
A Database System with Amnesia

Martin Kersten
CWI

Amsterdam, The Netherlands
martin.kersten@cwi.nl

Lefteris Sidirourgos
CWI

Amsterdam, The Netherlands
lsidir@cwi.nl

ABSTRACT
Big Data comes with huge challenges. Its volume and velocity
makes handling, curating, and analytical processing a costly affair.
Even to simply “look at” the data within an a priori defined budget
and with a guaranteed interactive response time might be impossi-
ble to achieve. Commonly applied scale-out approaches will hit the
technology and monetary wall soon, if not done so already. Like-
wise, blindly rejecting data when the channels are full, or reducing
the data resolution at the source, might lead to loss of valuable ob-
servations.

An army of well-educated database administrators or full soft-
ware stack architects might deal with these challenges albeit at
substantial cost. This calls for a mostly knobless DBMS with a
fundamental change in database management.

Data rotting has been proposed as a direction to find a solu-
tion [10, 11]. For the sake of storage management and responsive-
ness, it lets the DBMS semi-autonomously rot away data. Rotting
is based on the systems own unwillingness to keep old data as eas-
ily accessible as fresh data. This paper sheds more light on the
opportunities and potential impacts of this radical departure in data
management. Specifically, we study the case where a DBMS selec-
tively forgets tuples (by marking them inactive) under various am-
nesia scenarios and with different implementation strategies. Our
ultimate goal is to use the findings of this study to morph an exist-
ing data management engine to serve demanding big data scientific
applications with well-chosen built-in data amnesia algorithms.

1. INTRODUCTION
Big Data is fueled by the ease at which data can be collected and

stored for subsequent analysis. It has become so easy to hoard mas-
sive amounts of data, that most of it will be stored away and never
be looked at after ingestion. The (management) costs for storing
such vast amounts of data becomes a burden for research institutes
and businesses alike. Costs that are not only increased because of
hardware purchases and energy bills, but also because the utility
value of the data quickly diminishes over time. Too much data, or
too old data, becomes irrelevant because either one sees the same
observations over and over again, or data becomes stale and of less

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2017.
8th Biennial Conference on Innovative Data Systems Research (CIDR ‘17)
January 8-11, 2017 , Chaminade, California, USA.

economic or scientific value. What was relevant before, becomes
irrelevant and costly to keep around or digest. Data analysts are bet-
ter served by deleting or moving irrelevant data out of the critical
query execution path.

Furthermore, there is an end-user misconception that we can af-
ford to keep everything around forever in (cold) storage. This is not
true and only half of the story. Although storage for fast growing
databases is cheap (e.g., AWS Glacier charges $48 per TB/year in
2016) using this data becomes prohibitively more expensive over
time, both money wise and by input latency (AWS Glacier data
retrieval cost is $ 2.5- 30 per TB and can take up to 12 hours). Al-
though subsequent Cloud processing power is available, it is usu-
ally placed far from the cheap secondary storage. Thus, maintain-
ing a wisely chosen subset of active records in faster memory is
needed to cut down on the cost of processing.

A naive answer to the problems of storing big data and the cost of
scaling-out data management is to discard data upstream, i.e., drop
most data at the source where they are produced. For example, in
a scientific instrument the sensors transmit with smaller rates than
what they are capable of, or business events are logged per inter-
vals instead of continuously. But this approach suffers from losing
potentially important data; valuable information might be blindly
ignored. We need better ways to either digest data quickly or forget
data when we can afford it without losing too much information.

Data rotting has been proposed as an alternative technical solu-
tion [10, 11]. This vision for a new generation of database systems
is rather radical. It challenges common belief that a prime purpose
of a (scientific) database warehouse system is to store data forever,
and not to let it rot away. However, if we consider the fundamental
design principal of a database system to be to retain information
and to make it quickly accessible, then guaranteeing there will be
no data loss is just a direct consequence of that initial principal. In-
formation availability and data storage are considered interchange-
able concepts, but this is not to be always the case. In the Big Data
era, where data is overwhelming, we can define strategies to forget
many data items and still retain the information.

For example, if you are only interested in the average value over
a series of observations, then you can safely drop two tuples that
together do not affect the average measured. The average infor-
mation is guaranteed with a smaller database footprint. If you are
interested in a profile analysis over your data, then identical tu-
ples are not necessarily needed. Maintaining a simple count on the
number of occurrences of the same observation suffices. Evidently,
observations that are constrained by a Data Privacy Act should be
forgotten within the legally defined time frame.

In this paper, we study the effect of forgetting data in the context
of a given database workload setting. How much information loss
would there be and how bad could it get. Given these observation,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/326905596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

we illustrate different strategies to retain information while forget-
ting tuples. To quantify the amount of acceptable information “re-
tention” we define a number of metrics and present the simulated
results.

Since the effects of data amnesia strongly depends on the data
semantics, its distribution and update/query workload, we do not
foresee a simple mathematical information theoretic model to come
at rescue. At least, not at this stage of the research. Therefore, to
gain quick insight we use a DBMS skeleton implementation. We
implement a series of prototypical data distributions, query work-
loads, and amnesia strategies.

The simulation studies confirm our hypothesis that a careful choice
of amnesia technique can keep the storage footprint within tight
bounds for a given query/update workload. With the results of this
study, theoretical micro models may come into view.

Finally, the question remains on what happens to forgotten data.
A DBMS might be as radical as to delete all data being forgotten.
A lighter and more feasible option is to stop indexing the forgotten
data. That is to say that a complete scan will fetch all data, but a fast
index-based query evaluation will skip the forgotten data. A more
cost-effective option is to move forgotten data to cheap slow cold-
storage. Finally, a possibly poor information retention approach
would be to keep a summary, i.e., a few aggregated values (min,
max, avg) of all the forgotten data. This will reduce the storage
drastically but the DBMS will only be able to answer specific ag-
gregation queries without making available any other details.

As far as we are aware, this is the first attempt to get a handle on
the complications that arise from data amnesia. This study identi-
fies the fundamental design choices to transform an existing system
to elicit the effects of forgetting data in a real life application.

Furthermore, it uncovers a barren landscape for database research,
covering new ways for data storage, indexing and (adaptive) query
processing, and taking statistical sampling based approaches to a
new level of effectiveness.

We next describe the setup of our Data Amnesia Simulator, its
architecture, workload and information metrics. In Section 3 we
introduce a snippet of the possible strategies for forgetting data
in a controlled way. They are used to generate our experimental
findings in Section 4. Section 5 provides our research vista on the
landscape of database amnesia techniques.

2. A DATABASE AMNESIA SIMULATOR
Given the lack of theory and experience on the impact of database

amnesia in the context of a given data distribution and workload,
we developed a small-scale database amnesia simulator. It is solely
geared at acquiring quick insights, scouting the landscape of amne-
sia techniques without concern of all the bells-and-whistles of a
complete DBMS.

2.1 Database Architecture
The simulator is a skeleton of a columnar DBMS written in C 1.

Its schema is fixed and consists of a collection of columns. Keeping
things simple, we only consider tables filled with integers in the
rangeR = 0, . . . ,DOMAIN with a predefined distribution.

We expect that database amnesia is strongly influenced by the
data distributions and query workload. For the experiments re-
ported in this paper, we use the following distributions to reflect
real life cases:

● serial, to model both an auto-increment key and a temporal
order of tuple insertions,

1The simulator code is available from the authors

● uniform, to model data distributions mostly found in bench-
mark tables such as TPC-H,

● normal, to model normal data distributions around the DOMAIN
range mean with a standard deviation of 20%.

● skewed, taken from a Zipfian distribution to model a more re-
alistic scenario, such as the Pareto principle (i.e., 80-20 rule)
where some (random) values are dominant,

For each table T , we keep a record of active and forgotten tuples.
It provides a basis for comparing query results with and without
amnesia. The granularity is purposely kept to a single record since
we are mostly interested in trends rather than speed. In a full-blown
system the marking can be aligned with disk-blocks, file-segments,
row identifiers, or value ranges. Another strategy for large produc-
tion systems is to forget the tuples by either moving them to cold
storage or physically remove them from the index structures used
at query evaluation.

In our experiments and at any point in time, the database storage
requirements in number of tuples in each table, remains constant
and it is equal to DBSIZE. In this way we simulate a tight storage
budget constraint. In a more realistic scenario, one might want
to constraint the growth instead of the size of the database. For
example, if a database starts by using half of the available RAM,
do not let it grow beyond the 90% mark. This will be achieved
by simply forgetting more and more tuples as you reach the upper
limit. Another consideration will be bounding the processing time
for the workload, but this is left for future work on data amnesia.

2.2 Query Workload
Forgetting data can be harmful for it leads to loss of informa-

tion. However, it also strongly depends on the application. If we
are only interested in aggregated summaries over scientific data,
then missing a few tuples may not be too bad. The error introduced
vanishes behind the noise encountered by taking the observations.
Contrary, if the data is about unique standing payments, then for-
getting such information would be a big inconvenience. Therefore,
ideally, knowledge about all queries and their frequency to be ran
against a database would make it possible to identify if and how
long a tuple is active before it can be safely forgotten. Collecting
such statistics is a good start to assess what data amnesia an appli-
cation can afford.

For the simulator in this work, we only focus on typical database
benchmark query templates. Given the unbounded space of SELECT-
PROJECT-JOIN queries we carve out a well understood subspace for
our simulation. The base line for our experiments are simple range
queries over a database table, controlled by a selectivity factor S.
A selectivity factor S = 1.0 would expose all forgotten tuples as
an imprecision of the result set. In other words, if a range query
requests all tuples, then the answer will be incomplete exactly as
much as the number of forgotten tuples. Conversely, a range query
with a small selectivity factor S = 0.01 is less susceptible to forgot-
ten tuples. There is a smaller chance a forgotten tuple to be part of
the query range predicate, especially if the amnesia strategies are
picked correctly.

The second query group involves simple aggregations over sub-
ranges, e.g., the average (AVG). Aggregations are more robust
against forgotten tuples. For example, any pair of tuples with an-
tipodal values around the average if removed won’t change the out-
come. Moreover, the probability of a forgotten tuple to greatly
distort the average value depends on the standard deviation of the
value distribution.

Clearly, data distribution and query format can lead to different
forms of amnesia and different levels of information loss. Next, we

define a number of metrics to measure how much information is
retained after a batch of tuples has been forgotten.

2.3 Information Precision Metrics
Database amnesia leads to incomplete result sets and approxi-

mated aggregate values. In our analysis, the simulator collects the
following metrics to quantify the information loss, or expressing
it in a positive way, the query precision, after inserting F new tu-
ples and forgetting F other tuples to keep the size of the database
constant.

● RF(Q) number of tuples in query result Q,

● MF(Q) number of tuples missed in query result Q,

● PF(Q) is the query precision such that
PF(Q) = RF(Q)/(RF(Q) +MF(Q))

● and E is the error margin defined as
E = avg(RF(Q))/avg(RF(Q) +MF(Q)) computed over
an entire batch of Q queries.

Observe that the simulator only marks tuples as either active or
forgotten, which gives us the opportunity to precisely calculate the
query precision. Furthermore, we assume that all queries only con-
sider the data domain as stored in the table. Thus, any range query
will produce a result set based on the values seen so far, albeit it
may attempt to retrieve forgotten tuples.

In our experiments we assume a query dominant environment,
where a batch of queries is followed by a batch of updates, im-
mediately followed by applying an amnesia algorithm to guarantee
that the database is always of DBSIZE. The metrics are reported
by averaging over a batch of 1000 individual queries fired against
the incomplete database.

3. DATA AMNESIA
An amnesia strategy can be based on many application factors

and features of a DBMS. Here we focus on amnesia as a controlled
random process and by studying the effects of learning which tuples
are of interest.

3.1 Temporal Biased Amnesia
A natural first dimension is to consider the order in which tu-

ples have been added to the database. This creates a time-line over
which a sliding buffer of size DBSIZE defines the active tuples.
Much like a FIFO strategy works for buffer management. Keeping
this buffer at the head of the time line only shows results based on
fresh data. Streaming database applications are good examples for
this kind of amnesia, where all you can see is what’s in the stream
buffer. We refer to this scenario as the FIFO-amnesia algorithm.

In database amnesia we want to go a step further. The tuples
retained in the database are spread over a larger segment of the
time line and tuples are removed using a randomized process. For
example, after each update batch we uniformly select tuples to be
removed. This approach is similar to the reservoir sampling tech-
nique [19]. At any round of amnesia, a tuple has the same proba-
bility to be forgotten, but older tuples have been a candidate to be
forgotten multiple times. We refer to this scenario as the Uniform-
amnesia algorithm and it serves as an easy to understand baseline.

A refinement is to consider roughly two amnesia classes: retro-
grade and anterograde amnesia. In retrograde amnesia one can’t
recall old memories, thus translated to database amnesia, older tu-
ples are more easily forgotten from the database. FIFO-amnesia is
an example of retrograde amnesia. Contrary, in anterograde amne-
sia, one can not accumulate new memories easily. We implement

this kind of amnesia by choosing randomly mostly recently added
tuples to be forgotten. This strategy prioritize historical data, and
a new piece of information is only remembered if it appears too
often.

3.2 Query Based Amnesia
An alternative for these randomized algorithms is to take the in-

terest of past queries into account. For example, a tuple that ap-
pears often in a query result might be considered more important
and should not be forgotten easily. To study this behavior we extend
the tables with the frequency of access for each tuple and after each
batch of inserts, tuples are forgotten with probability analogous to
their frequency.

Care should be taken not to drop most recently added tuples,
which would result in an anterograde amnesia behavior. For that,
we use a high water mark approach, where tuples are forgotten
when they are not frequently accessed but also been part of the
database long enough. We refer to this approach as rot.

A totally opposite approach would be to forget data that has been
used too frequently. The motivation for this policy would run as fol-
lows. Assuming a database that shifts around data, by transforming
and summarizing its context. If a tuple has been accessed too many
times, then its role should be reconsidered. In other words, no data
should continue to appear in a result set, if that data has not been
curated, analyzed, or consumed in any other way.

3.3 Spatial Biased Amnesia
Another way to model the amnesia processes is to mimic nature

more closely using a forgetting algorithm fit with a bias towards
areas already “infected with mold” because of lack of freshness. It
aligns also with the observation that hardware errors on magnetic
disks are spatially highly correlated, usually caused by disk inac-
tivity due to lack of interest for the data stored on those areas. This
amnesia strategy is labeled as area based. It is implemented by
keeping a list of areas of forgotten tuples, say K and set n to a
value between 1, . . . ,K + 1. If n =K + 1, then we start new mold
for a tuple by randomly selecting a new active starting point. Oth-
erwise, we look into the database tiling and extend the n-th area of
forgotten tuples in either direction.

4. EVALUATION
In this section we provide a snippet of the experiments around

implementation of the amnesia algorithms which deemed relevant.
They provide an outlook on a fast and adventurous landscape of
algorithm research.

The simulator spans over a sizable search space. The arrival or-
der of tuples forms the basis for retrograde and anterograde amne-
sia, the data data distributions and query workload influence the
query precision, and the various amnesia algorithms can be ex-
tended in multiple directions.

4.1 Data amnesia map.
A key parameter in our first rounds of experiments is to keep the

database footprint fixed. This size could be as large as the main
memory available from a virtual machine in the Cloud. By limit-
ing the database footprint we restrict access to remote file storage,
which is slow and expensive. In this setting, the remote file store
can be consider the cold storage.

Our first goal is to visualize which portion of the database is re-
tained over time and under different amnesia strategies. Figure 1
illustrates the distribution of still active tuples after a sequence of
10 update batches under all amnesia algorithms except the rot am-
nesia. The brighter the colored area is, the more tuples are still

fifo

uniform

ante

area

0 1 2 3 4 5 6 7 8 9 10

Timeline (dbsize=1000, upd-perc=0.20)

 0

 20

 40

 60

 80

 100

A
ct

iv
e
 p

e
rc

e
n
ta

g
e

Figure 1: Database amnesia map after 10 batches of updates

Serial

Uniform

Normal

Zipfian

0 1 2 3 4 5 6 7 8 9 10

Timeline (dbsize=1000, upd-perc=0.20)

 0

 20

 40

 60

 80

 100

A
ct

iv
e
 p

e
rc

e
n
ta

g
e

Figure 2: Database rot map after 10 batches of updates

accessible after a long update run followed by range queries and
aggregate calculations. For the four different amnesia strategies of
Figure 1, the data distribution plays no role, only the relative po-
sition of each tuple in the database storage space. A fifo amnesia,
will only highlight the latest tuples, since all old data have been
forgotten. The uniform amnesia strategy, as expected, produces a
uniform coloring which is brighter at the end because the newer
the tuples, the less opportunities they had to been forgotten. The
anterograde amnesia strategy, retains most of the data at point 0
(initial data of the database), and then forgets all updates, starting
from the oldest ones. If we were to continue the update batches,
the black hole would increase to include more recent updates. Fi-
nally, the area amnesia strategy, which chooses at random places
to start a hole and expand them, shows an affect witch resembles a
uniform-fifo combination. Naturally, the oldest the data the more
holes they will contain, resulting to a fifo effect, but the newer the
data the more uniform will be.

The rot amnesia strategy, depends on how fresh are the data.
Freshness is measured by the frequency of appearing in a result.
Since all range and aggregate queries are the same in our exper-
iments, the data distribution is the differential factor for rotting.
Figure 2 shows the different effect of rotting for serial, uniform,
normal, and zipfian distributed datasets. Figure 2 illustrates that
the data distribution in combination with the amnesia has a strong
impact on what you retain from the past.

The observed behavior exhibits similarities to common buffer
schemes and database samples. A critical issue, however, not ad-
dressed as such in database sampling, is that we assume a stream of
updates where we can learn from the past use and, hopefully, it acts

as a good predictor of the future. Or, perhaps we don’t need to learn
if the query load does not require it from a precision perspective.

4.2 Range query precision
The next question is to gain insight in the effect of the amne-

sia policy on the query precision. The baseline experiment is to
consider its effect on range queries. However, here we have to con-
sider the query distribution as well. If the user is mostly interested
in the recently inserted data then a FIFO style amnesia suffice. For
this round of experiments we assume that the query workload ad-
dresses all tuples ever inserted into the database. This provides an
upper bound on the accurracy under an amnesia strategy.

We hypothesized that the amnesia algorithm would have a siz-
able impact on precision and is influenced by both the data distribu-
tion, volatility and query load. The volatility captures the amount of
data being forgotten at each intermediate stage. We experimented
with both low (10%) and high update volatility (80%). Further-
more, we used a uniform distribution of the queries over all data
being inserted.

Figure 3 illustrates the results from range queries with a Normal
and Zipfian data distribution. The range query generator selects a
candidate value v from all active tuples and constructs the range
Where attr >= v- 0.01 * RANGE and attr < v + 0.01 * RANGE
where RANGE is in the range 0 to the maximum value seen up to
the latest update batch.

As expected the precision drops quickly over time as more and
more information is forgotten. Surprisingly, though, the area rot-
ting behaves differently. It is biased to increasing an area, which
means that a smaller fragment of range queries is affected. The
data distributions has some effect but converges to the same values
in the long run.

Overall, the area and anti- policies seem to retain precision bet-
ter. Increasing the selectivity factor does not improve the precision,
because it affects the complete database, active and forgotten.

4.3 Aggregate query precision
Aggregate operations have become more important in data ana-

lytics then the joins. They are a challenge for any database system,
because mostly the subset against which the aggregate operator is
ran is not a priori known. Fortunately, they also are a kind of mini
summaries whose precise value is not always needed. This gives
space to forget tuples and only keep track of the error bounds and
influence on the variance.

In the Simulator we studied their behavior with and without a
range predicate over the underlying table. The former reflects the
maximum information loss to be expected. The latter would show
the effect in daily life, where the focus of aggregation can be di-
rected to a specific part of the database, e.g. the fresh data.

Aggregate queries were expected to be less influenced by the am-
nesia algorithms. To study this, we increased the experimental run
length and study the query SELECT AVG(a) FROM t. To our sur-
prise the differences were marginal and the graphs came out simi-
lar to Figure 3. This hints towards a simple mathematical model to
determine the precision, i.e. how many update batches have been
processed.

4.4 The scope of amnesia algorithms
Evidently the base line experiments just provide a glimpse of the

query precision in a database amnesia setting. It calls for a much
broader analysis of the dependencies between data distribution and
query workload. Better application specific amnesia algorithms is
another area for innovative research. The simulator, a relatively
small C-program, can be readily extended to serve this quest.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6 7 8 9 10

Timeline (dbsize=1000, upd-perc=0.80)

Uniform range experiment

fifo
uniform

ante
rot

area

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6 7 8 9 10

Timeline (dbsize=1000, upd-perc=0.80)

Zipfian range experiment

fifo
uniform

ante
rot

area

Figure 3: Range query precision (v ∈ 0 .. max)

To illustrate, the query patterns semantics can be exploited fur-
ther. For example, the average query could be used to identify pairs
of tuples to be forgotten instead of a single one. It would retain the
precision as long as possible.

Alternatively, amnesia may be aligned with the data distribution
of present and past. That is, we attempt to forget tuples that do not
change the data distribution for all active records. Keeping the two
distributions aligned as much as possible is what database sampling
techniques often aim for [7]. However, in our case the data distribu-
tion evolves as more and more tuples are ingested (and forgotten).
This means that the data distribution might change.

In a full fledged system, auxiliary data structures are also a good
candidate for being (partially) forgotten. For example, indices im-
prove the query processing, but also consume quite some space.
They can be easily dropped, and recreated upon need, to reduce the
storage footprint. This technique is already heavily used in Mon-
etDB without the user turning performance knobs.

Data compression can be called upon to postpone the decisions
to forget data. And once needed, how to ensure the least loss of
information. A refinement is to consider partial indices, such as
Block-Range-Indices.

After a query has been executed we know both its interest in the
database portion and the cost of the relational algebra components.
An alternative is giving preference to ditching tuples that cause an
explosion in either processing time or intermediate storage require-
ments.

Instead of user defined partitioning schemes, it might be worth
to study amnesia in the context of adaptive partitioning. Each par-
tition can then be tuned to provide the best precision for a subset of
the workload.

5. RELATED WORK
Backing-up and removing portions of a database has tradition-

ally been the responsibility of a DBA. The technological barrier
between him and the application owners can be large, which eas-
ily leads to calling for more capital investments or increasing the
Cloud services to run HDFS-like applications. A partitioning of
the database by tuple arrival age also helps in removing old data.
The data amnesia algorithms introduced in this paper are closely
tight with the DBMS itself and address the core question: what to
retain and for how long?

In our simulator we marked tuples as (in)active to obtain a quan-
tifiable measure. In a real system, we could move the inactive tu-
ples to another level of the storage hierarchy, often called cold stor-
age [12, 13, 14]. However, our view on the role of forgotten data
is different from that of cold data in general [4]. Cold data can
still appear in the result set, but it is rather slow to fetch and pro-
cess. Aging/cold data research focus aims at maximizing the hot
data in the primary store, i.e., optimizing the database buffers. In
a database with amnesia, however, data is forgotten and will never
show up in query results, unless the user takes the action and re-
cover a backup version of the database from cold storage explicitly.

Closely related to our work is also recent research on sample-
enabled approximate query processing for interactive query ses-
sions [1, 16, 3]. In this line of research, according to the time and
accuracy constraints placed by the user, samples are drawn from
the entire dataset such that those constrains are met. These designs
assume access to the entire dataset or at least a priori constructed
statistics over the entire dataset. A sample can be re-drawn and the
query answer re-shaped if the results are not satisfactory. However,
this is not the case for data amnesia. We are interested in strate-
gies that assume there is no reference to the original and complete
view of information, thus our approach is even more fuzzy than
sampling-based techniques.

Semantic database integrity creates another challenge for amne-
sia strategies. For example, foreign key relationships put a hard
boundary on what we can forget. Should forgetting a key value be
forbidden unless it is not referenced any more? Or should we cas-
cade by forgetting all related tuples? These questions can only be
answered by taken into account the given semantics involved per
application.

Recent studies [6, 2] use neurological inspired models of the hu-
man short term memory system to assess the recall precision in
the context of forgetting data. The results show that amnesia algo-
rithms based on “human forgetting inspired heuristics” can be an
effective tool for shrinking and managing the database. In our sim-
ulator we stick to the probabilistic features of the database and the
characteristics of a given query load. However, it is conceivable
that modern AI learning techniques can provide hooks to improve
the amnesia algorithms.

A special, but highly relevant approach is to counter the forget-
ting information process by turning portions of the database into
summaries. They can take the form of traditional compression
schemes, or for the more adventurous, replacing portions of the
database by micro-models [15]. Database summaries and material-
ized views are a potential good medicine crafted by the user against
amnesia [17]. However, the first concern should be to understand
how the amnesia affects the quality of the query workload before
diving into these semantic rich models.

Finally, we wish to combine data and application domain specific
knowledge to create well tailored amnesia strategies. For example,
in a database with historical weather information, data from areas
that have constant weather patterns can be forgotten in a few weeks
time, where for areas that exhibit strange meteorological phenom-

ena the data should be kept for longer periods. Not to mention the
need for database systems that provide techniques for controlled
forgetting private information. Snapchat [18] is the proof of such
need. Relevant early work in this context has been studied from the
perspective of vacuuming the database with a strong focus on the
tuple’s age in a temporal database context [9, 5].

6. CONCLUSION
In this paper we propose data amnesia as a new feature for a

modern DBMS. The amnesia algorithms are considered an integral
part of a DBMS kernel with limited tuning knobs, because they
are there to enable the DBMS to perform best within the resource
bounds given. Amnesia addresses the ever expanding data sizes
in business and scientific application, which may become too vo-
luminous for interactive processing or their Cloud-based parallel
processing too expensive.

Database amnesia forces the DBA and the users to seriously con-
sider the cost of keeping data available forever. The price of more
information retention may not outweighs the added return on in-
vestment in storage and processing power. This means that a proper
choice of the data amnesia policy is required, or a timely action
should be taken to compress the data into meaningful summaries.

As far as we know, this paper is the first experimental study of
the impact on the quality of results when a database ignores tu-
ples because it “suffers from amnesia”. It has been shown through
a straightforward simulation that a careful balance of forgetting
strategies given a query load, can improve the storage footprint
without significant loss in information.

We merely scratched the surface of data amnesia and already
encountered wide vistas of possible research directions. On our
shortlist are similar studies to understand the impact of scale and
taking into account processing time. The migration of forgotten
data to cheap storage or removal from indexes in the context of a
real DBMS is next. To no one’s surprise, our preferred choice of a
DBMS for extending our work will be MonetDB [8].

7. REFERENCES
[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,

and I. Stoica. BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data. In
Proceedings of the 8th ACM European Conference on
Computer Systems, 2013.

[2] G. S. Bahr and S. L. Wood. The big data between your ears:
Human inspired heuristics for forgetting in databases. In
2015 IEEE International Conference on Multimedia & Expo
Workshops, ICME Workshops 2015, Turin, Italy, June 29 -
July 3, 2015, pages 1–6. IEEE Computer Society, 2015.

[3] J. Bisbal, J. Grimson, and D. Bell. A formal framework for
database sampling. Information and Software Technology,
47(12):819 – 828, 2005.

[4] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and
S. Zdonik. Anti-caching: A New Approach to Database
Management System Architecture. Proc. VLDB Endow.,
6(14):1942–1953, Sept. 2013.

[5] A. F. Dia, Z. Kazi-Aoul, and A. Boly. Extension de
C-SPARQL pour l’échantillonnage de flux de graphes RDF.
In C. de Runz and B. Crémilleux, editors, 16ème Journées
Francophones Extraction et Gestion des Connaissances,
EGC 2016, 18-22 Janvier 2016, Reims, France, volume E-30
of RNTI, pages 159–170. Hermann-Éditions, 2016.

[6] S. T. Freedman and J. A. Adams. Filtering data based on
human-inspired forgetting. IEEE Trans. Systems, Man, and

Cybernetics, Part B, 41(6):1544–1555, 2011.
[7] V. Ganti, M. L. Lee, and R. Ramakrishnan. ICICLES:

Self-Tuning Samples for Approximate Query Answering. In
Proc. of the 26th VLDB, 2000.

[8] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender,
and M. L. Kersten. Monetdb: Two decades of research in
column-oriented database architectures. IEEE Data Eng.
Bull., 35(1):40–45, 2012.

[9] C. S. Jensen. Vacuuming. In The TSQL2 Temporal Query
Language, pages 447–460. 1995.

[10] M. Kersten. Big Data Space Fungus. In Proc. of the 7th
CIDR, 2015.

[11] M. Kersten. Keynote: DataFungi, from Rotting Data to
Purified Information. In Proc. of the 32nd ICDE, 2016.

[12] J. Levandoski and P. Larson. Identifying Hot and Cold Data
in Main-Memory Databases. In Proc. of the 29th ICDE,
2013.

[13] L. Ma, J. Arulraj, S. Zhao, A. Pavlo, S. R. Dulloor, M. J.
Giardino, J. Parkhurst, J. L. Gardner, K. Doshi, and
S. Zdonik. Larger-than-memory Data Management on
Modern Storage Hardware for In-memory OLTP Database
Systems. In Proc. of the 12th DaMoN.

[14] C. Meyer, M. Boissier, A. Michaud, J. O. Vollmer, K. Taylor,
D. Schwalb, M. Uflacker, and K. Roedszus. Dynamic and
transparent data tiering for in-memory databases in mixed
workload environments. In R. Bordawekar, T. Lahiri,
B. Gedik, and C. A. Lang, editors, International Workshop
on Accelerating Data Management Systems Using Modern
Processor and Storage Architectures - ADMS 2015, Kohala
Coast, Hawaii, USA, August 31, 2015., pages 37–48, 2015.

[15] H. Mühleisen, M. L. Kersten, and S. Manegold. Capturing
the laws of (data) nature. In CIDR 2015, Seventh Biennial
Conference on Innovative Data Systems Research, Asilomar,
CA, USA, January 4-7, 2015, Online Proceedings.
www.cidrdb.org, 2015.

[16] L. Sidirourgos, M. Kersten, and P. Boncz. SciBORQ:
Scientific data management with Bounds On Runtime and
Quality. In Proc. of the 5th CIDR, 2011.

[17] J. Skyt, C. S. Jensen, and T. B. Pedersen. Specification-based
data reduction in dimensional data warehouses. Inf. Syst.,
33(1):36–63, 2008.

[18] Snapchat. https://www.snapchat.com/.
[19] J. S. Vitter. Random Sampling with a Reservoir. ACM

Transactions on Mathematical Software, 11(1), 1985.

