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CHAPTER 1

Introduction

1 The Rise of Data Science

Analyzing data in order to uncover conclusions, often referred to as “data science”,

is everywhere in todays world. In order to gain value from their data, nearly every

large business has a data science branch or a team of data scientists looking to extract

value from their data. But data analysis is not used only in the financial sector. It

is also widely used in journalism, to aid the decision of government policies, in all

branches of science and in many more areas.
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Figure 1-1: The cost of hard disks over time.
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2. Tools of the Trade

These developments are happening largely because of how cheap gathering, storing

and analyzing large quantities of data have become. When we look back just sixty

years, the IBM 350 disk storage unit was released. The IBM 350 could hold up to

3.75MB of data, and cost approximately 35000USD at the time. Today, we can buy a

HDD with 1TB of storage for around 50USD. To put that into perspective, in 1960

the price of a Chevrolet Impala was around 3000USD. If the price of cars had fallen

at the same rate as the price of hard disks, the newest model of Chevrolet would cost

a mere $4.25 and could drive 200, 000 times faster.

Not only has the cost of storing the data become so much cheaper, so has the cost

of reading and processing that data. CPU processing speeds have improved orders of

magnitude following Moore’s Law, and RAM sizes have blown up. The phone in your

pocket has over 10 times more high-speed RAM than the Cray-1 supercomputer had

storage, and has significantly more processing power as well.

Looking at these numbers, it is no wonder that data science has become so

ubiquitous. Analyzing large amounts of data has become very cheap and accessible

even to small companies and individuals. Expensive supercomputers are no longer

needed to store and analyze large amounts of data. Data science can be performed on

cheap commodity hardware. Analyzing 10GB of data on a laptop is common place,

and it is not unheard of to process 100GB or even 1TB of data on a desktop computer.

2 Tools of the Trade

While data science might appear like a brand new field, it is closer to a mixture

of different fields. In particular, it is a combination of mathematics, statistics and

computer science. Many of the techniques applied by data scientists are in fact

techniques from the statistics field that can now cheaply be applied to large quantities

of data because of technological advances.

Many of the tools that are used in data science have actually been designed

and created by statisticians. An example of this is the R project for statistical

computing [69]. The R language started as an open-source implementation of the

12



Chapter 1. Introduction

S language, a statistical language designed by John Chambers at Bell Labs. R was

originally implemented by the statisticians Ross Ihaka and Robert Gentleman at

Auckland for the purpose of teaching introductory statistics courses. It has grown

into a tool that is used worldwide to perform statistical analysis, data classification

and data visualization.

Another popular language for data science is Python, together with the support

of the numeric python extensions NumPy [84], SciPy [48] and Pandas [64]. While

Python itself does not have its roots in statistics, the numeric python extensions are

based primarily on the APL family of languages, which includes S (the precursor of

R), Fortran and MATLAB. These languages have all been designed primarily for use

in numeric computing and statistics.

3 Data Science & Data Management

One of the consequences of the origins of these tools is that proper data management

was never a first class citizen. Data management is largely treated as an afterthought

in these tools. Typically, the data that is used for analyses is loaded from a data

source into structures residing in memory and then kept around in memory. The tools

do not support larger than memory data sets. Any management of that data is not

handled by the tools themselves, and is left up to the user.

Data scientists typically opt to store the data in a set of flat files, as this is the

most natural way of interacting with these tools. While flat file storage is simple when

dealing with very small data sets that fit in individual files, it does not scale well. Flat

file storage requires tremendous manual effort to maintain when the data sets grow in

size. The files are also difficult to reason about because of the lack of a rigid schema,

and it is difficult to share the data between multiple users. Furthermore, adding new

data or modifying existing data is prone to corruption because of lack of transactional

guarantees and atomic write actions provided by these tools.

All of the problems of flat file storage are not new problems. In fact, database

management systems were created precisely to solve many of these problems. Modern

13



4. Our Contributions

database management systems prevent data corruption through strong transactional

guarantees and ACID properties, automatically manage data storage and make

data easier to reason about by enforcing a rigid schema. In addition, the database

management systems can perform efficient execution on larger-than-memory data,

and allow safe concurrent access to the data.

However, despite the existence of database management systems, data scientists

typically opt not to use them in conjunction with these analytical tools. This leads us

to our main research problem:

Research Problem How can we facilitate efficient and painless integration of
analytical tools and relational database management systems?

4 Our Contributions

In this thesis we work to answer the main research problem by investigating the different

methods of combining relational database management systems and analytical tools.

We consider the three separate methods of connecting analytical tools with RDBMSs:

(1) client-server connections, (2) in-database processing and (3) embedded databases.

For each of these methods, we examine the current state of the art and attempt to

improve on it in both run-time efficiency and usability.

• Client-Server Connections (Chapter 3). We examine the client-server

protocols of popular RDBMSs, and evaluate their effciency in the context of

large-scale result export that is required to perform data analysis and machine

learning on large data sets contained within these systems. Based on this

analysis, we propose a new client-server protocol that handles these situations

more efficiently and show its efficiency by implementing it in two open source

RDBMSs.

• In-Database Processing (Chapters 4 and 5). We examine current methods

of in-database processing in popular RDBMSs and improve on these methods

by implementing a new method of in-database processing aimed at accelerating

14



Chapter 1. Introduction

in-database analytics: Vectorized UDFs. We implement these in MonetDB, a

popular open-source RDBMS, and show how these UDFs can be effectively used

to perform analytical workflows entirely within the RDBMS.

• Embedded Database: MonetDBLite (Chapter 6). We adopt the popular

open-source RDBMS MonetDB to run as an embedded database inside analytical

tools. We show how an embedded database can greatly increase usability of a

database system, as well as show how the speed at which the analytical tool and

the RDBMS can exchange data is greatly improved by embedding the database.

• Embedded Database: DuckDB (Chapter 7). Learning from our imple-

mentation of MonetDBlite, we identified the requirements and challenges of an

embedded database system, and created our own RDBMS designed for being

embedded from scratch: DuckDB. DuckDB fixes many of the deficiencies of

MonetDBLite that were caused by the system being initially designed as a

stand-alone server process.

5 Structure and Covered Publications

We present the background material necessary to understand this thesis in Chapter 2.

We discuss the history of relational database management systems, and how they

relate to the field of analytics, and we discuss the various ways in which database

systems can be combined with stand-alone analytical tools.

In the subsequent chapters, we discuss the methods in which we aim to improve over

the existing work. In Chapter 3, we describe our work on improving the client-server

protocol, based on the following paper:

• Don’t Hold My Data Hostage - A Case For Client Protocol Redesign

Mark Raasveldt, Hannes Mühleisen

43rd International Conference on Very Large Data Bases (VLDB 2017)

In Chapter 4 we discuss our work on extending user-defined functions for analytical

use cases. This chapter is based on the following paper:

15



5. Structure and Covered Publications

• Vectorized UDFs in Column-Stores

Mark Raasveldt, Hannes Mühleisen

28th International Conference on Scientific and Statistical Database Management

(SSDBM 2016)

In Chapter 5 we discuss our work on embedding analytical workflows inside a

database system. This chapter is based on the following paper:

• Deep Integration of Machine Learning Into Column Stores

Mark Raasveldt, Pedro Holanda, Hannes Mühleisen and Stefan Manegold

21st International Conference on Extending Database Technology (EDBT 2018)

In Chapter 6 we discuss our work on extending the MonetDB system into an em-

bedded database system called MonetDBLite. This chapter is based on the (currently

unpublished) paper:

• MonetDBLite: An Embedded Analytical Database

Mark Raasveldt and Hannes Mühleisen

In Chapter 7 we discuss our work on creating the embedded database system

DuckDB. This chapter is based on the following paper:

• DuckDB: an Embeddable Analytical Database

Mark Raasveldt and Hannes Mühleisen

ACM International Conference on Management of Data (SIGMOD 2019)

Demonstration Track
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CHAPTER 2

Background

As our goal is to improve the coupling of relational database management systems

and analytical tools, it is clear that the existing techniques for combining external

programs and RDBMS servers must be investigated.

In this chapter, we will describe existing techniques for combining external programs

and RDBMS servers, and also provide the necessary background for understanding

these techniques. In Section 1, we give a brief description of the history of RDBMS

engines. In Section 2 we briefly describe the different types of RDBMS engines and

the different physical storage models and database processing models they utilize. In

Section 3 we discuss the different methods in which an external analytical program

work in combination with a RDBMS. In Section 4 we describe the internal design

of MonetDB, a popular open-source RDBMS that we have used as a test-bed for

implementing a lot of the work in this thesis. In Section 5, we briefly describe the

internal design of the CPython interpreter and the NumPy library, as we rely on these

for the implementation of the vectorized user-defined functions described in Chapter 4.
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1. Relational Database Management Systems

1 Relational Database Management Systems

Database management systems have been around in some form or another for almost

as long as computers themselves have been around. They solve the fundamental

problem of manipulating and persistently storing data for future usage. This is a

problem that is encountered by almost any application. Whether it be a bank manager,

an online store or even a video game, they all require a method of persistently storing

state, updating that state and reading back that state.

The most popular form of database management systems are relational database

management systems. These types of systems allow users to interact with the data

they store using languages based on relational algebra, pioneered by E.F. Codd [16] in

1970. In the relational model, data is organized in n− ary relations where every row

in the relation consists of n different values. Data stored in this model can be stored

into multiple relations, and combined at query time using the join operator (1).

The relational model offers two crucial advantages: (1) data can be stored in a

normalized way, avoiding data duplication and improving data integrity, and (2) the

way data is accessed is separated entirely from the physical way in which the data is

organized, allowing for the engineers that create the database management system

to have complete freedom in the way the data is represented on disk and the way in

which it is accessed. This has allowed relational algebra to stay relevant even while

storage methods, indexing algorithms and query execution models have changed.

After Codd’s paper several languages popped up that were based on relational

algebra. The clear winner, and the language used almost universally by relational

database management systems today, is SQL [12] (Structured Query Language). SQL

was initially developed in 1973 at IBM for use in System R [6] and was afterwards used

in DB2 [91]. In the late 1970s it was adopted by Oracle [71], and it was standardized

by the International Organization for Standardization (ISO) in 1987. Currently, SQL

is the database language of choice for relational systems. It is supported by every

major database vendor, and even many non-relational systems implement (limited)

dialects of SQL as users are so familiar with it.
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Chapter 2. Background

2 RDBMS Design

As relational algebra grants RDBMSs immense freedom in their underlying physical

implementation, there have been many different proposed designs for RDBMSs. Each

of the designs are catered towards different use cases, and have different advantages

and disadvantages. In this section, we will discuss the most common trade-offs that

are made in RDBMS design.

2.1 Workload Types

Before we discuss the types of RDBMS systems, we will describe the types of workloads

that these systems are typically optimized for: OLTP workloads, OLAP workloads

and hybrid workloads.

On-Line Transactional Processing (OLTP) workloads are focused on man-

aging operational data for businesses. As an example of operational data, consider

managing the in-stock items of a retailer, or updating account balances of a bank.

In OLTP workloads, there are many queries fired at the database concurrently.

Individual queries are very simple and touch very few rows. In general, queries consist

of either selecting, inserting, updating or deleting a single row. Queries that need to

access data from a large subset of the database are (almost) never performed.

On-Line Analytical Processing (OLAP) workloads are focused on analyzing

and summarizing the data stored inside a data warehouse. As an example of these

analytical queries, consider for example generating business reports containing the

sales of certain products over time, or the popularity of items in certain regions.

In OLAP workloads, there are relatively few queries fired at the database. However,

the individual queries are very complex, and often touch the entire database. In these

workloads, changes to the data in the form of inserts, updates or deletes happen in

bulk (or might not even occur at all).

Hybrid Workloads consist of a mix of transactional statements and analytical

statements. Typically, there is a high amount of small transactional statements fired

at the system, mixed with the occasional reporting query.
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2. RDBMS Design

2.2 System Types

Disk-Based Systems. When database systems were first created, computer systems

were not equipped with much high-speed memory. When DB2 was originally released

in 1987, the price of RAM was around 200USD per MB [55]. As such, these systems

could not rely on a significant portion of the database fitting inside main memory.

Instead, these systems were primarily designed for the database to reside on disk, with

only a small portion of the data (that is currently being processed) residing in RAM.

As the slow reading and writing speed of the hard disk was the primary bottleneck for

these systems, they primarily considered how to optimize for minimizing disk access.

These systems were primarily designed for OLTP workloads.

Main-Memory Resident Systems. When the prices of main memory fell and

memory sizes grew, it became possible for the entire database (or at least the working

set) to reside entirely in memory. As a result of the increasing memory sizes, it became

possible to create systems optimized for main-memory resident data sets.

In systems optimized for main-memory, the disk no longer needs to be accessed

at all for read-only queries, and data only needs to be written to disk for persistence

purposes. As a result, these systems can achieve much faster speeds than the earlier

systems that were bottlenecked by disk latency, but only if the system has sufficient

memory to hold the working set. These systems have been designed for both OLTP,

OLAP and hybrid workloads.

2.3 Physical Database Storage

The physical layout of the database influences the way in which the database can

load and process data, and can significantly influence the performance of the database

depending on the access pattern that is required by the query. The main decision in

physical database layout is whether to horizontally fragment the data or to vertically

fragment the data. These different physical layouts are visualized in Figure 2-1.

Row Storage Databases fragment tables horizontally. In this storage model,

the data of a single tuple is tightly packed. The main advantage of this approach is
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(a) Row-Store. (b) Column-Store.

Figure 2-1: Physical layout of row-store and column-store databases.

that operations on individual tuples are very efficient, as the data for a single tuple

is tightly packed at a single location. The main drawback of this approach is that

columns cannot be loaded individually from disk, as the values of a single column are

surrounded by the values of the other columns. Because of this, unused columns in the

table definition will affect query performance. When a query only operates on a subset

of the columns of a table, the entire table must be loaded from disk regardless. This

is especially relevant for OLAP-style queries that only touch a handful of columns in

large tables with hundreds or even thousands of columns.

Column Storage Databases fragment tables vertically. In this storage model,

the data of the individual columns is tightly packed. The advantages of this approach

are two-fold: (1) the columns can be loaded and used individually, which means we do

not need to load in any unused columns from disk, and (2) packing data of individual

columns together leads to significantly better compression. The trade-off, however,

is that reconstructing tuples is costly as the values of individual tuples are spread

out over different memory locations. As a result, operations on individual tuples are

expensive. As these types of operations are typically performed in OLTP workloads,

column storage lends itself towards OLAP workloads.

2.4 Database Processing Models

The processing model of the database heavily influences the design and performance of

the user-defined functions, as the processing model defines how the data is transferred
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between the database and the user-defined function. The processing model is closely

related to the physical storage of the database.

Tuple-at-a-Time Processing is the standard processing model used by most

disk-based systems. In this processing model, the individual rows of the database are

processed one by one from the start of the query to the end of the query.

The primary advantage of this processing model is that the system does not need to

keep large intermediates in memory. In extremely low memory situations, processing

queries in this fashion is often the only possibility. However, in situations where many

rows are processed the tuple–at–a–time processing model suffers heavily from high

interpretation overhead. This approach is used by PostgreSQL, MySQL and SQLite.

Operator–at–a–Time Processing is an alternative query processing model.

Instead of processing the individual tuples one by one, the individual operators of the

query are executed on the entire columns in order. As the operators process entire

columns at a time, the function call overhead of this processing model is minimal.

The main drawback of this processing model is the materialization cost of the

intermediates of the operators. In the tuple-at-a-time processing model, a single tuple

is processed from start to finish before the query processor moves on to the next tuple.

By contrast, in the operator–at–a–time processing model, the operator processes the

entire column at once before moving on to the next operator. Because of this, the

intermediate result of every operator has to be materialized into memory so the result

can be used by the next operator. As these intermediate results are the result of an

entire column being processed they can take up a significant amount of memory. This

approach is used by MonetDB.

Vectorized Processing is a hybrid processing model that sits between the tuple-

at-a-time and the operator–at–a–time models. It avoids high materialization costs by

operating on smaller chunks of rows at a time, while also avoiding overhead from a

significant amount of function calls. This approach is used by Vectorwise [8].
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(a) Client-Server connection. (b) In-database
processing.

(c) Embedded
database.

Figure 2-2: Different ways of connecting external programs with a database manage-
ment system.

3 Database Connectivity

While RDBMSs are very powerful, SQL is not a general purpose language. As such, it

is necessary for clients to write their actual application code in a different programming

language and communicate with the RDBMS in order to exchange data between the

application and the database management system.

As the focus of this work is on combining a RDBMS with analytical tools, we

focus especially on users wanting to use analytical tools (e.g. Python or R programs)

for the purpose of performing analysis on large amounts of data that reside in the

RDBMS. Figure 2-2 shows the three main methods in which a relational database

can be combined with an analytical tool. In this section, we will describe each of

these methods and discuss how they operate from both a usability and a performance

perspective.

3.1 Client-Server Connection

The standard method of combining a standalone program with a RDBMS is through

a client-server connection. This is visualized in Figure 2-2a. The database server is

completely separate from the analytical tool. It runs as either a separate process on the

same machine or on a different machine entirely. The analytical tool communicates with

the database server through a socket connection through an application programming
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interface (API). After an initial authentication phase, the client can issue a query to

the database server. The server will then execute the query. Afterwards, the result

of the query will be serialized and written to the client over the socket. Finally, the

client will deserialize the result.

The main advantage to this approach is that it is mostly database agnostic, as the

standardized ODBC [32] or JDBC [24] connectors can be used to connect to almost

every database. In addition, it is relatively easy to integrate into existing pipelines as

loading from flat files can be replaced by loading from a database without having to

modify the rest of the pipeline.

However, this approach is problematic when the client wants to run their analysis

pipelines on a a large amount of data. The time spent on serializing large result sets

and transferring them from the server to the client can be a significant bottleneck. In

addition, this approach requires the full dataset to fit inside the clients’ (often limited)

memory.

3.2 In-Database Processing

In order to avoid the cost of exporting the data from the database, the analysis can be

performed inside the database server. This method, known as in-database processing,

is shown in Figure 2-2b.

In-database processing can be performed in a database-agnostic way by rewriting

the analysis pipeline in a set of standard-compliant SQL queries. However, most

data analysis, data mining and classification operators are difficult and inefficient to

express in SQL. The SQL standard describes a number of built-in scalar functions

and aggregates, such as AVG and SUM [43]. However, this small number of functions

and aggregates is not sufficient to perform complex data analysis tasks [86].

Instead of writing the analysis pipelines in SQL, user-defined functions or user-

defined aggregates in procedural languages such as C/C++ can be used to implement

classification and machine learning algorithms. This is the approach taken by Heller-

stein et al. [36]. However, these functions still require significant rewrites of existing

analytical pipelines written in vectorized scripting languages. In addition, writing
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user-defined functions in these languages require in-depth knowledge of the database

internals and the execution model used by the database [14].

3.3 Embedded Databases

Both the client-server model and in-database processing require the user to maintain a

running database server. This requires significant manual effort from the user, as the

database server must be installed, tuned and continuously maintained. For small-scale

data analysis, the effort spent on maintaining the database server often negates the

benefits of using one.

Embedding the database system inside the client program, as shown in Figure 2-2c,

is more applicable for these use cases. As the database can be installed and run from

within the client program, maintaining and setting up the database is much simpler

than with standalone database servers. As the database resides directly inside the

client process, the cost of transferring data between the client and the database server

is negated. The primary disadvantage of this solution is that only a single client can

have access to the data stored inside the database server.

4 MonetDB

MonetDB is an open source column-store RDBMS that is designed primarily for data

warehouse applications. In these scenarios, there are frequent analytical queries on the

database, often involving only a subset of the columns of the tables, and unlike typical

transactional workloads, insertions and updates to the database are infrequent and

in bulk or do not occur at all. The core design of MonetDB is described in Idreos et

al. [41]. However, since this publication a number of core features have been added to

MonetDB. In this section, we give a brief summary of the internal design of MonetDB

and describe the features that have been added to MonetDB since.

Data Storage. MonetDB stores relational tables in a columnar fashion. Every

column is stored either in-memory or on-disk as a tightly packed array. Row-numbers

for each value are never explicitly stored. Instead, they are implicitly derived from
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their position in the tightly packed array. Missing values are stored as ”special“ values

within the domain of the type, i.e. a missing value in an INTEGER column is stored

internally as the value −231.

Columns that store variable-length fields, such as CLOBs or BLOBs, are stored

using a variable-sized heap. The actual values are inserted into the heap. The main

column is a tightly packed array of offsets into that heap. These heaps also perform

duplicate elimination if the amount of distinct values is below a threshold; if two fields

share the same value it will only appear once in the heap. The offset array will then

point to the same heap entry for the rows that share the same value.

Memory Management. MonetDB does not use a traditional buffer pool to

manage which data is kept in memory and which data is kept on disk. Instead, it relies

on the operating system to take care of this by using memory-mapped files to store

columns persistently on disk. The operating system then loads pages into memory as

they are used and evicts pages from memory when they are no longer being actively

used. This model allows it to keep hot columns loaded in memory, while columns that

are not frequently touched are off-loaded to disk.

Concurrency Control. MonetDB uses an optimistic concurrency control model.

Individual transactions operate on a snapshot of the database. When attempting to

commit a transaction, it will either commit successfully or abort when potential write

conflicts are detected.

Query Plan Execution. SQL is first parsed into a relational algebra tree and

then translated into an intermediate language called MAL (Monet Assembly Language).

MAL instructions process the data in a column-at-a-time model. Each MAL operator

processes the full column before moving on to the next operator. The intermediate

values generated by the operators are kept around in-memory if not too large, and

passed on to the next operator in the pipeline.

Optimizations happen at three levels. High level optimizations, such as filter push

down, are performed on the relational tree. Afterwards, the MAL code is generated

and further optimizations are performed, such as common sub-expression elimination.

Finally, during execution tactical decisions are made about how specific operations
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Figure 2-3: Parallel execution in MonetDB.

should be executed, such as which join implementation to use.

Parallel Execution. Initially, a sequential execution plan is generated. Par-

allelization is then added in the second optimization phase. The individual MAL

operators are marked as either “blocking” or “parallelizable”. The optimizers will

alter the plan by splitting up the columns of the largest table into separate chunks,

then executing the “parallelizable” operators once on each of the chunks, and finally

merging the results of these operators together into a single column before execut-

ing the “blocking” operators. This is visualized in Figure 2-3 for the query SELECT

MEDIAN(SQRT(i * 2)) FROM tbl.

The amount of chunks that are generated is decided by a set of heuristics based on

base table size, the amount of cores and the amount of available memory. The database

will attempt to generate chunks that fit inside main memory to avoid swapping, and

will attempt to maximize CPU utilization. In addition, the optimizer will not split up

small columns as the added overhead of parallel execution will not pay off in this case.

Automatic Indexing. In addition to allowing the user to manually build indices

through the CREATE INDEX commands, MonetDB will automatically create indices

during query execution.
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Imprints [75] are a bitmap index that are used to assist in efficiently computing

point and range queries. The bitmap index holds, for each cache line, a bitmap

that contains information about the range of values in that cache line. They are

automatically generated for persistent columns when a range query is issued on a

specific column. They are then persisted on disk and used for subsequent queries on

that column. Imprints are destroyed when a column is modified.

Hash tables are also automatically created for persistent columns when they are

used in groupings or as join keys in equi-joins. These are also persisted on disk. Hash

tables are destroyed on updates or deletions to the column. Unlike imprints, however,

they are updated on appends to the tables.

Order Index. In addition to imprints and hash tables, MonetDB supports

creation of a sorted index that is not created automatically. It must be created using

the CREATE ORDER INDEX statement. Internally, the order index is an array of row

numbers in the sort order specified by the user. The order index is used to speed up

point and range queries, as well as equi-joins and range-joins. Point and range queries

are answered by using a binary search on the order index. For joins, the order index

is used for a merge join.

5 Python

Python is a popular interpreted language, that is widely used by data scientists. It

is easily extensible through the use of modules. There are a wide variety of modules

available for common data science tasks, such as numpy, tensorflow, scipy, sympy,

sklearn, pandas and matplotlib. These modules offer functions for high performance

data analytics, data mining, classification, machine learning and plotting.

While there are various Python interpreters, the most commonly used interpreter

is the CPython interpreter. This interpreter is written in the language C, and provides

bindings that allow users to extend Python with modules written in C.

Internally, CPython stores every variable as a PyObject. In addition to the value

this object holds, such as an integer or a string, this object holds type information
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and a reference count. As every PyObject can be individually deleted by the garbage

collector, every Python object has to be individually allocated on the heap.

The internal design of CPython has several performance implications that make

it unsuitable for working with large amounts of data. As every PyObject holds a

reference count (64-bit integer) and type information (pointer), every object has 16

bytes of overhead on 64-bit systems. This means that a single 4-byte integer requires

20 bytes of storage. In addition, as every PyObject has to be individually allocated on

the heap, constructing a large amount of individual Python objects is very expensive.

Instead of storing every individual value as a Python object, packages intended

for processing large amounts of data work with NumPy arrays instead. Rather than

storing a single value as a PyObject, a NumPy array is a single PyObject that stores

an array of values. This makes this overhead less significant, as the overhead is only

incurred once for every array rather than once for every value.

This solves the storage issue, but standard Python functions can only operate on

PyObjects. Thus if we want to actually operate on the individual values in Python,

we would still have to convert each individual value to a PyObject.

The solution employed in Python (and other vector-based languages) is to have

vectorized functions that directly operate on all the data in an array. By using these

functions, the individual values are never loaded into Python. Instead, these vectorized

operations are written in C and operates directly on the underlying array. As these

functions operate on large chunks of data at the same time they also make liberal use

of SIMD instructions, allowing these vectorized functions to be as fast as optimized C

implementations.
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CHAPTER 3

Database Client-Server Protocols

1 Introduction

In Chapter 2, we described how client-server protocols can be used to combine

analytical tools with database servers. In this chapter, we dive further into the design

of client-server protocols in modern database systems. Specifically, we focus on the

manner in which result sets are (de)serialized and transported over a socket connection.

While the performance of result set (de)serialization is irrelevant for smaller result

sets, as the timing of the network will be dominated by the latency, the result set

(de)serialization becomes very relevant when the client wants to export a large amount

of data from the database system to a client program.

Figure 3-1 shows the impact that result set (de)serialization can have on query

time. It displays the time taken to run the SQL query “SELECT * FROM lineitem”

using an ODBC connector and then fetching the results for various data management

systems. We see large differences between systems and disappointing performance

overall. Modern data management systems need a significant amount of time to

transfer a modest amount of data from the server to the client, even when they are
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Figure 3-1: Wall clock time for retrieving the lineitem table (SF10) over a loopback
connection. The dashed line is the wall clock time for netcat to transfer a CSV of the
data.

located on the same machine.

1.1 Contributions

In this chapter, we investigate and benchmark the result set serialization methods used

by major database systems, and measure how they perform when transferring large

amounts of data in different network environments. We explain how these methods

perform result set serialization, and discuss the deficiencies of their designs that make

them inefficient for transfer of large amounts of data. We explore the design space of

result set serialization and investigate numerous techniques that can be used to create

an efficient serialization method. We extensively benchmark these techniques and

discuss their advantages and disadvantages.Finally, we propose a new column-based

serialization method that is suitable for exporting large result sets. We implement

our method in the Open-Source database systems PostgreSQL and MonetDB, and

demonstrate that it performs an order of magnitude better than the state of the art.

Both implementations are available as Open Source software.
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1.2 Outline

This chapter is organized as follows. In Section 2, we perform a comprehensive

analysis of state of the art in client protocols. We analyze techniques that can be

used to improve on the state of the art in Section 3. In Section 4, we describe

the implementation of our proposed protocol and perform an extensive evaluation

comparing our proposed protocol against the state of the art. We draw our conclusions

in Section 5.

2 State of the Art

Every database system that supports remote clients implements a client protocol.

Using this protocol, the client can send queries to the database server, to which the

server will respond with a query result. A typical communication scenario between a

server and client is shown in Figure 3-2. The communication starts with authentication,

followed by the client and server exchanging meta information (e.g. protocol version,

database name). Following this initial handshake, the client can send queries to the

server. After computing the result of a query, (1) the server has to serialize the data

to the result set format, (2) the converted message has to be sent over the socket to

the client, and (3) the client has to deserialize the result set so it can use the actual

data.

The design of the result set determines how much time is spent on each step. If the

protocol uses heavy compression, the result set (de)serialization is expensive, but time

is saved sending the data. On the other hand, a simpler client protocol sends more

bytes over the socket but can save on serialization costs. The serialization format can

heavily influence the time it takes for a client to receive the results of a query. In this

section, we will take an in-depth look at the serialization formats used by state of the

art systems, and measure how they perform when transferring large amounts of data.
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Figure 3-2: Communication between a client and a server

2.1 Overview

To determine how state of the art databases perform at large result set export, we

have experimented with a wide range of systems: The row-based RDBMS MySQL [89],

PostgreSQL [76], the commercial systems IBM DB2 [91] and “DBMS X”. We also

included the columnar RDBMS MonetDB [41] and the non-traditional systems Hive [81]

and MongoDB [42]. MySQL offers an option to compress the client protocol using

GZIP (“MySQL+C”), this is reported separately.

There is considerable overlap in the use of client protocols. In order to be able to

re-use existing client implementations, many systems implement the client protocol of

more popular systems. Redshift [35], Greenplum [25], Vertica [49] and HyPer [58] all

implement PostgreSQL’s client protocol. Spark SQL [5] uses Hive’s protocol. Overall,

we argue that this selection of systems includes a large part of the database client

protocol variety.

Each of these systems offers several client connectors. They ship with a native

client program, e.g. the psql program for PostgreSQL. This client program typically

only supports querying the database and printing the results to a screen. This is
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useful for creating a database and querying its state, however, it does not allow the

user to easily use the data in their own analysis pipelines.

For this purpose, there are database connection APIs that allow the user to query

a database from within their own programs. The most well known of these are the

ODBC [32] and JDBC [24] APIs. As we are mainly concerned with the export of large

amounts of data for analysis purposes, we only consider the time it takes for the client

program to receive the results of a query.

To isolate the costs of result set (de)serialization and data transfer from the other

operations performed by the database we use the ODBC client connectors for each of

the databases. For Hive, we use the JDBC client because there is no official ODBC

client connector. We isolate the cost of connection and authentication by measuring

the cost of the SQLDriverConnect function. The query execution time can be isolated

by executing the query using SQLExecDirect without fetching any rows. The cost of

result set (de)serialization and transfer can be measured by fetching the entire result

using SQLFetch.

As a baseline experiment of how efficient state of the art protocols are at transferring

large amounts of data, we have loaded the lineitem table of the TPC-H benchmark [82]

of SF10 into each of the aforementioned data management systems. We retrieved the

entire table using the ODBC connector, and isolated the different operations that

are performed when such a query is executed. We recorded the wall clock time and

number of bytes transferred that were required to retrieve data from those systems.

Both the server and the client ran on the same machine. All the reported timings

were measured after a “warm-up run” in which we run the same query once without

measuring the time.

As a baseline, we transfer the same data in CSV format over a socket using

the netcat (nc) [33] utility. The baseline incorporates the base costs required for

transferring data to a client without any database-specific overheads.

Figure 3-1 shows the wall clock time it takes for each of the different operations

performed by the systems. We observe that the dominant cost of this query is the cost

of result set (de)serialization and transferring the data. The time spent connecting to
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the database and executing the query is insignificant compared to the cost of these

operations.

The isolated cost of result set (de)serialization and transfer is shown in Table 3.1.

Even when we isolate this operation, none of the systems come close to the performance

of our baseline. Transferring a CSV file over a socket is an order of magnitude faster

than exporting the same amount of data from any of the measured systems.

Table 3.1: Time taken for result set (de)serialization + transfer when transferring the
SF10 lineitem table.

System Time (s) Size (GB)
(Netcat) (10.25) (7.19)
MySQL 101.22 7.44
DB2 169.48 7.33
DBMS X 189.50 6.35
PostgreSQL 201.89 10.39
MonetDB 209.02 8.97
MySQL+C 391.27 2.85
Hive 627.75 8.69
MongoDB 686.45 43.6

Table 3.1 also shows the number of bytes transferred over the loopback network

device for this experiment. We can see that the compressed version of the MySQL

client protocol transferred the least amount of data, whereas MongoDB requires

transferring ca. six times the CSV size. MongoDB suffers from its document-based

data model, where each document can have an arbitrary schema. Despite attempting

to improve performance by using a binary version of JSON (“BSON” [42]), each result

set entry contains all field names, which leads to the large overhead observed.

We note that most systems with an uncompressed protocol transfer more data

than the CSV file, but not an order of magnitude more. As this experiment was run

with both the server and client residing on the same machine, sending data is not the

main bottleneck in this scenario. Instead, most time is spent (de)serializing the result

set.
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Figure 3-3: Time taken to transfer a result set with varying latency.

2.2 Network Impact

In the previous experiment, we considered the scenario where both the server and the

client reside on the same machine. In this scenario, the data is not actually transferred

over a network connection, meaning the transfer time is not influenced by latency

or bandwidth limitations. As a result of the cheap data transfer, we found that the

transfer time was not a significant bottleneck for the systems and that most time was

spent (de)serializing the result set.

Network restrictions can significantly influence how the different client protocols

perform, however. Low bandwidth means that transferring bytes becomes more costly;

which means compression and smaller protocols are more effective. Meanwhile, a higher

latency means round trips to send confirmation packets becomes more expensive.

To simulate a limited network connection, we use the Linux utility netem [39].

This utility allows us to simulate network connections with limitations both in terms

of bandwidth and latency. To test the effects of a limited network connection on the

different protocols, we transfer 1 million rows of the lineitem table but with either

limited latency or limited bandwidth.

Latency. An increase in latency adds a fixed cost to sending messages, regardless
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Figure 3-4: Time taken to transfer a result set with varying throughput limitations.

of the message size. High latency is particularly problematic when either the client

or the server has to receive a message before it can proceed. This occurs during

authentication, for example. The server sends a challenge to the client and then has

to wait a full round-trip before receiving the response.

When transferring large result sets, however, such handshakes are unnecessary.

While we expect a higher latency to significantly influence the time it takes to establish

a connection, the transfer of a large result set should not be influenced by the latency

as the server can send the entire result set without needing to wait for any confirmation.

As we filter out startup costs to isolate the result set transfer, we do not expect that

a higher latency will significantly influence the time it takes to transfer a result set.

In Figure 3-3, we see the influence that higher latencies have on the different

protocols. We also observe that both DB2 and DBMS X perform significantly worse

when the latency is increased. It is possible that they send explicit confirmation

messages from the client to the server to indicate that the client is ready to receive

the next batch of data. These messages are cheap with a low latency, but become

very costly when the latency increases.

Contrary to our prediction, we find that the performance of all systems is heavily
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influenced by a high latency. This is because, while the server and client do not

explicitly send confirmation messages to each other, the underlying TCP/IP layer

does send acknowledgement messages when data is received [66]. TCP packets are

sent once the underlying buffer fills up, resulting in an acknowledgement message. As

a result, protocols that send more data trigger more acknowledgements and suffer

more from a higher latency.

Throughput. Reducing the throughput of a connection adds a variable cost to

sending messages depending on the size of the message. Restricted throughput means

sending more bytes over the socket becomes more expensive. The more we restrict

the throughput, the more protocols that send a lot of data are penalized.

In Figure 3-4, we can see the influence that lower throughputs have on the different

protocols. When the bandwidth is reduced, protocols that send a lot of data start

performing worse than protocols that send a lower amount of data. While the

PostgreSQL protocol performs well with a high throughput, it starts performing

significantly worse than the other protocols with a lower throughput. Meanwhile, we

also observe that when the throughput decreases compression becomes more effective.

When the throughput is low, the actual data transfer is the main bottleneck and the

cost of (de)compressing the data becomes less significant.

2.3 Result Set Serialization

In order to better understand the differences in time and transferred bytes between

the different protocols, we have investigated their data serialization formats.

Table 3.2: Simple result set table.

INT32 VARCHAR10

100,000,000 OK
NULL DPFKG

For each of the protocols, we show a hexadecimal representation of Table 3.2

encoded with each result set format. The bytes used for the actual data are colored

green, while any overhead is colored white. For clarity, leading zeroes are colored gray.
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Figure 3-5: PostgreSQL result set wire format

PostgreSQL. Figure 3-5 shows the result set serialization of the widely used

PostgreSQL protocol. In the PostgreSQL result set, every single row is transferred

in a separate protocol message [83]. Each row includes a total length, the amount of

fields, and for each field its length (−1 if the value is NULL) followed by the data. We

can see that for this result set, the amount of per-row metadata is greater than the

actual data w.r.t. the amount of bytes. Furthermore, a lot of information is repetitive

and redundant. For example, the amount of fields is expected to be constant for an

entire result set. Also, from the result set header that precedes those messages, the

amount of rows in the result set is known, which makes the message type marker

redundant. This large amount of redundant information explains why PostgreSQL’s

client protocol requires so many bytes to transfer the result set in the experiment

shown in Table 3.1. On the other hand, the simplicity of the protocol results in low

serialization and deserialization costs. This is reflected in its quick transfer time if the

network connection is not a bottleneck.
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Figure 3-6: MySQL text result set wire format

MySQL. Figure 3-6 shows MySQL/MariaDB’s protocol encoding of the sample

result set. The protocol uses binary encoding for metadata, and text for actual field
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data. The number of fields in a row is constant and defined in the result set header.

Each row starts with a three-byte data length. Then, a packet sequence number

(0-256, wrapping around) is sent. This is followed by length-prefixed field data. Field

lengths are encoded as variable-length integers. NULL values are encoded with a special

field length, 0xFB. Field data is transferred in ASCII format. The sequence number is

redundant here as the underlying TCP/Unix Sockets already guarantees that packets

arrive in the same order in which they were sent.
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Figure 3-7: DBMS X result set wire format

DBMS X has a very terse protocol. However, it is much more computationally

heavy than the protocol used by PostgreSQL. Each row is prefixed by a packet header,

followed by the values. Every value is prefixed by its length in bytes. This length,

however, is transferred as a variable-length integer. As a result, the length-field is

only a single byte for small lengths. For NULL values, the length field is 0 and no

actual value is transferred. Numeric values are also encoded using a custom format.

On a lower layer, DBMS X uses a fixed network message length for batch transfers.

This message length is configurable and according to the documentation, considerably

influences performance. We have set it to the largest allowed value, which gave the

best performance in our experiments.

MonetDB. Figure 3-8 shows MonetDB’s text-based result serialization format.

Here, the ASCII representations of values are transferred. This side-steps some issues

with endian-ness, transfer of leading zeroes and variable-length strings. Again, every

result set row is preceded by a message type. Values are delimited similar to CSV

files. A newline character terminates the result row. Missing values are encoded as

the string literal NULL. In addition (for historic reasons), the result set format includes
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Figure 3-8: MonetDB result set wire format

formatting characters (tabs and spaces), which serve no purpose here but inflate the

size of the encoded result set. While it is simple, converting the internally used binary

value representations to strings and back is an expensive operation.
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Figure 3-9: Hive result set wire format using “compact” Thrift encoding

Hive. Hive and Spark SQL use a Thrift-based protocol to transfer result sets [68].

Figure 3-9 shows the serialization of the example result set. From Hive version 2

onwards, a columnar result set format is used. Thrift contains a serialization method

for generic complex structured messages. Due to this, serialized messages contain

various meta data bytes to allow reassembly of the structured message on the client

side. This is visible in the encoded result set. Field markers are encoded as a single

byte if possible, the same holds for list markers which also include a length.
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This result set serialization format is unnecessarily verbose. However, due to the

columnar nature of the format, these overheads are not dependent on the number

of rows in the result set. The only per-value overheads are the lengths of the string

values and the NULL mask. The NULL mask is encoded as one byte per value, wasting

a significant amount of space.

Despite the columnar result set format, Hive performs very poorly on our bench-

mark. This is likely due to the relatively expensive variable-length encoding of each

individual value in integer columns.

3 Protocol Design Space

In this section, we will investigate several trade-offs that must be considered when

designing a result set serialization format. The protocol design space is generally

a trade-off between computation and transfer cost. If computation is not an issue,

heavy-weight compression methods such as XZ [72] are able to considerably reduce

the transfer cost. If transfer cost is not an issue (for example when running a client on

the same machine as the database server) performing less computation at the expense

of transferring more data can considerably speed up the protocol.

In the previous section, we have seen a large number of different design choices,

which we will explore here. To test how each of these choices influence the performance

of the serialization format, we benchmark them in isolation. We measure the wall

clock time of result set (de)serialization and transfer and the size of the transferred

data. We perform these benchmarks on three datasets.

• lineitem from the TPC-H benchmark. This table is designed to be similar to

real-world data warehouse fact tables. It contains 16 columns, with the types of

either INTEGER, DECIMAL, DATE and VARCHAR. This dataset contains no missing

values. We use the SF10 lineitem table, which has 60 million rows and is

7.2GB in CSV format.

• American Community Survey (ACS) [10]. This dataset contains millions
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of census survey responses. It consists of 274 columns, with the majority of type

INTEGER. 16.1% of the fields contain missing values. The dataset has 9.1 million

rows, totaling 7.0GB in CSV format.

• Airline On-Time Statistics [62]. The dataset describes commercial air traffic

punctuality. The most frequent types in the 109 columns are DECIMAL and

VARCHAR. 55.2% of the fields contain missing values. This dataset has 10 million

rows, totaling 3.6GB in CSV format.

3.1 Protocol Design Choices

Row/Column-wise. As with storing tabular data on sequential storage media, there

is also a choice between sending values belonging to a single row first versus sending

values belonging to a particular column first. In the previous section, we have seen

that most systems use a row-wise serialization format regardless of their internal

storage layout. This is likely because predominant database APIs such as ODBC and

JDBC focus heavily on row-wise access, which is simpler to support if the data is

serialized in a row-wise format as well. Database clients that print results to a console

do so in a row-wise fashion as well.

Yet we expect that column-major formats will have advantages when transferring

large result sets, as data stored in a column-wise format compresses significantly

better than data stored in a row-wise format [1]. Furthermore, popular data analysis

systems such as the R environment for statistical computing [69] or the Pandas Python

package [56] also internally store data in a column-major format. If data to be analysed

with these or similar environments is retrieved from a modern columnar or vectorised

database using a traditional row-based socket protocol, the data is first converted

to row-major format and then back again. This overhead is unnecessary and can be

avoided.

The problem with a pure column-major format is that an entire column is trans-

ferred before the next column is sent. If a client then wants to provide access to the

data in a row-wise manner, it first has to read and cache the entire result set. For
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large result sets, this can be infeasible.

Our chosen compromise between these two formats is a vector-based protocol, where

chunks of rows are encoded in column-major format. To provide row-wise access, the

client then only needs to cache the rows of a single chunk, rather than the entire result

set. As the chunks are encoded in column-major order, we can still take advantage

of the compression and performance gains of a columnar data representation. This

trade-off is similar to the one taken in vector-based systems such as VectorWise [9].

Table 3.3: Transferring each of the datasets with different chunk sizes.

Chunksize Rows Time Size (GB) C. Ratio

L
in

ei
te

m

2KB 1.4×101 55.9 6.56 1.38
10KB 7.1×101 15.2 5.92 1.80

100KB 7.1×102 10.9 5.81 2.12
1MB 7.1×103 10.0 5.80 2.25

10MB 7.1×104 10.9 5.80 2.26
100MB 7.1×105 13.3 6.15 2.23

A
C

S

2KB 1.0×100 281.1 11.36 2.06
10KB 8.0×100 46.7 9.72 3.18

100KB 8.5×101 16.2 9.50 3.68
1MB 8.5×102 11.9 9.49 3.81

10MB 8.5×103 15.3 9.50 3.86
100MB 8.5×104 17.9 10.05 3.84

O
n
ti

m
e

2KB 1.0×100 162.9 8.70 2.13
10KB 8.0×100 27.3 4.10 4.15

100KB 8.5×101 7.6 3.47 8.15
1MB 8.6×102 6.9 3.42 9.80

10MB 8.6×103 6.2 3.42 10.24
100MB 8.6×104 11.9 3.60 10.84

Chunk Size. When sending data in chunks, we have to determine how large these

chunks will be. Using a larger chunk size means both the server and the client need to

allocate more memory in their buffer, hence we prefer smaller chunk sizes. However,

if we make the chunks too small, we do not gain any of the benefits of a columnar

protocol as only a small number of rows can fit within a chunk.

To determine the effect that larger chunk sizes have on the wall clock time

and compression ratio we experimented with various different chunk sizes using the

three different datasets. We sent all the data from each dataset with both the
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uncompressed columnar protocol, and the columnar protocol compressed with the

lightweight compression method Snappy [46]. We varied the chunk size between 2KB

and 100MB. The minimum of 2KB was chosen so a single row of each dataset can fit

within a chunk. We measure the total amount of bytes that were transferred, the wall

clock time required and the obtained compression ratio.

In Table 3.3 we can see the results of this experiment. For each dataset, the

protocol performs poorly when the chunk size is very small. In the worst case, only

a single row can fit within each chunk. In this scenario, our protocol is similar to a

row-based protocol. We also observe that the protocol has to transfer more data and

obtains a poor compression ratio when the chunk size is low.

However, we can see that both the performance and the compression ratio converge

relatively quickly. For all three datasets, the performance is optimal when the chunk

size is around 1MB. This means that the client does not need a large amount of

memory to get good performance with a vector-based serialization format.

Data Compression. If network throughput is limited, compressing the data that is

sent can greatly improve performance. However, data compression comes at a cost.

There are various generic, data-agnostic compression utilities that each make different

trade-offs in terms of the (de)compression costs versus the achieved compression ratio.

The lightweight compression tools Snappy [46] and LZ4 [18] focus on fast compression

and sacrifice compression ratio. XZ [72], on the other hand, compresses data very

slowly but achieves very tight compression. GZIP [31] obtains a balance between the

two, achieving a good compression ratio while not being extremely slow.

To test each of these compression methods, we have generated both a column-major

and a row-major protocol message containing the data of one million rows of the

lineitem table. All the data is stored in binary format, with dates stored as four-byte

integers resembling the amount of days since 0 AD and strings stored as null delimited

values.

Table 3.4 shows the compression ratios on both the row-wise and the column-wise

binary files. We can see that even when using generic, data-agnostic compression

methods the column-wise files always compress significantly better. As expected,
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Table 3.4: Compression ratio of row/column-wise binary files

Method Size (MB) C. Ratio
LZ4 Column 50.0 2.10

Row 57.0 1.85
Snappy Column 47.8 2.20

Row 54.8 1.92
GZIP Column 32.4 3.24

Row 38.1 2.76
XZ Column 23.7 4.44

Row 28.1 3.74

the heavyweight compression tools achieve a better compression ratio than their

lightweight counterparts.

However, compression ratio does not tell the whole story when it comes to stream

compression. There is a trade-off between heavier compression methods that take

longer to compress the data while transferring fewer bytes and more lightweight

compression methods that have a worse compression ratio but (de)compress data

significantly faster. The best compression method depends on how expensive it is

to transfer bytes; on a fast network connection a lightweight compression method

performs better because transferring additional bytes is cheap. On a slower network

connection, however, spending additional time on computation to obtain a better

compression ratio is more worthwhile.

To determine which compression method performs better at which network speed,

we have run a benchmark where we transfer the SF10 lineitem table over a network

connection with different throughput limitations.

Table 3.5: Compression effectiveness vs. cost

Timings (s)
Comp Tlocal T1000 T100 T10 Size (MB)

L
in

ei
te

m

None 1.5 10.4 84.8 848 1012
Snappy 3.3 3.8 37.3 373 447
LZ4 4.5 4.9 38.4 383 456
GZIP 59.8 60.4 59.6 226 272
XZ 695 689 666 649 203
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The results of this experiment are shown in Table 3.5. We can see that not

compressing the data performs best when the server and client are located on the same

machine. Lightweight compression becomes worthwhile when the server and client are

using a gigabit or worse connection (1 Gbit/s). In this scenario, the uncompressed

protocol still performs better than heavyweight compression techniques. It is only

when we move to a very slow network connection (10Mbit/s) that heavier compression

performs better than lightweight compression. Even in this case, however, the very

heavy XZ still performs poorly because it takes too long to compress/decompress the

data.

The results of this experiment indicate that the best compression method depends

entirely on the connection speed between the server and the client. Forcing manual

configuration for different setups is a possibility but is cumbersome for the user.

Instead, we choose to use a simple heuristic for determining which compression

method to use. If the server and client reside on the same machine, we do not use any

compression. Otherwise, we use lightweight compression, as this performs the best

in most realistic network use cases where the user has either a LAN connection or a

reasonably high speed network connection to the server.

Column-Specific Compression. Besides generic compression methods, it is also

possible to compress individual columns. For example, run-length encoding or delta

encoding could be used on numeric columns. The database also could have statistics

on a column which would allow for additional optimizations in column compression.

For example, with min/max indexes we could select a bit packing length for a specific

column without having to scan it.

Using these specialized compression algorithms we could achieve a higher com-

pression ratio at a lower cost than when using data-agnostic compression algorithms.

Integer values in particular can be compressed at a very high speed using vectorized

binpacking or PFOR [51] compression algorithms.

To investigate the performance of these specialized integer compression algorithms,

we have performed an experiment in which we transfer only the integer columns of the

three different datasets. The reason we transfer only the integer columns is because
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these compression methods are specifically designed to compress integers, and we want

to isolate their effectiveness on these column types. The lineitem table has 8 integer

columns, the ACS dataset has 265 integer columns and the ontime dataset has 17

integer columns.

For the experiment, we perform a projection of only the integer columns in these

datasets and transfer the result of the projection to the client. We test both the

specialized compression methods PFOR and binpacking, and the generic compression

method Snappy. The PFOR and binpacking compression methods compress the

columns individually, whereas Snappy compresses the entire message at once. We test

each of these configurations on different network configurations, and measure the wall

clock time and bytes transferred over the socket.

Table 3.6: Cost for retrieving the int columns using different compression methods.

Timings (s)
System TLocal TLAN TWAN Size (MB)

L
in

ei
te

m

None 5.3 15.7 159.0 1844.2
Binpack 6.0 8.0 82.0 944.1
PFOR 5.7 8.1 82.1 948.0
Snappy 6.8 12.3 103.9 1204.9
Binpack+Sy 5.8 7.5 76.4 882.0
PFOR+Sy 5.7 7.5 77.5 885.9

A
C

S

None 15.2 78.6 800.6 9244.8
Binpack 120.5 133.9 421.2 4288.2
PFOR 166.8 170.1 300.9 2703.4
Snappy 20.5 22.8 204.5 2434.8
Binpack+Sy 152.6 160.9 190.0 1694.6
PFOR+Sy 165.8 168.4 185.4 1203.2

O
n
ti

m
e

None 1.3 5.8 54.4 649.1
Binpack 1.4 6.2 44.4 529.3
PFOR 1.6 5.8 44.4 528.6
Snappy 1.4 1.4 3.2 39.0
Binpack+Sy 1.8 1.9 5.7 67.7
PFOR+Sy 1.8 1.9 5.9 70.5

In Table 3.6, the results of this experiment are shown. For the lineitem table, we

see that both PFOR and binpacking achieve a higher compression ratio than Snappy

at a lower performance cost. As a result, these specialized compression algorithms
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perform better than Snappy in all scenarios. Combining the specialized compression

methods with Snappy allows us to achieve an even higher compression ratio. We still

note that not compressing performs better in the localhost scenario, however.

When transferring the ACS dataset the column-specific compression methods

perform significantly worse than Snappy. Because a large amount of integer columns

are being transferred (265 columns) each chunk we transfer contains relatively few

rows. As a result, the column-specific compression methods are called many times on

small chunks of data, which causes poor performance. Snappy is unaffected by this

because it does not operate on individual columns, but compresses the entire message

instead.

We observe that the PFOR compression algorithm performs significantly better

than binpacking on the ACS data. This is because binpacking only achieves a good

compression ratio on data with many small values, whereas PFOR can efficiently

compress columns with many large numbers as long as the values are close together.

Both specialized compression algorithms perform very poorly on the ontime dataset.

This dataset has both large values, and a large difference between the minimum and

maximum values. However, Snappy does obtain a very good compression ratio.

This is because values that are close together are similar, making the dataset very

compressible.

Overall, we can see that the specialized compression algorithms we have tested

can perform better than Snappy on certain datasets. However, they do not perform

well on all data distributions and they require each message to contain many rows

to be effective. As a result, we have chosen not to use column-specific compression

algorithms. As future work it would be possible to increase protocol performance by

choosing to use these specialized compression algorithms based on database statistics.

Data Serialization. The sequential nature of the TCP sockets requires an organized

method to write and read data from them. Options include custom text/binary

serializations or generic serialization libraries such as Protocol Buffers [34] or Thrift [68].

We can expect that the closer the serialized format is to the native data storage layout,

the less the computational overhead required for their (de)serialization.
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To determine the performance impact that generic serialization libraries have

when serializing large packages, we perform an experiment in which we transfer the

lineitem table using both a custom serialization format and protocol buffers. For

both scenarios, we test an uncompressed protocol and a protocol compressed with

Snappy.

Table 3.7: Cost for transferring data using a custom serialization format vs protocol
buffers.

Timings (s)
System TLocal TLAN TWAN Size (MB)

L
in

ei
te

m

Custom 10.3 64.1 498.9 5943.3
Custom+C 18.3 25.4 221.4 2637.4
Protobuf 33.1 45.5 391.6 4656.1
Protobuf+C 35.7 47.3 195.2 2315.9

In Table 3.7, the results of this experiment are shown. We can see that our custom

result set serialization format performs significantly better than protobuf serialization.

This is because protobuf operates as a generic protocol and does not consider the

context of the client-server communication. Protobuf will, for example, perform

unnecessary endianness conversions on both the server- and client- side because it

does not know that the server and client use the same endianness. As a result of these

unnecessary operations, the (un)packing of protobuf messages is very expensive.

We do see that protobuf messages are smaller than our custom format. This is

because protobuf messages store integers as varints, saving space for small integer

values. However, protocol buffers achieve a very small compression ratio at a very high

cost compared to actual compression algorithms. As a result of these high serialization

costs, we have chosen to use a custom serialization format.

String handling. Character strings are one of the more difficult cases for serialization.

There are three main options for character transfer.

• Null-Termination, where every string is suffixed with a 0 byte to indicate the

end of the string.

• Length-Prefixing, where every string is prefixed with its length.
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• Fixed Width, where every string has a fixed width as described in its SQL type.

Each of these approaches has a number of advantages and disadvantages. Strings

encoded with length-prefixing need additional space for the length. This can drastically

increase the size of the protocol message, especially when there are many small strings.

This effect can be mitigated by using variable-length integers. This way, small strings

only require a single byte for their length. However, variable integers introduce some

additional computation overhead, increasing (de)serialization time.

Null-Termination only requires a single byte of padding for each string, however,

the byte is always the same value and is therefore very compressible. The disadvantage

of null-termination is that the client has to scan the entire string to find out where

the next string is. With length-prefixing, the client can read the length and jump that

many bytes ahead.

Fixed-Width has the advantage that there is no unnecessary padding if each string

has the same size. However, in the case of VARCHARs, this is not guaranteed. If there

are a small amount of long strings and a large amount of short (or NULL) strings,

fixed-width encoding can introduce a significant amount of unnecessary padding.

To determine how each of these string representations perform, we have tested

each of these approaches by transferring different string columns of the lineitem

table. For each experiment, we transfer 60 million rows of the specified column with

both the uncompressed protocol and the protocol compressed with Snappy.

Table 3.8: Transferring the l returnflag column of the SF10 lineitem table.

Type Time Time+C Size(MB) C.Ratio
Varint Prefix 3.94 3.99 114.54 3.37
Null-Terminated 3.95 3.91 114.54 3.37
VARCHAR(1) 3.68 3.76 57.34 2.84

In Table 3.8, the result of transferring only the single-character column l returnflag

is shown. As expected, we can see that a fixed-width representation performs ex-

tremely well while transferring a small string column. Both the length-prefix and

null-terminated approaches use an additional byte per string, causing them to transfer

twice the amount of bytes.
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Table 3.9: Transferring the l comment column of the SF10 lineitem table.

Type Time Time+C Size(GB) C.Ratio
Null-Terminated 4.12 6.09 1.53 2.44
Varint Prefix 4.24 6.63 1.53 2.27
VARCHAR(44) 4.15 7.66 2.46 3.12
VARCHAR(100) 5.07 10.13 5.59 5.69
VARCHAR(1000) 16.71 26.30 55.90 15.32
VARCHAR(10000) 171.55 216.23 559.01 20.19

In Table 3.9, the result of transferring the longer column l comment is shown. This

column has a maximum string length of 44. We can see that all the approaches have

comparable performance when transferring this column. However, the fixed-width

approach transfers a significantly higher number of bytes. This is because many of

the strings are not exactly 44 characters long, and hence have to be padded. As a

result of more data being transferred, the compression is also more expensive.

To illustrate the effect that this unnecessary padding can have on performance

in the worst case, we have repeated this experiment with different VARCHAR type

widths. We note that as we increase the width of the VARCHAR type, the amount of

data that the fixed-width approach has to transfer drastically increases. While the

compressibility does significantly improve with the amount of padding, this does not

sufficiently offset the increased size.

The results of these experiments indicate that the fixed-width representation is

well suited for transferring narrow string columns, but has a very poor worst-case

scenario when dealing with wider string columns. For this reason, we have chosen to

conservatively use the fixed-width representation only when transferring columns of

type VARCHAR(1). Even when dealing with VARCHAR columns of size two, the fixed-

width representation can lead to a large increase in transferred data when many of

the strings are empty. For larger strings, we use the null-termination method because

of its better compressibility.
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4 Implementation & Results

In the previous section, we have investigated several trade-offs that must be considered

when designing a protocol. In this section we will describe the design of our own

protocol, and its implementation in PostgreSQL and MonetDB. Afterwards, we will

provide an extensive evaluation comparing the performance of our protocol with the

state of the art client protocols when transferring large amounts of real-world data.

4.1 MonetDB Implementation

Figure 3-10 shows the serialization of the data from Table 3.2 with our proposed

protocol in MonetDB. The query result is serialized to column-major chunks. Each

chunk is prefixed by the amount of rows in that particular chunk. After the row count,

the columns of the result set follow in the same order as they appear in the result set

header. Columns with fixed-length types, such as four-byte integers, do not have any

additional stored before them. Columns with variable-length types, such as VARCHAR

columns, are prefixed with the total length of the column in bytes. Using this length,

the client can access the next column in the result set without having to scan through

the variable-length column. This allows the client to efficiently provide row-wise access

to the data.

Missing values are encoded as a special value within the domain of the type being

transferred. For example, the value 2−31 is used to represent the NULL value for

four-byte integers. This approach is used internally by MonetDB to store missing

values, and is efficient when there are no or few missing values to be transferred.
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Figure 3-10: Proposed result set wire format – MonetDB
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The maximum size of the chunks is specified in bytes. The maximum chunk size is

set by the client during authentication. The advantage to this approach is that the

size of the chunks does not depend on the width of the rows. This way, the client only

needs to allocate a single buffer to hold the result set messages. Chunks will always

fit within that buffer outside of the edge case when there are extremely wide rows.

The client can then read an entire chunk into that buffer, and directly access the data

stored without needing to unnecessarily convert and/or copy the data.

When the server sends a result set, the server chooses the amount of rows to send

such that the chunk does not exceed the maximum size. If a single row exceeds this

limit, the server will send a message to the client indicating that it needs to increase

the size of its buffer so a single row can fit within it. After choosing the amount

of rows that fit within a chunk, the server copies the result into a local buffer in

column-wise order. As MonetDB stores the data in column-wise order, the data of each

of the columns is copied sequentially into the buffer. If column-specific compression is

enabled for a specific column, the data is compressed directly into the buffer instead

of being copied. After the buffer is filled, the server sends the chunk to the client.

If chunk-wise compression is enabled, the entire chunk is compressed before being

transferred.

Note that choosing the amount of rows to send is typically a constant operation.

Because we know the maximum size of each row for most column types, we can

compute how many rows can fit within a single chunk without having to scan the data.

However, if there are BLOB or CLOB columns every row can have an arbitrary size.

In this case, we perform a scan over the elements of these columns to determine how

many rows we can fit in each chunk. In these cases, the amount of rows per chunk

can vary on a per-chunk basis.

4.2 PostgreSQL Implementation

Figure 3-11 shows the serialization of the data from Table 3.2 with our proposed

protocol in PostgreSQL. Like the proposed protocol in MonetDB, the result is serialized

to column-major chunks and prefixed by the amount of rows in that chunk. However,
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missing values are encoded differently. Instead of a special value within the domain,

each column is prefixed with a bitmask that indicates for each value whether or not it

is missing. When a missing value is present, the bit for that particular row is set to 1

and no data value is transferred for that row. Because of this bitmask, even columns

with fixed-width types now have a variable length. As such, every column is now

prefixed with its length to allow the client to skip past columns without scanning the

data or the bitmask.

As we store the bitmask per column, we can leave out the bitmask for columns

that do not have any missing values. When a column is marked with the NOT NULL

flag or database statistics indicate that a column does not contain missing values, we

do not send a NULL mask. In the result set header, we notify the client which columns

have a NULL mask and which do not. This allows us to avoid unnecessary overhead

for columns that are known to not contain any missing values.
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Figure 3-11: Proposed result set wire format – PostgreSQL

As PostgreSQL stores data in a row-major format, converting it to a columnar

result set format provides some additional challenges. Because of the null mask, we

do not know the exact size of the columns in advance, even if they have fixed-length

types. To avoid wasting a lot of space when there are many missing values, we first

copy the data of each column to a temporary buffer as we iterate over the rows. Once

the buffer fills up, we copy the data for each column to the stream buffer and transfer

it to the client.

Another potential performance issue is the access pattern of copying data in a

row-major format to a column-major format. However, the cost of this random access
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pattern is mitigated because the chunks are small and generally fit in the L3 cache of

a CPU.

4.3 Evaluation

To determine how well our protocol performs in the real world, we evaluate it against

the state of the art client protocols on several real world data sets.

All the experiments are performed on a Linux VM running Ubuntu 16.04. The

VM has 16GB of main memory, and 8 CPU cores available. Both the database and

the client run inside the same VM. The netem utility is used to limit the network for

the slower network speed tests. The VM image, datasets and benchmark scripts are

available online1.

We perform this analysis on the lineitem, acs and ontime data sets described

in Section 3. To present a realistic view of how our protocol performs with various

network limitations, we test each dataset in three different scenarios.

• Local. The server and client reside on the same machine, there are no network

restrictions.

• LAN Connection. The server and client are connected using a gigabit ethernet

connection with 1000 Mb/s throughput and 0.3ms latency.

• WAN Connection. The server and client are connected through an internet

connection, the network is restricted by 100 Mbit/s throughput and 25ms latency.

We measure all the systems described in Section 2. In addition, we measure

the implementation of our protocol in MonetDB (labeled as MonetDB++) and our

protocol in PostgreSQL (labeled as PostgreSQL++). As a baseline, we include the

measurement of how long it takes to transfer the same amount of data in CSV

format using netcat with three different compression schemes: (1) no compression,

(2) compressed with Snappy, (3) compressed with GZIP. We perform this experiment

using the ODBC driver of each of the respective database systems, and isolate the

1https://github.com/Mytherin/Protocol-Benchmarks
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wall clock time it takes to perform result set (de)serialization and data transfer using

the methods described in Section 2.1. The experiments have a timeout of 1 hour.

Table 3.10: Results of transferring the SF10 lineitem table for different network
configurations.

Timings (s)
System TLocal TLAN TWAN Size

L
in

ei
te

m

(Netcat) (9.8) (62.0) (696.5) (7.21)
(Netcat+Sy) (32.3) (32.2) (325.2) (3.55)
(Netcat+GZ) (405.4) (425.1) (405.0) (2.16)
MonetDB++ 10.6 50.3 510.8 5.80
MonetDB++C 15.5 19.9 200.6 2.27
Postgres++ 39.3 46.1 518.8 5.36
Postgres++C 42.4 43.8 229.5 2.53
MySQL 98.8 108.9 662.8 7.44
MySQL+C 380.3 379.4 367.4 2.85
PostgreSQL 205.8 301.1 2108.8 10.4
DB2 166.9 598.4 T 7.32
DBMS X 219.9 282.3 T 6.35
Hive 657.1 948.5 T 8.69
MonetDB 222.4 256.1 1381.5 8.97

In Table 3.10, the results of the experiment for the lineitem table are shown. The

timings for the different network configurations are given in seconds, and the size of

the transferred data is given in gigabyte (GB).

Lineitem. For the lineitem table, we observe that our uncompressed protocol

performs best in the localhost scenario, and our compressed protocol performs the

best in the LAN and WAN scenarios. We note that the implementation in MonetDB

performs better than the implementation in PostgreSQL. This is because converting

from a row-based representation to a column-based representation requires an extra

copy of all the data, leading to additional costs.

We note that DBMS X, despite its very terse data representation, still transfers

significantly more data than our columnar protocol on this dataset. This is because it

transfers row headers in addition to the data. Our columnar representation transfers

less data because it does not transfer any per-row headers. We avoid the NULL mask

overhead in PostgreSQL++ by not transferring a NULL mask for columns that are
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marked as NOT NULL, which are all the columns in the lineitem table. MonetDB++

transfers missing values as special values, which incurs no additional overhead when

missing values do not occur.

We also see that the timings for MySQL with compression do not change signifi-

cantly when network limitations are introduced. This is because the compression of

the data is interleaved with the sending of the data. As MySQL uses a very heavy

compression method, the time spend compressing the data dominates the data transfer

time, even with a 100Mb/s throughput limitation. However, even though MySQL uses

a much heavier compression algorithm than our protocol, our compressed protocol

transfers less data. This is because the columnar format that we use compresses better

than the row-based format used by MySQL.

The same effect can be seen for other databases when comparing the timings of

the localhost scenario with the timings of the LAN scenario. The performance of our

uncompressed protocol degrades significantly when network limitations are introduced

because it is bound by the network speed. The other protocols transfer data interleaved

with expensive result set (de)serialization, which leads to them degrading less when

minor network limitations are introduced.

The major exception to this are DBMS X and DB2. They degrade significantly

when even more network limitations are introduced. This is because they both have

explicit confirmation messages. DB2, especially, degrades heavily with a worse network

connection.

ACS Data. When transferring the ACS data, we again see that our uncompressed

protocol performs best in the localhost scenario and the compressed protocol performs

best with network limitations.
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Table 3.11: Results of transferring the ACS table for different network configurations.

Timings (s)
System TLocal TLAN TWAN Size

A
C

S

(Netcat) (7.62) (46.2) (519.1) (5.38)
(Netcat+Sy) (21.2) (22.7) (213.7) (2.23)
(Netcat+GZ) (370.7) (376.3) (372.0) (1.23)
MonetDB++ 11.8 82.7 837.0 9.49
MonetDB++C 22.0 22.4 219.0 2.49
PostgreSQL++ 43.2 72.0 787.9 8.24
PostgreSQL++C 70.6 72.0 192.2 2.17
MySQL 334.9 321.1 507.6 5.78
MySQL+C 601.3 580.4 536.0 1.48
PostgreSQL 277.8 265.1 1455.0 12.5
DB2 252.6 724.5 T 10.3
DBMS X 339.8 538.1 T 6.06
Hive 692.3 723.9 2239.2 9.70
MonetDB 446.5 451.8 961.4 9.63

We can see that MySQL’s text protocol is more efficient than it was when trans-

ferring the lineitem dataset. MySQL transfers less data than our binary protocol.

In the ACS dataset, the weight columns are four-byte integers, but the actual values

are rather small, typically less than 100. This favors a text representation of integers,

where a number smaller than 10 only requires two bytes to encode (one byte for the

length field and one for the text character).

We note that PostgreSQL performs particularly poorly on this dataset. This is

because PostgreSQL’ result set includes a fixed four-byte length for each field. As

this dataset contains mostly integer columns, and integer columns are only four bytes

wide, this approach almost doubles the size of the dataset. As a result, PostgreSQL’

transfers a very large amount of bytes for this dataset.

Comparing the two new protocols, MonetDB++ and PostgreSQL++, we observe

that because ACS contains a large number of NULL values, PostgreSQL++ transfers

less data overall and thus performs better in the WAN scenario.

Ontime Data. As over half the values in this data set are missing, the bitmask

approach of storing missing values stores the data in this result set very efficiently.

As a result, we see that the PostgreSQL++ protocol transfers significantly less data
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Table 3.12: Results of transferring the ontime table for different network configurations.

Timings (s)
System TLocal TLAN TWAN Size

O
n
ti

m
e

(Netcat) (4.24) (28.0) (310.9) (3.24)
(Netcat+Sy) (6.16) (6.74) (37.0) (0.40)
(Netcat+GZ) (50.0) (51.0) (49.6) (0.18)
MonetDB++ 6.02 30.2 308.2 3.49
MonetDB++C 7.16 7.18 31.3 0.35
PostgreSQL++ 13.2 19.2 213.9 2.24
PostgreSQL++C 14.6 14.1 76.7 0.82
MySQL 100.8 99.0 328.5 3.76
MySQL+C 163.9 167.4 153.6 0.33
PostgreSQL 111.3 102.8 836.7 6.49
DB2 113.2 314.1 3386.8 3.41
DBMS X 149.9 281.1 1858.8 2.29
Hive 1119.1 1161.3 2418.9 5.86
MonetDB 131.6 135.0 734.7 6.92

than the MonetDB++ protocol. However, we note that the MonetDB++ protocol

compresses significantly better. We speculate that this is due to the high repetitiveness

of the in-column NULL representation which the compression method could detect as a

recurring pattern and compress efficiently compared to the rather high-entropy bit

patterns created by the NULL mask in PostgreSQL++;

The MySQL protocol achieves the best compression due to its use of GZIP. However,

it still performs much worse than both MonetDB++ and PostgreSQL++ on this

dataset because heavy compression still dominates execution time.

For this dataset, we also see that the current PostgreSQL protocol performs better

than on the other datasets. This is because PostgreSQL saves a lot of space when

transferring missing values as it only transfers a negative field length for every NULL

value. In addition, PostgreSQL’ field length indicator does not increase the result set

size much when transferring large VARCHAR columns. However, in the WAN scenario

it performs poorly because of the large amount of bytes transferred.
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5 Summary

In this chapter, we investigated why exporting data from a database is so expensive.

We took an extensive look at state of the art client protocols, and learned that they

suffer from large amounts of per-row overhead and expensive (de)serialization. These

issues make exporting large amounts of data very costly.

These protocols were designed for a different use case in a different era, where

network layers were unable to guarantee deliver or order of packets and where OLTP

use cases and row-wise data access dominated. Database query execution engines have

been heavily modified or redesigned to accommodate more analytical use cases and

increased data volume. Client protocols have not kept up with those developments.

To solve these issues, we analyzed the design of each of the client protocols, and

noted the deficiencies that make them unsuitable for transferring large tables. We

performed an in-depth analysis of all these deficiencies, and various design choices that

have to be considered when designing a client protocol. Based on this analysis, we

created our own client protocol and implemented it in PostgreSQL and MonetDB. We

then evaluated our protocol against the state of the art protocols on various real-life

data sets, and found an order of magnitude faster performance when exporting large

datasets.
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CHAPTER 4

Vectorized UDFs in Column-Stores

1 Introduction

In Chapter 2, we described how in-database processing can be used to mitigate the

overhead of exporting data from the database server. In this chapter, we dive further

into using in-database processing for analytics by looking at user-defined functions.

Specifically, we focus on user-defined functions in interpreted languages such as R,

Python or MATLAB, which are the most commonly used languages in data science [47].

These languages, which we call vector-based languages, provide additional chal-

lenges when used in user-defined functions. If we were to simply use them as a

one–to–one replacement for compiled languages such as C or Java the functions will

have very poor performance. While compiled languages are very efficient when op-

erating on individual elements, these interpreted languages are not. In interpreted

languages actions that are normally performed while compiling, such as type checking,

are performed at run-time. This interpreter overhead is performed before every op-

eration, even before simple operations such as addition or multiplication. For many

of these operations, this overhead dominates the actual cost of the operation. As a
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result, operations performed on individual elements are very inefficient.
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Figure 4-1: Modulo computation in Postgres.

This issue is demonstrated in Figure 4-1, where we compute the modulo of 1 GB of

integers using both Postgres’ built-in modulo function and a Python UDF in Postgres.

We can see that the interpreter overhead results in the Python UDF taking much

longer to perform the exact same operation.

These interpreted languages rely on vectorized operations for efficiency. Rather

than operating on individual values, these operations process arrays directly. When

using these vectorized operations the interpreter overhead is only incurred once for

every array, rather than once for every value. By using vectorized operations they

can process data as efficiently as compiled languages. However, we can only use these

vectorized operations if we have access to chunks of the data at the same time. This

does not fit into the way user-defined functions are typically processed in databases.

Rather than processing one row at a time, they have to process multiple rows or even

entire tables at the same time to operate efficiently.

1.1 Contributions

In this chapter we discuss how vector-based languages can be integrated into various

database processing engines, and how various database architectures influence the

performance of user-defined functions in vector-based languages. We describe our
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system, MonetDB/Python, that efficiently integrates vectorized user-defined functions

into the open-source database MonetDB. We describe how these user-defined functions

fit into the processing model of the database, and show how these functions can

be automatically parallelized by the query execution engine of the database server.

We compare the performance of our implementation with in-database processing

solutions of alternative open-source database systems, and demonstrate the efficiency

of vectorized user-defined functions. We show that vectorized user-defined functions

in interpreted languages can be as fast as user-defined functions written in compiled

languages, without requiring any in-depth knowledge of database kernels and without

needing to compile and link them to the database server. MonetDB/Python is open-

source. The source code is freely available online in the official MonetDB source code

repository 1.

1.2 Outline

This chapter is organized as follows. In Section 2, we review different types of user-

defined functions. In Section 3, we present MonetDB/Python. In Section 4, we show

the results of a set of benchmarks that compare the performance MonetDB/Python

functions against user-defined functions in different languages and different databases.

In Section 5, we present related work. In Section 6, we describe how our work could

be applied to other databases. We describe our efforts into improving the development

workflow of MonetDB/Python UDFs in Section 7. Finally, in Section 8, we draw our

conclusions.

2 Types of User-Defined Functions

Before we discuss the implementation of our user-defined functions, we will first briefly

discuss the different types of user-defined functions in this section.

User-Defined Scalar Functions are n-to-n operations that operate on an arbi-

trary number of input columns and output a single column. These functions can be

1https://dev.monetdb.org/hg
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used in the SELECT and WHERE clauses of a SQL query. An example of a simple

scalar user-defined function is one that imitates the functionality of the multiplication

operator: it takes as input two columns, and outputs a single column that results

from multiplying the input columns together.

User-Defined Aggregate Functions are n-to-g operations that perform some

aggregation on the input columns, possibly over a number of groups with the GROUP

BY statement. These can be used in the SELECT and HAVING clauses of a SQL

query. An example of a user-defined aggregate function is a function that emulates

the MAX function, that returns the maximum of all the values in a column.

User-Defined Table Functions are operations that do not return a single

column, but rather return an entire table with an arbitrary number of columns. These

can be used in the FROM clause of a SQL query. The possible input of table producing

functions vary depending on the database. Certain databases only support the input

of scalar values, whereas others support the input of other tables. In MonetDB, the

input of a user-defined table function can come from a subquery, and hence the input

of a user-defined table function can be any table.

3 MonetDB/Python

In this section we describe the internal pipeline of MonetDB/Python functions. We

describe how the data is converted from the internal database format to a format

usable in Python, and how these functions are parallelized.

3.1 Usage

As MonetDB/Python functions are interpreted, they do not need to be compiled or

linked against the database. They can be created from the SQL interface and can be

immediately used after being created. The syntax for creating a MonetDB/Python

function is shown in Listing 4.1.
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1 CREATE FUNCTION fname ([paramlist | *])

2 RETURNS [TABLE(paramlist ) | returntype ]

3 LANGUAGE [PYTHON | PYTHON _MAP]

4 [{ functioncode } | 'external_file.py'];

Listing 4.1: MonetDB/Python Syntax.

A MonetDB/Python function can be either a user-defined scalar, aggregate or a

table function. A user-defined scalar function takes an arbitrary number of columns as

input and returns a single column, and can be used anywhere a normal SQL function

can be used. A user-defined aggregate function also outputs a single column, but

can be used to process aggregates over several groups when a GROUP BY statement is

present in the query. A user-defined table function can take an arbitrary number of

columns as input and can return an entire table. User-defined table functions can be

used anywhere a table can be used.

1 CREATE FUNCTION pysqrt(i INTEGER)

2 RETURNS REAL

3 LANGUAGE PYTHON {

4 return numpy.sqrt(i)

5 };

6

7 SELECT pysqrt(i * 2) FROM tbl;

Listing 4.2: Simple Scalar UDF.

An example of a scalar function that computes the square root of a set of integers

is given in Listing 4.2. Note that the function is only called once, and that the variable

i is an array that contains all the integers of the input column. The output of the

function is an array containing the square root of each of the input values.

3.2 Processing Pipeline

MonetDB/Python functions are executed as an operator in the processing model of

the database, as illustrated in Figure 4-2. MonetDB/Python functions run in the

same process and memory space as the database server. As such, MonetDB/Python
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Figure 4-2: Operator Chain for Listing 4.2.

functions behave identically to other operators in the operator–at–a–time processing

model. MonetDB/Python functions are called once with a set of columns as input,

and must return a set of columns as output.

The general pipeline of the MonetDB/Python functions is as follows: first, we

have to convert the input columns to a set of Python objects. Then, we execute the

stored Python function with the converted columns as input. Finally, we convert the

resulting Python objects back to a set of database columns which we then hand back

to the database.

Input Conversion. The database and the interpreted language represent data

in a different way. As such, the data has to be converted from the format used by the

database to a format that works in the interpreted language. Data conversion can be

an expensive operation, especially when a large amount of data has to be converted.

Unfortunately, we cannot avoid data conversion when writing a user-defined function

in a different language than the core database language.

Since MonetDB is a main-memory database, the database server keeps hot columns

loaded in main memory. As MonetDB/Python functions run in the same memory

space as the database server we can directly access the columns that are loaded in

memory. As a result, the only cost we have to pay to access the data is the cost for
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converting this data from the databases’ representation to a representation usable in

Python.

Internally, columns in a column-store database are very similar to arrays. They

hold a list of elements of a single type, one element for every row in the table. As such,

the most efficient uncompressed representation for a column is a tightly packed array

where the elements are stored subsequently in memory. By using this representation,

each element of n bytes occupies exactly n bytes.

MonetDB represents the data of individual columns as tightly packed arrays. In

addition to the actual data, the columns contain metadata, such as the type of the

column and whether or not the column contains null values.

Vector-based languages work with arrays containing a single type as well. As such,

they have the exact same optimal data representation as columns in a column-store

database. It should then be no surprise that the data in both NumPy arrays and R

vectors are also internally represented as tightly packed arrays.

As both the database and the vector-based language share the same representation

for the data, we do not need to convert the data values. Instead, all we have to convert

is a small amount of metadata before we can use the databases’ columns in Python.

As we are not touching the actual data, the input conversion costs a constant amount

of time.

Code Execution. After converting the input columns to a set of Python objects,

the actual user-defined function is interpreted and executed with the set of Python

objects as input. The user can then use Python to manipulate the input objects and

return a set of output objects.

Aside from the parallel processing, which is described in Section 3.3, we do not

perform any optimization on the users’ code. That means that the interpreter overhead

depends entirely on the code created by the user. If the user calls a constant amount of

vectorized functions, the interpreter overhead is constant. As vector-based languages

are only efficient when vectorized functions are used, this is expected to be a common

scenario.

On the other hand, if the user calls functions that operate on the individual
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elements of the data, the interpreter overhead scales with the amount of function calls

and can become a serious bottleneck.

Output Conversion. The database expects a set of columns as output from the

user-defined function. As such, the same conversion method can be used to convert

vectors back to database columns, but in reverse. Instead of directly using the data

from the database, we take the data from the returned set of vectors and convert it

to a set of columns in the database. Again, we only need to convert the necessary

metadata, leading to a constant conversion time.

Total Overhead. As MonetDB/Python functions are not written in the databases’

native language, they incur overhead for converting between different object repre-

sentations. In addition, as Python is an interpreted language, the functions incur

additional interpreter overhead as well.

The conversion overhead only costs a constant amount of time for each function

call as we only convert the metadata, and this overhead is only incurred once for each

time the function is called in a SQL statement. This overhead would be significant for

transactional workloads, where the function could be called many times with only a

small amount of data as input. However, as both MonetDB and NumPy are designed

around analytical workloads, we do not expect transactional workloads. For analytical

workloads that operate on large chunks of data, this constant amount of overhead is

not significant.

The magnitude of the interpreter overhead depends entirely code written by

the user. If scalar functions are used, the interpreter overhead can dominate the

computation time. However, when the code only calls a constant amount of vectorized

functions, the interpreter overhead is constant as well. In this case, the performance

of MonetDB/Python UDFs is comparable to a UDF written in the databases’ native

language, as illustrated in Figure 4-5.

3.3 Parallel Processing

In Section 3.2 we discussed the efficient conversion of data from the format used by

the database to the format used by Python. The efficient data transfer from the
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database to Python significantly improves the performance of functions for which the

data transfer and conversion is the main bottleneck. However, the Python function is

still executed by the regular Python interpreter. As such, the efficient data conversion

does not significantly improve the performance of functions that are bound by the

Python execution time.

Users can manually improve the performance of these functions by executing them

in parallel. However, we would prefer to not push the burden of optimization onto

the user. In addition, manual parallelization of user-defined functions can result in

conflicts with the workload management of the database, which can significantly

decrease database throughput [90]. It would be preferable to have the parallelization

handled automatically by the database server. However, there are several issues with

automatic parallelization in the database processing pipeline.

1 SELECT MEDIAN(SQRT(i * 2)) FROM tbl;

Listing 4.3: Chain of SQL operators.

In an operator–at–a–time database, the operators are only called once. How do

we move to a model where data is processed in parallel? The solution employed by

MonetDB is to split up the columns into separate chunks and call the parallelizable

operators once for every chunk. The non-parallelizable operators, such as the median,

force the chunks to be packed together into a single array and are then called with

that entire array as input. This process is shown in Figure 4-3.

While the figure displays a table with eight entries split up into four parts as an

example, small columns are normally not split into separate chunks as the additional

multithreading overhead would be larger than the time saved by parallelizing the

query. Instead, a heuristic is used to determine when columns should be split up

based on the size of the columns.

MonetDB/Python functions can be automatically parallelized in this system as well.

This alleviates the burden of parallelization from the user, and leaves the database

in full control of the parallelization. However, not all functions can be automatically

parallelized in this format. A user-defined function that computes the median, for

example, requires access to all the data in the column.
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Figure 4-3: Parallel Operator Chain of Listing 4.3.

As such, we require the user to specify whether or not their UDF can be executed

in parallel when creating the function. When the function cannot be run in parallel,

it will run as a blocking operator and get access to the entire input columns. This

behavior is identical to the median computation seen in Figure 4-3.

Parallel computation has an additional effect on the function call overhead of

MonetDB/Python functions as we are no longer only calling parallel functions once.

The functions are called once per chunk, meaning the function call overhead is incurred

once per chunk.

The amount of chunks created is at most equal to the amount of virtual cores that

the system has, meaning the function call overhead is O(p) instead of O(1), where p is

the amount of cores. However, as the input columns are only split up when they have

a sufficient size, this additional overhead will never dominate the actual computation

time.

Chaining Operators. Operating on partitions of the data is a straightforward

way of parallelizing operators. However, as these partitions are arbitrary, the operators

can only be parallelized if they are completely independent and only operate on

individual rows. As such. many operators cannot be completely parallelized in this
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fashion.

Often, operators can only be partially computed in parallel, and require a final

step that merges the results of the parallel computation to create the final result.

An example of such an operator is the sort operator. The chunks can be sorted in

parallel, but will then have to be merged together to fully sort the column.

1 SELECT minseq(minmap(i)) FROM tbl;

Listing 4.4: Parallel MIN using chained operators.

We can parallelize these operators in our system by chaining together operators

in the SQL layer. The parallel component of the operator can be computed in a

mappable function. The output columns of the parallel components can then be

passed to a blocking function, which merges these columns together to create the final

result. An example of such a chain being used to compute the minimum value of a

column in parallel is given in Figure 4-4.

Figure 4-4: Operator Chain of Listing 4.4.

User-defined table functions can be chained together in a similar but more flexible

way. These operators can take entire tables as input and output entire tables of

73



3. MonetDB/Python

arbitrary size. Chaining these operators together allows many different operations to

be executed in parallel.

Parallel Aggregates. The parallel processing we have implemented operates on

sequential segments of the data. If a column is partitioned into two parts, the first

partition will hold the first half of all the values in the column, and the second part

will hold the second half. The reason we use this partitioning scheme is the virtual

identifiers used by MonetDB. Any other partitioning requires us to explicitly keep

track of the individual identifiers. By using sequential partitioning we do not need to

materialize the identifiers of the rows, as the statement that entry i in the column

corresponds to row oidbase + i still holds.

Parallel computation of aggregates is a special case where we can split up the data

into arbitrary partitions without needing to materialize the row identifiers. This is

because when we compute the aggregates over several groups, the only information

we need is to which group a specific entry belongs. We do not need to know to which

specific row it belongs. As such, rather than using sequential partitions we can create

one separate partition for each group. We can then compute the separate aggregates

for each group in parallel by calling the UDF once per group partition.

The problem with this scheme is that the interpreter overhead is incurred once per

group, and the amount of groups can potentially be very large. In the most extreme

case, the amount of groups is equal to the amount of tuples in the input columns. In

this case, we incur the interpreter overhead once for every tuple.

We can avoid this potentially large interpreter overhead by allowing the user to

compute more than one aggregation per function call. To do this, the function has to

know the group that each tuple belongs to in the aggregation. We can pass this to

the user-defined function as an additional input column. The user can then perform

the aggregation over each of the different groups, and return the aggregated results in

order.

These functions can be parallelized in a similar manner. We can split the data

into different sets, where each set contains all the data of a number of groups and the

corresponding group identifiers of each tuple.
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3.4 Loopback Queries

MonetDB/Python also supports loopback queries inside UDFs. Loopback queries

allow users to query the database directly from within the UDF. The results of the

query are converted to Python objects in a similar way as the input of the UDFs is

converted. They can be can used through the conn object that is passed to every

UDF. Loopback queries are useful because they can bypass cardinality restrictions of

the relational querying model. Listing 4.5 depicts an example of a UDF that uses a

loopback query to retrieve a classifier from the database, and subsequently uses the

classifier on its input data.

1 CREATE FUNCTION c l a s s i f y ( id INTEGER, value INTEGER)

2 RETURNS TABLE( id INTEGER, p r ed i c t i o n STRING)

3 LANGUAGE PYTHON

4 {

5 import p i c k l e

6 r e s = conn . execute ( ”SELECT ∗ FROM c l a s s i f i e r WHERE name='RFC ' ; ” )

7 c l a s s i f i e r = p i c k l e . l oads ( r e s [ ' c l a s s i f i e r ' ] [ 0 ] )

8 re turn { ' id ' : id , ' p r ed i c t i on ' : c l a s s i f i e r . p r ed i c t ( va lue ) }

9 } ;

Listing 4.5: Loopback Queries

4 Evaluation

In this section we describe a set of experiments that we have run to test how efficient

MonetDB/Python is compared to alternative in-database processing solutions.

The experiments were run on a machine with two Intel Xeon (E5-2650 v2) 2.6GHZ

CPUs, with a total of 16 physical and 32 virtual cores and 256 GB RAM. The machine

uses the Fedora 20 OS, with Python version 2.7.5 and NumPy version v1.10.4. The

measured time is the wall-clock time for the completion of the query.

For each of the benchmarks, we ran the query five times, which was sufficient for

the standard deviation to converge. The result displayed in the graph is the mean
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of these measured values. All benchmarks performed are hot tests. We first ran the

query twice to warm up the database prior to running the measured runs.
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Figure 4-5: Modulo computation of 1GB of integers.

MySQL is the most popular open-source relational data-base system. It is a

row-store database that is optimized for OLTP queries, rather than for analytical

queries. MySQL supports user-defined functions in the languages C /C++ [79].

Postgres is the second most popular open-source relational database system. It is

a row store database that focuses on being SQL compliant and having a large feature

set. Postgres supports user-defined functions in a wide variety of languages, including

C, Python, Java, PHP, Perl, R and Ruby [67].

SQLite is the most popular embedded database. It is a row-store database that

can run embedded in a large variety of languages, and is included in Python’s base

library as the sqlite3 package. SQLite supports user-defined functions in C [23],

however, there are wrappers that allow users to create scalar Python UDFs as well.

MonetDB is the most popular open-source column-store relational database. It

is focused on fast analytical queries. MonetDB supports user-defined functions in the

languages C and R, in addition to MonetDB/Python.
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We want to investigate how efficient the user-defined functions of these different

databases are, and how they compare against the performance of built-in functions

of the database. In addition, we want to find out how efficient MonetDB/Python is

compared to these alternatives.

4.2 Modulo Benchmark

In this benchmark, we are mainly interested in how efficiently the data is transported

to and from the user-defined functions. As we have seen in Figure 4-1, this is a crucial

bottleneck for user-defined functions.

We will compute the modulo of a set of integers in each of the databases. The

modulo is a good fit for this benchmark for several reasons: unlike floating point oper-

ations such as the sqrt, there is no estimation involved. When estimation is involved,

the comparison is often not fair because a system can estimate to certain degrees of

precision. Naturally, more accurate estimations are more expensive. However, in a

benchmark we would only measure the amount of time elapsed, thus the more accurate

estimation would be unfairly penalized.

Similarly, when performing a modulo operation, we know that there is a specific

bound on the result. The result of x % n will never be bigger than n. This means that

there is no need to promote integral values. If we were to compute multiplication, for

example, the database could be promoting INT types to LONGINT types to reduce the

risk of integer overflows. This naturally takes more time, and could make benchmark

comparisons involving multiplication unfair.

In addition, the modulo operation is a simple scalar operation that can be easily

implemented in both C and NumPy by using the modulo operator. This means that

we will not be benchmarking different implementations of the same function, but

we will be benchmarking the efficiency of the database and data flow around the

function. As it is a simple scalar operation, it also fits naturally into tuple-at-a-time

databases. We can also trivially compute the modulo operation in parallel, allowing

us to benchmark the efficiency of our parallel execution model.

Setup. In this benchmark, we computed modulo 100 of 1GB of randomly generated
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32-bit integers. The values of the integers are uniformly generated between the values

0 and 231. To ensure a fair comparison, every run uses the same set of values. For

each of the mentioned databases, we have implemented user-defined functions in a

subset of the supported UDF languages to compute the modulo. In addition, we

have computed the modulo using the built-in modulo function of each database. For

MonetDB, we have measured both the multi-threaded computation (with 8 threads)

and the single-threaded computation.

Results. The results of the benchmark are shown in Figure 4-5. As we can

see, MonetDB provides the fastest computation of the modulo. This is surprising,

considering the modulo function is well suited for tuple-at-a-time processing. In

addition, the table we used had no unused columns. It only had a single column

containing the set of integers, thus this is essentially a best-case scenario for the

tuple-at-a-time databases.

The reason for this performance deficit is that even when computing scalar functions,

the function call overhead for every individual row in the data set is very expensive

when working with a large amount of rows. When the data fits in memory, the

operator-at-a-time processing of MonetDB provides superior performance, even though

access to the entire column is not necessary for the actual operators.

We note that in all of the databases our user-defined functions in C are faster than

the built-in modulo operator. This is because our user-defined functions skip sanity

checks that the built-in operators perform, such as checking for potential null values

that could be in the database, and instead directly compute the modulo. This allows

our user-defined functions to be faster than the built-in operators on all database

systems.

When looking at the Python UDFs, we immediately note the additional interpreter

overhead that is incurred in the tuple-at-a-time databases. Both SQLite/Python and

PL/Python have poor performance compared to the native modulo operator in their

respective database. In these architectures, the user-defined functions are called once

per row, which incurs a severe performance penalty. We note that PL/Python is

significantly slower than SQLite/Python. This is because SQLite/Python is a very
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thin wrapper around C UDFs that minimize overhead, while PL/Python offers more

complex functionality which cause these functions to incur significantly more overhead.

By contrast, MonetDB/Python is just as fast as the UDF written in C in MonetDB.

Because of our vectorized approach, the conversion and interpreter overhead that

MonetDB/Python UDFs incur is minimal. As such, they achieve the same performance

as UDFs written in the databases’ native language, but without requiring the user to

have in-depth knowledge of the database kernel and without needing to compile and

link the function to the database.

5 Related Work

There is a large body of related work on user-defined functions, both in the re-

search field and in implementations by database vendors. In this section, we will

present the relevant related work in both fields, and compare the related work against

MonetDB/Python.

5.1 Research

Research on user-defined functions started long before they were introduced into the

SQL standard. The work by Linnemann et al. [52] focuses on the necessity of user-

defined functions and user-defined types in databases, noting that the SQL standard

lacks many necessary functions such as the square root function. To solve this issue,

they suggest adding user-defined functions, so the user can add any required functions

themselves. They describe their own implementation of user-defined functions in the

compiled PASCAL language, noting that the compiled language is nearly as efficient

as built-in functions, with the only overhead being the conversion costs.

They note that executing UDFs in a low-level compiled language in the same

address space as the database server is potentially dangerous. Mistakes made by the

user in the UDF can corrupt the data or crash the database server. They propose two

separate solutions for this issue; the first is executing the user-defined function in a

separate address space. This prevents the user-defined function from accessing the
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memory of the database server, although this will increase transfer costs of the data.

The second solution is allowing users to create user-defined functions in an inter-

preted language, rather than a low-level compiled language, as interpreted languages

do not have direct access to the memory of the database server. This is exactly what

MonetDB/Python UDFs accomplish. By running in a scripting language, they can

safely run in the same address space as the database and avoid unnecessary transfer

overhead.

In-Database Analytics

In-database processing and analytics have seen a big surge in popularity recently,

as data analytics has become more and more crucial to many businesses. As such,

a significant body of recent work focuses on efficient in-database analytics using

user-defined functions.

The work by Chen et al. [14, 15] takes an in-depth look at user-defined functions

in tuple-at-a-time processing databases. They note that while user-defined functions

are a very useful tool for performing in-database analysis without transferring data to

an external application, existing implementations have several limitations that make

them difficult to use for data analysis. They note that existing user-defined functions

in C are either very inefficient compared to built-in functions, as in SQL Server, or

require extensive knowledge of the internal data structures and memory management

of the database to create, as in Postgres, which prevents most users from using them

effectively. MonetDB/Python UDFs do not have this issue, as they do not require the

user to have in-depth knowledge of the database internals.

They also identify issues with user-defined functions in popular databases that

restrict their usage for modeling complex algorithms. While user-defined scalar

functions and user-defined aggregate functions cannot return a set, user-defined table

functions cannot take a table as input in the database systems they used. The same

observation is made by Jaedicke et al. [45]. The result of this is that it is not possible

to chain multiple user-defined functions together to model complex operations, that

each take a relation as input and output another relation.
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To alleviate this issue, both Chen et al. [14] and Jaedicke et al. [45] propose a new

set of user-defined functions that can take a relation as input and produce a relation as

output. This is exactly what MonetDB/Python table functions are capable of. They

can take an arbitrary number of columns as input and produce an arbitrary number

of columns as output, and can be chained together to model complex relations.

The work by Sundlöf [78] explores the difference between performing computations

in-database with user-defined functions and performing the computations in a separate

application, transferring the data to the application using an ODBC connection.

Various benchmarks were performed, including matrix multiplication, singular value

decomposition and incremental matrix factorization. They were performed in the

column-store database Sybase IQ in the language C++. The results of his experiments

showed that user-defined functions were up to thirty times as fast for computations in

which data transfer was the main bottleneck.

Sundlöf noted that one of the difficulties in performing matrix operations using

user-defined functions was that all the input columns must be specified at compile

time. As a result it was not possible to make user-defined functions for generic

matrix operations, but instead they had to either create a separate set of user-defined

functions for every possible amount of columns, or change the way matrices are stored

in the database to a triplet format (row number, column number, value).

Processing of User-Defined Functions

As user-defined functions form such a central role in in-database processing, finding

ways to process them more efficiently is an important objective. However, as the

user-defined functions are entirely implemented by the user, it is difficult to optimize

them. Nevertheless, there has been a significant effort to optimize the processing of

user-defined functions.

Parallel Execution of User-Defined Functions

Databases can hold very large data sets, and a key element in efficiently processing

these data sets is processing them in parallel, either on multiple cores or on a cluster

81



5. Related Work

of multiple machines. Since user-defined functions can be very expensive, processing

them in parallel can significantly boost the performance of in-database analytics.

However, as user-defined functions are written by the user themselves, automatically

processing them in parallel is challenging.

The work by Jaedicke et al. [44] explores how user-defined aggregate functions can

be processed in parallel. They require the user to specify two separate functions, a

local aggregation function and a global aggregation function. The local aggregation

function is executed in parallel on different partitions of the data. The results of the

local aggregation functions are then gathered and passed to the global aggregation

function, which returns the actual aggregation result.

They propose a system that allows the user to define how the data is partitioned

and spread to the local aggregation functions. More strict partitions are more expensive

to create, but allow for a wider variety of operations to be executed in parallel.

5.2 Systems

In this section, we will present an overview of systems that have implemented user-

defined functions. We will take an in-depth look at the types of user-defined functions

these systems support, and how they differ from MonetDB/Python.

Aster nCluster Database

The Aster nCluster Database is a commercial database optimized for data warehousing

and analytics over a large number of machines. It offers support for in-database

processing through SQL/MapReduce functions [30]. These functions support a wide

set of languages, including compiled languages (C++, C and Java) and scripting

languages (R, Python and Ruby).

SQL/MR functions are parallelizable. As in the work by Jaedicke et al. [44], they

allow users to define a partition over the data. They then run the SQL/MapReduce

functions in parallel over the specified set of partitions, either over a cluster of machines

or over a set of CPU cores.
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SQL/MR functions support polymorphism. Instead of specifying the input and

output types when the function is created, the user must provide a constructor for

the user-defined function. The constructor takes as input a contract that contains

the input columns of the function. The constructor must then check if these input

columns are valid, and provide a set of output columns. During query planning, this

constructor is called to determine the input/output columns of the SQL/MR function,

and a potential error is thrown if the input/output columns do not line up correctly

in the query flow.

The primary difference between SQL/MR functions and MonetDB/Python func-

tions is the processing model around which they are designed. SQL/MR functions

operate on individual tuples in a tuple-at-a-time fashion. The user obtains the next

row by calling the advanceToNextRow function, and outputs a row using the emitRow

function.

6 Applicability To Other Systems

In the paper, we have described how we integrated user-defined functions in a vector-

based language in the operator-at-a-time processing model. In this section, we will

discuss how functions in vector-based languages could be efficiently integrated into

different processing models.

Tuple–at–a–Time. We have already determined that the straightforward imple-

mentation of vector-based language UDFs in this processing model is very inefficient.

When a vector-based language is used to compute scalar values, the interpreter over-

head dominates the actual computation cost. Instead, the UDF should receive a large

chunk of the input to operate on so the interpreter overhead is negligible compared to

the actual computation cost.

In the tuple-at-a-time processing model, accessing a chunk of the input at the same

time requires us to iterate over the tuples one by one. Then, after every value has been

computed, we copy that value to a separate location in memory. After gathering a set

of values, we can use the accumulated array of values as input values for a vectorized
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UDF.
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Figure 4-6: PL/Python Vectorized vs Non-Vectorized Modulo Operator.

While gathering the data requires additional work, this added overhead is signifi-

cantly lower than the interpreter overhead incurred when operating on scalar values

in a vector-based language. This is especially true when a lot of different operations

are performed on the data in the UDF.

We have emulated this algorithm in Postgres by loading the data of a single column

into PL/Python using a database access function, and then calling the vector based

operator on the entire column at once. The results are shown in Figure 4-6. We

can see that this method is significantly more efficient than performing many scalar

operations even when we perform only a single operation (modulo).

However, this method is still significantly slower than MonetDB/Python because

of the added overhead for copying and moving the data. As such, it is not possible for

vector-based languages to perform as efficiently as native database functions in this

processing model.

Vectorized Processing is similar to our parallel processing model. It operates

on chunks of the data. Parallel UDFs fit directly into this processing model in a
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similar fashion. They would operate on one chunk at a time, and incur the interpreter

overhead once per chunk. The magnitude of the interpreter overhead depends entirely

on the size of the chunks. While MonetDB/Python always operates on chunks with a

high cardinality, this is not necessarily true in databases with vectorized processing.

If the chunks sizes are too small, then the interpreter overhead will still dominate the

processing time.

Blocking UDFs in this processing model have the same issues as UDFs in the

tuple-at-a-time processing model. The UDF needs access to all the input data at once,

but the database only computes the data in chunks. As such, we need to gather the

data from each of the separate chunks before calling the blocking function. In the

operator-at-a-time processing model, this is only necessary if the blocking function is

executed after a paralellized function.

Compressed Data. Certain databases work with compressed data internally

to save storage space and memory bandwidth. Especially column-oriented database

systems can benefit greatly from compression. When the input columns to a vector-

based UDF are compressed, they have to be entirely decompressed before being passed

to the vector-based function, unless the vector-based language itself supports the

processing of compressed columns.

7 Development Workflow: devUDF

The generic workflow for developing a UDF is to write a function using a simplistic

text editor. The function can then be created inside the RDBMS through a SQL

command, and used by calling it within a SQL query. If there are bugs or problems

within the UDF, the function has to be recreated and the SQL query has to be rerun.

This process has to be repeated until the problem is fixed.

This workflow is problematic when developing complex UDFs, as advanced IDE

features and modern debugging techniques cannot be used. Using these IDE features is

not easily doable because the developer has to manually perform code transformations

to convert the Python code to a SQL command that creates the UDF. As seen in
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Table 4.1 [11], IDEs are heavily preferred for development over simplistic text editors

due to their development features. Therefore, we argue that offering support for the

usage of these features in the development workflow of UDFs will make developing

UDFs more attractive, faster and easier for many developers.

Name Market Share Type
Eclipse 25.2% IDE

Visual Studio 19.5% IDE
Android Studio 9.5% IDE

Vim 7.9% Text Editor
XCode 5.2% IDE

IntelliJ 4.8% IDE
NetBeans 4.0% IDE
Xamarin 3.8% IDE
Komodo 3.4% IDE

Sublime Text 3.3% Text Editor
Visual Studio Code 3.3% Text Editor

PyCharm 2.3% IDE

Table 4.1: Most Popular Development Environments.

IDEs are also attractive because they facilitate the usage of sophisticated interactive

debugging techniques, such as stepping through the code line by line and pausing

code execution. However, these techniques cannot be used in conjunction with UDFs

because the RDBMS must be in control of the code flow while the UDF is being

executed. Instead, developers have to resort to inefficient debugging strategies (e.g.,

print debugging) to make their code work [40].

Another issue with the standard UDF workflow is that UDFs are stored within the

database server. As a result, version control systems (VCSs) such as Git [53] cannot

be easily integrated to keep track of changes to UDFs. Without a VCS, cooperative

development is challenging and the development history is not stored.

For the purpose of enhancing development efficiency for UDFs, we developed

devUDF, a plugin for the popular IDE PyCharm that facilitates developing and

debugging MonetDB/Python UDFs directly from within the IDE. Using our plugin,

advanced debugging features can be used while refining and refactoring UDFs.
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7.1 The devUDF Plugin

The devUDF plugin is developed for the PyCharm IDE that facilitates the usage

of advanced IDE features for development of MonetDB/Python UDFs. It allows

developers to create, modify and test UDFs without leaving their IDE environment.

All features of the IDE can be used to develop UDFs, including the sophisticated

interactive debugger and VCS support.

Figure 4-7: Settings.

7.2 Usage

The devUDF plugin can be accessed through the main menu of the IDE (See Figure 4-

8). In this menu, a submenu labeled ”UDF Development” contains the three main

aspects of the plugin.

Initially, devUDF must be configured so it can connect to an existing database

Figure 4-8: PyCharm Main Menu.
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(a) Import (b) Export.

Figure 4-9: Importing and Exporting UDFs from the Database.

server. This can be done through the settings window shown in Figure 4-7. The

parameters required are the usual database client connection parameters (i.e., host,

port, database, user and password).

After the devUDF plugin has been configured to connect to a running database

server, the development process begins by importing the existing UDFs within the

server into the development environment. This is done through the ”Import UDFs”

window, shown in Figure 4-9a. The developer has the option to select the functions

that he wishes to import, or he can choose to import all functions stored within the

database server.

After the UDFs are imported, the code of the UDFs is exported from the database

and imported into the IDE as a set of files in the current project. The developer can

then modify the code of the UDFs in these files, use version control to keep track of

changes to the UDFs and export the UDFs back to the database server for execution

through the ”Export UDFs” window (see Figure 4-9b).

The developer can also run any of the imported UDFs with the IDEs interactive

debugger by running the project as they would run a normal PyCharm project (using

the ”Debug” command). Since a UDF is never executed in isolation, but always within

the context of a SQL query, the user must provide a SQL query which executes the
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to-be-debugged UDF. This SQL query must be specified in the Settings menu (see

Figure 4-7).

Running the UDF in the interactive debugger will execute the function locally

on the developers’ machine instead of remotely inside the database server. As the

UDF requires data from the database (as its input parameters), the data must be

transferred from the database server to the developers machine. For this data transfer,

the developer can configure another set of options. As the data can be large, we offer

a method of compressing the data during the transfer, leading to faster transfer times.

In addition, the developer can choose to execute the UDF using a uniform random

sample of the input data instead of the full set of input data. This will alleviate the

data transfer overhead.

Since the data contained inside the database server might be sensitive, and it must

be exported for debugging purposes, we also offer an optional encryption feature that

can be used to safely transfer the sensitive data.

7.3 Implementation

The devUDF plugin works by connecting to the database using a JDBC connection.

It then extracts the source code of the UDF together with its input parameters from

the database by querying the databases’ meta tables. An example of how MonetDB

stores the source code of a Python function is shown in Listing 4.6. In order to be

able to execute the UDF locally a set of code transformations has to be applied to this

code, as the database only contains the function body. We need to create the header

of the function using the function name and its parameters. To then run the created

function, we need to obtain the input data from the database. In the generated code,

we load the input data from a binary blob using the pickle library and pass it as

a parameter to the function. When the user wants to export the UDF back to the

database, these transformations are reversed and only the function body is committed.

When the user wants to debug the UDF locally using the interactive debugger,

the input data of the function has to be extracted from the database. To obtain the

input data, we take the user-submitted SQL query containing the call to the UDF,
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and we replace the call to the UDF with a predefined extract function that transfers

the input data back to the client instead of executing the UDF inside the server. We

then run the transformed SQL query inside the database server to obtain the input

data, store it on the developers machine and run the code of the transformed UDF.

The extract function used changes depending on the data transfer options selected

by the user. If encryption is requested, the data is encrypted by the extract function

before being transferred using the password of the database user as a key. The client

then reverses the encryption to obtain the actual input data. The compression option

works in a similar fashion. If the sample option is enabled, a uniform random sample

of a size specified by the user is taken before extracting the data from the database

server.

1 +----------------+-----------------------------------+

2 | name | func |

3 +================+===================================+

4 | train_rnforest | { |

5 : : import pickle :

6 : : from sklearn.ensemble :

7 : : import RandomForestClassifier :

8 : : :

9 : : clf = RandomForestClassifier(n) :

10 : : clf.fit(data , classes) :

11 : : return {'clf': pickle.dumps(clf), :

12 : : 'estimators ':n } :

13 : : }; :

14 +----------------+-----------------------------------+

Listing 4.6: MonetDB UDF example.

8 Summary

In this chapter, we have introduced the vectorized MonetDB/Python UDFs. As

both MonetDB and the vector-based language Python share the same efficient data

representation, we can convert the data between the two separate formats in constant
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time, as only the metadata has to be converted. In addition, as MonetDB operates on

data in an operator-at-a-time fashion, no additional overhead is incurred for executing

the UDFs in a vector-based fashion.

We have shown that MonetDB/Python UDFs are as efficient as UDFs written in

the databases’ native language, but without any of the downsides. MonetDB/Python

UDFs can be created without requiring in-depth knowledge of the database kernel,

and without having to compile and link the functions to the database server.

In addition, MonetDB/Python functions support automatic parallelization of

functions over the cores of a single node, allowing for highly efficient computation.

MonetDB/Python functions can be nested together to create relational chains, and

parallel MonetDB/Python functions can be nested to perform Map/Reduce type

jobs. All these factors make MonetDB/Python functions highly suitable for efficient

in-database analysis.
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CHAPTER 5

In-Database Workflows

1 Introduction

In Chapter 4, we described the inner workings of the MonetDB/Python UDFs. By

utilizing these UDFs, existing complex analytical pipelines can be moved inside the

database. This allows us to gain all the advantages of storing data inside a relational

database, while still having flexible and easy-to-use analytical tools available.

An additional benefit of training and using machine learning models directly in the

database is that it is possible to persist both models and metadata (e.g. classification

scores on test sets) in the database. Standard relational queries can then be used to

apply the trained models to data. This allows for example to compare and combine

output from multiple models, each specialized for certain classification tasks. Also, it

is possible to classify the same data using multiple models and use the result of the

model that reports the highest confidence.

In this chapter, we showcase how we can use MonetDB/Python UDFs to efficiently

integrate a complex analysis pipeline inside MonetDB. We show how we can train

models directly inside the database, and how to store the models and subsequently use
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them to classify data without having to export the data from the database system.

1.1 Contributions

In this chapter, we show how traditional classification models can be integrated into

a column-store relational database management system. We describe how models

can be stored inside the database system and how these models can then be used to

efficiently and flexibly classify data. We experimentally show the performance benefit

of directly running the models inside the database system versus loading the data

from structured text, binary files or using database client protocols.

1.2 Outline

This chapter is organized as follows: Section 2 discusses related work. Section 3

presents our integration approach, followed by a concrete use-case and performance

results in Section 4. Finally, we draw our conclusions in Section 5.

2 Related Work

There is a variety of related work on combining relational database systems with

machine learning pipelines. In this section we will present the most recent related work

regarding the integration of machine learning through UDFs and model management

systems and compare them with our solution.

2.1 Machine Learning Integration

Integrating existing Database Management Systems and machine learning algorithms

has been a long standing problem due to the complexity of implementing the machine

learning code inside a DBMS.

Early work [73, 3] on this focuses on rewriting analytical algorithms into portable

SQL code. This allows the pipelines to be executed within any database system without

requiring database-specific modifications. However, rewriting complex analytical
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pipelines in SQL requires a lot of manual effort and might not be possible for certain

algorithms because SQL is not a Turing complete language.

In Ordonez et al. [63], machine learning algorithms are translated to either C,

C++ or C# code (depending on the DBMS language support) and inserted into

UDFs. As a consequence they achieve high performance when analyzing large data sets

compared to external data analysis tools, as data movement is mitigated. However,

these algorithm must be coded in one of the previously listed languages. This often

results in the need for rewriting code, because most prominent machine learning

libraries are usually available in scripting languages (e.g., Python and R). In our

solution we allow the developer to use popular scripting languages together with their

entire ecosystem of data analytics packages as UDFs in MonetDB.

Other work [26, 17, 37] focuses on more templated approaches for machine learning

integration to reduce the necessity of code rewriting. However, the main disadvantage

of these methods is that they only work for a limited subset of algorithms, which

limits their applicability to general machine learning tasks.

2.2 Machine Learning Model Management

When training and using a variety of models the problem of managing these models

arises. This problem is exasperated because most Machine Learning Systems do not

provide support for storing and querying their models. Due to these issues, data

scientists quickly lose track of their models.

In Vartak et al. [85], a system called ModelDB is introduced that can be used for

storing, tracking and managing machine learning models in their native environment.

This allows data scientists to use SQL to query their models based on their metadata

(e.g., hyperparameters, parameters) and quality metrics (e.g., accuracy). It also has the

option to store the used train/test data sets for each model. However, since ModelDB

only stores the models in their native environment, it does not provide a solution for

coupling machine learning applications with traditional relational databases.
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3 Machine Learning integration

Machine learning pipelines consist of three stages [21].

1. Preprocessing. In this stage, the raw data is loaded and cleaned. The data is

normalized, and any inconsistencies from incorrect or missing measurements are

corrected for or removed.

2. Training and Verification. In this stage, the cleaned data is used to train

the model. Typically the training set is divided into parts, and techniques like

cross validation are used to prevent overfitting the model.

3. Classification. In the final stage, the trained model is used to classify new

data. In this stage, the model can still be refined further based on new data or

new properties of the data.

The preprocessing stage can often be performed entirely within traditional database

management systems. Loading data and simple cleaning operations such as missing

value removal can be done using standard SQL queries. However, when more advanced

preprocessing such as interpolation is required, user-defined functions can be used to

simplify this step.

The real challenge of integrating these pipelines into databases, however, is imple-

menting the machine-learning models. The models rely on complex math operations

and iterative refinement, which are not supported by standards-complaint SQL.

There are many libraries and packages in vectorized scripting languages that

implement common machine learning and classification models, such as TensorFlow [2]

and Sci-Kit Learn [65]. Using vectorized user-defined functions, we can plug these

libraries into the database. However, the typical processing pipelines must be adjusted

so they can fit into a SQL workflow. In this section, we will describe how these

analytical pipelines can be integrated into traditional database management systems

through the use of user-defined functions.
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3.1 Training

To train a classification model, we take a set of annotated data as input and use the

annotations to find patterns in the data. After learning these patterns, the trained

model can accurately classify un-annotated data.

The training pipeline therefore takes as input a set of columns representing the

data, and a single column representing the classes of the data. This will be the input

to our user-defined function. The output of this stage of the pipeline is the trained

model, which will be the output of our UDF. The actual creation and training of the

model will happen inside the function.

Model Storage. Models exist as in-memory objects within the scripting language.

However, they can be serialized to a binary format for persistent storage on disk. In

Python, this is done using the pickle library. In order to store the objects in the

database we need to serialize the objects to this binary format, after which we can

place them in a BLOB field.

1 CREATE FUNCTION t r a i n ( data INTEGER, c l a s s e s INTEGER,

2 n e s t imato r s INTEGER)

3 RETURNS TABLE( c l a s s i f i e r BLOB, e s t imato r s INTEGER)

4 LANGUAGE PYTHON

5 {

6 import p i c k l e

7 from sk l ea rn . ensemble

8 import RandomForestClass i f i e r

9

10 c l f = RandomForestClass i f i e r ( n e s t imato r s )

11

12 c l f . f i t ( data , c l a s s e s )

13

14 re turn { ' c l a s s i f i e r ' : p i c k l e . dumps( c l f ) ,

15 ' e s t imato r s ' : n e s t imato r s }

16 } ;

Listing 5.1: Training The Model
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An example of a user-defined function that trains a Random Forest Classifier using

Sci-Kit Learn is given in Listing 5.1. This is a vectorized user-defined function, and

as such both data and classes are vectors of integers within the function instead of

individual elements. This function can be called from within SQL with the model

data, classes and the amount of estimators (i.e., model parameters) as input, and

will produce a table containing the trained classifier and its meta-data as output.

This table can either be stored in the database, or used directly as input to another

function that uses the trained classifier (if no persistent storage is necessary). Note

that it is trivial to alter this UDF to train a different model from the Sci-Kit Learn

library, as all that is required is importing a different model and using that.

3.2 Classification

After the model has been trained, it is ready to accept unlabeled data and can be used

to classify that data. The classification stage therefore takes as input a set of columns

representing the unannotated data, and the trained classifier that will be used to

classify the data. The output is the set of predicted labels produced by the classifier.

Inside the user-defined function, the classifier will again have to be deserialized into an

in-memory object, after which it can be used to classify the input data and produce a

set of labels.

1 CREATE FUNCTION pred i c t ( data INTEGER, c l a s s i f i e r BLOB)

2 RETURNS INTEGER

3 LANGUAGE PYTHON

4 {

5 import p i c k l e

6 c l a s s i f i e r = p i c k l e . l oads ( c l a s s i f i e r )

7 re turn c l a s s i f i e r . p r ed i c t ( data )

8 } ;

Listing 5.2: Classification

An example of a user-defined function that classifies a set of data is given in

Listing 5.2. This function can be called from within SQL with the unlabeled data and
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the classifier as input, and will produce a list of predicted classes.

The predict function can be used both to test a trained model and to classify a set

of new data using such a model. The model can be tested by predicting a set of data

for which the labels are known, and comparing the predicted labels against the new

labels. The model can be used to

3.3 Ensemble Learning

In addition to only storing the trained models, we can store additional metadata

about the models in the database. This metadata can include information such as

parameters used to instantiate the model, or information about the effectiveness of

the model obtained through testing it against certain datasets. We can then choose

a model to classify new data based on this metadata, or we could classify the data

using multiple models that are stored and use the results from the classifier with the

highest confidence.

4 Experimental Analysis

In this section, we demonstrate how a real classification pipeline can be integrated into

a column-store database, and show how the in-database processing pipeline performs

when compared against the same pipeline implemented in a standard scripting language

where the input data is loaded from a file or transferred over a database socket

connection.

The pipeline we use in our experiments is used to attempt to classify who people

from North Carolina will vote for in the Presidential Elections based on data from the

2012 Presidential Election. For this purpose, we use two separate datasets:

• The North Carolina Voters Dataset contains the information about the

individual voters. This is a dataset of 7.5M rows, where each row contains infor-

mation about the voter. There are 96 columns in total, describing characteristics

such as place of residence, gender, age and ethnicity. Note that we do not know
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who each person actually voted for, as this information is not publicly available.

• The Precint Votes Dataset contains the aggregated voting statistics for each

precinct, (i.e., how many people in each precinct voted Democrat, and how many

voted Republican). This dataset has 2751 rows, one for each precinct in North

Carolina.

By combining these two datasets we can attempt to classify individual voters. We

know the voting records of a specific precinct, and we know in which precinct each

person voted, so we can make an educated guess who each person voted for based on

this information.

Preprocessing. As we do not have the true class labels for each voter, we have

to generate them from the information we have about the precincts. This requires

us to join the voter data with the precinct data, giving us the voting records of the

precinct that each voter voted in. We then generate a “true” class label for each voter

using a weighted random function based on the precinct voting records. For example,

if voters in a specific precinct voted for Democrats 60% of the time, each voter in that

precinct has a 60% chance of being classified as Democrat and 40% chance of being

classified as Republican.

Training. After we have generated the true class labels, we have to train the

model using the data and the labels. However, we don’t simply want to use all the

data for training. Instead, we want to divide the data into a training set and a test set

to prevent overfitting. We then feed the data in the training set to the model using

the function shown in Listing 5.1 and store the resulting model in the database.

Testing. After the model is trained, we want to test how it performs by classifying

the data in the test set and looking at the results. We can classify the voters in the

test set by running the function shown in Listing 5.2. After having obtained the

predicted class labels, we can test the accuracy of our model by comparing against the

known true class labels of the data. However, since we only have the generated class

labels of the individual voters, comparing the predicted labels against those would not

give us a lot of information about our classification accuracy. Instead, we aggregate
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Figure 5-1: Voter Classification Benchmark

the total amount of predicted votes for each party by precinct. Then we compare the

aggregated predictions against the known amount of votes in each precinct.

Performance Analysis. To determine how well our in-database processing

solution performs compared to ad-hoc analysis pipelines we have implemented the

pipeline described above both (1) using MonetDB/Python UDFs and (2) inside Python,

using various different methods of initially loading the data. For loading the data in

Python, we have experimented with loading from binary files (NumPy [84] files and

HDF5 [80] using PyTables), CSV files using an optimized parser, transferring the data

to Python through a database socket connection (with PostgreSQL [77], MySQL [89]

and SQLite [4] as database servers). For the scenarios where the data is stored inside a

relational database, we use SQL to perform the preprocessing steps involving joins and

aggregations. Whereas for the pure Python solutions, we use the Pandas library [56]

to perform these steps.

The experiments were run on a Fedora (Release 26) machine with 2.6GHz 8-core

Intel Xeon processor (Turbo Boost up to 3.2GHz), 20MB shared L3 cache and 256

GB of RAM. All the tests are hot runs. The datasets and source code used for the

experiments are publically available1.

1https://github.com/pholanda/VoterClassification
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Results. The results of the benchmark are displayed in Figure 5-1. The numbers

display the total time required to run the entire classification pipeline, whereas the

bottom gray bars indicate the time spent loading the initial data into Python and

performing the initial preprocessing steps and aggregations.

We can see that the in-database processing solution using MonetDB/Python is

significantly faster than the alternative database solutions. The time spent on initial

wrangling of the data is an order of magnitude lower than transferring it over a socket

connection using the other database solutions. We also note that loading the data from

CSV files is comparable in speed to transferring the data over a socket connection.

Loading the data from binary files is much faster than loading from structured text

or transferring the data over a socket connection. However, this introduces additional

challenges in managing the data. Especially in the case of NumPy binary files, where

each of the 96 columns is stored as a separate file on disk. We do still see that the

in-database processing solution spends less time on initial wrangling of the data and

runs the entire pipeline significantly faster.

5 Summary

In this work, we have shown how complex analysis pipelines can be efficiently inte-

grated into column-store databases. Using these pipelines, it is possible to perform

preprocessing, training, testing and prediction using complex machine learning models

directly on data stored within a relational database. We have demonstrated the

efficiency gained from using these in-database processing methods, and shown the

additional benefits that come with storing data in a relational database system.
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MonetDBLite

1 Introduction

In Chapter 2, we described an alternative method of combining database management

systems and external programs: embedding the database inside the client program.

This method has the advantage that the database server no longer needs to be managed,

and the database can be installed from within the standard package manager of the

tool. In addition, because the database and the analytical tool run inside the same

process, data can be transferred between them for a much lower cost.

SQLite [4] is the most popular embedded database. It has bindings for all major

languages, and it can be embedded without any licensing issues because its source code

is in the public domain. However, it is first and foremost designed for transactional

workloads on small datasets. While it can be used in conjunction with popular

analytical tools, it does not perform well when used for analytical purposes.

In this chapter, we describe MonetDBLite, an Open-Source embedded database

based on the popular columnar database MonetDB [41]. MonetDBLite is an in-process

analytical database that can be run directly from within popular analytical tools
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without any external dependencies. It can be installed through the default package

managers of popular analytical tools, and has bindings for C/C++, R, Python and

Java. Because of its in-process nature, data can be transferred between the database

and these analytical tools at zero cost. The source code for MonetDBLite is freely

available1 and is in active use by thousands of analysts around the world.

1.1 Contributions

We describe the internal design of MonetDBLite, and how it interfaces with standard

analytical tools. We discuss the technical challenges we have faced in converting a

popular Open-Source database into an in-process embeddable database. We benchmark

MonetDBLite against other alternative database systems when used in conjunction

with analytical tools, and show that it outperforms alternatives significantly. This

benchmark is completely reproducible with publicly available source code.

1.2 Outline

This chapter is organized as follows. In Section 2, we describe the design and imple-

mentation of the MonetDBLite system. We compare the performance of MonetDBLite

against other database systems and statistical libraries in Section 3. Finally, we draw

our conclusions in Section 4.

2 Design & Implementation

In this section we will discuss the general design and implementation of MonetDBLite,

and the design choices we have made while implementing it.

2.1 Internal Design

MonetDBLite is based on the popular Open-Source columnar database MonetDB, and

as such it shares most of its internal design. The core design of MonetDB is described

1https://github.com/hannesmuehleisen/MonetDBLite
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in Idreos et al. [41]. However, since this publication a number of core features have

been added to MonetDB. In this section, we give a brief summary of the internal

design of MonetDB and describe the features that have been added to MonetDB since.

2.2 Embedding Interface

MonetDBLite is a database that is embedded into analytical tools directly, rather

than running as a standard client-server database. As MonetDBLite runs within

a process, clients have to create and initialize the database themselves rather than

connecting to an existing database server through a socket connection. For this

purpose, MonetDBLite needs a set of language bindings so the database can be

initialized and queries can be issued to the database.

MonetDBLite has language bindings for the C/C++, R, Python and Java pro-

gramming languages. However, all of these are wrappers for the C/C++ language

bindings. The main challenge in creating these wrappers is converting the data to

and from the native types of each of these languages. The optimization challenges of

this type conversion are discussed in Section 2.3. In this section, we will discuss only

the C/C++ API.

The database can be initialized using the monetdb startup function. This function

takes as optional parameter either a reference to a directory in which it can persistently

store any data. If no directory is provided, MonetDBLite will be launched in an

in-memory only mode, in which case no persistent data is saved to disk.

If the database is launched in persistent mode, a new database will be created

in the specified directory if none exists yet. Otherwise, the existing database will be

loaded and potentially upgraded if it was created by an older version of MonetDBLite.

If the database is launched in-memory, a new temporary database will be created

that will be kept entirely in-memory. Any data added to the database will be kept

in-memory as well. After an in-memory database is shut down, all stored data will be

discarded. The regular MonetDB does not have this feature.

After a database has been started, connections to the database can be created using

the monetdb connect function. In the regular MonetDB server, these connections
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represent socket connections to a client process. In MonetDBLite, however, these

connections are dummy clients that only hold a query context and can be used to

query the database. Multiple connections can be created for a single database instance.

These connections can be used for inter-query parallelism by issuing multiple queries

to the database in parallel and they provide transaction isolation between them.

Using these connections, the embedded process can issue standard SQL queries

to the database using the monetdb query function. This function takes as input a

client context and a query to be issued, and returns the results of the query to the

client in a columnar format in a monetdb result object. The monetdb result object

is semi-opague, exposing only a limited amount of header information, as shown in

Listing 6.1

1 struct monetdb_result {

2 size_t nrows;

3 size_t ncols;

4 char type;

5 size_t id;

6 };

Listing 6.1: MonetDBLite Result Object

The individual columns of the result can be fetched using the monetdb result fetch

function, which takes as input a pointer to the monetdb result object and a column

number. There are two versions of this function: a low level version, and a high level

version. In the low level version, the underlying structures used by the database are

directly returned without any conversions being performed. This function requires

internal knowledge of the database internals, and is intended for use primarily for

the language-specific wrappers for extra performance. In the high level version, the

database structures are converted into a set of simple structures that can be used

without knowledge of the internals of MonetDB(Lite). The returned structures depend

on the type of the column. An example for the int type is given in Listing 6.2.
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1 struct monetdb_column {

2 monetdb_type type;

3 int* data;

4 size_t count;

5 int null_value;

6 double scale;

7 int (* is_null)(int value);

8 };

Listing 6.2: MonetDBLite Integer Column

In addition to issuing SQL queries, the embedded process can efficiently bulk

append large amounts of data to the database using the monetdb append function.

This function takes the schema and the name of a table to append to, and a reference

to the data to append to the columns of the table. This function allows for efficient

bulk insertions, as there is significant overhead involved in parsing individual INSERT

INTO statements, which becomes a bottleneck when the user wants to insert a large

amount of data.

2.3 Native Language Interface

For any of the languages other than C/C++, data has to be converted between the

database’s native format to the target language’s native format. When a SQL query

is issued, the result has to be mapped back into the target environment. Likewise, if

the user wants to move data from the target environment to the database, it has to

be converted.

Database connectors in the target environment face a similar but more difficult

problem, as they also have to deal with communicating with the remote database server.

We could adapt these database connectors to work with MonetDBLite. However,

in an analytical context this approach is problematic. As these are row-focused

interfaces [70], the results of queries must be fetched one-by-one. This leads to a large

amount of overhead when fetching a large result set, especially in interpreted scripting

languages such as R or Python. Columnar bulk access to result sets is therefore
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needed, where all values belonging to one column can be fetched into a set of arrays,

one per column, in one or few calls to the database interface.

However, not all arrays are created equal. While it is possible to subclass the

native array representation in most programming environments, efficiency concerns

and expectations by third-party software might make a fully native data representation

necessary. For example, in R, most third-party packages will contain some portion of

compiled code written in C/C++, which relies on arrays being stored in the native

bit representation if they are to compute anything meaningful with them. Similarly,

in the NumPy environment, third-party packages can get a pointer to the native C

representation of any array. Hence for the objects that we return from the database

to be able to be used by these packages, we must create objects that exactly match

the native array format of the target environment.

Zero-Copy. Every target environment has a particular array representation in

memory. However, due to hardware support contiguous C-style arrays are ubiquitous

for numerical values. For example, both R and NumPy use this representation to

store arrays of numerical data. This allows for a unique optimization opportunity:

Instead of converting the data into a freshly allocated memory area, we can choose

to share a pointer to the existing data with the target system. The memory layout

needs to be compatible between data management and target environment, e.g. both

using contiguous C-style arrays containing four-byte signed integers. If this pointer

sharing is possible, the only cost comes from initializing metadata structures in the

target environment (e.g. SEXP header in R). However, this cost does not depend on

the size of the data set.

Great care needs to be taken to prevent modification of the data being shared. The

target environment may run any program imaginable, including code from contributed

packages, that may try to modify the shared memory areas. The shared pointer might

be part of persistent data of the database, hence modifying the data directly could

lead to corruption of the data stored in the database. Because of this, no direct

modification of this data is allowed.

What is desirable here are copy-on-write semantics for the shared data. If code
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from the target environment attempts to write into the shared data area, the data

should be copied within the target environment and only the copy modified. To

ensure these semantics are enforced, the Unix mprotect kernel function can be used to

disallow writes to the data by the target code. When the target environment attempts

to modify data we have shared with it, we create copy and modify the copy instead.

This allows for efficient read-only access without the risk of data corruption.

Figure 6-1: Header forgery for zero-copy data transfer.

Header Forgery. A challenge of providing a zero-copy interface to the data stored

in the database is that certain libraries expect metadata to be stored as a header

physically in front of the data. This is accomplished in the library by performing

a single memory allocation that allocates the size of the header plus the size of the

data. This is problematic in our scenario. As the source data comes directly from

an external database system it does not have space allocated in front of it for these

headers.

This problem could be solved by making the database always allocate extra bytes

in front of any data that could be passed to the analytical tool. As we have full control

of the database system, this is feasible. However, it would require a significant amount

of code modification and would result in wasted space in scenarios where the data is

not passed to the analytical tool.

Instead, we solve this problem using header forgery. This process is shown in

Figure 6-1. To provide a zero-copy interface of a region of n memory pages, we allocate
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a region of size n + 1 memory pages using the mmap [28] function. We then place

the header information at the end of the first page. We then use the mmap function

together with the MAP FIXED flag to directly link the remaining n memory pages to

the original data. This linking happens in the memory page table, and does not create

a copy of these pages. This method predates, but could be considered an application

of the memory rewiring technique presented in [74].

Figure 6-2: Lazy data conversion.

Lazy Conversion. While the zero-copy approach is ideal, as it does not require

us to touch the to–be–converted data, it cannot be used in all cases. When the

internal representation of the database is not bit-compatible with that of the target

environment, data conversion has to be performed. As all data has to be converted, the

conversion will take a linear amount of time w.r.t. the size of the result set. However,

it is not known whether the target environment will ever actually do anything with

the converted data. It is not uncommon for a user to perform a query such as SELECT

* FROM table and only access a small amount of columns from the result.

This issue can be resolved by performing lazy conversion of the result set. Instead

of eagerly converting the entire result set, we create a set of “dummy” arrays that start

out with a correctly initialized header. However, the data is filled with uninitialized
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memory. This is shown in Figure 6-2. We then use the mprotect [29] function to

protect the uninitialized memory from being read or written to directly using the

PROT NONE flag. When the user attempts to access the protected memory area, the

system throws a segmentation fault, which we then catch using a signal handler. Using

a pointer to the original data that is stored alongside the header, we then perform a

conversion of the actual data and unset the mprotect flag, allowing the user to use

the now-converted data transparently.

2.4 Technical Challenges

In this section, we will discuss the additional technical challenges that we encountered

while converting a standard relational database management system to an in-process

embedded database system.

Internal Global State. MonetDB was originally designed to run as a single

stand-alone process. One of the consequences of this design is that internal global

state (global variables) is used often in the source code. The database uses global

state to keep track of e.g. the data stored inside the database, the write-ahead logger

and numerous database settings.

This global state leads to a limitation: it is not possible to run MonetDBLite

twice in the same process. As the global state holds all the information necessary for

the database to function, including paths to database files, and this information is

continuously accessed while the database is running, only one database server can

be running in the same process. To make it possible to run several database servers

within the same process would require a very comprehensive code rewrite, as the

global database state would have to be passed around to almost every function.

Garbage Collection. Another issue caused by this global state is garbage

collection. As the database server no longer runs as a stand-alone program, the global

variables can no longer be reset by restarting the server. In addition, all the allocated

memory has to be freed in the process. Allocated regions can no longer be neglected

with the knowledge that they will be freed when the process is terminated. Instead, to

properly support an “in-process shutdown” of the database server, everything has to
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be cleaned up manually and all global variables have to be reset to their initial state.

External Global State. Another consequence of the database server being

designed to run as a stand-alone process is that it modifies a lot of external global

state, such as signal handlers, locale settings and input/output streams. For each of

these, it was necessary to modify the database source code to not modify the global

state. Otherwise loading the database package would result in it overriding signal

handlers, leading to e.g. breaking the scripting languages’ input console.

Calls to the exit function were especially problematic. In the stand-alone version

of MonetDB the database server shuts down when a fatal error was detected (such as

running with insufficient permissions or attempting to open a corrupt database). This

happens mostly during start-up. This is expected behavior in a stand-alone database

server, but becomes problematic when running embedded inside a different program.

Attempting to access a corrupt database using the embedded database would result

in the entire program crashing, rather than a simple error being thrown. Even worse,

since the database would simply exit in these scenarios, no alternative path exists to

only report the error. To avoid a large code rewrite, we used longjmp whenever the

exit function was called, which would jump out of the exit and move to a piece of

code where the error could be reported.

Error Handling. Another aspect of the database design that we needed to

rethink was error handling. In the regular database server, errors are reported by

writing them to the output stream so they can be handled by the client program.

However, in the embedded version the errors must be reported as a return value from

the SQL query function. We had to rewrite large portions of the error reporting code

to accommodate this.

Dependencies. To make MonetDBLite as simple to install as possible, one of

our design goals was to remove all external dependencies. Regular MonetDB has a

large number of required dependencies, among which are pcre, openssl, libxml and

pkg-config along with a large number of optional dependencies. For MonetDBLite,

we stripped all of these dependencies by removing large chunks of optional code and

rewriting code that relied on any of the required dependencies. For example, we made
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our own implementation of the LIKE operator (that previously used regular expressions

from the PCRE library). As a result of our efforts, MonetDBLite has no external

dependencies and can be installed without having to install any other libraries.

3 Evaluation

In this section, we perform an evaluation of the performance of MonetDBLite and

compare it against both (1) other relational database management systems, and (2)

several popular RDBMS alternatives used in statistical tools.

3.1 Setup

All experiments in this section were run on a desktop-class computer with an Intel

i7-2600K CPU clocked at 3.40GHz and 16 GB of main memory running Fedora 26

Linux with Kernel version 4.14. We used GCC version 7.3.1 to compile systems.

Reported timings are the median of ten hot runs. The initial cold run is always

ignored. A timeout of 5 minutes is used for the queries.

Systems. The following systems were used to compare against in our benchmarks.

All systems were configured to only use one of the eight available hardware threads

for fairness (as not all systems support intraquery parallelism). Furthermore, unless

indicated otherwise, we have attempted to configure the systems to take full advantage

of available memory. The complete configuration settings and scripts to reproduce

the results reported below can be found in the benchmark repository2.

• SQLite [4] (Version 3.20.1) is an embedded SQL database designed for transac-

tional workloads.

• MonetDB [41] (Version 11.29.3) is an analytical column-store database.

• PostgreSQL [77] (Version 9.6.1) is a row-store database designed for transac-

tional workloads.

2https://github.com/Mytherin/MonetDBLiteBenchmarks
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• MariaDB [89] (Version 10.2.14) is a row-store database designed for transac-

tional workloads. It is based on the popular MySQL database.

Libraries. In addition to the above-mentioned database management systems,

we test the following analytical libraries that emulate database functionality. We only

use these libraries in the query execution benchmarks.

• data.table [22] (Version 1.11.0) is an R library for performing common database

operations.

• dplyr [88] (Version 0.7.4) is an R library for performing common database

operations.

• Pandas [56] (Version 0.22.0) is a Python library for performing common database

operations.

• Julia [7] (Version 0.6.2) is a JIT compiled analytical language that has support

for performing standard database operators through the DataFrames.jl library.

Datasets. We perform benchmarks using the following data sets.

• TPC-H Benchmark. [82]. This synthetic dataset is designed to be similar

to real-world data warehouse fact tables. In our benchmarks, we use the scale

factors 1 and 10. The scale factor indicates approximately the size of the dataset

in GB.

• American Community Survey (ACS) [10]. This dataset contains millions

of census survey responses. It consists of 274 columns.

3.2 TPC-H Benchmark

As we focus on the integration of analytical tools with an analytical database, there

are three different scenarios that we want to optimize for and that we will benchmark.
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1. Data Ingestion. The rate at which data can be imported into the database

from the analytical tool. We call this the data ingestion or data import rate. This

scenario occurs when users want to take data that is the result of computations

in the analytical tool and store it persistently in the database.

2. Data Export. The rate at which data can be imported into the analytical tool

from the database. This data export rate is important when the user wants to

perform analytics on data that is stored persistently within the RDBMS.

3. Query Execution. The performance of the database engine when performing

analytical queries. This scenario occurs when the user wants to perform opera-

tions and aggregations on large amounts of data using the databases’ storage

engine. Note that for query execution, it is also possible to simply move the

data from the database into the analytical tool and do the processing there

using the previously mentioned libraries. For that reason, we also compare the

performance of the RDBMS with the afore-mentioned libraries.

Data Ingestion

For the data ingestion benchmark, we only consider the lineitem table. This is the

biggest table in TPC-H. It has 16 columns, primarily of types DECIMAL, DATE and

VARCHAR. There are no NULL values.

For this experiment, we read the entire lineitem table into R and then use the

dbWriteTable function of the R DBI [87] API to write the table into the database.

After this function has been completed, the table will be persistently present within

the database storage engine and all the data will have been loaded into the database.

We only consider the database systems for this experiment.

The results of this experiment can be seen in Figure 6-3. We can see that

MonetDBLite has the fastest data ingestion. However, we note that SQLite is not very

far behind MonetDBLite. For both systems, the primarily bottleneck is writing the

data to disk. MonetDBLite gains performance by storing the data in a more compact

columnar format, rather than the B-tree structure that SQLite uses to store data
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Figure 6-3: Writing the lineitem table from R to the database.

internally.

All the other systems perform extremely poorly on this benchmark. This is because

the data is written to the database over a socket connection, which requires a large

amount of network communication. However, the main problem is that these database

systems do not have specialized protocol code for copying large amounts of data from

the client to the server console. Instead, the data is inserted into the database using a

series of INSERT INTO statements, which introduces a large amount of overhead leading

to orders of magnitude worse performance than the embedded database systems.

Data Export

For the data export benchmark, we again only consider the lineitem table of the

TPC-H benchmark. For this experiment, we read the entire lineitem table from

the database into R using the dbReadTable function of the R DBI. This effectively

performs a SELECT * FROM lineitem query on the database and stores the result of

this query inside an R data frame.

The results of this experiment can be seen in Figure 6-4. We can see that
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Figure 6-4: Loading the lineitem into R from the database.

MonetDBLite has by far the fastest data export rate. Because it runs within the

analytical process itself, and because it makes use of zero-copy data transfer of numeric

columns, the data can be transferred between the database system and R for almost

no cost. By contrast, the databases that are connected through a socket connection

take a significantly longer time to transfer the result set to the client.

Despite running in-process as well, SQLite also takes a very long time to transfer

data from the database to the analytical tool. This is because the conversion of data

from a row-major to column-major format takes a significant amount of time.

Query Execution

For the query execution benchmark, we run the first ten queries of the TPC-H

benchmark inside each of the systems. For each of the libraries, we have created an

equivalent script for each of the queries using each of the libraries.

Library Implementations. Note that, since the libraries naively execute user

code without performing any high-level strategic optimizations, there is a lot of room

for modifying their performance as the equivalent functionality could be implemented
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TPC-H SF 1
System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
MonetDBLite 0.74 0.03 0.29 0.06 0.07 0.18 0.08 0.08 0.09 0.20
MonetDB 0.87 0.02 0.09 0.08 0.10 0.05 0.08 0.11 0.16 0.07
SQLite 8.41 0.04 1.83 0.44 1.00 1.17 6.52 T 19.05 1.35
PostgreSQL 8.93 0.25 0.71 2.08 0.46 1.06 0.62 0.60 2.31 1.40
MariaDB 19.65 1.96 4.87 0.97 4.16 2.02 2.13 6.71 18.12 15.67
data.table 0.45 0.12 0.28 0.20 0.46 0.13 0.27 0.24 0.88 0.20
dplyr 0.70 0.13 0.34 0.25 0.60 0.17 0.31 0.41 1.17 0.28
Pandas 0.85 0.19 0.49 0.41 0.93 0.12 0.44 0.56 1.82 0.34
Julia 0.99 0.10 0.73 0.25 0.53 0.07 0.30 0.67 1.05 0.57

TPC-H SF 10
System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
MonetDBLite 16.55 0.14 1.92 0.50 0.64 0.44 0.68 0.75 0.95 0.99
MonetDB 9.63 0.07 1.15 0.87 1.16 0.38 1.00 1.12 1.66 0.68
SQLite 97.61 0.37 23.17 4.44 12.65 11.69 T T T 14.72
PostgreSQL 88.77 2.71 63.87 22.87 4.92 11.41 7.68 6.73 74.42 63.54
MariaDB 169.58 20.76 124.59 13.34 78.88 33.42 88.72 139.68 218.65 234.95
data.table E E E E E E E E E E
dplyr 31.48 1.20 5.13 3.79 8.13 1.83 4.35 4.47 16.29 3.77
Pandas E E E E E E E E E E
Julia 24.61 5.00 7.32 2.78 9.51 0.66 7.32 13.42 18.90 6.14

Table 6.1: Performance Results for TPCH SF1 and SF10

in many naive and inefficient ways. In the worst case, we could perform cross products

and filters instead of performing standard joins. Likewise, we could choose poor join

orders or not perform filter or projection push down, and force materialization of

many unused tuples.

To attempt to maximize the performance of these libraries, we manually perform

the high-level optimizations performed by a RDBMS such as projection pushdown,

filter pushdown, constant folding and join order optimization. We have created these

implementations by using the query plans that are executed by VectorWise [9], a

state–of–the–art analytical database system that is the front runner on the official

TPC-H benchmark for single node machines. All the scripts that we have created for

each of the libraries can be found in our software repository. We have also reached

out to the developers of each library and received feedback on optimization.

However, having the user apply all these optimizations is not realistic. This scenario
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assumes the user has perfect knowledge on how to order joins and assumes the user

does not do any inefficient steps such as including unused columns. The benchmark

results provided for these libraries should therefore be seen as a best-case performance

scenario. The benchmark results for these libraries would be significantly worse if

we did not manually perform many of the automatic optimizations performed by a

database system.

TPC-H SF1

The total time required to complete all the measured TPC-H queries for the different

systems is shown in Table 6.1. We can see that both MonetDB and MonetDBLite show

the best performance on the benchmark. They also show very similar performance.

This is because the TPC-H benchmark revolves around computing aggregates, and

does not involve transferring a large amount of data over the socket connection. As

such, the bottleneck is almost entirely the computation performed in the database

server. As MonetDB and MonetDBLite use the same internal query execution engine,

they have identical performance.

After MonetDB, we can see the various libraries we have tested performing similarly

with only a factor two difference between the best and the worst performing library.

The fastest library, data.table, is heavily optimized for performing efficient relational

operations. However, even with the optimizations we have performed on the user code

it still cannot reach the performance of an actual analytical database system. This is

because the procedural nature of these libraries heavily limits the actual optimizations

that can be performed compared to the optimizations that a database can perform on

queries issued in the declarative language of SQL. For example, they do not perform

late materialization.

The traditional database systems perform significantly worse than the libraries,

however. As the TPC-H benchmark is designed to operate on large chunks of a subset

of the columns of a table, the row-store layout and tuple–at–a–time processing methods

of the traditional database systems perform extremely poorly on this benchmark. We

can see that the traditional database systems perform many orders of magnitude worse
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Figure 6-5: Loading the ACS data into the database.

than the analytical database systems and the libraries we have used.

Individual Query Performance. The performance of each of the systems on

individual queries can be seen in the table as well. The libraries perform extremely

well on TPC-H Query 1 and Query 6. On Query 1, data.table even manages to beat

our analytical database system. The libraries perform well on these queries because

the queries only involve performing filters and aggregations on a single table without

any joins.

The libraries perform worse on queries involving multiple joins. The join operations

in these libraries do not take advantage of meta-data and indices to speed up the

joins between the different tables. As such, they perform significantly worse than the

analytical database even when using an optimal join order.

The traditional database systems perform poorly on queries that involve a lot of

tuples behind pushed through the pipeline to the final aggregations. Because of their

tuple–at–a–time volcano processing model they invoke a lot of overhead for each tuple

that passes through the pipeline. This results in poor performance when many tuples

have to be processed at a time.
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TPC-H SF10

The results for the TPC-H SF10 benchmark are shown in Table 6.1. We note that at

this scale factor, the entire dataset still fits in memory. However, each of the scripting

libraries run into either out–of–memory errors or heavily penalized performance from

swapping on these queries. This is because these libraries require not only the entire

dataset to fit in memory, but also require any intermediates created while processing

to fit in memory. When the intermediates exceed the available memory of the machine

the program crashes with an out–of–memory exception. The database solutions do

not suffer from this problem, as they offload unused data to disk using either the

buffer pool or by letting the operating system handle it using memory mapped files.

While the traditional database systems do not run into crashes due to running

out–of–memory, their performance does degrade by more than an order of magnitude.

Because of the row-store layout of these systems, they have to scan and use the entire

dataset rather than only the hot columns. As a result, they run into performance

penalties as the entire dataset plus the constructed indices do not fit in memory

anymore and have to be swapped to disk. The column-store databases do not suffer

from this problem because only the actually used columns have to be touched to

answer the queries, and these are small enough to be kept in memory.

3.3 ACS Benchmark

For the American Community Survey benchmark, we run the ACS survey analysis

script as provided by Anthony Damico [20]. The script in this benchmark wrangles

data of the American Community Census, a large scale census performed in the United

States that gathers data about roughly 1% of the US population every year.

The script consists of two phases. In the first phase, the required data is gathered

and downloaded from the official data repositories. In the second phase, the downloaded

data is then processed and stored persistently in a database server. The persistently

stored data can then be analyzed and various aggregations and statistics can be

gathered from the data using the survey package [54].
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Figure 6-6: Performing the ACS statistical analysis.

The survey package allows you to hook your own database driver into the script,

and will perform a significant amount of processing inside the database. For operations

were SQL is insufficient, the data is transferred from the database to R and the data

is then processed inside R using various statistical libraries.

The official documentation of the ACS script describes a large amount of statistics

that can be gathered from the data. For this benchmark, we benchmark both the

required loading time into the database (but exclude the time spent on downloading

the data) and a number of statistical operations that are described in the official

documentation. We limit ourselves to a subset of the data: we only look at the data

from five states of the year 2016. This is ≈ 2.5 GB in data.

Data Loading

The benchmark results for loading the data in the database are shown in Figure 6-5.

MonetDBLite performs the best on this benchmark, but not by as large a factor as

seen in the TPC-H benchmark. This is because the survey package performs a lot of

preprocessing in R that happen regardless of which database is used. As a result, the
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performance difference between the different databases is not as overwhelming but

still very visible.

Statistics

The benchmark results for running the various statistical functions using the different

database connectors are shown in Figure 6-6. We can see that the difference between

performance of the different database engines is not very large. This is because most of

the actual processing happens inside R rather than inside the database. The observed

difference in performance is mainly because of the difference in the cost of exporting

data from the database. However, since the amount of exported data is not very large

compared to the amount of processing that occurs in this scenario there is less than a

factor two difference between the systems.

4 Summary

In this chapter, we have presented the embedded analytical database system MonetD-

BLite. MonetDBLite performs orders of magnitude better than traditional relational

database systems when executing analytical workloads, and provides an order of

magnitude faster interface between the database and the analytical tool.

In addition to being significantly faster, MonetDBLite is also easier to setup and use

because it does not require an external server and does not have any dependencies. It

can be installed through standard package and library managers of popular analytical

tools. All of these factors combined make MonetDBLite highly suitable as a persistent

data store for analytical tasks.
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CHAPTER 7

DuckDB: an Embeddable Analytical Database

1 Introduction

In Chapter 6, we described our effort in developing MonetDBLite, an embedded

analytical system that is derived from the MonetDB system. MonetDBLite proved

successfully that there is a real interest in embedded analytics, it enjoys thousands of

downloads per month and is used all around the world from the Dutch central bank to

the New Zealand police. However, its success also uncovered several issues that proved

very complex to address in a non-purpose-built system. We identified the following

requirements for embedded analytical database systems:

• High efficiency for OLAP workloads, but without completely sacrificing OLTP

performance. For example, concurrent data modification is a common use case in

dashboard-scenarios where multiple threads update the data using OLTP queries

and other threads run the OLAP queries that drive visualizations simultaneously.

• Efficient transfer of tables to and from the database is essential. Since both

database and application run in the same process and thus address space, there
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is a unique opportunity for efficient data sharing which needs to be exploited.

• Controlled resource consumption and ability to operate efficiently on lower-end

hardware is essential. While traditional database systems expect to be the sole

occupant on a big machine, embedded database systems need to “play nice”

with the host application with regards to resource usage.

• High degree of stability, if the embedded database crashes, for example due to an

out-of-memory situation, it takes the host down with it. This can never happen.

Queries need to be able to be aborted cleanly if they run out of resources.

• Practical “embeddability” and portability, the database needs to run in whatever

environment the host does. Dependencies on external libraries (e.g. openssh) for

either compile- or runtime have been found to be problematic. Signal handling,

calls to exit() and modification of singular process state (locale, working

directory etc.) are forbidden.

MonetDBLite was successful in achieving high efficiency for OLAP workloads and

efficient transfer of tables to and from the system. However, the fact that it was

designed to be a stand-alone system resulted in many complications that prevented it

from being able to fully succeed as an embedded OLAP RDBMS.

The operator–at–a–time processing model used by MonetDB materializes large

intermediates entirely in memory. This memory-intensive processing model combined

with the fact that MonetDB does not provide hard limits on the amount of memory

that it uses can lead to MonetDB quickly consuming all the available memory of the

system, leaving no memory left for the host application. This processing model also

suffers from performance problems when these intermediates do not fit in memory, as

the intermediates will be constantly swapped to disk.

Another issue caused by this processing model is the incapability of interrupting

queries in between operators. As every single operator must run completely until the

operator is finished, a user cannot quickly interrupt the execution of an expensive

operator (e.g. a large cross product). This is especially problematic when the database
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is used in interactive scenarios as the user cannot abort a query after realizing that it

takes too long to complete.

Additional problems arose from MonetDB’s usage of memory mapped files to load

the database data from disk. While mmap seems like an attractive option to allow the

operating system to handle loading of data from disk into memory, the uncontrolled

nature of when the data is actually fetched can cause large problems. Whenever any

part of a memory mapped region is read, the OS can potentially trigger a load from

disk and will send a SIGBUS signal to the application if that load fails. As MonetDB

passes around memory mapped data all around the processing pipeline, almost any

piece of code can trigger a SIGBUS signal. While handling these signals is possible in

a stand-alone application, it is not possible in a library as signal handlers are process

global and can thus (accidentally) be overwritten by the user.

MonetDB also suffers from many practical embeddability problems, including

ample usage of global variables, lack of namespacing for function names resulting

in potential symbol conflicts, calls to exit in case of fatal errors, and reliance on

setlocale and working directory modification. While these problems can be solved,

they require very large rewrites that touch almost the entire codebase.

To tackle these issues, we built DuckDB, a new purpose-built embeddable RDBMS.

In this chapter, we present the capabilities of DuckDB. DuckDB is available as Open-

Source software under the permissive MIT license1. DuckDB is no research prototype

but built to be widely used, with millions of test queries run on each commit to ensure

correct operation and completeness of the SQL interface.

1.1 Contributions

We describe the internal design of DuckDB and how it interfaces with standard

analytical tools and describe how it tackles the unique challenges that are faced by an

embedded analytical database system.

1https://github.com/cwida/duckdb
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API C/C++/SQLite
SQL Parser libpg query [27]
Optimizer Cost-Based [57, 59]
Execution Engine Vectorized [9]
Concurrency Control Serializable MVCC [60]
Storage Custom Single-File

Table 7.1: DuckDB: Component Overview

2 Design and Implementation

DuckDB’s design decisions are informed by its intended use case: embedded analytics.

Overall, we follow the “textbook” separation of components: Parser, logical planner,

optimizer, physical planner, execution engine. Orthogonal components are the transac-

tion and storage managers. While DuckDB is first in a new class of data management

systems, none of DuckDB’s components is revolutionary in its own regard. Instead,

we combined methods and algorithms from the state of the art that were best suited

for our use cases.

Being an embedded database, DuckDB does not have a client protocol interface or

a server process, but instead is accessed using a C/C++ API. In addition, DuckDB

provides a SQLite compatibility layer, allowing applications that previously used

SQLite to use DuckDB through re-linking or library overloading.

1 #inc lude ”duckdb . hpp”

2 DuckDB db( ”/tmp/db . duck” ) ;

3 Connection con (db) ;

4 auto r e s u l t = con . Query ( ”SELECT ∗ FROM tb l ” ) ;

5 cout << r e su l t−>GetValue (0 , 0) ;

Listing 7.1: Using DuckDB from C++

The SQL parser is derived from Postgres’ SQL parser that has been stripped

down as much as possible [27]. This has the advantage of providing DuckDB with a

full-featured and stable parser to handle one of the most volatile form of its input,

SQL queries. The parser takes a SQL query string as input and returns a parse tree

of C structures. This parse tree is then immediately transformed into our own parse
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tree of C++ classes to limit the reach of Postgres’ data structures. This parse tree

consists of statements (e.g. SELECT, INSERT etc.) and expressions (e.g. SUM(a)+1).

The logical planner consists of two parts, the binder and the plan generator. The

binder resolves all expressions referring to schema objects such as tables or views with

their column names and types. The logical plan generator then transforms the parse

tree into a tree of basic logical query operators such as scan, filter, project, etc. After

the planning phase, we have a fully type-resolved logical query plan. DuckDB keeps

statistics on the stored data, and these are propagated through the different expression

trees as part of the planning process. These statistics are used in the optimizer itself,

and are also used for integer overflow prevention by upgrading types when required.

DuckDB’s optimizer performs join order optimization using dynamic program-

ming [57] with a greedy fallback for complex join graphs [61]. It performs flattening

of arbitrary subqueries as described in Nuemann et al. [59]. In addition, there are

a set of rewrite rules that simplify the expression tree, by performing e.g. common

subexpression elimination and constant folding. Cardinality estimation is done using a

combination of samples and HyperLogLog. The result of this process is the optimized

logical plan for the query. The physical planner transforms the logical plan into the

physical plan, selecting suitable implementations where applicable. For example, a

scan may decide to use an existing index instead of scanning the base tables based on

selectivity estimates, or switch between a hash join or merge join depending on the

join predicates.

DuckDB uses a vectorized interpreted execution engine [9]. This approach was

chosen over Just-in-Time compilation (JIT) of SQL queries [58] for portability reasons.

JIT engines depend on massive compiler libraries (e.g. LLVM) with additional

transitive dependencies. DuckDB uses vectors of a fixed maximum amount of values

(1024 by default). Fixed-length types such as integers are stored as native arrays.

Variable-length values such as strings are represented as a native array of pointers

into a separate string heap. NULL values are represented using a separate bit vector.

This allows fast intersection of NULL vectors for binary vector operations and avoids

redundant computation. To avoid excessive shifting of data within the vectors when
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e.g. the data is filtered, the vectors may have a selection vector, which is a list of

offsets into the vector stating which indices of the vector are relevant [9]. DuckDB

contains an extensive library of vector operations that support the relational operators,

this library expands code for all supported data types using C++ code templates.

The execution engine executes the query in a so-called “Vector Volcano” model.

Query execution commences by pulling the first “chunk” of data from the root node

of the physical plan. A chunk is a horizontal subset of a result set, query intermediate

or base table. This node will recursively pull chunks from child nodes, eventually

arriving at a scan operator which produces chunks by reading from the persistent

tables. This continues until the chunk arriving at the root is empty, at which point

the query is completed.

DuckDB provides ACID-compliance through Multi-Version Concurrency Control

(MVCC). We implement HyPer’s serializable variant of MVCC that is tailored specif-

ically for hybrid OLAP/OLTP systems [60]. This variant updates data in-place

immediately, and keeps previous states stored in a separate undo buffer for concurrent

transactions and aborts. MVCC was chosen over simpler schemes such as Optimistic

Concurrency Control because, even though DuckDB’s main use case is analytics,

modifying tables in parallel was still an often-requested feature in the past.

For persistent storage, DuckDB uses a custom single-file storage layout inspired

by the DataBlocks layout [50]. The single-file is partitioned into separate fixed-size

blocks that hold the data of individual columns. When the columns are too small to

fill up a single block, multiple columns can be packed together into a block to avoid

wasting space. The table metadata lives in separate blocks and carries lightweight

indexes for the individual blocks that the table points to, including min/max indices

for every block that allow for the skipping of reading certain blocks into memory.

3 Summary

In this chapter, we have presented the embedded analytical database system DuckDB.

DuckDB is a purpose-built embedded analytical database system that offers efficient
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execution of analytical workloads and a very fast interface between the database system

and analytical tools. It is built to be embedded and solves many of the problems faced

by MonetDBLite with regards to resource usage and robustness. It is easy to setup

and install with zero external dependencies and can be installed through standard

package and library managers of popular analytical tools.
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CHAPTER 8

Conclusion

1 Big Picture

In this thesis, we have investigated each of the methods in which analytical tools can

be combined with relational database management systems. For each of the methods,

we have provided improvements in both the efficiency and the usability departments.

Each of the three methods that we have considered has its place. As for our

original goal of making the RDBMS as easy to use as flat file storage; the embedded

database systems definitely shine. They are easy to install, and once installed can be

used directly from within the analytical tools with very little setup overhead.

However, they share one of the same drawbacks as working with flat files in that

they are not designed for collaborating with multiple people over multiple machines.

In these scenarios, setting up a separate database server is the preferred solution.

The client-server connection is effective when the user wants to export the data

and run an analysis pipeline only once. In this scenario, our proposed client-server

protocol can significantly accelerate the speed of data export and assist the user in

running their analysis pipeline efficiently.
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When the user wants to run their analysis pipelines several times, for example as

part of reporting software that periodically generates new graphs based on new data,

MonetDB/Python UDFs shine as the stand-alone server architecture can be combined

with the fast data transfer between the RDBMS and the analytical tool.

2 Future Research

In this section, we will present potential future research directions in the area of

combining analytical tools and RDBMSs. We split up this section by each of the

different methods of combining analytical tools with RDBMSs and discuss future

research directions for each of the different methods.

2.1 Client-Server Connections

Adaptive Compression

In our current protocol, we use a simple heuristic to determine which compression

method to use. An optimization that can be made to our protocol is therefore to

use the network speed as a heuristic for which compression method to use. Using

compression methods that offer degrees of compression, the cost of the compression

can be fine tuned and dynamically adapted to changing network conditions.

Parallel Serialization

Further performance could be gained over our proposed protocol by serializing the

result set in parallel. This can be advantageous for parallelizable queries. In these

scenarios, the threads can immediately start serializing the result set to thread-local

buffers as they compute the result without having to wait for the entire query to

finish. However, since writing the data to the socket still has to happen in a serialized

fashion we only expect performance gains in a limited set of scenarios. For example,

when result set serialization is expensive due to heavy compression or when the query

is fully parallelizable.
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2.2 In-Database Processing

Polymorphism

Currently, MonetDB/Python functions are only partially polymorphic. The user can

specify that the function accepts an arbitrary number of arguments, however, the

return types are still fixed and must be specified when the function is created. Allowing

the user to create complete polymorphic functions would increase the flexibility of

MonetDB/Python functions.

The problem with polymorphic return types is that the return types of the function

must be known while constructing the query plan in the current execution engine.

Thus we cannot execute the function and look at the returned values to determine

the column types. The solution proposed by Friedman et al. [30] is to allow the user

to create a function that specifies the output columns of the function based on the

types of input columns. This function is then called while constructing the query plan

to determine the output types of the function.

This allows the user to create functions whose output columns depend on the

number of input columns and the types of those columns. However, it does not

allow the user to vary the output columns based on the actual data within the input

columns. Consider, for example, a function that takes as input a set of JSON encoded

objects, and converts these objects to a set of database columns. The amount of

output columns depends on the actual data within the JSON encoded objects, and

not on the amount or type of the input columns, thus these types of polymorphic

user-defined functions are not possible using the proposed solution.

The ideal solution would be to determine the amount of columns during query

execution, however, this provides several challenges as the query plan must be adapted

to the amount of columns returned by the function, and must thus be dynamically

modified during execution.
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Data Partitioning

MonetDB/Python supports parallel execution of user-defined functions. It does so by

partitioning the input columns and executing the function on each of the partitions.

Currently, the partitioning simply splits the input columns into n equally sized pieces.

This is the most efficient way of splitting the columns, but it limits the parallelizability

of user-defined functions. Functions that operate only on the individual rows, such as

word count, can be parallelized using this partitioning.

However, as noted by Jaedicke et al. [44], certain functions cannot be efficiently

executed in parallel on arbitrary partitions, but can be efficiently computed in parallel

if there are certain restrictions on the partitioning scheme. Allowing the user to specify

a specific partitioning scheme would increase the flexibility of the parallelization.

There are performance implications in arbitrary partitioning in a column-store.

Normally, the identifiers of every row are not explicitly stored, as shown in Figure 2-1a.

The current partitioning scheme does not rearrange the values in the columns, which

allows these identifiers to remain virtual. However, if we rearrange the values in the

columns to match a user-defined partitioning scheme, we would need to explicitly store

the row identifiers, resulting in significant additional overhead. This is avoided by the

special partitioning used for computing parallel aggregates, because we do not need to

know the individual tuple identifiers of each of the values as we are accumulating the

actual values, thus we only need to know the group that the value belongs to.

Still, parallelization could lead to big improvements in execution time of CPU-

bound functions. It would be interesting to see how big the set of functions is that

cannot be parallelized over arbitrary partitions, but can be parallelized over restricted

partitions. It would also be interesting to see if it would be worth the performance hit

of creating these restricted partitions over the data so we can compute these functions

in parallel.
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Distributed Execution

Currently, MonetDB/Python can only be parallelized over the cores of a single machine.

While this is suitable for a lot of use cases, certain data sets cannot fit on a single

node and must be scaled to a cluster of machines. It would be interesting to scale

MonetDB/Python functions to work across a cluster of machines, and examine the

performance challenges in a parallel database environment.

Query Flow Optimization

Currently, we treat MonetDB/Python functions as black boxes in query execution.

However, queries involving MonetDB/Python functions could be optimized if we

knew more about the computational complexity of the function. Determining this

automatically is an extension of the halting problem, as if we could compute the exact

run-time of a function, we would also know if the function would terminate. However,

estimations could be made.

It has been suggested by Hellerstein et al. [38] and Chaudhuri et al. [13] to make

the user specify the complexity of their function by making them fill in the cost per

tuple. However, this can be very difficult to determine for the user and places the

burden of optimization on them.

There has been some work by Crotty et al. [19] on automatically trying to estimate

this information by looking at the actual compiled code. Alternatively, we could look

at run-time statistics to try and determine the complexity of the functions, although

this does require the user to use the function in an unoptimized data flow first.

Script Optimization

In this thesis we have focused mainly on optimizing the dataflow around user-defined

functions. We have seen in Figure 4-5 that this dramatically speeds up functions for

which transportation of data is the main bottleneck. However, when the computation

time dominates the transportation time this optimization will not provide a significant

speedup. We have provided the ability to execute functions in parallel, which can still
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provide significant speedups to these functions. However, we still treat the user-defined

functions as black boxes. Additional speedups could be achieved by looking into the

user-defined functions and optimizing the code within the functions.

Cardinality Estimation

MonetDB uses heuristics based on table size when creating the query plan to determine

how the columns should be partitioned for parallelization, as partitioning small tables

significantly degrades performance. However, when the table is generated by a table-

producing UDF, this table could potentially have any size. An interesting research

direction could be estimating the cardinality of these table-producing functions.

Code Translation

When creating MonetDB/Python, we have tried to make it as easy as possible for

data scientists to make and use user-defined functions. However, they still have to

write user-defined functions and use SQL queries to use them if they want to execute

their code in the database. They would prefer to just write simple Python or R scripts

and not have to deal with database interaction.

An interesting research direction could be analyzing these scripts, and automatically

shipping parts of the script to be executed on the database as user-defined functions.

This way, data scientists do not have to interact with the database at all, while still

getting the benefits of user-defined functions.

2.3 Embedded Databases

Embeddability

In MonetDBLite, there are still several open issues that result from the nature of how

MonetDBLite was created. Because the database that is based on, MonetDB, operates

as a stand-alone server several limitations are present in the code that introduce

problems when it is used as an embedded database.
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MonetDB traditionally only allows a single database process to read the same

database. There are is no fine grained locking between several database processes.

Instead, a global lock is used on the entire database. If the user attempts to start

a database server with a database that is currently occupied by another server an

error will be thrown (“database locked”) and the process will exit. This makes sense

in the stand-alone server scenario, as running multiple database servers on the same

database does not make much sense. However, it is a problem in the embedded

database scenario because multiple processes might want to access the same database.

Another limitation is that the MonetDB server can only run on a single database

at a time because of the large amount of global variables present in the codebase of

MonetDB. This is no problem in the stand-alone server case, because another server

can be started in a different database directory. However, for the embedded case, this

is a limitation because only a single database can be opened in the same process.

As MonetDB is designed to run on a large machine that is dedicated to running

the database server and has enough memory to handle the working set, MonetDB also

does not perform gracious handling of out-of-memory situations. In many places in

the codebase, malloc returning a NULL is not handled and will lead to the database

server crashing. The processing model of MonetDB also does not lend itself well to

low memory devices, as large intermediates are materialized entirely in memory. In

the case of smaller devices, this may lead to the system frequently swapping or even

running out of disk space and crashing the server.

These issues are so ingrained into the MonetDB codebase that they are very

difficult to address. In fact, fixing these issues will require almost a complete rewrite

of the entire codebase. Instead, we have decided to write DuckDB from scratch in

order to fix these issues.

Hardware Distrust

Hardware distrust is another unexplored area of database research that is very relevant

to embedded database systems. As the embedded database runs on low quality

consumer hardware instead of high quality server hardware it is very possible that the
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system is ran on broken hardware. In the case of broken hardware, it is important

that the database system prevents (or at the very least limits) the corruption of the

data stored by the database system.

Any component used by the database system can be broken and can be broken in

different ways. The hard disk can report successful writes even when writes have not

occured, or it can flip bits within the file. Random bits can be flipped in the memory,

or entire memory regions can be corrupt. Even the CPU can return incorrect results

when broken or overclocked. Detecting and attempting to limit the damage caused by

broken hardware components without significantly impacting performance is an area

that we are actively working on in DuckDB.

Resource Contention

Embedded database systems always run alongside their host application, and the

resources used by the host application can vary wildly. The host application can

be either a simple shell that performs almost no additional work or a full-fledged

analytical application that consumes large amounts of memory and CPU resources.

Currently DuckDB employs the standard solution of letting the user configure the

resource consumption of the database system. While this works, it adds additional

knobs for the user and does not allow for adaptive resource balancing of the database

system. For example, the database system could switch to using less memory as the

host system requires more memory, or switch to using more CPU resources when these

resources become available.
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Summary

The database research community has made tremendous strides in developing powerful

database engines that allow for efficient analytical query processing. However, these

powerful systems have gone largely unused by analysts and data scientists. This

poor adoption is caused primarily by the state of database-client integration: current

methods of combining databases with analytical tools are slow and cumbersome.

Instead, data scientists have opted to re-invent database systems by developing a

zoo of data management alternatives that perform similar tasks to classical database

management systems, but have many of the problems that were solved in the database

field decades ago.

In this thesis we attempt to overcome this challenge by investigating how we can

facilitate efficient and painless integration of analytical tools and relational database

management systems. We focus our investigation on the three primary methods

for database-client integration: client-server connections, in-database processing and

embedding the database inside the client application.

For each of these methods we take an extensive look at implementations in existing

systems, and evaluate how they perform in the context of standard analytical workloads.

We evaluate the benefits and drawbacks that they exhibit in this context, both in

terms of query performance and usability.
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We propose several novel techniques that improve upon the state-of-the-art. We

demonstrate a new client-server protocol that is optimized for bulk-transfer of large

data sets. We showcase our MonetDB/Python UDFs, that improve on large in-database

processing efficiency through vectorized execution. We describe MonetDBLite, an

embedded version of the MonetDB database system that we have efficiently integrated

with Python and R. The techniques that we propose have all been integrated and

tested in real database systems, showing that these solutions are not just theoretical

but practically applicable as well.

In the final chapter we showcase DuckDB, a new data management system that

we have built from scratch. When building DuckDB, we took all the lessons that we

learned from developing efficient database-client interfaces and applied them.

In conclusion, the techniques that we have developed enable significantly more

efficient and usable integration between database systems and analytical tools. Nev-

ertheless, there is still more to be explored in this area. We close this thesis with a

program for future research, as well as sketches for solutions to them.
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Samenvatting

Database onderzoekers hebben enorme voortgang geboekt in het ontwikkelen van

krachtige database systemen die efficient analytische queries kunnen beantwoorden.

Deze krachtige systemen worden echter zelden gebruikt door analytici. Dat komt

voornamelijk omdat het gebruik van huidige relationele database systemen in com-

binatie met de programma’s die zij gebruiken traag en onhandig is. In plaats van

deze database systemen te gebruiken, zijn analytici database systemen opnieuw aan

het uitvinden. Ze schrijven hun eigen programma’s die vergelijkbare functionaliteit

hebben,maar de innovaties van het database veld van de afgelopen decennia negeren.

In dit proefschrift proberen we dit probleem op te lossen. We doen dit door

te onderzoeken hoe we de integratie van database systemen met deze analytische

programma’s efficinter en gebruiksvriendelijker kunnen maken. Ons onderzoek is

gefocussed op de drie primaire methodes van database-client integratie: client-server

verbindingen, in-database analyses en gentegreerde database systemen.

Voor elk van deze methoden onderzoeken wij de implementaties in bestaande

database systemen, en evalueren wij hoe efficient deze zijn voor standaard analytische

gebruik. We kijken naar de voor en nadelen van elk van deze technieken, zowel in

termen van efficiencie als in gebruiksvriendelijkheid.

We introduceren meerdere nieuwe technieken die verbeteren op de huidige state-of-
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the-art. We demonstreren een nieuw client-server protocol dat wij hebben ontwikkeld

dat geoptimalizeerd is voor bulkoverdracht van grote data sets. We laten onze

MonetDB/Python user-defined functions zien, die efficiente grootschalige in-database

analyses versnellen door gebruik te maken van vectorisatie. Uiteindelijk beschrijven

wij MonetDBLite, een versie van het MonetDB database systeem die wij hebben

gentegreerd in R en Python. Al onze technieken zijn getest in de context van echte

systemen, wat laat zien dat onze oplossingen niet alleen theoretisch maar ook praktisch

toepasbaar zijn.

In het laatste hoofdstuk introduceren wij DuckDB, een nieuw data management

systeem dat wij hebben gebouwd met als specifiek doel om deze analytici te onderste-

unen. Bij het bouwen van DuckDB hebben wij alle lessen die we hebben geleerd over

de integratie van database systemen met analytische applicaties toegepast.

In conclusie, de algoritmes die wij hebben ontwikkeld maken het mogelijk om

database systemen veel efficienter te integreren met analytische applicaties. Desalniet-

temin is er nog meer om te onderzoeken in dit gebied. We sluiten dit proefschrift af met

suggesties voor toekomstig onderzoek, samen met ideen voor eventuele oplossingen.
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