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Abstract. The spatial distribution of a variable, such as the energy
consumption per company, is usually plotted by colouring regions of the
study area according to an underlying table which is already protected
from disclosing sensitive information. The result is often heavily influ-
enced by the shape and size of the regions. In this paper, we are interested
in producing a continuous plot of the variable directly from microdata
and we protect it by adding random noise. We consider a simple attacker
scenario and develop an appropriate sensitivity rule that can be used to
determine the amount of noise needed to protect the plot from disclosing
private information.

1 Introduction

Traditionally, statistical institutes mainly publish tabular data. For the tabular
data and underlying microdata, many disclosure control methods exist [10]. A
straightforward way to visualise the spatial structure of the tabular data on a
map is to colour the different regions of the study area according to their value in
a table that was already protected for disclosure control. The connection between
disclosure control in tables and on maps is investigated in [16,18], for example.

Drawbacks of giving a single colour to the chosen regions are that the shape
of the region influences the plot quite a lot and that the regions might not
constitute a natural partition of the study area. This makes it difficult for a user
to extract information from the plot. A smooth plot is often easier to work with.

To overcome these disadvantages, more and more publications use other vi-
sualisation techniques, such as kernel smoothing, that can be used to visualise
data originating from many different sources, including road networks [3], crime
numbers [6], seismic damage figures [7] and disease cases [8]. More applications
and other smoothing techniques are discussed in [4,5,19].

The views expressed in this paper are those of the authors and do not necessarily
reflect the policy of Statistics Netherlands.



2 D.A. Hut et al.

Research involving the confidentiality of locations when publishing smoothed
density maps [14,20] shows that it is possible to retrieve the underlying locations
whenever the used parameters are published.

Regarding plots of smoothed averages, [13,22] constructed a cartographic
map that showed a spatial density of the relative frequency of a binary variable,
such as unemployment per capita. The density was defined at any point, not
just at raster points, but the final colouring of the map was discretised, as part
of the disclosure control. By the fact that often only one of the values of the
variable is considered sensitive information, e.g. being unemployed versus being
employed, a practical way to protect locations with too few nearby neighbours is
assigning them to the non-sensitive end of the frequency scale. Besides assessing
the disclosure risk, some utility measures were constructed.

The starting point for the current research is [23], in which plotting a sensi-
tive continuous variable on a cartographic map using smoothed versions of cell
counts and totals is discussed. The authors constructed a p% rule that used the
smoothed cell total and smoothed versions of the largest two contributions per
cell.

In this paper, we provide another view on the sensitivity of a map that
shows a continuous variable and abandon the idea of explicitly using grid cells,
so that the result will be a continuous visualisation on a geographical map. First,
in Sect. 2, we will introduce some preliminaries. Then, Sect. 3 will show that
the application of disclosure control is needed, after which our method to do
so is explained in Sect. 4 and guaranteed to sufficiently protect the sensitive
information in Sect. 5. We illustrate our approach by means of a case study in
Sect. 6 and make some final remarks in Sect. 7.

2 Preliminaries and Notation

First, we will introduce some notation. Let D C IR? be an open and bounded
set that represents the study region on which we want to make the visualisation.
Let the total population be denoted by U = {r1,...,7ny} C D, for N € N, in
which r; = (z;,y;) is the representation of population element i by its Cartesian
coordinates (z;,y;). We write r = (z,y) for a general point in D and ||r|| =
v/22 + y2 for the distance of that point to the origin. Associated with each
population element is a measurement value. By g; > 0, we will denote the value
corresponding to population element i. As an example, U could be a set of
company locations, where company ¢ has location r; and measurement value g;,
indicating its energy consumption, as in our case study of Sect. 6.

In order to visualise the population density, one can use kernel smoothing
[19]. The approach is similar to kernel density estimation [17], except that no
normalisation is applied. Essentially, density bumps around each data point are
created and added to make a total density. In our case, the kernel smoothed
population density is given by

1 N r—r;
fh,<r)h22k< - )
i=1
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in which k: IR? — IR is a so-called kernel function, that is, a non-negative, sym-
metric function that integrates to 1 over IR?. The bandwidth h controls the range
of influence of each data point. The Gaussian kernel k(r) = (1/27) exp(—||r||?/2),
the Epanechnikov kernel k(r) = (2/7)(1 — ||7||?>)1(||r|| < 1) and the uniform
kernel k(r) = (1/7)1(||r|| < 1) are common choices, but obviously many others
kernel functions exist. Some guidelines are given in Sect. 4.5 of [19].

For the measurements values gi,...,gn, a density can be constructed by
multiplying the kernel corresponding to location ¢ with the value g;:

1 N r—7r;
gn(r) = 5l > ik )
i=1

By dividing the two densities f; and g, we get the Nadaraya-Watson kernel
weighted average [21]

_onlr) _ S gik ((r —ri)/h)
fulr) S k(=) /h)

Whenever f(r) =0, it follows that g, (r) = 0 as well and we define m(r) = 0.
This weighted average is an excellent tool for data visualisation and analysis
[5]. The ratio my(r), r € D will be the function of which we will investigate
disclosure properties and discuss a possible protection method.

Some remarks are in order. Firstly, the bandwidth A influences the smooth-
ness of my. In the limit case of a very large bandwidth, mj; will be constant,
while for small h, the plot will contain many local extrema. In the limit case
of a very small bandwidth, m; will be the nearest neighbour interpolation, at
least when using a Gaussian kernel. Secondly, note that mass can leak away,
since D is bounded but the kernel is defined on IR?. Consequently, f; and g
underestimate the (weighted) population density at = close to the boundary of
D. Various techniques to correct such edge effects exist, see [2,9,15].

In this paper, we will frequently use two matrices that are defined in terms
of the kernel function, namely

T — T N
= (+(75))
h ij=1

o ( E((ri = r5)/h) )N
Soasy k((ri = k) /h)

Lastly, we will write @1 for the standard normal inverse cumulative distribution
function.

mp(r) reD. (1)

and

ij=1

3 Motivation and Attacker Scenario

In this section, we will show that publishing the kernel weighted average reveals
exact information on the underlying measurement values. This implies that it is
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necessary to apply disclosure control before publishing the plot. Our method to
do so will be elaborated on in Sect. 4.

Here, we will restrict our attention to the scenario in which an attacker is able
to exactly read off the plot of the kernel weighted average (1) at the population
element locations r;,7 = 1,..., N. Throughout this paper, we will assume that
he is completely aware of the method to produce the kernel weighted average
and knows what kernel function, bandwidth and population element locations
were used.

Using the plot values, the attacker can set up a system of linear equations to
obtain estimates of the measurement values, since the kernel weighted average (1)
is a linear combination of the measurement values. When the attacker chooses IV
points to read off the plot of (1) and uses the exact locations r; for i =1,..., N,
he obtains the system

my = Ch g, (2)

with the known plot values m;, = (my, ('r’z))f\]=1 and the unknown measurement
value vector g = (gl)f\il We know the following about solvability of the system.

Theorem 1. Whenever Ky, is invertible, system (2) can be solved uniquely and
the attacker can retrieve all measurement values exactly.

Proof. Assume that K is invertible. Then C}, is invertible as well, as it is
created from K, by scaling each row to sum to 1. Hence, the linear system (2)
is uniquely solvable and an attacker can retrieve the vector g of measurement
values by left-multiplying m; with C;l. O

In particular, Theorem 1 shows that there is at least one configuration of points
at which the attacker can read off the plot of (1) to retrieve the measurement
values g;,i =1,..., N exactly.

For the Gaussian kernel, amongst others, K, is positive definite and thus
invertible, regardless of h, N and r;, i =1,..., N, only provided that all r; are
distinct.

In the remainder of this paper, we will assume an attacker scenario in which
the attacker obtains a vector containing the exact plot values at locations r;, i =
1,..., N and left-multiplies that vector by C,:l to obtain estimates of the mea-
surement values g;, i =1,...,N.

4 Proposed Method and Main Result

Our method to prevent the disclosure of sensitive information consists of dis-
turbing the plot of (1), by adding random noise to the numerator g(r), r € D,
so that an attacker observes

] SN gik ((r = 73)/h) + e(r)

m(r) = , T1r€D, 3
M N - ) ) )
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instead of (1), where we define my(r) = 0 if fi(r) = 0. The random noise
e(r) will be generated as a Gaussian random field, with mean 0 and covariance
function

Cov(e(r),e(s)):azk< - > r.s €D,

where ¢ is the standard deviation of the magnitude of the added noise. The
kernel k should be a proper covariance function, which is the case when for all
h >0 mecNands, € R, i=1,...,m, the corresponding matrix K, is
positive definite, see Chapt. 1 of [1]. In this way, (3) will be continuous, just as
(1), whenever a continuous kernel function is used and fj, vanishes nowhere.

Adding random noise to the plot implies that the attacker’s estimates will be
stochastic as well. This fact should be captured in a rule that describes whether it
is safe to publish the noised kernel weighted average. It brings us to the following
sensitivity rule, that states that a plot is considered unsafe to publish when any
measurement value estimate that the attacker makes lies with probability greater
than « within p percent of the true value. Such a sensitivity rule can be seen
as a stochastic counterpart of the well known p% rule for tabular data, which is
elaborated on in [10].

Definition 1. For 0 < p < 100 and 0 < «a < 1, a plot is said to be unsafe
according to the (p%, «) rule for an attacker scenario whenever the estimates §;
of gi, 1=1,..., N, computed according to the scenario, satisfy

9i — Gi
gi

max P
{ 100

i=1,..,N

<p}>a, (4)

where we take [(§; — g:)/9:| = |9:| if g; = 0.

When applying the (p%, o) rule, we normally choose p and « to be small, so
that a plot is safe when small relative errors in the recalculation happen with
small probability. Theorem 1 implies that the plot of (1) cannot be safe for any
(p%, «) rule. Furthermore, we note that high values of p and low values of «
correspond to a stricter rule: If a plot is safe according the (p%, «) rule, then for
any p < p and & > «, the plot is also safe according to the (p%, &) rule.

Our main result is the following theorem, that gives the standard deviation
of the magnitude of the noise € in (3) needed to ensure that the plot is safe
according to the (p%, «) rule. In Sect. 5, we will prove the theorem.

Theorem 2. Suppose that the kernel k: R*> — R is a proper covariance func-
tion and g; > 0,4 = 1,...,N. Then the plot of (3) is safe according to the
(p%, @) rule for our attacker scenario of Sect. 3 if

p 9i

o> max —_— 3. (5)
10021 ((1 2) i=1,...,.N _

(e b | ),
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5 Proof of Theorem 2
Recall that the attacker observes (3). In matrix notation, (3) reads
my, +€=C}g+E,

where

N
N e(ri) . 6
( Z)zzl <Z§V_1 k((r; — "'j)/h)>i_1 v

If the attacker left-multiplies the vector of observed plot values by C;l to
recalculate g, just as he could do in (2), he will now make an error, because the
observed values are my, + € instead of my;. When we write g = (gz) , for the
vector of recalculated measurement values, we obtain

Gg=C;'(m, +& =g+C,'c (7)

Recall that C}, is invertible because K, is positive definite since k is a proper
covariance function.

By the next lemma, that is the result of basic probability theory, it suffices,
in order to prove Theorem 2, to show that for our attacker scenario of Sect. 3
and using the plot of (3), for ¢ = 1,..., N, the recalculated value §; follows a

normal distribution with mean g; and variance o (K ;l)ii.

Lemma 1. Whenever §; follows a normal distribution with mean g;, (4) is

equivalent with
P gi

max >1
i=1,.,N 100 ¢—1 (142 \/Var(g;)

Now, let us compute the variance of the recalculated measurement values.
For alli =1,..., N, combining (7) with the fact that e(r;), i = 1,..., N, follows
a multivariate normal distribution with zero mean and covariance matrix o2 K,
the i-th recalculated value g; will follow a normal distribution with mean g¢; and

variance
Var(g;) = ZZCOV ( €j, (C;l)ik €k) .

j=1k=1

Rewriting €; and €, according to (6), taking factors outside the covariance term
and substituting o2 (Kn)j, = o? (Ch)kj ZZZI (Kh)y,, for Cov(e;,er), we ob-

tain )
c. ).
Var QZZ h ” ( h )1k (Ch)kj-
j=1k=1 m 1(Kh)jm

Now, we can work out the multiplications of inverse matrices and use

—1 (Cgl)ij )N
Kl "*74g
" (Zfﬂvl—l (Kh)Jm i,j=1
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Fig. 1. Unprotected (left panel) and protected (right panel) kernel weighted average of
our entire synthetic dataset, according to a (10%,0.1) rule for a Gaussian kernel with
bandwidth h = 250 m

to get the result
Var(3) = 0% (K, "),

which, together with Lemma 1, proves Theorem 2.

6 Case Study

We want to be able to compare unprotected plots with protected plots, so we
cannot use original, confidential data. Hence we used a synthetic dataset, based
on real data of energy consumption by enterprises. The original data contained
enterprises in the region ‘Westland’ of The Netherlands. This region is known
for its commercial greenhouses as well as enterprises from the Rotterdam indus-
trial area. We perturbed the locations of the enterprises and we assigned random
values for the energy consumption drawn from a log-normal distribution with
parameters estimated from the original data. We introduced some spatial depen-
dency in the energy consumption to mimic the compact industrial area and the
densely packed greenhouses. The final dataset consists of some 8348 locations
and is also included in the sdcSpatial R-package that can be found on CRAN
[12].

Figure 1 shows the unprotected kernel weighted average (1) and the protected
kernel weighted average (3) that satisfies the (10%,0.1) rule. A Gaussian kernel
with a bandwidth of 250 m was used. We computed a safe lower bound for
the standard deviation o of the random noise by (5). The plot of (3) resulting
from that computation looks almost exactly identical to the plot of (1). Only
at parts of the boundary where the population density is very small, the added
disturbance is perceptible by the eye.

When the bandwidth would be taken smaller, the standard deviation of the
noise would become large enough for the disturbance to be visually apparent.
However, working on this scale, it would be hard to see the details in that
situation. Thus, we plotted a subset of the data, restricting ourselves to a square
of 2km x 2km and all 918 enterprises contained in that square. The results of
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our method on the data subset are visible in Fig. 2 for A = 100m and in Fig. 3
for h = 80 m, while Fig. 4 displays the spatial structure of the locations in our
entire synthetic dataset and the subset thereof.
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. ' - 12000
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Fig. 2. Unprotected (left panel) and protected (right panel) kernel weighted average
of a part of our synthetic dataset, according to a (10%,0.1) rule for a Gaussian kernel
with bandwidth A = 100 m
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Fig. 3. Unprotected (left panel) and protected (right panel) kernel weighted average
of a part of our synthetic dataset, according to a (10%, 0.1) rule for a Gaussian kernel
with bandwidth A = 80m

We see that the necessary disturbance to the plot is smaller in Fig. 3 than in
Fig. 2. In order to be able to compare the results for different bandwidths, Fig.
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Fig. 4. Map of enterprise locations in our entire dataset (left panel) and in the data
subset (right panel)

5 contains two graphs that show the influence of the bandwidth on o for our
synthetic data set. Note that the total disturbance of the plot is also influenced
by the denominator of (3), that increases with increasing bandwidth if the used
kernel is decreasing in ||7||. The graph of the entire dataset shows a steep decrease
of o around h = 5. This is caused by the quick increase of the diagonal elements
of K ,:1 due to K becoming less similar to the identity matrix. For h < 5 a
single company with a very large energy consumption dominates the value of o.
Since this company is not present in the subset that we work with, a smaller o
may be used for the subset, also for h < 5.
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Fig. 5. Standard deviation o of added noise for different bandwidths
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7 Discussion

In this paper we introduced a new sensitivity rule that is applicable in the
scenario that an attacker knows both the kernel and the bandwidth used to
produce the map, reads off the plotted values at the population elements and
estimates the measurement values by solving a system of linear equations. To
protect the plot, we proposed to disturb the data by adding noise and derived a
rule on how large the disturbance to the plot should be before publishing it.

To investigate the efficacy of the proposed method a case study was carried
out. It indicated that for a bandwidth that is large relative to the population
density, the disturbance needed was very small. When zooming in, however, the
disturbance to the plot was visually apparent.

During this research, some other interesting results were found that fall out-
side the scope of this paper. For details we refer to [11]. For instance, in our
attacker scenario we assumed that the bandwidth is known to the attacker. If
the bandwidth were unknown to the attacker, simulations indicate that in many
cases, the bandwidth can be retrieved from the plot of (1) by repeatedly guessing
a bandwidth, solving the linear system for that bandwidth, making a plot using
the recalculated values and the guessed bandwidth and calculating the similarity
between the original and the recovered plot.

Secondly, many kernels with a compact support, including the uniform and
Epanechnikov kernel, are discontinuous or not infinitely differentiable at the
boundary of their support. An attacker can often use such information to obtain
the bandwidth or a single measurement value by considering plot values close to
that boundary.

We close with some final remarks and perspectives. At first glance, it might
seem more natural to add noise to the kernel weighted average itself rather
than to the numerator of (1). However, typically more noise should then be
added, resulting in a less visually attractive map. Furthermore, the proposed
method agrees with the intuition that densely populated areas need less pro-
tection, since the standard deviation of the noise is inversely proportional to
the kernel smoothed population density. Note that the addition of noise in our
method might lead to negative or extremely large values of (3) at locations where
the population density is very small. In our figures, these locations were given
the minimal or maximal colour scale values, to result in a realistic map for the
user.

It would be interesting to look at the utility of our plot for different band-
widths. Fig. 5 is a first step in this direction but more research is needed.

Our method requires that all ;, ¢ = 1,..., N are distinct. It would be inter-
esting to look into a scenario in which population elements can have the same
location, since these might partly protect each other for disclosure. If one would
introduce grid cells and use a single location for elements in the same cell, a
similar analysis could lead to explicitly taking the resolution of the plot into
account. Alternatively, rounding the plot values or using a discrete color scale
may be a useful approach to obtaining some level of disclosure control.
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Finally, we restricted ourselves to a single simple attacker scenario. It would

be interesting to investigate alternative scenarios in which the attacker is par-
ticularly interested in a single value, uses other locations to read off the plot or
tries to eliminate the added noise.
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