixed grid,
sing a novel fourth-order finite volume method using a constrained transport approach for handling ∇ ·B = 0. Our AMR

run from Fig. 9 shows more details than the polar result in [52], due to its higher effective resolution.
We emphasize that our simulation does not exploit any staggering (all quantities are defined cell-centered), and on

both the 2D and the 3D Cartesian grid, we used the multigrid functionality to control ∇ · B = 0 as described in [13]. This
in practice implies the multigrid based solution of a Poisson problem ∇

2φ = ∇ · B∗ where B∗ is the magnetic field after
a (sub)step of any scheme applied, to correct it to a solenoidal B = B∗

− ∇φ. As our multigrid solver cannot handle the
grid variation from a polar or spherical mesh, the way to control magnetic monopole errors in those runs was using the
diffusive treatment introduced in [15], only applied to the induction equation.

The 3D simulation on the Cartesian grid is shown at left in Fig. 10, where we show the instantaneous pressure
distribution on 3 cutting planes (x = 0, y = 0 and z = 0). Note that there are (expected) notable differences between the
purely 2D and the 3D blast evolution, as recovering the 2D result would require a cylindrical, instead of a spherical, initial
blast region. The final blast wave demonstration is the spherical 3D simulation, shown at right in Fig. 10. We again show
the pressure distribution, shown on two surfaces (r = 0.6 which also gives an impression of the mesh, and ϑ = π/2).
The results compare favorably with similar 3D tests in [52].

2.5. Reaction–diffusion models

Although the last A in MPI-AMRVAC stands for advection, the code can also handle problems without advection.
The reaction–diffusion amrvac/src/rd module, which has recently been added to MPI-AMRVAC, can be used to solve
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s

Fig. 8. An MHD blast wave solution in 2D. The pressure (left) and density (right) are shown at t = 0.2, and an impression of the adaptive grid
tructure is given in the right panel.

Fig. 9. An MHD blast wave solution in 2D, simulated on a polar AMR grid. In the same format as Fig. 8, the pressure (left) and density (right) are
shown at t = 0.2, and an impression of the adaptive grid structure is given in the right panel.

equations with two chemical concentrations.5 Such systems can exhibit a wide variety of pattern-forming behavior [57],
as was first pointed out by Turing [58]. We specifically consider two types of models, the first being the Gray–Scott
model [59], which in dimensionless units has the following form

∂tu = Du∇
2u − uv2

+ F (1 − u), (13)

5 It can trivially be extended to more than two chemical species.
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Fig. 10. An MHD blast wave solution in 3D. On a Cartesian grid (left), showing the pressure on three orthogonal cutting planes (with the z = 0 one
ade translucent). On a block-AMR spherical grid (right).

Table 1
Restriction on ∆t due to reactions (first column) and due to handling diffusion explicitly for a 2D
problem with grid spacing h.
Model Reactions h = 1/128 1/256 1/512

Gray–Scott ∼1 0.76 0.19 0.048
Schnakenberg ∼10−2 1.5 × 10−5 3.8 × 10−6 0.95 × 10−6

∂tv = Dv∇
2v + uv2

− (F + k)v,

here F and k are positive constants, and the diffusion coefficients are here set to Du = 2 × 10−5 and Dv = 10−5.
ote that u is converted to v, and that the ‘feed’ term F (1 − u) drives the concentration of u to one, whereas the term
(F + k)v removes v from the system. Depending on the values of F and k, a wide range of patterns can be generated,
s demonstrated in [60]. Here we use F = 0.046 and k = 0.063.
The second type of model we consider is due to Schnakenberg [61]

∂tu = Du∇
2u + κ(a − u + u2v), (14)

∂tv = Dv∇
2v + κ(b − u2v), (15)

here κ , a and b are positive constants. The reaction terms somewhat differ from the Gray–Scott model, but the most
mportant difference is that we will use much larger diffusion coefficients: Du = 0.05, Dv = 1. These and other parameters
κ = 100, a = 0.1305 and b = 0.7695) are taken from [62] (Chapter IV, section 4.4).

.5.1. Numerical implementation
The implementation of these reaction–diffusion models in MPI-AMRVAC is handled via source terms, using the

hys_add_source interface. A standard second-order accurate discretization of the diffusive terms is employed, and
luxes are not considered in this module. The reaction terms are always handled explicitly, but for the diffusion terms
e have implemented several options. The first is to handle diffusion explicitly, which leads to a time step restriction
t < h2/(2NdimDmax), where h is the grid spacing, Ndim is the problem dimension and Dmax = max(Du,Dv) the maximum
f the diffusion coefficients. Explicit time step restrictions for the reaction and diffusion terms are tabulated in Table 1.
he large diffusion coefficients make the Schnakenberg model numerically stiff, even on relatively coarse grids.
A detailed comparison of numerical methods to handle stiff reaction–diffusion problems can be found in [62,63]. In

PI-AMRVAC, we have implemented two schemes. The first is a simple operator splitting method. The idea is to split the
ime derivative as

∂tw = F (w) = F0(w) + F1(w), (16)

here F0 are the non-stiff reaction terms and F1 the stiff diffusion terms. The effect of F0 can be handled explicitly to
btain w∗

n+1 from a past state wn, after which an implicit equation is solved to obtain the next state wn+1. We use a
ackward-Euler discretization wn+1 = w∗

n+1 + ∆t F1(wn+1), which leads to a Helmholtz equation:

∇
2wn+1 −

1
wn+1 = −

1
w∗ . (17)
∆tD ∆tD n+1
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Fig. 11. Time evolution of the density u in a Gray–Scott model with F = 0.046 and k = 0.063, see Eq. (13). Three refinement levels are used,
indicated by the white number and the gray shade. The levels correspond to an effective resolution of 1282 , 2562 and 5122 cells. In the rightmost
icture, the whole grid is at the highest refinement level.

his equation is solved with the parallel and AMR-compatible geometric multigrid solver that has recently been added to
PI-AMRVAC [13]. Such a multigrid method leads to a linear cost in the number of unknowns.
The second scheme we have implemented is the second-order accurate IMEX scheme given in [62] (eq. 4.12 of chapter

V), which is a combination of the implicit and explicit trapezoidal rule:

w∗

n+1 = wn + ∆tF0(wn) +
1
2∆t

[
F1(wn) + F1(w∗

n+1)
]

(18)

wn+1 = wn +
1
2∆t

[
F (wn) + F (w∗

n+1)
]
. (19)

hen written out, the first equation again corresponds to a Helmholtz equation that can be solved with the multigrid
olver.

.5.2. Examples
Fig. 11 shows the time evolution of a Gray–Scott model for which F = 0.046 and k = 0.063. The model is solved up to

= 1.5× 104 in a periodic 2D domain of size L× L, with L = 2. An AMR mesh with three levels is used, corresponding to
rids of 1282 up to 5122 cells, and the size of individual grid blocks is set to 82 cells. Time integration is performed with
he midpoint method using a time step ∆t = 0.5. The initial condition is the steady state u = 1 and v = 0 modified by
wo Gaussian perturbations of the form 1

2 exp(−25|r⃗ − r⃗i|
2), with r⃗1 = (0.5, 0.5) and r⃗2 = (0.55, 0.6). These perturbations

are subtracted from u and added to v. A complex maze-like pattern emerges. For other values of F and k, many other
types of patterns can emerge, see [60].6

The evolution in Fig. 11 is somewhat chaotic and therefore sensitive to small numerical errors. To compare the
numerical properties of reaction–diffusion schemes, we consider a 2D and 3D example in which we solve Schnakenberg’s
model, which has a less chaotic time evolution. Solution examples are shown in Fig. 12, both for 2D and 3D cases. As in
[62], we use a domain with sides of length L = 1, and Neumann zero boundary conditions for the species densities.
The initial condition is v = b/(a + b)2 and u(r⃗) = a + b + exp(−100|r⃗ − r⃗0|

2), where r⃗0 = (1/3, 1/2) in 2D and
r0 = (1/3, 1/2, 1/2) in 3D.

Fig. 13 shows the convergence behavior of the IMEX and the split scheme for Schnakenberg’s problem in 2D solved
on a uniform grid of 2562 cells. The solution at t = 2 is compared to a solution computed with an explicit third-order
scheme and a small time step ∆t = 3× 10−6. The IMEX scheme (from Eq. (19)) performs well and exhibits second order
convergence. The split scheme converges more slowly, with slightly less than first order convergence, which indicates
that there are large splitting errors. These results are in agreement with [62].

To compare the computational costs of the schemes in MPI-AMRVAC, we ran the 2562 test case using 4 cores of an AMD
2700X CPU. Per time step, each scheme took: explicit 1.1 ms, IMEX 7.7 ms and split 7.2 ms. For the latter two schemes,
the multigrid solver consumed about 90% of the CPU time. This percentage is so high because the reaction terms are
computationally cheap to evaluate. For the multigrid solver, iterations were performed until the maximum residual was
less than 10−7 times the right-hand side of Eq. (17). The explicit scheme is the cheapest per time step, but it requires
orders of magnitude more steps than the other methods for stability.

3. Conclusions and outlook

We gave an overview of currently available PDE systems in the open-source software MPI-AMRVAC, demonstrating its
versatility in dimensionality, but also in the type of PDE systems to be solved. For the (M)HD system, to which it was
originally targeted, various conservative, shock-capturing discretizations are implemented. With minimal effort, any near-
conservative system may be implemented as a new physics module, and the framework offers a dimension-independent,

6 Interested readers can also interactively explore such patterns at https://mrob.com/pub/comp/xmorphia/ogl/index.html.

https://mrob.com/pub/comp/xmorphia/ogl/index.html
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a

a

Fig. 12. Time evolution of the density u in Schnakenberg’s model, see Eq. (14). Top row: 2D case on a 2562 uniform grid, bottom row: 3D case on
1283 uniform grid.

Fig. 13. Time integration error (two-norm) of an IMEX and a split scheme for solving Schnakenberg’s model on a 2562 uniform grid. The solution
t t = 2 is compared to a solution computed with a small time step. The dashed lines indicate first and second order convergence.
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parallelized means for performing high-resolution, domain decomposed or block grid-adaptive computations. The recent
coupling to a geometric multigrid solver extends its versatility to any problem where Poisson or Helmholtz type
constraints arise, and this was demonstrated here for a newly added reaction–diffusion set of equations. For stiff source
terms, such as particular diffusion terms in these reaction–diffusion problems, we can use our framework to compare
modern variants of IMEX schemes, with standard explicit treatments. We documented here how a new PDE system is
readily added to the source code, and welcome any extension of our software to explore intricate spatio-temporal behavior
of nonlinear PDEs.

As illustrated on both shallow water and MHD Riemann problems, the code can handle simulations on polar, cylindrical
or spherical grids, which require the handling of geometric source terms. Generic gradient, vector divergence and vector
curl operations are implemented in the amrvac/src/mod_geometry.t module, and they can all be combined with
directional stretching (e.g. demonstrated for radial directions in [8]). As stated earlier, MPI-AMRVAC has been used
successfully to handle not only Newtonian (M)HD, but its extension to special relativistic (M)HD as well [11], where
also a typical 3 + 1 space–time formulation leads to a system of the form (1). Advanced applications to the extreme
conditions encountered in pulsar wind nebulae [64,65] focused on such relativistic plasma behavior in Minkowski space–
time. Meanwhile, code variants that can handle also non-orthogonal curvilinear coordinates, where one must distinguish
between covariant and contravariant vector representations, have been developed [66,67]. The Black Hole Accretion
Code or BHAC [67] solves the covariant general relativistic MHD (GRMHD) equations in a 3 + 1 foliation of space time,
where a flexible data structure has been introduced to handle any four-metric. A recent code comparison project [68]
between the most modern software efforts to simulate GRMHD conditions as suitable in the vicinity of black holes
showed that BHAC meets all standards of merit for guiding and interpreting contemporary astrophysical research. The
BHAC code has recently been extended with an IMEX scheme to handle the extension to general relativistic, resistive MHD
equations [69], where all covariant Maxwell equations, especially also those for electric field evolutions, enter. The IMEX
scheme then treats the stiff resistive source terms, and can use a staggered representation of the GR(R)MHD variables, to
ensure that magnetic monopoles only occur at machine precision [70]. The code structure and modularity, especially in
its parallelization and AMR strategy, is fully shared between the MPI-AMRVAC and BHAC code efforts.

Future work can extend the code applicability to incompressible (M)HD regimes, kinematic dynamo studies where
nly the induction equation for the evolution of B from MHD is handled, or applications involving self-gravity.
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