
Exact Algorithms for Maximum Transitive
Subgraph Problem

Sourav Chakraborty1 and Nitesh Jha2

1Chennai Mathematical Institute, Chennai, India, e-mail: {sourav, nj}@cmi.ac.in

We study the problem of computing a Maximum Transitive Subgraph (MTS) of a
given directed graph. This problem is known to be NP-hard. We give an algorithm
that runs in time O(4k

2
n2) to output an MTS for a graph with treewidth k.

1. Introduction

Given a directed graph G = (V,E), a subgraph S of G is said to be transitive if for every pair
of edges u→ v and v → w in S, the edge u→ w is also present in S. S is called a Maximum
Transitive Subgraph (MTS) if it is of the largest size (number of edges) possible. The same
problem can also be posed in a weighted setting where edges have weights. Our goal in this
article is to compute an MTS of a given graph.

The transitivity structure in a binary relation (directed graph) is a fundamental object that
has a rich history in multiple areas of mathematics and computer science. Since transitivity
is a desired structure, it is approached in multiple ways. Two most common are transitive
closures and transitive subgraphs. The problems can then be posed in the form of an optimal
or approximate solution. Problems have also been studied under the notion of distance from
a transitive structure.

The problem of computing an MTS for a given graph is a well known NP-hard problem [9].
The recent work [2] gives a simple 0.25-approximation algorithm of obtaining an MTS in a
general graph. For the case where the underlying undirected graph is triangle free, it gives a
0.874-approximation for the MTS problem. The idea there is to look at the related problem of
directed maximum cuts in the same graph. We continue the study of algorithms for computing
the MTS under different input restrictions.

Our main goal in this article is to understand the parameterized complexity of the MST
problem. A parameterization of a problem assigns an integer k to each input instance I and
we say that a the problem is fixed-parameter tractable if there is an algorithm that solves the
problem in time f(k) · |I|O(1). Here, f is any computable function. First systematic study of
parameterized complexity was done by Downey and Fellows [5]. More recent account of the
field can be found in the texts [6, 7, 4].

Arnborg et al. [1] showed that the problem of MST is fixed parameter tractable. They
give an alternate proof of Courcelle’s theorem [3] and express the MST problem in Extended
Monadic Second Order, thus giving a meta-algorithm for the problem. This algorithm is not
explicit and f is known to be only a computable function.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/326905602?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In the context of transitivity, [8] shows that the problem of deciding whether a directed
graph has a transitive induced subgraph of size k is fixed-parameter tractable.

In Appendix A, we give a poly-time algorithm for computing an MTS in a directed tree.
In Appendix B, we give our first generalisation. For a given directed graph with treewidth at
most k, we give an algorithm which is runs in time O(nk

2
). The idea here is to recursively use

separators and combine the solutions of the two parts. We improve this algorithm in Section
2, where we give an algorithm that runs in time O(4k

2
n2) to output an MTS for a graph with

treewidth k. The main result is stated below.

Theorem 1. There exists an algorithm that runs in time O(4k
2
n2) to output an MTS for a

graph with treewidth k.

Notation

For any set S and x ∈ S, define S − x = S \ {x}. Let G = (V,E) be a given directed graph.
For v ∈ V, e ∈ E, define G − v to be the graph obtained by removing the vertex v from G
and G \ e represents the graph obtained by deleting the edge e from G. The notation F ⊆ G
defines a subgraph F of G. For any subgraph F of G, V (F) defines the vertex set of F and
E(F) defines the edge set of F . For U ⊆ V , G(U) defines the induced subgraph on U .

For A,B ⊆ V , define E(A,B) = {u→ v : u ∈ A, v ∈ B} and E(A,B) = E(A,B) ∪ E(B,A).
In the context of transitivity, we say that the two-path u→ v → w is complete if u→ w ∈ E.
If u→ w /∈ E, the two-path is called incomplete.

2. MTS is FPT Parameterised by Treewidth

We first introduce the basics of tree decomposition of an undirected graph G = (V,E). We
borrow the notations from [4]. Let T = (T, {Xt}t∈V (T)) be a tree decomposition, where T is
a tree whose every node t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that the
following three conditions hold:

1. ∪t∈V (T)Xt = V (G).
2. ∀ edge (u, v) ∈ E(G),∃t ∈ T with u, v ∈ Xt.
3. ∀u ∈ V (G), the set Tu = {t ∈ V (T) : u ∈ Xt} induces a connected subtree of T .
Further, we use what is called a nice tree decomposition T = (T, {Xt}t∈V (T)) of G. Such a

decomposition has the following properties.
1. The leaf and the root nodes are empty.
2. For every non-leaf node t is one of the following types:

a) Introduce: t has exactly one child t′ with Xt = Xt′ ∪ {u} for some u /∈ Xt′

b) Forget: t has exactly one child t′ with Xt = Xt′ \ {u} for some u ∈ Xt′

c) Join: t has two children t′ and t′′ with Xt = Xt′ = Xt′′ .
We perform a bottom up dynamic programming on T starting from the leaves and ending

at the root. We describe the calculations performed at a node of any type (categorised above)
using the computation performed at the children nodes. For any node t ∈ T , denote by Vt the
union of the bags associated with all the nodes in the subtree rooted at t, including Xt. Let
Gt define the induced graph on Vt.

We define a table entry m[t, F, I, O, U, Y] for each node t ∈ T , for each transitive subgraph
F ⊆ E(Xt) and for each partition (I,O, U, Y) of Xt. The entry M = m[t, F, I, O, U, Y] contains
the MTS on G(Vt) with the restriction that G(Xt) ∩M = F and in M ,

• no edges from the set E(I, Vt \Xt) are allowed,
• no edges from the set E(Vt \Xt, O) are allowed,
• any edge from the set E(Vt \Xt, U) is allowed, and
• no edges from the set E(Vt \Xt, Y) are allowed.

Vertices in U are said to be unrestricted. This partitioning has been defined to support the
Join operation at a join node in the tree decomposition. The idea is same as before - avoid
two-paths across separated partitions and avoid incomplete two-paths in the separator.

Leaf node: The only valid cell entry here is m[t, φ, φ, φ, φ, φ] = φ.

Introduce node: Suppose node t has child node t′ such that Xt = Xt′ ∪{v}. For any given
partition (I,O, U, Y) of Xt and F ⊆ G(Xt), we need to compute m[t, F, I, O, U, Y].

First notice that the introduced vertex v can have edges to only the vertices in the set Xt′ .
Also, by definition, MTS(Gt) ∩ G(Xt) = F . Applying both these conditions together, if v is
not in V (F), no edge incident on v can be included in the MTS of Gt. Hence, for v /∈ V (F),

m[t, F, I, O, U, Y] = m[t′, F, I − v,O − v, U − v, Y − v]

Now we consider the case where v ∈ V (F). For a vertex r ∈ V (G) and X ⊆ E(G), define
the in-neighbours of r in X as N i

X(r) = {s : s→ r ∈ X} and the out-neighbours of r in X as
No

X(r) = {s : r → s ∈ X}. Define NX(r) = N i
X(r) ∪No

X(r).
Consider the set NXt(v) \ NF (v). These neighbours of v in Xt, wherever they may lie in

the partition (I,O, U, Y), can be kept as is in their designated partitions for recursion. The
argument is as follows. Consider u ∈ NXt(v) \NF (v). We want to check if any edge through
u breaks transitivity. If u /∈ V (F), then u does not interact with any other vertex in Xt by
definition and hence transitivity is maintained as before. If u ∈ V (F), any edge in F incident
on vertex u is already a part of a transitive set since F is transitive by definition.

We now deal with the set NF (v). Consider a vertex u ∈ NF (v). Following useful cases arise.
1. u ∈ I ∩ N i

F (v): Here, an edge passing through u may break the transitivity. Such a
vertex u must be removed from I and placed in O.

2. u ∈ O ∩No
F (v): This is similar to the last case. We should move u from O to I.

3. u ∈ U ∩NF (v): Since the edges E(u, Vt \Xt) are unrestricted to participate in an MTS,
transitivity may break in two ways. Incomplete two-path of the form r → u → v or
v → u→ r where r ∈ Vt \Xt may result. We should disallow these cases.

4. u ∈ Y ∩NF (v): This case is fine as E(u, Vt \Xt) = φ.
We incorporate all these restrictions in the following computation.

F ′ = F − v
I ′ = (I \N i

F (v)) ∪ (O ∩No
F (v)) ∪ (U ∩No

F (v))

O′ = (O \No
F (v)) ∪ (I ∩N i

F (v)) ∪ (U ∩N i
F (v))

U ′ = U \NF (v)

Y ′ = Y

The update method is then m[t, F, I, O, U, Y] = m[t′, F ′, I ′, O′, U ′, Y ′] ∪ F .

Forget Node: Suppose node t has child t′ such that Xt = Xt′ \{v}. We update the current
entry as follows:

m[t, F, I, O, U, Y] = maxm[t′, F ′, I ′, O′, U ′, Y ′]

where the maximum is over the following conditions:

F ′|Xt = F

I ′ = I,O′ = O, Y ′ = Y

U ′ = U ∪ {v}

Here, the transitive set F ′ is allowed to include the vertex v resulting in the condition
F ′|Xt = F . We also allow v to have unrestricted edges since this effectively covers all the
cases - only incoming edges on v, or only outgoing edges from v, or the case where v has both
incoming and outgoing edges.

Join Node: Suppose node t has children t1 and t2 such that Xt = Xt1 = Xt2 . Define
arbitrary partitions (to be fixed below) Xt1 = I ′]O′] U ′] Y ′ and Xt2 = I ′′]O′′] U ′′] Y ′′.
We have the following rule for updating the current entry:

m[t, F, I, O, U, Y] = max(m[t1, F, I
′, O′, U ′, Y ′] ∪m[t1, F, I

′′, O′′, U ′′, Y ′′])

under the restriction that: I ′ ⊇ I, I ′′ ⊇ I and O′ ⊇ O,O′′ ⊇ O
For each vertex v ∈ U , one of the following is true: v ∈ I ′∩I ′′, or v ∈ O′∩O′′, or v ∈ U ′∩Y ′′,

or v ∈ Y ′ ∩ U ′′.
Here, we keep the F same in both t1 and t2 as required. In order to join at any vertex v in I,

we demand such a vertex must be present in both I ′ and I ′′ but we also allow these sets to be
larger. This is required as this leaves the possibility of a larger combination while transitivity
is still maintained. A similar restriction is employed on O′ and O′′.

The vertices v in U are unrestricted but we need to be careful while using unrestricted
vertices in the join operation. Such a vertex should only be allowed to be unrestricted on one
side but completely isolated on the other side. This gives us the possibilities v ∈ U ′ ∩ Y ′′ or
v ∈ Y ′ ∩ U ′′. But this restriction forbids the possibility of edges being used on both sides of
v. Such a case could occur if v uses only incoming (or outgoing) edges on both the sides. To
accommodate this, we have the options of v ∈ I ′ ∩ I ′′ or v ∈ O′ ∩ O′′. Finally, we take the
maximum over all the legitimate join operations.

We now estimate the running time of our algorithm. Assuming the input graph has treewidth
k, each node Xt is of size at most k + 1. The number of partitions of type (I,O, U, Y) of Xt

is at most 2k+4. The number of transitive subgraphs F of Xt is at most 2k
2
. A single update

of m[·] at any node can be done in at most n2 steps. So a simple upper bound to the time
complexity is 4k

2
n2.

3. Conclusion

In this article, we have continued the systematic study of computing a Maximum Transitive
Subgraph of a given directed graph addressed recently in [2]. We show that this problem
is fixed-parameter tractable when parameterized by treewidth. In particular, we give an al-
gorithm that runs in time O(4k

2
n2) to output an MTS for a graph with treewidth k. An

immediate question that arises is – whether we can reduce the exponent k2 to O(k).
Another interesting question that we have not addressed here is a lower bound for this

problem. It would be interesting to arrive at any lower bound under the standard assumption
of ETH.

References

[1] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Problems easy for tree-decomposable
graphs (extended abstract). In Automata, Languages and Programming, 15th International
Colloquium, ICALP88, Tampere, Finland, July 11-15, 1988, Proceedings, pages 38–51,
1988.

[2] Sourav Chakraborty, Shamik Ghosh, Nitesh Jha, and Sasanka Roy. Maximal and maximum
transitive relation contained in a given binary relation. In Computing and Combinatorics
- 21st International Conference, COCOON 2015, Beijing, China, August 4-6, 2015, Pro-
ceedings, pages 587–600, 2015.

[3] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

[4] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

[5] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, 1999.

[6] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

[7] Rolf Niedermeier. Invitation to fixed-parameter algorithms. Oxford University Press, 2006.

[8] Venkatesh Raman and Somnath Sikdar. Parameterized complexity of the induced subgraph
problem in directed graphs. Inf. Process. Lett., 104(3):79–85, 2007.

[9] Mihalis Yannakakis. Node- and edge-deletion np-complete problems. In Proceedings of
the 10th Annual ACM Symposium on Theory of Computing, May 1-3, 1978, San Diego,
California, USA, pages 253–264, 1978.

A. MTS in Trees

In the following discussion, an edge-rooted tree is a rooted tree in which the root has only one
child. We identify the root of an edge-rooted tree with a root edge e and denote the tree as
Te.

The problem is to compute an MTS of a given directed tree T (the underlying undirected
graph is a tree). We can root the tree at a vertex which has only outgoing edges. Let this
root be r and e1, . . . , el denote the outgoing edges from r. Denote the edge-rooted trees at r
by Te1 , . . . , Tel .

Note that the Tei
′s are completely independent of each other and hence their MTS can be

computed independently.

Since there are only outgoing edges from the root r,

MTS(T) =
⋃
i∈[l]

MTS(Tei)

We now describe how to compute MTS(Tei). We can divide the set of transitive subgraphs
of Tei into two subsets and compute their maximums:

1. MTS+(Tei): maximum over transitive subgraphs that include the edge ei,

2. MTS−(Tei): maximum over transitive subgraphs that exclude the edge ei.

Then,
MTS(Tei) = max{MTS+(Tei),MTS−(Tei)}

The maximum here is over the size of the transitive sets.

Computing MTS+(Tei)

This is further divided into two cases.

Case 1: ei is a ‘down’ edge

Let ei be the edge u→ v such that the tree Tei is rooted at the vertex u. Let the vertex v has
outgoing edges c1, . . . , cs and incoming edges c′1, . . . , c

′
t. Then,

MTS+(Tei) =
[
∪i∈[s] MTS−(Tci)

] ⋃ [
∪i∈[t] MST (Tc′i)

]
The reason we don’t include the edges ci in the first union in this calculation is because this
will lead to a possible inclusion of 2-path (whose first edge is ei) in the MTS set.

Case 2: ei is an ‘up’ edge

Here ei = v → u is in ‘upward’ direction of the rooted tree Tei . The algorithm is symmetrical
to Case 1.

Computing MTS−(Tei)

Here, the direction of ei is not important. Let the tree Tei be rooted at u and v be the other
vertex of edge ei. Let the vertex v has outgoing edges c1, . . . , cs and incoming edges c′1, . . . , c

′
t.

Let,

M1 =
[
∪i∈[s] MTS(Tci)

] ⋃ [
∪i∈[t] MST−(Tc′i)

]
M2 =

[
∪i∈[s] MTS−(Tci)

] ⋃ [
∪i∈[t] MST (Tc′i)

]
Then, we have,

MTS−(Tei) = max{M1,M2}

The base cases are defined naturally.

Dynamic programming over edge-rooted trees

Though we defined the solution using a top-down approach, we observe that the subproblems
are calculated every time there is a call of type T (ei). The same subproblem is called many
times as part of computation of other subproblems. To avoid this, we do the actual computation
in bottom up manner. For each edge-rooted tree Te, we keep in memory the set MST (Te).
The order of computation of is as follows. We do a breadth-first search at root vertex r. We
compute all the MST (Te) for edges at the largest level first. These sets are just the edges
themselves. In next stage, we decrease the level by 1. We go on doing this until we compute
the MST (Te) values for edges at the level 0. This gives us a poly-time algorithm to compute
an MST of a directed tree.

B. MTS in Bounded Treewidth Graphs: First Attempt

We try to generalize the idea used in case of trees to compute the MTS for graphs. In particular,
we want to compute the MTS for weighted-directed graphs whose underlying undirected graph
has bounded treewidth. In the case of trees, at every step, we use a vertex that separates a
graph into two (or more) disjoint subgraphs. We could then apply the algorithm recursively on
these subgraphs and combine the results to compute the MTS for the current tree. For this,
we will need the following lemma which ensures that small treewidth implies small balanced
separators.

Lemma 2. If G is a graph with treewidth at most d, then we can find a 1/2-balanced separator
S of G in polynomial time, such that |S| ≤ d+ 1.

The proof of Lemma 2 can be found in Lemma 7.19 in [4]. Let G = (V,E) be a graph with
treewidth at most d− 1. Then we can find a separator S that separates the graph into vertex
sets L and R such that, V = S] L] R, S ≤ d, and L,R ≤ |V |/2. We need the following
subgraph notation to define a useful structure which we use in our algorithm. For A,S ⊆ V
such that A∩S = φ, T be a transitive subgraph of E(S) and (I,O, U, Y) be vertex partitioning
of S, define G(A,S, T, (I,O, U, Y)) to be a subgraph of G such that,

• all the edges in E(A) are included,

• only the edges in T are included from E(S),

• for the edges between the setsA and S, all the edges in E(A, I), E(O,A), E(A,U), E(U,A)
are included and no edges between A an Y are included.

We describe Algorithm 1 in detail now. The high level idea is described in Figure 1. After
we compute the balanced-separator S, we work separately on L ∪ S and R ∪ S and combine
the MST calculated from these two subproblems to compute the MST for the main problem.
In order to be able to combine the two solutions, we force the transitive set from S to be same
in both the solutions. We go over every possible subset T of S and recurse on both left and
right side such that the solution from both the sides must contain exactly the set T from the
edges in S. To do this, we assign the weight ∞ to the edges of T in the recursive calls.

Notice that any combining a solution from left and right (even with a common set T in the
separator) may bring in discrepancies in transitivity. For example, a two-path a→ b→ c with

Algorithm 1: MTS(G,w): Maximum Transitive Subgraph of weighted digraph G

Input : A directed graph G = (V,E) with edge weights w : E → N+ such that the
underlying undirected graph of G has treewidth at most d− 1

Output: An MTS of G

1 max←
∑

e∈E w(e)
2 compute a 1/2-separator S of G of size at most d, with components L and R

3 M ← φ
4 foreach transitive T ⊆ E(S) do
5 w′ ← w
6 foreach e ∈ T do
7 w′(e)← max
8 foreach partition (I,O, U, Y) of S do
9 foreach U ′ ⊆ U do

10 M ′ ←MST (G(L, S, T, (I,O, U ′, Y ∪ (U \ U ′))), w′)
11 ∪ MST (G(R,S, T, (I,O, U \ U ′, Y ∪ U ′)), w′)
12 if w(M ′) > w(M) then
13 M ←M ′

14 return M

a ∈ L, b ∈ S, c ∈ R may creep in. There can be no completing edge a→ c since vertices a and
c are separated by set S. To take care of this, we partition S into four parts (I,O, U, Y). The
subgraph that we pass as argument to the recursive calls has the useful features, such as: only
incoming edges are present on vertices in set I. This allows us to combine the results from
left and right as no two-paths can have a vertex of I at its center. Similarly we restrict only
outgoing edges from the vertices in O. We restrict the vertices in Y to have no edges since
a solution may not use all the vertices in S. Finally, we allow a part U ′ of U to have all the
original edges on one side and have no edges on the other side. One can think of U ′ as being
unrestricted on one side and restricted to have no participation on the other side.

Figure 1: A high level description of Algorithm 1

I

o

Y

U

L RS

T

Theorem 3. Given (G,w), algorithm MTS(G,w) outputs an MTS of G.

Proof. We prove it by induction on the number of vertices. For base case, we consider graphs

on 3 vertices. It is straightforward to see that the statement is true in this case.
Let H be an MTS of G. Consider any separator S that separates the graph G into L and R

(vertex sets). Let T ′ = H ∩G(S). Notice that (H ∩G(L)) ∪ T ′ is an MTS for G(L ∪ S).
Define partition (I ′, O′, U ′ = (U ′1, U

′
2), Y

′) of S based on the edges in E(S, V (H) ∩ L) and
E(S, V (H) ∩ R) and our definition of such a partitioning earlier. Here U ′1 is unrestricted on
the left side and U ′2 is unrestricted on the right side.

Now since Algorithm 1 loops over all partitions (I,O, U = (U1, U2), Y) of S, it will also
hit the particular partition (I ′, O′, U ′ = (U ′1, U

′
2), Y

′) at one point. At this point a call to
MTS(G(L, S, T, (I ′, O′, U ′1, Y

′), w)) is made. Using induction, MTS(G(L, S, T, (I ′, O′, U ′1, Y
′), w))

returns the MTS of the graph G(L, S, T, (I ′, O′, U ′1, Y
′). This would mean that

|MTS(G(L, S, T, (I ′, O′, U ′1, Y
′), w))| = |(H ∩G(L)) ∪ T ′|

A similar argument can be given for,

|MTS(G(R,S, T, (I ′, O′, U ′2, Y
′), w))| = |(H ∩G(R)) ∪ T ′|

Since we combine the MTS for G(L ∪ S) and G(R ∪ S) via the same transitive set T ′ in the
both the cases, we conclude that,

|MTS(G,w)| = |H|

We now consider the complexity of Algorithm 1. From Lemma 2, we can assume that each
partition is of size at most half of original number of vertices. For a separator of size k, the
number of transitive subgraphs inside the separator can be at most 2k

2
. The number of 4-

partitions of the separator can be at most 2k+3. There two recursive calls, computing their
union would need O(n2) time. This gives us the recurrence T (n) ≤ 2k

2
2k+3k(T (n/2)+O(n2)).

Solving this, we get a running time of O(nk
2
).

	Introduction
	MTS is FPT Parameterised by Treewidth
	Conclusion
	MTS in Trees
	MTS in Bounded Treewidth Graphs: First Attempt

