
22 October 2021

Circular Wilson loops in defect N = 4 SYM: phase transitions, double-scaling limits and OPE expansions / Bonansea S.;
Davoli S.; Griguolo L.; Seminara D.. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - STAMPA. -
2020(2020), pp. 0-0. [10.1007/JHEP03(2020)084]

Original Citation:

Circular Wilson loops in defect N = 4 SYM: phase transitions, double-scaling limits
and OPE expansions

Published version:
10.1007/JHEP03(2020)084

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla
Policy per l'accesso aperto dell'Università degli Studi di Firenze (https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1194249 since: 2021-09-12T08:58:26Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi di

Firenze

Open Access

DOI:



J
H
E
P
0
3
(
2
0
2
0
)
0
8
4

Published for SISSA by Springer

Received: December 19, 2019

Accepted: February 22, 2020

Published: March 13, 2020

Circular Wilson loops in defect N = 4 SYM: phase

transitions, double-scaling limits and OPE expansions

Sara Bonansea,a Silvia Davoli,b Luca Griguolob and Domenico Seminaraa
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1 Introduction

The well-established paradigm of AdS/CFT opened the possibility to explore, al least at

large-N, the strong coupling regime of four-dimensional gauge theories, obtaining results

that have been confirmed through the application of non-perturbative techniques, as dual-

ity, localization, integrability and bootstrap. These methods produce, in principle, answers

that interpolate between weak and strong coupling allowing a precise comparison with the
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gauge-gravity predictions. Unfortunately, many properties rely heavily on large amounts

of supersymmetry or, even more crucially, on conformal symmetry, making difficult the

application to the real world. Any attempt to extend the validity of these approaches to

less symmetric situations is certainly welcome. A quite general possibility to reduce the

amount of symmetry in quantum field theory is to introduce a defect or an interface into

the game: starting from some (super)conformal theory we can introduce, for example, a

domain-wall preserving a subset of the original invariance. In this case, one generally ob-

tains a defect Conformal Field Theory (dCFT), in which new degrees of freedom living

on the defect interact non-trivially with the bulk. Of particular interest are dCFTs with

holographic duals. A certain number of examples of this type exists, following the original

idea presented in [1–4]. In this paper, we will consider N = 4 supersymmetric Yang-Mills

theory (N = 4 SYM theory) with a codimension-one defect located at x3 = 0: it separates

two regions of space-time where the gauge group is respectively SU(N) and SU(N − k) [5].

In the field theory description, the difference in the rank of the gauge group is related to a

non-vanishing vacuum expectation value (VEV) proportional to 1/x3, assigned to three of

the N = 4 SYM scalar fields in the region x3 > 0. The VEV originates from the boundary

conditions on the defect that are chosen to preserve part of the original supersymmetry.

On the other hand, the gauge theory is dual to a D5-D3 probe-brane system involving a

single D5 brane whose profile spans AdS4 × S2, in the presence of a background flux of k

units through the S2. The flux k controls the VEV of the scalar fields and represents a new

tunable parameter in the usual N = 4 SYM framework, which can be used to probe the

theory in different regimes. In the last few years there has been a certain amount of work

in studying such a system: in particular the vacuum expectation value for a large class of

scalar operators has been obtained, both at weak coupling [6], using perturbation theory,

and at strong coupling, by means of the dual-brane set-up [7–9]. A particular feature of

dCFT is that one-point functions can be different from zero, and this fact has been largely

exploited in these investigations. More recently, a serious attempt to extend the integra-

bility program in this context has been performed by the NBI group [10–12], leading to

some interesting generalizations of the original techniques.

Moreover, the presence of the extra-parameter k allows for a new kind of double-scaling

limit, able to connect, in principle, the perturbative regime with the gauge-gravity compu-

tations. It consists of sending the ’t Hooft coupling λ as well as k2 to infinity while keeping

fixed the ratio of the two parameters: the perturbative expansion organizes in powers of

this ratio, that can be considered small. At the same time, the large ’t Hooft coupling still

supports the validity of the dual gravity calculations. Thus, in that regime, one could try

to successfully compare gauge and gravity results, providing a new non-trivial verification

of the AdS/CFT correspondence [9]. One-point functions of local operators, both at tree-

level and one-loop, match the AdS/CFT predictions accurately in the double-scaling limit.

Further studies on the two-point functions, OPE and boundary OPE has been recently

performed in [13]. Less attention has been instead devoted to other natural observables

that AdS/CFT correspondence can explore in this context, namely Wilson loops. At strong

coupling, the vacuum expectation value of these operators are computed by evaluating the

area of the minimal surface spanned by the fundamental string in the supergravity dual,
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Figure 1. The projection of the minimal surface in AdS5 is entirely contained in a sphere S3 (see

appendix E). In this plot this sphere is mapped into R3 through the usual stereographic projection.

The blue spherical cap is the intersection between S3 and the D5 while pink one is the intersection

between S3 and the boundary of AdS5. Then, the green dome and the yellow surface connecting the

boundary with the D5 are the two competing solutions. For this choice of parameters the dominant

solution is the connected one.

with boundary conditions dictated by the contour and the scalar couplings [14, 15]. Their

supersymmetric version [16] can be often evaluated exactly through localization techniques,

allowing a precise interpolation between weak and strong coupling [17–19]. In the pres-

ence of defects, Wilson loop operators were first considered in [5]: their expectation values

have been studied in the double-scaling limit, allowing to compare perturbation theory

successfully to the string calculation in the case of quark-antiquark potential [5, 20]. More

recently, circular Wilson loops, analog to the supersymmetric ones in ordinary N = 4 super

Yang-Mills, have been examined in [21], producing some interesting results. There it was

considered a circular Wilson loop of radius R placed at distance L from the defect and

parallel to it, whose internal space orientation has been parameterized by an angle χ. Its

vacuum expectation value has been computed both at weak and strong coupling, and, in

the double-scaling limit and for small χ and small L/R, the results appeared consistent.

In this paper, we investigate further the same circular Wilson loop in defect N = 4

super Yang-Mills theory, generalizing the computations presented in [21] both at strong

and weak-coupling. In particular we are able to cover the full parameter space of the string

solution of our system: we derive the exact solution for the minimal surface, describing the

Wilson loop in the AdS/CFT setting, for any value of the flux k, angle χ and ratio L/R

and we can explore its complicated structure in different regions of the parameters. Nicely

we recover, in the limit of large k, the result of [21] without restrictions on L/R and χ. The

main output of our analysis is the discovery of a first-order phase transition of Gross-Ooguri

type: for any flux k and any non-zero angle χ the disk solution (describing the Wilson loop

– 3 –
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in the absence of defect) still exists and dominates, as expected, when the operator is far

from the defect. On the other hand, our cylindrical string solution, connecting the boundary

loop with the probe D5-brane, is favorite below a certain distance (or equivalently for a large

radius of the circles). We can compare the classical actions associated with the solutions, by

a mixture of analytical and numerical methods, finding the critical ratio L/R as a function

of k and χ. A related investigation has been performed in [22] for the quark-antiquark

potential. A second important conclusion is that in the BPS case, that corresponds to

χ = 0, the cylindrical solution does not exist for any choice of the physical parameters,

suggesting that exchanges of light supergravity modes always saturate the expectation

value at strong coupling. This behavior strongly resembles an analog result for correlators

of relatively BPS Wilson loops in N = 4 SYM [23], which can also be exactly computed

through localization [24, 25]. The weak coupling analysis corroborates the exceptionality

of the BPS case: the first non-trivial perturbative contribution is evaluated exactly in

terms of a Mejer-G function, and its large k expansion does not scale in a way to match

the string solution. In particular, it is not possible to recover the large k limit starting

from the equivalent asymptotic expansion of the χ 6= 0 case: the order of limits does not

commute. In the regime L/R → ∞, we expect instead that the perturbative result could

be understood in term of the OPE expansion of the Wilson loop: we confirm this idea, and

we reconstruct the first two non-trivial terms of the expansion from the known results for

the one-point function of scalar operators.

The structure of the paper is the following. In section 2 we start with discussing

the generalities of the problem while in section 2.1 and section 2.2 we present the general

solution of the equation of motions: we obtain an explicit expression for the functions

y(σ), r(σ), x3(σ), θ(σ) that describe the embedding of the string worldsheet into AdS5×S5

(σ is the spatial worldsheet parameter, see eqs. (2.14). and (2.15))

y(σ) =
R cosh η√
1 + g2(σ)

sech[v(σ)− η] r(σ) = R cosh η
g(σ)√

1 + g2(σ)
sech[v(σ)− η]

x3(σ) = −R cosh η tanh[v(σ)− η] θ(σ) = jσ + χ ,

(1.1)

where the function v(σ) is defined by

v′(σ) =

√
−(j2 +m) (j2m+ 1)

(m+ 1)2

1

1 + g2(σ)
, (1.2)

and

η = v(σ̃) + tanh−1

(
−

√
− (m+ 1)2

(j2 +m) (j2m+ 1)

g′(σ̃)

g(σ̃)

)
. (1.3)

The function g(σ), that controls the full construction, has the explicit expression

g(σ) =

√
j2 − 1

m+ 1
ns

(√
j2 − 1

m+ 1
σ,m

)
. (1.4)

The minimal surface is given in terms of three real constants (m, j, σ̃) (σ̃ is the limiting value

of the worldsheet coordinate) that are highly nonlinearly related to the physical parameters
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(L/R, χ, κ) once the boundary conditions are imposed: we have defined κ = πk√
λ

. Section 2.3

is devoted to finding the parameter space of the string solution, using the appropriate

boundary conditions and some positivity requirements: the analysis can be performed

restricting this moduli space into two regions that we call A and B (see equations (2.54)).

In the limiting case χ = 0, both regions shrink to zero. Section 3 is the heart of our

investigations, in which we discuss the structure of the connected string solution: the

existence of the minimal surface is discussed as a function of the ratio L/R, and we find

that there is a limiting value beyond that the solution ceases to exist. Moreover, there exist

regions where a second branch appears, showing the presence of two competing connected

solutions. For the sake of clarity, we display here the final result of this analysis, that

singles out a critical angle, χs, distinguishing two situations.

(1) χs ≤ χ ≤ π
2 : in this case we have always two branches for the solution, no matter of

the value of the flux κ;

(2) 0 < χ < χs: in this region we can determine a critical value of the flux κs(χ): above

this value we have a single branch solution while below a second branch appears.

The evaluation of the area of the minimal surface, obtained by computing the Polyakov

action on the solutions is done in section 3.2. We find that the dominant branch is always

physically connected to a vanishing distance from the defect. Finally, in section 3.3 we

compare the area of the dominant connected solution with the disk-like on-shell action: in

the different regions we always find that decreasing L/R from +∞, where obviously the

disk-like surface is the relevant saddle-point, there exists a critical value (depending on

(χ, k)) below which the connected cylinder starts being dominant. Nicely the disk solution

(the spherical dome as we will call it later) ceases to be dominant before touching the D5

brane profile. The last section is devoted to some perturbative computations, checking the

picture emerging from strong coupling: first in section 4.1 we briefly recall the computation

of the non-BPS Wilson loop at the first two perturbative orders and perform its double-

scaling limit. Then, in section 4.2 we explicitly expand in λ/k2 the AdS/CFT solution. We

recover the result of [21] without compromising ourselves with the value of other parameters

(taking L/R and χ generic) and showing the consistency with the relevant order of weak-

coupling perturbation theory. Then, we discuss the case χ = 0 in section 4.3, remarking

its peculiarity and highlighting the absence of a string counterpart. Finally, after having

review the standard OPE expansion for the circular Wilson loop in section 4.4, we discuss

the OPE picture of the present BPS case in section 4.5, finding consistency of our results

with the known computations of some scalar one-point functions. Our conclusions and

a list of interesting future follow-ups of our investigations are presented in section 5. A

certain number of technical appendices complete the paper.

2 Prelude

The goal of the present paper is to study the vacuum expectation value of a circular

Maldacena-Wilson loop in a four-dimensional dCFT given by N = 4 SYM theory with a

co-dimension one hyperplane inserted at x3 = 0 as in [3, 5, 9]. More precisely, the defect

– 5 –
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separates two different N = 4 SYM theories: in the region x3 < 0, we have the standard

N = 4 SYM with gauge group SU (N − k). On the other hand, an Higgsed N = 4 SYM

lives in the x3 > 0 region, with gauge group SU (N), where three scalar fields receive a

x3-dependent VEV. At the level of the field theory, the picture is the following. The action

for the dCFT is composed by two terms

S = SN=4 + SD=3, (2.1)

where SN=4 is the usual N = 4 SYM action that describes the bulk of the space-time,

while SD=3 accounts in general for degrees of freedom sited on the defect: they could both

self-interact and couple to the bulk N = 4 SYM. The presence of the defect implies that

fields living in the x3 > 0 region will have a non-trivial vacuum solution: by imposing

that a part of the supersymmetry is preserved a specific profile is obtained for the scalars.

Following [5], one assumes the ansatz

Aµ = 0 (µ = 0, 1, 2, 3) , ΦI = ΦI(x3) (I, J,K = 1, 2, 3) , ΦM = 0 (M = 4, 5, 6) .

(2.2)

and the vanishing of fermions supersymmetry variation

0 = δψ = ∂3ΦI Γ̃
3Iε− i

2
[ΦI ,ΦJ ] Γ̃IJε, (2.3)

leads to the Nahm’s equations:

∂3ΦI = − i
2
εIJK [ΦI ,ΦK ] , (2.4)

with ε satisfying (
1− Γ3456

)
ε = 0. (2.5)

We have followed the notation of [9] and introduced Γ̃I = ΓI+3, Γ̃3I = Γ3ΓI+3 and Γ̃IJ =

ΓI+3ΓJ+3. The solution to eq. (2.4) it is known [26] and it is called “fuzzy funnel” solution,

reading

〈ΦI〉tree = Φcl
I = − 1

x3
tI ⊕ 0(N−k)×(N−k), (2.6)

where tI are generators of a representation of SU (2) (we can choose, for example, I =

1, 2, 3). This means that the tI are k × k matrices satisfying

[tI , tJ ] = iεIJKtK , I, J,K = 1, 2, 3. (2.7)

All the other classical fields are zero. We observe that the SO(6) R-symmetry of the original

N = 4 SYM action is reduced to SO(3) × SO(3). We would like to study the expectation

value of circular Maldacena-Wilson loops in this vacuum. A natural choice is to center the

circle along the x3 axis at a distance L from the defect, i.e. C = (0, 0, 0, L). The radius of

the circle is R and it extends only along the transverse directions x1 and x2, namely

xµ(τ) = (0, R cos τ,R sin τ, L). (2.8)

– 6 –
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The residual SO(3) × SO(3) symmetry suggests to couple only two scalars to the Wilson

loop: one massless Φ6 and one massive Φ3 and we get

W = Tr

(
Pexp

(
i

∮
(Aµẋ

µ + i|ẋ|(Φ3 sinχ+ Φ6 cosχ))

))
, (2.9)

where the angle χ parametrizes the strength of the coupling with the two scalars. Because

of the conformal invariance 〈W〉 does not depend separately by L and R but only through

the ratio R/L. Moreover, the explicit analysis performed in [21] shows that in the absence

of the defect our observable is always 1/2 BPS, but in its presence all the supercharges are

broken unless χ = 0.

2.1 Setting-up the geometric description

On the string theory side, the field theory picture translates into a system of N D3−branes

intersecting a single D5−brane, where k D3−branes out of the stack of N terminate on

it. In the near horizon limit we can view the D5 as a probe brane1 moving in AdS5 × S5.

The intersection between D3 and D5 mimics the presence of a defect (domain wall) of

codimension one located at x3 = 0 in the field theory. The AdS5 is is parametrized in

Poincarè coordinates where the metric takes the form

ds2
AdS5

=
1

y2
(−dt2 + dy2 + dr2 + r2dφ2 + dx2

3) (2.10)

and for the sphere S5 we write

ds2 = dθ2 + sin2 θdΩ2
(1) + cos2 θdΩ2

(2), (2.11)

where dΩ2
(i) = dα2

i + sin2 αidβ
2
i denotes the metric of the two S2 inside the S5. In these

coordinates the D5−brane solution wraps the sphere Ω(1) and its embedding in the target

space is given by [5]

y =
1

κ
x3, θ =

π

2
, α2 = α

(0)
2 and β2 = β

(0)
2 , (2.12)

where α
(0)
2 and β

(0)
2 are two constant values. There is also an abelian background gauge

field providing a non-trivial flux through Ω(1), i.e.

F = −κ vol(Ω(1)). (2.13)

The coupling constant κ in eq. (2.13) counts the unit of magnetic flux through the rela-

tion κ = πk√
λ

.

For a single circular Wilson loop of radius R (parallel to the defect) we expect to find

two competing classical string solutions. One is the usual spherical dome anchored to the

circle on the boundary of AdS5,

y2(σ) + r2(σ) = R2 φ = τ, (2.14)

1This picture of probe D5−branes in AdS5 × S5 holds when the number M of D5 is much less than N .

– 7 –
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which, however, does not move in the S5. Alternatively, we can consider a second extremal

surface stretching from the boundary to the D5-brane. This former is supposed to control

the strong coupling behavior of this observable when L
R � 1, while the latter is expected

to dominate the dynamics in the opposite regime, L
R � 1. To determine the second class

of extremal surfaces, following [21], we shall postulate the following ansatz

y = y(σ), r = r(σ), φ = τ, x3 = x3(σ) and θ = θ(σ), (2.15)

for which the usual Polyakov action in conformal gauge reduces to

S =

√
λ

4π

∫
dτdσ

1

y2
(y′2 + r′2 + r2 + x′23 + y2θ′2) . (2.16)

The Eulero-Lagrange equations of motion for the action (2.16) must be paired with the

Virasoro constraint

y′2 + r′2 + x′23 + y2θ′2 = r2. (2.17)

At the boundary of AdS5, which is approached when σ → 0, the usual Dirichlet boundary

conditions must be imposed:

y(0) = 0, r(0) = R, x3(0) = L and θ(0) = χ. (2.18)

We have also a second set of boundary conditions to be obeyed where the surface intersects

the probe D5 brane. We must require that

C1 ≡ y(σ̃)− 1

κ
x3(σ̃) = 0, θ(σ̃) =

π

2
, (2.19a)

C2 ≡ y′(σ̃) + κx′3(σ̃) = 0, C3 ≡ r′(σ̃) = 0, (2.19b)

where σ̃ is the maximum value of σ. Eqs. (2.19a) and (2.19b) simply state that the extremal

surface intersects orthogonally the boundary brane.

Since the coordinates x3 and θ are ciclic variables in the action (2.16), their equations of

motion immediately translate into two conservation laws

x′3(σ) = −cy2(σ) and θ′(σ) = j, (2.20)

where j and c are two integration constants to be determined. The equations for y(σ) and

r(σ) are instead

yy′′ + r′2 + r2 − y′2 + c2y4 = 0 yr′′ − 2r′y′ − yr = 0, (2.21)

where we have used eqs. (2.20) to eliminate the dependence on x3. The conservation laws

eq. (2.20) also allow us to eliminate the dependence on θ and x3 in the Virasoro constraint.

We get

V(σ) ≡ r2 − y′2 − r′2

y2
− c2y2 = j2. (2.22)

– 8 –
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2.2 General solution for the connected extremal surface

First, we solve eq. (2.20) for θ

θ(σ) = jσ + χ , (2.23)

where we used the b.c. θ(0) = χ. The second boundary conditions θ(σ̃) = π
2 determines

the maximum value σ̃ of the world-sheet coordinate σ:

σ̃ =
1

j

(
π

2
− χ

)
. (2.24)

Next, we focus our attention on the AdS radial coordinate y(σ) and on r(σ) which are

determined by the system of coupled eqs. (2.21). To solve it we find convenient to introduce

the auxiliary function g(σ) ≡ r(σ)
y(σ) . Then, with the help of eqs. (2.21) and of the Virasoro

constraint V(σ), we find
g′′(σ)

g(σ)
= 1− j2 + 2g2(σ), (2.25)

a second order differential equation containing only g(σ), which can be easily integrated to

get the first integral

g′(σ)2 + (j2 − 1)g(σ)2 − g(σ)4 = −ε0 − j2, (2.26)

where the arbitrary integration constant has been parameterized as −ε0 − j2 for future

convenience. This equation can be solved explicitly by quadratures through the method of

separation of variables; but for the time being, we will not need the specific form of g(σ).

To determine y(σ), we can use the Virasoro constraint eq. (2.22) where we have elim-

inated r(σ) in favor of g(σ) and performed the change of variable

y(σ) =
1√

1 + g2(σ)z(σ)
. (2.27)

We find that the unknown function z(σ) satisfies the differential equation(
g2(σ) + 1

)2
z′2(σ)− ε0z

2(σ) + c2 = 0. (2.28)

Since the first and the last term in the l.h.s. of eq. (2.28) are strictly positive this equation

can admit real solutions if and only if ε0 ≥ 0. We can now easily integrate eq. (2.28) by

the method of separation of variables and get

z(σ) =
c
√
ε0

cosh[v(σ)− η], (2.29)

where the function v(σ) is defined by

v′(σ) =

√
ε0

1 + g2(σ)
, (2.30)

combined with the boundary condition v(0) = 0. When deriving eq. (2.29) we have taken

c > 0 because x3(σ) must decrease while σ grows (see eq. (2.20)). The parameter η is an
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arbitrary integration constant. Then, the expressions for the original coordinates (y and

r) in terms of g(σ) and v(σ) are given by

y(σ) =

√
ε0

c

1√
1 + g2(σ)

sech[v(σ)− η] and r(σ) =

√
ε0

c

g(σ)√
1 + g2(σ)

sech[v(σ)− η].

(2.31)

Finally, the coordinate x3 is obtained by integrating eq. (2.20) with respect to σ. This can

be done only in terms of the function v(σ) and we obtain

x3(σ) = x0 −
√
ε0

c
tanh[v(σ)− η], (2.32)

where x0 is another arbitrary integration constant.

Next, we can exploit the boundary conditions in σ = 0 and σ = σ̃ to determine the

different integration constants. Since g(σ) ' 1/σ close to σ = 0, the condition r(0) =

R becomes √
ε0

c
sechη = R ⇒ c =

√
ε0

R
sechη . (2.33)

Instead x3(0) = L translates into

L = x0 +R cosh η tanh η ⇒ x0 = L−R sinh η. (2.34)

A suitable combination of the remaining three boundary conditions Ci given in eq. (2.19)

can be used to determine η in terms of L:

0 = κcC1 +
1

y(σ̃)
C2 +

r(σ̃)

y2(σ̃)
C3 = c(R sinh η − L) = 0 ⇒ η = arcsinh

L

R
. (2.35)

Then, we are left with two independent boundary conditions in σ = σ̃ to impose, for

instance C1 and C3, which can be equivalently written as follows

tanh (η − v (σ̃)) = κ
sech (η − v (σ̃))√

g2 (σ̃) + 1
and tanh (η − v (σ̃)) = − g′ (σ̃)

√
ε0g (σ̃)

. (2.36)

The latter can be solved to determine L/R as function of the two integration constant j2

and ε0:2

arcsinh
L

R
= η = v(σ̃) + tanh−1

(
− 1
√
ε0

g′(σ̃)

g(σ̃)

)
. (2.37)

Then, the remaining boundary condition expresses the geometric flux κ in terms of the

same variables

κ = − g′ (σ̃)√
j2 + ε0 − g2 (σ̃)

. (2.38)

The solution of the boundary conditions can be used to simplify the form of the parametric

representation eq. (2.31) and eq. (2.32) of the extremal surface. We find

y(σ) =
R cosh η√
1 + g2(σ)

sech[v(σ)− η] r(σ) = R cosh η
g(σ)√

1 + g2(σ)
sech[v(σ)− η]

x3(σ) = −R cosh η tanh[v(σ)− η].

(2.39)

2Recall that σ̃ = 1
j

(
π
2
− χ

)
is not an independent variable
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Finally, we can integrate eq. (2.26) to construct the explicit form3 of the function g(σ):

g(σ) =

√
j2 − 1

m+ 1
ns

(√
j2 − 1

m+ 1
σ,m

)
, (2.40)

where

m ≡
j2 − 1−

√
(j2 + 1)2 + 4ε0

j2 − 1 +

√
(j2 + 1)2 + 4ε0

. (2.41)

Since ε0 > 0, the modular parameter m is real and spans the interval (−∞, 0]. More

specifically, from the definition eq. (2.41) we get two ranges for m according the value of j2:

(a) : −∞ < m < −1 and j2 < 1 (b) : − 1 ≤ m ≤ 0 and j2 ≥ 1. (2.42)

For j2 = 1, we obtain m = −1 independently of the value of ε0. In the following we find

more convenient to replace ε0 with m as a free parameter by solving eq. (2.41). We get

ε0 = −
(
j2 +m

) (
j2m+ 1

)
(m+ 1)2

. (2.43)

The positivity of the integration constant ε0 combined with the bounds eq. (2.42) translates

into the following ranges for the new couple of free parameters (m, j2):

region (A): − 1 ≤ m ≤ 0 and j2 ≥ − 1

m
or region (B): m ≤ −1 and j2 ≤ − 1

m
.

(2.44)

2.3 Allowed regions for the parameters j,m

Since eq. (2.24) explicitly fixes σ̃ in terms of j and χ, the next step is to solve the highly

non-linear system of equations (2.37) and (2.38) to determine the last two integration

constants m and j as functions of L/R, χ and κ.

To begin with, we shall try to solve eq. (2.38) for j, or equivalently for the combination

x =

√
j2 − 1

j2(m+ 1)
, (2.45)

as a function of m,κ and χ . Since κ = πk√
λ
≥ 0 and g(σ) ≥ 0 (being the ratio of two positive

coordinates), eq. (2.38) is solved for real values of the parameters if only if g′(σ̃) < 0 and

g2(σ̃) ≤ −m(j2 − 1)2

(m+ 1)2
. (2.46)

The bound (2.46) ensures that the quantity under the square root in the denominator of

eq. (2.38) is non-negative. If we use eq. (2.40), the positivity of g(σ̃) and the requirement

g′(σ̃) < 0 can be translated into the following bounds for σ̃ = 1
j

(
π
2 − χ

)
0 ≤ σ̃ ≤

√
m+ 1

j2 − 1
K(m). (2.47)

3We are using Wolfram notation for the elliptic functions, e.g. sn(σ,m), cn(σ,m), dn(σ,m) . . . . Next to

sn, cn, dn, we can define their inverse ns = 1
sn
, nc = 1

cn
, nd = 1

dn
and their ratios sc = sn

cn
, cs = cn

sn
, . . .
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Figure 2. The light-blue region with the red boundary defines the allowed region in the (α, χ)-

plane.

In terms of the auxiliary variable x defined in eq. (2.45), they read

0 ≤ x ≤ K (m)(
π
2 − χ

) . (2.48)

The bounds (2.44) for j2 translate into x ≥ 1 independently of the region. Thus, the range

of x is given by

1 ≤ x ≤ K (m)(
π
2 − χ

) . (2.49)

In the region (A) the variable x is always less or equal to 1√
1+m

by construction. Therefore,

in this region, we can refine the bounds (2.49) as follows

1 ≤ x ≤ Min

(
1√

1 +m
,
K (m)(
π
2 − χ

)) . (2.50)

A necessary condition for the existence of solutions of eq. (2.38) is that the intervals (2.49)

and (2.50) are not empty. We can solve this requirement numerically. If we set m = tanα

with α ∈ [−π
2 , 0], the allowed region in the (α, χ)-plane is the light blue area in figure 2

bounded by the red line. The curved boundary is given by

χ =
π

2
−K(m) =

π

2
−K(tanα), (2.51)

namely the pairs (α, χ) for which the intervals (2.49) and (2.50) collapses to a point.

In the above analysis we have neglected the constraint (2.46), which in terms of x reads

cn2

(
x

(
π

2
− χ

)∣∣∣∣m) ≤ − 1

m

(
1− 1

x2

)
. (2.52)

This inequality implies the existence of stronger lower bound x0 ≥ 1 for the unknown x.

The value x0 is defined as the value that saturates the inequality (2.52), i.e.

−mcn2

(
x0

(
π

2
− χ

)∣∣∣∣m) = 1− 1

x2
0

, (2.53)
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Figure 3. The inequality (2.55) holds in the light-blue region on the left of the black-line.

and respects the bounds (2.50) in region (A) and (2.49) in region (B). Summarizing, we

have the following two ranges for x

region (A): x0 ≤ x ≤ Min

(
1√

1 +m
,
K (m)(
π
2 − χ

)) region (B): x0 ≤ x ≤
K (m)(
π
2 − χ

) .
(2.54)

However the new bounds for x does not alter the allowed region in the (α, χ)−plane4 in

figure 2.

Next, we shall analyze how the value of the flux κ may change (in particular reduce)

the allowed region. Given m and χ, eq. (2.38) is solved for κ = 0 if we take x = K(m)
π
2
−χ

(namely the value for which g′(σ̃) = 0). However, in the region (A) this x is an acceptable

solution if and only if
K (m)
π
2 − χ

≤ 1√
1 +m

. (2.55)

The inequality (2.55) is obeyed in the ligth-blue region on the left of the black curve in

figure 3. In the darker region on the right of the black curve we cannot solve eq. (2.38) for

arbitrary small value of κ.

We can equivalently reformulate this obstruction as follows. We fix the flux κ and

the angle χ and we increase m starting from its lower bound −1 in the region (A). We

will reach a critical value mc such that eq. (2.38) is solved by the largest acceptable value

for x, i.e. xc = 1√
1+mc

. Then, for m ≥ mc, there is no solution of eq. (2.38) in the

interval (2.54). Therefore, given κ and χ, the set of allowed parameters is further restricted

by the requirement the l.h.s. of (2.38) must be less than κ when x = 1√
1+m

:

sn

(
(π − 2χ)

2
√
m+ 1

|m
)
≥

√
2√

m+ 1 +
√

(m− 1)2 − 4mκ2
, (2.56)

mc is the value of m that saturates the inequality (2.56). In figure 4 we have plotted the

curve defined by the equality in eq. (2.56) for different values of κ. Given a specific value

4Requiring that these new intervals are not empty yields the same constraints on χ and α.
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Figure 4. The coloured curves inside the darker region correspond to different values of κ2 . The

allowed region for m for fixed value of κ2 is the one on the left of the relevant coloured curve. The

region becomes larger when we increase the flux.

of κ, the allowed region is the ligth-blue one on the left of the corresponding curve. This

region increases when κ grows and we recover the entire region (A) when κ =∞.
The critical value mc possesses a simple geometrical interpretation. In fact we can

easily check that the distance L/R = sinh η vanishes as m→ mc (see section 3.1), namely

the Wilson loop touches the defect at m = mc and the solution stops to exist.

The red curve in figure 4, which is the exterior boundary of the allowed region, cor-

responds to m = −1/j2, i.e. to c = 0. For this particular choice of the parameters, our

solutions coincide with the ones previously discussed in [21]. In fact our functions simpli-

fies to

g(σ) =j ns

(
jσ

∣∣∣∣− 1

j2

)
=
√

1 + j2ds

(√
1 + j2σ

∣∣∣∣ 1

1 + j2

) (2.57)

and

h(σ) =
1

R
g(σ)

√
1 +

1

g(σ)2
=

√
1 + j2

R
ns

(√
1 + j2σ

∣∣∣∣ 1

1 + j2

)
, (2.58)

where we use the modular properties of the elliptic trigonometric functions. The solu-

tions (2.57) and (2.58) are easily seen to be identical to the ones constructed in [21].

Some specific comments are in order for the two extremal points χ = 0 (BPS configu-

ration) and χ = π
2 .

χ = 0 case: for this choice of the angle governing the coupling of the scalars, the admis-

sible region for m shrinks to a point, m = 0 (see figure 4). Consequently the integration

constant j2, which must be always greater than −1/m, diverges and σ̃ = π
2j vanishes. In

other words, the space of parameters collapses to a point and no regular connected solution

exists for the BPS configuration.
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χ = π
2

case: the case χ = π
2 will be discussed in details in section D. At variance with

the other values of χ the disconnected solution cannot exist for all distances: in fact when
L
κR = 1 the disconnected solution touches the brane. If this would happen before the

connected solution starts dominating, the phase transition from the disconnected to the

connected solution would become of order 0.

3 The structure of the solutions

3.1 The distance from the defect

Once we solved eq. (2.38) to obtain x (and thus j) in terms of χ, κ and m, the distance from

the defect can be computed through eq. (2.37). An analytic expression of this quantity in

terms of elliptic integral of the third kind is given in appendix A.

The goal of this section is to determine when we can invert eq. (2.37) and determine

the last integration constant m as a function of the dimensionless distance L/R, χ and κ.

If we keep fixed the last two quantities, the dependence of L
R = sinh η on m is monotonic

(and thus invertible) if ∂η
∂m does not change sign. We can obtain a compact expression

for this derivatives in two steps. First, we take the derivative of eq. (A.1) with respect to

m: the final result contains a pletora of elliptic trigonometric functions and second elliptic

integrals E(
√
nσ̃,m). We can eliminate the last dependence by exploiting the derivative of

eq. (2.38) for the flux. The final expression is relatively simple

∂η

∂m

∣∣∣∣
χ,κ

=

[
n2(n+1)(mn+1)

1−m −m (1−m)
(
∂mn− n(n+1)

1−m

)2
](

2g(σ̃)g′(σ̃)
2mn2g(σ̃)2+g(σ̃)4−mj2n2 + π−2χ

j3

)
4n
√
−(n+ 1) (mn+ 1)

,

(3.1)

where the derivative is taken at constant χ and κ and

n ≡ j2 − 1

m+ 1
. (3.2)

In eq. (3.1) ∂mn denotes the derivative of n with respect to m. It is not difficult to check

that the second factor in eq. (3.1) is always positive in the range n ≤ g2(σ) ≤ −mn2. Thus,

the sign of eq. (3.1) is entirely controlled by the factor between square brackets.

In subsection 2.3, we argued that we can find a value mc of m such that no solution

exists for m > mc for fixed χ and κ. This critical value mc solves (see eq. (2.56))

sn

(
(π − 2χ)

2
√
mc + 1

|mc

)
=

√
2√

mc + 1 +
√

(mc − 1)2 − 4mcκ2
. (3.3)

We can now easily expand n around mc and at the leading order we find5

n =
x2

1− (m+ 1)x2
=

c0

mc −m
+O(1) with 0 < c0 < 1, (3.4)

5The explicit form of c0 is not relevant at the moment.
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Figure 5. We have plotted the distance L as a function of α = arctan(m). In (a) we have chosen

an angle χ > χs: the different curves corresponds to different values of the flux. All the curves

display a maximum. In (b) we have chosen an χ < χs. When we are above the critical flux κ > κs
(the black curve), the curves are monotonic. On the contrary, as κ becomes smaller than κs (i.e.

we are below the black curve) again a maximum appears.

namely n blows up at m = mc. The bounds on the constant c0 are equivalent to the fact

that x decreases for m < mc. The combination
√
nσ̃ is instead finite when m approaches

mc (i.e.
√
nσ̃ 7→ π−2χ

2
√

1+mc
). In this limit it is quite straightforward to show that η vanishes.

In fact the argument of tanh−1 in eq. (2.37) behaves as 1/
√
n, while v(σ̃) vanishes as 1/

√
n

(see appendix A).

If we use the above behavior of n close to mc, we can also check that the derivative of η

in mc and thus of the distance diverges to −∞ as
√
n. This is consistent with the behavior

of the curves plotted in figure 5. When we decrease m the parameter η increases, i.e. we

are moving away from the brane. To understand if this behavior takes place for all the

range spanned by m at fixed κ and χ, we shall investigate the sign of ∂η
∂m when we reach

the other boundary of the allowed region, namely the red curve in figure 2. The value m0

lying on this second boundary is determined only by the angle χ and it satisfies

χ =
π

2
−K(m0). (3.5)

Then, the derivative of η with respect to m computed atm = m0 is given by (see appendix B

for a derivation of this result)

∂η

∂m

∣∣∣∣
m=m0

=
(1−m0) (E (m0) + (m0 − 1)K (m0)) 2 +m0κ

2
(
1− (E (m0) + (m0 − 1)K (m0)) 2

)
2κ (1−m0) (−m0) 3/2

√
1− (κ2 + 1)m0

.

(3.6)

The sign of this quantity is controlled by the sign of the coefficient of the term linear in κ2

in the numerator of eq. (3.6) since the other term is manifestly positive for negative values

of m0. In figure 6 we have plotted the coefficient of κ2. We recognize that there is a critical

value ms ' −1.45221 for which this coefficient vanishes, namely

(ms − 1)K (ms) + E (ms) + 1 = 0. (3.7)
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Figure 6. Plot of the coefficient of κ2 in the numerator of eq. (3.6) (we have set m0 = tanα with α ∈
(−π/2, 0] ). It is negative between zero and and a critical value ms = tanαs = −1.45221. For

m < ms the coefficient is always positive.

We can translate ms into an equivalent critical angle χs = π
2 − K(ms) ' 0.331147.

The angle χs separates two distinct regions of parameters:

(1) m0≤ms (or χs ≤ χ ≤ π
2 ). The coefficient of κ2 and thus the derivative in m = m0 are

positive independently of the value of the flux. Since the same derivative diverges to

−∞ on the other extremum of the interval m = mc, the dependence of η on m cannot

be monotonic and we cannot invert eq. (2.37) on the entire range of the allowed m′s.

In fact, as illustrated in figure 5(a), when we decrease m starting from the value

mc defined by eq. (3.3) the distance from the brane starts increasing, it reaches a

maximum and then decreases to the value reached for m = m0.

(2) ms<m0 < 0 (or 0 < χ < χs). The derivative of η with respect to m computed at

m = m0 is always negative unless the flux κ2 is below a the critical value κ2
s given by

κ2
s =

m0 − 1

m0

(
1

((m0−1)K(m0)+E(m0))2
− 1
) . (3.8)

We find more instructive to view this critical flux κ2
s defined in eq. (3.8) as a function

of the angle χ (instead of m0) by exploiting eq. (3.5). If we draw the curve κ2
s(χ)

we obtain the blue curve in figure 7. Given the angle χ (with 0 < χ < χs) we can

determine a critical value of the flux κs by means of the plot 7. The black curve in

figure 5(b) displays the behavior of the distance with m for the critical value of the

flux: it is monotonic and has vanishing derivative at m = m0. If we choose a flux

greater than κs (the curves above the black one), the distance is a monotonic function

of m, namely its derivative never vanishes. Below this critical value of the flux (i.e.

the curves below the black one) the derivatives vanishes just once: namely when we

decrease m starting from the value mc the distance starts increasing, it reaches a

maximum and then decreases to the value reached for m = m0.

The presence of a non-monotonic behavior (for a certain range of parameters) is synony-

mous of the existence of different branches of solutions. In other words, if either χs ≤ χ ≤ π
2

or 0 < χ < χs and κ2 < κ2
s, we can find value of the distance for which we can construct two
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Figure 7. The blue curve illustrates the behavior of the critical flux in the interval [0, χs], where

it exists. It is a monotonic function of χ and it ranges from 0 to ∞.

different extremal connected surfaces. We shall come back to this point when we discuss

the area of the extremal surfaces.

In both regions ((1) and (2)) there exists a maximal distance Lmax after which the

connected solution stops to exist. When 0 < χ < χs and we are above the critical flux κs,

Lmax is obtained when we reach the boundary m = m0. since we are considering the range

of parameters for which distance is a monotonic function of m. If we use the expansion in

appendix B and substitute into eq. (A.1) we find

ηmax = tanh−1

√
κ2m0

κ2m0 +m0 − 1
⇒ Lmax = R sinh ηmax = R

√
κ2m0

m0 − 1
. (3.9)

If we are below the critical flux or the angle χ is in the range [χs,
π
2 ] the maximal

distance from the brane cannot be determined analytically, but only numerically. In figure 8

we have plotted this quantity as a function of χ for different values of the flux κ2. Given

κ2, we can always find an angle χκ2 ∈ (0, χs] for which κ2 is exactly the critical flux (see

figure 7). For angles in the interval (0, χκ2 ], the maximal distance is given by eq. (3.9) and

is represented by the dashed curves in figure 8. For angles greater than χκ2 , the behavior of

the distance is described by the continuous lines in figure 8. The merge of the two branches

of the distance (dashed and continuous) is continuous with its first derivative as one can

show by a direct computation of the left and right derivative in χκ2 .6 In figure 8, we have

drawn the dashed curves also for values greater than χκ2 to illustrate that two branches

are not given by the same function.

The general behavior of the distance displayed in figure 8 is easily summarized: the

maximal distance increases with χ at fixed κ2 and increases with κ2 at fixed angle, The

6The derivative of η with respect to χ admits a very simple form in terms of n and m

∂η

∂χ

∣∣∣∣
κ,m

=
(m− 1)m∂mn+ (n+ 1)(2mn+ 1)

j
√
−(n+ 1)(mn+ 1)

.
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Figure 8. The dashed curves are given by eq. (3.9) and describe the distance for χ ≤ χκ2 , while

the continuous ones are valid for χ > χκ2 . Different colors correspond to different fluxes. We see

that the maximal distance grows both with χ and κ2. We have drawn the dashed curves also for

values greater than χκ2 to show that the merging of the two branches is continuous with its first

derivative.

latter behavior is expected: in fact, when κ2 grows the slope of the brane becomes smaller

and smaller and the brane is closer to the boundary. Therefore, the cost in energy (in

area) is low for a larger interval of the distances.

3.2 The area

The regularized area of the connected minimal surfaces is obtained by evaluating the

Polyakov action on the classical solution (r(σ), y(σ)):

S =

√
λ

4π

∫
dτdσ

1

y2
(y′2 + r′2 + r2 + c2y4 + j2y2). (3.10)

We can eliminate the explicit dependence on the integration constants j and c by means

of the Virasoro constraint (2.22). We find

S =

√
λ

4π

∫
Σ
dτdσ

1

y2
(y′2 + r′2 + r2 + r2 − y′2 − r′2) =

√
λ

∫ σ̃

σε

dσ
r2(σ)

y2(σ)
=
√
λ

∫ σ̃

σε

dσg2(σ),

(3.11)

where we have used that the integrand does not depend on τ to perform the integration

over this world-sheet coordinate. Remarkably the area depends only on the function g(σ).

The integration over σ runs from σε, the value of σ for which the minimal surface intersects

the plane y = ε, to σ̃, the value of σ for which the minimal surface intersects the boundary

brane. The lower extremum σε is determined by solving y(σε) = ε for small ε. At the

lowest orders in ε we find the following expansion:

σε =
ε

R
+

1

6
(j2 + 2)

ε3

R3
+O(ε4).
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Next, we can easily perform the integration over the coordinate σ in terms of the elliptic

integral of the second kind and we get

Sε =
√
λn

(√
nσ − E

(
am
(√
nσ|m

)
|m
)
− cn (

√
nσ|m) dn (

√
nσ|m)

sn (
√
nσ|m)

)∣∣∣∣σ̃
σε

. (3.12)

The expected ultraviolet linear divergence arises when we evaluate the primitive in the

lower extremum. Since the term ε2 is absent in the expansion of σε, the lower extremum

does not give any non-vanishing contribution in the limit ε→ 0. The only contribution to

the renormalized area originates from the upper extremum:

Sren. =
√
λn

(√
nσ̃ − E

(
am
(√
nσ̃|m

)
|m
)
− cn (

√
nσ̃|m) dn (

√
nσ̃|m)

sn (
√
nσ̃|m)

)
≡
√
λŜren..

(3.13)

The behavior of the renormalized action as a function of the distance from the defect can be

investigated by computing its derivative with respect to m at fixed κ and χ. We proceed

by following the same two steps performed for the evaluation of ∂η
∂m

∣∣∣
κ,χ

and we get the

remarkable identity

∂Ŝren.

∂m

∣∣∣∣∣
κ,χ

=
√
−(n+ 1)(mn+ 1)

∂η

∂m

∣∣∣∣
κ,χ

, (3.14)

namely the derivative of the action and of η−parameter (the distance) are proportional

through a positive definite factor. Thus, the derivative of the Ŝren. with respect to η or

equivalently to L has a very simple form7

∂Ŝren.

∂L

∣∣∣∣∣
κ,χ

=
1

R
√

1 + L2

R2

∂Ŝren.

∂η

∣∣∣∣∣
κ,χ

=

√
−(n+ 1)(mn+ 1)

R
√

1 + L2

R2

= c(L, κ, χ) , (3.15)

where c is the integration constant appearing in eq. (2.20) for x3. A similar relation

was found in [27] for the quark-antiquark potential at finite temperature. There it was

speculated that this kind of relation might enjoy some sort of universality.

Because of eq. (3.14) the area and the distance possess the same behavior as func-

tions of m:

(S1) χs ≤ χ ≤ π
2 or 0 < χ < χs and κ ≤ κs: when we move away from the D5-brane by

decreasing m from its critical value mc (corresponding to vanishing distance) both

the area and the distance increase and reach their maximum value for the same value

of m. Then, both decrease up to m = m0 (i.e. the curved red boundary in figure 3).

(S2) 0 < χ < χs and κ > κs: both the area and the distance monotonically increase when

m is lowered from mc to m0.

7This relation immediately implies that Sren. does not depend on L when c = 0, which apparently

contradicts eqs. (24) and (25) in [21]. But this is not case. In fact, if we keep χ and κ fixed the area [21]

does not change with L: it is a function only of χ.
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Area

κ2=9

κ2=0.8

κs
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χ=0.155059

Figure 9. We have plotted the behaviour of the area as a function of α = arctan(m) for a fixed

value of the angle χ (below χs), but for different values of the flux. On the left we have zoomed the

region close to the red curved boundary in figure 2. Independently of κ2 all the curves terminate

on the same point (m0, χ0 = π
2 −K(m0)). For values of κ2 ≤ κ2s, this curve displays a maximum,

instead they are monotonic if we are above the critical flux κs. On the right we have plotted the

same curves in the region close to mc = tanαc, namely the value for which the distance from the

brane vanishes. The area diverges for all value of the flux.

In figure 9 we have plotted the area as a function of α ≡ arctan(m) for a fixed angle

χ = 0.155059 in the range 0 < χ < χs. On the left gray box we have zoomed on the behavior

of the area for different value of the flux in the proximity of the value m0 on the curved

red boundary in figure 2. Below the critical value of the flux (black curve) determined by

eq. (3.8) all the lines possess a maximum, while above κ2
s they are monotonically decreasing.

However, independently of the flux, all of them terminate in the same point since the

boundary value on the red curve in figure 2 does not depend on the flux. On the right gray

box we have zoomed in the region close to the brane, the action always diverges when m

approaches the values mc, obtained by solving eq. (3.3).

The typical behavior of the area in the region χs ≤ χ ≤ π
2 as function of α ≡ arctan(m)

is displayed in figure 10. Independently of κ2 all the curves terminate on the same point

(m0, χ0 = π
2 − K(m0)) and possess a maximum for the same value of m for which the

distance does (see left gray box).

We conclude this section with an amusing observation about the derivatives of the area

with respect to the two other parameters. It is not difficult to check that both of them can

be rewritten in terms of the same derivative of η:

(A1) :
∂A
∂χ

=
√
−(n+ 1)(mn+ 1)

∂η

∂χ
− j

(A2) : κ
∂A
∂κ

=
√
−(n+ 1)(mn+ 1) κ

∂η

∂κ
+
g′(σ̃)

g(σ̃)
. (3.16)
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κ2=100

κs
2= 5

κ2=1

κ2=0.5

κ2=0.3

κ2=0.2

κ2=0.1
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α
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Area

Figure 10. We have plotted the behaviour of the area as a function of α = arctan(m) for a value of

the angle above χs and for different values of the flux. Independently of κ2 all the curves terminate

on the same point (m0, χ0 = π
2 −K(m0)) and display a maximum. On the left we have zoomed in

the region close to m0 to show the presence of a maximum value for the area.

0.5 1.0 1.5

L

R

-5

-4

-2

-1

Area

1.5 1.54

L

R

-0.592

-0.59

Area

0.495 0.506

L

R

-0.591

Area

κ2=5

κs
2=1.75656

κ2=0.5

χ=0.250737

Figure 11. This graphic displays the behavior of the area as a function of the distance L/R for a

fixed value of the angle χ = 0.250737 < χs. In this case there is a critical flux κ2s = 1.75656 and

the area for this value of the flux is the black curve. Above the critical flux, the typical behavior

is given by the red curve, namely the area is a monotonic function of the distance and the solution

stops existing after a maximal value of the distance. Below the critical flux, the typical behavior

is instead described by the green curve. There are two branches of solutions. However the upper

one is always subdominant. In this plot we normalized the area functional so that the area of the

dome is −1.
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2 4 6

L

R

-4.0

-3.5

-2.5

-2.0

-1.5

-1.0

Area

6.2 6.6 7

L

R

-0.93

-0.9

Area

3.1 3.3

L

R

-0.94

-0.91

Area

κ2=40

κ2=10

κ2=0.1

χ=0.7799

Figure 12. This plot displays the behavior of the area as a function of the distance L/R for a fixed

value of the angle χ = 0.7799 > χs. In this range there is no critical flux. The typical behavior is

described by the three curves (red, orange and purple). There are always two branches of solutions.

However the upper one is always subdominant. In this plot we normalized the area functional so

that the area of the dome is −1.

3.3 Transition: connected solution vs dome

To understand when the connected solution becomes dominant with respect to the spherical

dome we have to plot the area as a function of the distance from the brane. This can be

done by exploiting the result of the previous two sections. We have to distinguish two cases

depending on the angle χ governing the coupling with the scalars.

0 < χ < χs: above the critical flux κs (represented by the black curve in figure 11) the

area is a monotonic function of the distance (see e.g. the red curve in figure 11). If we are

approaching from infinity the connected solution starts to exist at certain maximal distance,

which depends on χ and is given by eq. (3.9). The area is larger than the one of the dome,

which, therefore, still dominates. While we are getting closer the area keeps decreasing and

we reach a critical distance where the connected solution and the disconnected one have

the same area. In figure 11 the critical distance is realized when the red curve crosses the

blue line. After this value of the distance, the connected solution becomes the dominant

one: in fact the area keeps decreasing and diverges to −∞ when we reach the brane.

The typical behavior of the area below the critical flux κs is described, instead, by

the green curve in figure 11. There is still a maximal distance, at which the connected

solution starts to exist, but when the distance decreases there are two different branches

of solutions: namely we have two connected extremal surfaces with the same angle χ, flux

κ and distance L. In figure 11, this is clearly displayed in the zoom of the region close

to the maximal distance. The upper branch corresponds to the values of the modular

parameter m ranging from m0, lying on the red curved boundary in figure 2, to the value
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Figure 13. In the parameter space (χ,L/R, κ2) we have plotted the critical surface, namely the

set of point for which the area of the connected solution is equal to the one of the dome.

corresponding to the maximal distance. The lower one is instead obtained when m runs

from the value corresponding to the maximal distance to mc, for which the distance from

the brane vanishes. The area of the solution in the upper branch, when it exists, is always

subdominant with respect to the one in the lower branch. Therefore, we can focus on

the latter.

χs ≤ χ ≤ π
2
: the behavior of the area as function of the distance in this range of angles is

displayed in figure 12. The situation is analogous to what occurs in the other region below

the critical flux. Starting from the maximal distance for which the connected solution

exists, we have two families of extremal surfaces when the distance decreases. However, as

we can see in in figure 12, the shorter one is always subdominant. The one relevant for us

will be the lower branch running from the maximal distance to the brane. The length of

the subdominant branch increases with the flux.

In both regions there is always a value of the distance for which the area of the dome is

equal to the area of the connected solution and below which the connected solution becomes

dominant. In other words we have a phase transition. In fact above this critical distance,

the dominant solution is the spherical dome and the area is constant (the dashed blue line

in figure 11 and 12). The transition is of the first order since the area is continuous but

not its first derivative. The critical distance increases with the flux, as one expects.

In figure 13, we have drawn the critical surface in the parameter space (χ,L/R, κ2)

that corresponds to the locus of the first order phase transition, choosing values of the

fluxes up to ten and of the distances up to four. The surfaces when χ approaches to 0

collapses to a point again suggesting that there is no connected BPS solution.
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4 Perturbation theory

4.1 Perturbation theory: the non-BPS case

In order to obtain explicit results at perturbative level one should consider field config-

urations expanded around the supersymmetric vacuum (2.6): the determination of the

effective propagators and interaction vertices in this background needs a careful and non-

trivial diagonalization procedure, that has been presented in [9]. At one-loop level the

effect of the defect is entirely encoded into bulk propagators and vertices: the full Wil-

son loop expectation value is therefore given at this order by the tree-level and one-loop

contributions

〈W〉 = 〈W〉(0) + 〈W〉(1) . (4.1)

The relevant computation has been already presented in [21]: indeed, already at tree-level,

they found

〈W〉(0) = N − k +
sinh

(
πR sinχ

L k
)

sinh
(
πR sinχ

L

) , (4.2)

with N − k corresponding to the standard tree-level contribution for the circular Wilson

loop while the second term is the interesting one for the comparison with the connected

string result. The one-loop part instead is given by

〈W〉(1) = W(1) +
g2

YM (N − k)R

4πL

∫ ∞
0
dr r

∫ π

−π
dδ

sinh
(

(π−δ)R sinχ
2L k

)
sinh

(
(π−δ)R sinχ

2L

) (I1 + sin2 χI2

)
, (4.3)

where W(1) contains the standard contribution for the non-broken theory with N → (N−k)

and another one scaling as k2 (the two terms were named T1 and T4 in [21]). Because we

want to compare the string result with the perturbative computation, we can safely discard

both of them, the latter being subleading with the others in the large-N limit while the

former should come from string solutions that do not end on the D5-brane, not giving λ
k2

dependent corrections. More explicitly we have [21]

I1 = 2 cos
δ

2
sin

(
2Rr

L
cos

δ

2

)
I k

2
(r)K k

2
(r) , (4.4)

I2 =
sin
(

2Rr
L cos δ2

)
cos δ2

(
k−1

2k
I k+2

2
(r)K k+2

2
(r) +

k+1

2k
I k−2

2
(r)K k−2

2
(r)− I k

2
(r)K k

2
(r)

)
.

(4.5)

As expected these expressions depend on R and L only through the ratio R
L . When χ 6= 0

the integrals are very difficult to be performed analytically but, in the limit of large k,

they can be evaluated to extract their λ/k2 behavior. The relevant technique has been

already settled in [21], where the focus was on the limit L/R→ 0. As far as sinχ 6= 0 both

〈W〉(0) and 〈W〉(1) exhibit an exponential behavior in k, that can be evaluated elementary

in 〈W〉(0) and through a saddle-point approximation in the integrals defining 〈W〉(1). We
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stress that the ratio R/L can be taken finite in this computation, sending just the parameter

k to infinity.8 Repeating the same steps as in [21] we end up with

log 〈W〉 ' − kπR

L

(
sinχ+

λ

4π2k2

(
π

2
− χ− 1

2
sin 2χ

)
sec3 χ

(
sin2 χ+

(
L

R

)2)
+O

(
λ2

π4k4

))
. (4.6)

We will see in the next section that a perfect match with the strong coupling result at

order λ
k2

is obtained, without resorting to any limit on R/L.

4.2 Comparing perturbative analysis with the strong coupling analysis

Usually, in the AdS/CFT correspondence, perturbative computations and the supergravity

analysis live in opposite regime and cannot be successfully compared. For this class of

defect conformal field theories, one can instead consider a double-scaling limit [5, 20] that

opens a new window. Gravity computations, which are valid for large ’t Hooft coupling

λ, can be considered for large k in such a way that λ/k2 is kept small and the results

are found to be expressible in powers of λ/k2. Thus, in this regime, it is possible to

successfully compare gauge and gravity results providing further non-trivial verifications

of the AdS/CFT correspondence.

In the strong coupling regime, this limit is equivalent to expand our classical solution

in power of 1
κ2

, namely for large value of the flux. The flux diverges when the denominator

in eq. (2.38) vanishes, but the numerator does not. This occurs when x, m and χ satisfy

the relation

m x2 cn

(
1

2
x(π − 2χ)

∣∣∣∣m)2

+ x2 − 1 = 0. (4.7)

Even though we are considering the regime in which κ2 is very large and eventually diverges,

we require that the (adimensional) distance L/R of the Wilson loop from the defect remains

finite. The parameter η = arcsinhLR in terms of x, m and χ is the sum of two positive

contributions. In fact, in eq. (2.37) the first term is the integral of a positive function,

while the second one is the tanh−1 of a positive argument. If use the eq. (2.38) we can

recast the argument of tanh−1 in the following form:√√√√ 2κ2
(
1− (m+ 1)x2

)
κ2 (1− (m+ 1)x2)− (m+ 1)x2 +

√
(κ2 (1− (m+ 1)x2)− (m+ 1)x2)2 − 4 (κ2 + 1)mx4 + 2

, (4.8)

which allows us to study easily its behavior for large κ2. If the m and x are finite when

κ2 →∞ and the combination 1− (m+1)x2 does not vanish, it is straightforward to realize

that the quantity in eq. (4.8) approaches 1. Therefore, its contribution to the distance

(tanh−1(1)) diverges. To avoid this conclusion we must require

x =
1√

1 +m
+O

(
1

κ2

)
κ→∞. (4.9)

8Of course in so doing we get also other terms, coming from the sinh factors at denominator in the

relevant integrals. It is easy to realize that they cannot be produced from the classical connected string

solution: we argue that they could be obtained from the one-loop corrections at strong coupling.
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If we use the definition of the unknown x, the above result is equivalent to require that

j2 = O(κ2), therefore we are in the region (A). In this limit, with the help of the expansion

of eq. (4.9), eq. (4.7) collapses to

m

m+ 1
sn

(
1

2
√

1 +m
x(π − 2χ)

∣∣∣∣m)2

= 0 ⇒ m = 0. (4.10)

The requirement that the distance is kept finite and different from zero fixes as m must

vanish for large κ: m = O
(

1
κ2

)
. Therefore, in this regime we can safely assume the following

expansion for the parameters:

m =
∞∑
n=1

a2n

κ2n
x = 1 +

∞∑
n=1

b2n
κ2n

. (4.11)

The coefficients can be determined by solving iteratively the equation for the flux and the

condition fixing the distance (see appendix C). At the lowest order we get

m =
sec2 χ

κ2

(
1−

(
L2

R2
+ 1

)
sec2 χ

)
+O

(
1

κ4

)
(4.12a)

x =1 +
1

2κ2

(
L2

R2
+ 1

)
tan2 χ sec2 χ+O

(
1

κ4

)
. (4.12b)

The subsequent terms in the expansion are quite cumbersome and their explicit form up to

1/κ4 is given in appendix C. We can now use this expansion (see appendix C) to determine

the first two terms in the large κ expansion

S =−
√
λκR

L

[
sinχ+

1

4κ2

(
π

2
− χ− 1

2
sin 2χ

)
sec3 χ

(
sin2 χ+

L2

R2

)]
+O

(
κ−2

)
=− πkR

L

[
sinχ+

λ

4π2k2

(
π

2
− χ− 1

2
sin 2χ

)
sec3 χ

(
sin2 χ+

L2

R2

)
+O

(
λ2

π4k4

)]
,

(4.13)

where we have replaced the strong coupling quantity κ with its expression in terms of
√
λ

and the integer flux k. A simple power-counting of the coupling constant immediately

shows that these are the only two terms which can be compared with our perturbative

computation and they successfully reproduce eq. (4.6).

4.3 Perturbation theory: the BPS case

We have already seen that at χ = 0, when the Wilson loop only couples to the massless

scalar Φ6 and we are therefore at the BPS point, the connected string solution does not

exist. At weak coupling we expect conversely that the scaling λ/k2 should break: let us

examine more closely the situation. We start by observing that a dramatic simplification

occurs at the perturbative level, the non-trivial contribution at one-loop reducing to a much

simpler expression

〈W〉(1) = W(1) +
g2

YM (N − k)Rk

4πL

∫ ∞
0
dr r

∫ π

−π
dδ 2 cos

δ

2
sin

(
2Rr

L
cos

δ

2

)
I k

2
(r)K k

2
(r) .

(4.14)
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The integral over the angular variable δ can be exactly performed in terms of the Bessel

function J1 leading to

〈W〉(1) = W(1) +
g2

YM (N − k)Rk

L

∫ ∞
0
dr r J1

(
2Rr

L

)
I k

2
(r)K k

2
(r) , (4.15)

and the radial integral is solved in terms of Meijer G Functions:

〈W〉(1) = W(1) +
g2

YM (N − k) kL

4
√
πR

G2,2
3,3

(
R2

L2

∣∣∣∣∣ 1, 1− k
2 ,

k+2
2

1
2 ,

3
2 ,

1
2

)
. (4.16)

We shall explore two interesting limits of this exact result. First, we investigate the behavior

of 〈W〉(1) when the parameter k goes to ∞. This limit is easier to discuss if we step back

to the integral form of the one-loop expression and perform the change of variables r → k
2r

〈W〉(1) = W(1) +
g2

YM (N − k)R

4L
k3

∫ ∞
0
dr r J1

(
Rkr

L

)
I k

2

(
kr

2

)
K k

2

(
kr

2

)
. (4.17)

Then, we can use the following asymptotic expansions for the product of the modified

Bessel functions

K k
2

(
kr

2

)
I k

2

(
kr

2

)
=

1

k(1 + r2)1/2

∞∑
n=0

22n

k2n

2n∑
m=0

(−1)mU2n−m((1 + r2)−
1
2 )Um((1 + r2)−

1
2 ),

(4.18)

which is obtained by combining the expansion 10.41.3 and 10.41.4 of [28]. The Un(x)

are polynomials that can be constructed recursively (see section 10.41 in [28] for details):

U0(x) = 1, U1(x) = x
8−

5x3

24 , . . . . If we are interested at the leading order in k, it is sufficient

to consider the first term in the expansion:

〈W〉(1) 'W(1) +
g2

YM (N − k)R

4L
k2

∫ ∞
0
drJ1

(
Rkr

L

)
r

(1 + r2)1/2
=

=W(1) +
g2

YM (N − k)L

4R

2√
π
G2,1

1,3

(
k2R2

4L2

∣∣∣∣∣ 1
1
2 ,

3
2 ,

1
2

)
=

=W(1) + λ
L

4R

(
1 +O

(
1

k2

))
.

(4.19)

The BPS circle does not possess the correct scaling to match a potential connected string

solution: its expansion does not organize in a λ/k2 series. This corroborates the absence

of a connected solution in the BPS case.

The second limit we shall consider is R→ 0, namely when we shrink the loop to a point.

Since we are dealing with a conformal field theory, it is the dimensionless combination

x = R/L, which approaches to zero: this should also correspond to place the Wilson loop

at infinite distance from the defect, recovering at leading order the expectation value of

the usual BPS circle. We find

〈W〉(1) = W(1)+
g2

YMk(N − k)

4

[
1− 1

4

(
1−k2

)
x2

(
ψ

(
k + 1

2

)
+γE + log x−log 2

)
− x2

2
+O

(
x4
)]
.

(4.20)
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As expected we see that the leading term scales as a constant in this limit, and when

combined with W(1) it reconstructs at this order the circular Wilson loop in absence of

defect. Actually the next term in the expansion can be easily understood in terms of the

operator product expansion (OPE) of the circular BPS loop.

4.4 Operator product expansion of the Wilson loop

In absence of defect the Wilson loop, when probed from a distance much larger than the

size of the loop itself, can approximated in CFT by an expansion of local operators [29, 30]

W(C)
〈W(C)〉

= 1 +
∑
k

ckR
∆k O(k)(x) , (4.21)

where R is the radius of the loop, the O(k) are composite operators with conformal weights

∆k evaluated at the center of the loop, and ck are the OPE coefficients that depend on λ.

In perturbation theory the scaling dimension of an operator can be represented as

∆ = ∆(0) + ∆(1) + ∆(2) + · · · , (4.22)

where ∆(0) is the free field dimension, and ∆(1),∆(2) are anomalous dimensions at order λ,

λ2 and so on. Since the symmetries of a CFT constraint the one-point functions of operators

that are not the identity to be zero in absence of defects, the expectation value of the Wilson

loop corresponds to the coefficient of the identity. The OPE coefficients can be computed

perturbatively, but the result cannot be extrapolated in general to strong coupling. The

operators appearing in eq. (4.21) must have the same properties as the Wilson loop, the

O(k) being therefore bosonic and gauge invariant. The possible contributions to the OPE

for low value of the scaling dimension are

• ∆(0) = 0 : the only possible contribution comes from operators proportional to the

identity;

• ∆(0) = 1 : the only elementary fields with scaling dimension one are the scalars. The

trace of a single scalar is the only gauge-invariant operator, but since the ΦI ’s are

valued in the Lie algebra su(N) this contribution vanishes;

• ∆(0) = 2 : the only two types of gauge-invariant operators are the chiral primary

operators Oa and the Konishi scalar K. They are canonically normalized as

Oa = 4
√

2π2CaIJ :Tr(ΦIΦJ) : , K =
4π2

√
3

: Tr(ΦIΦI) : . (4.23)

Here the traceless symmetric tensor CaIJ obeys CaIJC
b
IJ = δab with a, b = 1, . . . , 20.

The operators Oa lie in a short supermultiplet and transform in the 20 irreducible

representation of the R-symmetry group SO(6)R. They have vanishing anomalous di-

mension. The Konishi scalar is the lowest component of the long supermultiplet [31],

and it acquires an anomalous dimension in perturbation theory. Its one-loop anoma-

lous dimension is ∆(1) = 3λ
4π2 [32–37].
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Given the expansion eq. (4.22) for the scaling dimension, every term R∆ in eq. (4.21)

produces logarithmic terms as

R∆ = R∆(0)

(
1 + ∆(1) logR+ ∆(2) logR+

1

2
∆(1)2 log2R+ · · ·

)
, (4.24)

in the limit R→ 0 the coefficients of the divergent logarithms logR is proportional to the

one-loop anomalous dimensions of the non-protected operators appearing in the Wilson

loop OPE, as the Konishi operator. The OPE coefficients can be read off from the cor-

relation functions of the Wilson loop with local operators: in particular one can consider

CPOs with scaling dimension ∆ ≡ k defined as

OIk(x) =
(8π2)k/2√

k
CIJ1···Jk : Tr(ΦJ1 · · ·ΦJk) : , (4.25)

where CIJ1···Jk are totally symmetric traceless tensors normalized as CIJ1...JkC
L
J1...Jk

= δIL.

If k = 2, one obtains the chiral primary operator Oa with ∆ = 2. It is possible to show that

their two-point functions are protected by supersymmetry and their scaling dimensions do

not receive radiative corrections. From the exact expression for correlators of the circular

Wilson loop with CPOs in eq. (4.25) valid for any λ found in [38], it is possible to recover

the relevant OPE coefficients at any order

cIk =
2k/2−1

N

√
k

λ

Ik(
√
λ)

I1(
√
λ)
Y I(θ), (4.26)

where Ik and I1 are modified Bessel functions and Y I(θ) are spherical harmonics

Y I(θ) = CIJ1...Jkθ
J1 · · · θJk (4.27)

with the index I running over all the spherical harmonics of SO(6) Casimir [39]. Pertur-

batively, the leading contribution to the correlation functions of the circular Wilson loop

with the chiral primary with smallest conformal dimension and the Konishi operator was

found in [30] giving

caO =
1

2
√

2N
Y a(θ) , c1 =

1

4
√

3N
. (4.28)

Summarizing the lower dimensional content of the local operator expansion, we have

W(C)
〈W(C)〉

=1 +R∆K

(
1

4
√

3N
+
λc2

N
+ · · ·

)
K(x)

+R∆O

(
1

2
√

2N
− λ

48
√

2N
+ · · ·

)
Ya(θ)Oa(x) + higher scaling dimension ,

(4.29)

the dots indicate higher order terms in λ of the corresponding operator expansion coeffi-

cients. The value of c2 for the Konishi operator has not been computed, at least at our

knowledge, while the OPE coefficient at order λ for the chiral primary operator with k = 2

is obtained expanding for small λ the r.h.s. of eq. (4.26). The scaling dimension of Oa

is ∆O = 2 and this operator does not get an anomalous dimension, whereas ∆K receives

perturbative corrections and following eq. (4.24) one can write

R∆K = R2
(

1 + ∆
(1)
K logR+ · · ·

)
. (4.30)
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4.5 Wilson loop OPE and one-point functions

In the presence of a defect we expect that the structure of the OPE for the circular Wilson

loop is unchanged, due to the fact that we are effectively probing the operator at infinite

distance or, alternatively, because the ultraviolet properties of the theory are insensible

to the boundary. The only modification needed is implied by the presence of non-trivial

one-point functions: the Wilson coefficient of the identity is unchanged and takes into

account still the contribution of the expectation value 〈W〉0 in absence of defect. We are

led therefore to assume the following OPE in the defect theory

W
〈W〉0

=1 +R∆K

(
1

4
√

3N
+
λc2

N
+ · · ·

)
K(x)

+R2

(
1

2
√

2N
− λ

48
√

2N
+ · · ·

)
Ya(θ)Oa(x) + higher scaling dimension ,

(4.31)

the expansion being normalized using 〈W〉0. For the explicit definition of Caij and Y a see

appendix F. Now taking the vacuum expectation value of eq. (4.31) we understand that

the expansion we have derived for the Wilson loop for R/L→ 0 (see eq. (4.20)) should be

recovered from the one-point functions of the Konishi operator K(x) and of the combination

of chiral primaries Ya(θ)Oa(x), from the one-loop anomalous dimension of K(x) and from

the Wilson coefficient c2. Fortunately in a beautiful series of papers [10–12] the NBI group

has studied the one-point functions of scalar operators in the defect theory, obtaining

explicit results both at tree and one-loop level through perturbative computations and at

all-order applying integrability techniques. We take advantage of their efforts and we adapt

their results to our relevant operators (see appendix F for the full details)

〈Ya(θ)Oa(x)〉 =
π2

3
√

2L2
k(1− k2)− λ

2
√

2NL2

(
k(N − k) +

k2 − 1

2

)
(4.32)

〈K(x)〉 = − π2

√
3L2

k(1− k2)−
√

3λ

4L2
k
(
1− k2

)(
ψ

(
k + 1

2

)
+ γE − log 2 +

5

6

)
.

(4.33)

Using further the one-loop contribution to the anomalous dimension of the Konishi operator

∆(1) = 3λ
4π2 we can compare the OPE expansion with the direct computation of the Wilson

loop in the small R/L limit eq. (4.20). We see that our result non-trivially matches with

the one-point functions derived in [10–12] if

c2 = − 15 + π2

96
√

3π2
. (4.34)

Thus, from the OPE for the Wilson loop in the defect case, we have a prediction for the

Wilson coefficient of the Konishi operator at order λ in eq. (4.29). This prediction could be

verified by computing the two-loop contribution to the two-point function of the Konishi

operator with the circular Wilson loop in absence of defect.

5 Conclusions and outlook

The introduction of defects in conformal field theories implies, in general, an augment of

the independent conformal data and enriches the dynamics with novel effects that certainly
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deserve further studies. While at level of correlation functions of local operators there has

been a considerable amount of investigations in this field, much less attention has been

devoted to the behavior of non-local operators: in this paper we tried to fill partially

this gap, studying the fate of the circular Wilson loop in the defect N = 4 Super Yang-

Mills theory both at strong and weak coupling. In the former case, using AdS/CFT

correspondence, we have explored in full generality the structure of the vacuum expectation

value of a loop parallel to the defect, finding the semiclassical string solution in the complete

parameter space and computing the related classical action. The main result has been

the discovery of a novel Gross-Ooguri type transition, separating a phase in which the

dome solution, associated with the Wilson loop in absence of defect, dominates from a

situation in which a cylindrical minimal surface attached to the defect D5 brane describes

the non-local operator. In the generic case, we have performed a double-scaling limit on our

cylindrical solution, sending k → ∞ with λ/k2 fixed, recovering without resorting to any

geometrical approximation the perturbative Feynman diagram result. For the particular

case in which the Wilson loop operator becomes BPS, i.e. for χ = 0 in our notation, the

connected solution ceases to exist and the strong coupling regime is arguably described

by supergravity exchanges between the spherical dome and the D5 brane. Conversely, we

found an analogous behavior at weak coupling, the BPS case not respecting the expected

double-scaling limit. For the BPS case we have also explored at one-loop the shrinking

(or equivalently the large distance) behavior, finding that it can be nicely understood in

terms of the OPE of the Wilson loop operator: the knowledge of the non-trivial one-point

functions for scalar operators of classical dimension two allows to reconstruct explicitly the

first terms of the expansion. Assuming a certain value for the one-loop contribution to the

relevant Wilson coefficient of the Konishi operator we find a perfect matching between our

computations and the results of [10–12].

There are a number of different directions that can be explored in order to improve

the present investigations. First of all, one should compute independently the Wilson

coefficient for the Konishi in the circular BPS Wilson loop OPE: this would represent a

non-trivial check of the result obtained for one-point functions in [10–12] or would enlighten

potential subtleties in our OPE description. A second and intriguing question concerns the

short-distance limit from the defect (or equivalently the large radius limit of the loop) in

the BPS case. Let us consider the expansion of eq. (4.19) in the limit L → 0 namely

x→∞: for odd values of k we find an analytical series in inverse odd powers of x:

〈W〉(1) = W(1) +
g2

YM (N − k)

4

[
1

x
− 3

(8− 2k2)x3
+O

((
1

x

)4
)]

. (5.1)

For even k instead we observe the appearance also of logarithmic corrections that start at

the order x−k−1. For instance, for k = 4 we find

W(1) + g2
YM (N − 4)

[
1

4x
+

1

32x3
+

3(120 log(8x)− 289)

8192x5

− 25(168 log(8x)− 367)

65536x7
+O

(
1

x8

)]
. (5.2)
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It would be tempting to interpret these expressions in terms of a boundary operator expan-

sion (BOE) of the Wilson loop: BOE in defect N = 4 SYM has been already considered for

scalar two-point functions in [13]. In this paper the spectrum of gauge-invariant boundary

operators of the theory has been also presented (see also [40]): it would be interesting to

derive a version of the BOE for the circular BPS Wilson loop and to use the consistency

of bulk and boundary operator expansions to get new information on the defect theory.

A puzzling aspect of the above computations is that their analytical properties depend

crucially on k. For odd k the absence of logarithm suggests that only protected operators

should appear in the BOE, while for even k also non-protected operators seem to be part

of the game.

In the BPS case we have found an exact analytical expression for the vacuum expec-

tation value of the Wilson loop at the first perturbative order and we have observed that

no connected string solution appears at strong coupling: these two facts might signal that

an exact evaluation of this Wilson loop could be feasible, resorting probably to a highly

non-trivial application of supersymmetric localization in this context.

A more direct and conceptually straightforward follow-up of our investigations concerns

the case of the correlator of two circular Wilson loop in the defect set-up [41]: the case

of two straight-line has been already tackled in [22] where a complicate pattern of Gross-

Ooguri like phase transition has been discovered for the quark-antiquark potential. In

the circular case, the situation is more complicated because of the larger parameter space

and the possibility to have both “undefected” connected string solutions between the two

circles or individual cylinder/dome solutions dominating the semiclassical strong coupling

regime. Non-trivial string three-point functions could also enter the game, describing new

connected minimal surfaces with three holes, one of which lying on the D5 brane.

Finally, the generalization of our investigation in the cousin theories related to the

non-supersymmetric D3/D7 system could be certainly considered.
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A Expression for the distance from the defect

The distance eq. (2.37) from the defect brane can be also expressed in terms of the elliptic

integral of the third kind if we explicitly perform the integration defining the auxiliary
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function v(σ). We obtain

η =

√
−(j2m+ 1)(j2 +m)

(m+ 1)(j2 − 1)

[√
j2 − 1

m+ 1
σ̃ −Π

(
−m+ 1

j2 − 1
; am

(√
j2 − 1

m+ 1
σ̃

∣∣∣∣∣m
)∣∣∣∣∣m

)]

+ tanh−1

(
−

√
− (m+ 1)2

(j2m+ 1)(j2 +m)

g′(σ̃)

g(σ̃)

)
(A.1)

=

√
−(n+ 1)(nm+ 1)

n

[√
nσ̃ −Π

(
− 1

n
; am(

√
nσ̃|m)

∣∣∣∣m)]

+ tanh−1

 −g′(σ̃)
g(σ̃)√

−(nm+ 1)(n+ 1)

 ,

where we have introduced the short-hand notation

n ≡ j2 − 1

m+ 1
. (A.2)

This second representation of the distance will be useful when doing analytical expansions,

the one provided by eq. (2.37) being more suitable in numerical analysis.

For instance, from eq. (A.1) is quite straightforward to see that the distance vanishes

when m approaches mc. We first observe that the argument of the arctanh behaves like

∼
√
n

n
√
−mc

cn(
√
nσ̃|m)dn(

√
nσ̃|m)

sn(
√
nσ̃|m)

=
s0√
n
, (A.3)

where we have taken into account that the combination
√
nσ̃ is finite in this limit: it

vanishes since n → ∞ as m → mc (see eq. (3.4)).The remaining contribution can be also

seen to vanish when we exploit the behavior of the incomplete elliptic integral of the third

kind for small values of its first argument. In fact, we have

Π

(
− 1

n
; am(

√
nσ̃|m)

∣∣∣∣m) ' z + c(z,m)
1

n
+O

(
1

n2

)
, (A.4)

which in turn implies that this contribution also vanishes as 1/
√
n.

B Expansion of n, g(σ̃) and ∂η
∂m

close to the boundary j2 = −1/m2

In the parameter space the boundary j2 = −1/m2 corresponds to the curved red line

plotted in figure 2. The values of χ and m along this curve are related by eq. (3.5). Our

goal is now to expand some relevant quantities in the region close to this boundary. To

begin with, we shall choose a value for the angle: χ = χ0. Eq. (3.5) allows us to translate

it in a value m0 for m. Given the pair (χ0,m0) on the red curve, the value x is fixed by

eq. (2.49) to be

x0 = 1. (B.1)

We now expand around this configuration. Specifically, we keep the angle χ0 fixed and we

allow m to be different from m0, but close to it. Then, we can write x as series expansion

around m0:

x = 1 + s1(m−m0) + s2(m−m0)2 +O((m−m0)3). (B.2)
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The coefficients si can be determined by solving perturbatively eq. (2.38). With help of

Mathematica and after some trivial manipulations one finds

x = 1 +
(m−m0) 2

(
κ2m0 +m0 − 1

)
((m0 − 1)K (m0) + E (m0)) 2

8κ2 (m0 − 1)m2
0

+O
(
(m−m0) 3

)
.

(B.3)

Given eq. (B.3) the corresponding expansion for n around m = m0 is easily recovered

n =
x2

1− (m+ 1)x2
= − 1

m0
+
m−m0

m2
0

− a0

m3
0

(m−m0)2 +O((m−m0)3)

with a0 = 1−
(
κ2m0 +m0 − 1

)
((m0 − 1)K (m0) + E (m0)) 2

4κ2 (m0 − 1)m0
.

(B.4)

Next, we can use eqs. (B.3) and (B.4) to evaluate the expansion of g(σ̃) and g′(σ̃), two

quantities that often appears in our analysis. The simplest way to calculate g(σ̃) is to use

eq. (2.26) and eq. (2.38) to obtain an expression as a function of n,m, x and κ. We find

g(σ̃) =

√√√√− 2 (κ2 + 1)mnx2

κ2 + (κ2 + 1) (−(m+ 1))x2 +

√
(κ2 − (κ2 + 1) (m+ 1)x2)2 − 4 (κ2 + 1)mx4

=
1√
−m0

+
m−m0

2 (−m0) 3/2

+
(4a0−1) (m0−1)− ((m0−1)K (m0) + E (m0)) 2

8 (m0 − 1) (−m0) 5/2
(m−m0) 2 +O

(
(m−m0) 3

)
.

(B.5)

Similarly for g′(σ̃) we have

g′(σ̃) =− κ
√
−mn2 − g2(σ̃) =

(m−m0) ((m0 − 1)K (m0) + E (m0))

2m2
0

+O
(
(m−m0) 2

)
.

(B.6)

If we now plug these results into eq. (3.1) for the derivative of η, we get at m = m0:

∂η

∂m

∣∣∣∣
m=m0

=
(1−m0) (E (m0) + (m0 − 1)K (m0)) 2 +m0κ

2
(
1− (E (m0) + (m0 − 1)K (m0)) 2

)
2κ (1−m0) (−m0) 3/2

√
1− (κ2 + 1)m0

.

(B.7)

This value of the derivative has been instrumental in section 3.1 to investigate the mono-

tonicity of η with m.

C The expansion of the renormalized area for κ→∞

Our goal, here, is to expand the renormalized area for κ→∞ while keeping constant the

distance L from the defect. From the numerical analysis in section 3.1, we see that the

same value of L is reached for smaller and smaller value of m as κ approaches infinity (at

least if χ 6= π
2 ). Thus, we shall assume

m→ 0 when κ→∞ but L is fixed. (C.1)
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In this limit we can easily check that x → 1 by solving eq. (2.38). We are motivated

therefore to postulate the following expansion of m and x for large flux

m =

∞∑
n=1

a2n

κ2n
x = 1 +

∞∑
n=1

b2n
κ2n

. (C.2)

At this level it is just an ansatz that will be justified by its consistency. Expanding in this

way eq. (2.38) and eq. (A.1) is potentially a delicate issue since all the entries of the elliptic

functions depend explicitly or implicitly on the modulus m: the results below are obtained

by first computing the elliptic function for small modulus keeping the other entries fixed

and subsequently expanding the dependence on the other entries for small m.

With this procedure eq. (2.38) determining the flux reads

κ2 =
κ2

a2 cos2 χ+ 2b2 cot2 χ
+

1

8
(
a2 sin2 χ+ 2b2

)
2

[
tanχ

(
−4 tanχ

(
a4 sin2 χ+ 2b4

)
+ 2a2b2 sec2 χ

(
(π − 2χ)

(
sin2 2χ+ 2 cos 2χ

)
− 4 sin 2χ− sin 4χ

)
(C.3)

− a2
2 sinχ tan2 χ (4χ sinχ− 2π sinχ+ 7 cosχ+ cos 3χ)

+4b22(8χ+ 3 sin 2χ− 4π) sec2 χ
)]

+O
(
κ−2

)
and similarly eq. (A.1), which instead fixes the distance, takes the form

L

R
= tanh−1


√
− (a2+2b2) tan2 χ

b2√
2

+
1

2
√

2κ2

[
(−a2 − 2b2) 1/2

√
b2(π − 2χ− sin 2χ)

− 2
(
2a2

2b2 + a2

(
11b22 − b4

)
+ 2b2

(
a4 + b22 + b4

))
sin2 χ

b2 (a2 + 4b2 − a2 cos 2χ)
√
− (a2+2b2) tan2 χ

b2

(C.4)

+
(a2 + 2b2) (a2 sin 4χ− 2(π − 2χ) (a2 − 4b2)) + 2

(
4a2b2 + 2a2

2 + a4 − 6b22 + 2b4
)

sin 2χ

2 (a2 + 4b2 − a2 cos 2χ)
√
− (a2+2b2)

b2

]
+O

(
κ−4

)
.

We can now solve iteratively this combined system of equations and determine

{a2, a4, b2, b4} in terms of L/R and χ.We get

a2 =
1

2
sec4 χ

(
−2L2

R2
+ cos 2χ− 1

)
(C.5)

b2 =
1

2

(
L2

R2
+ 1

)
tan2 χ sec2 χ (C.6)

a4 =− 1

32
sec9 χ

(
−2L2

R2
+ cos 2χ− 1

)(
−88L2χ sinχ

R2
+

44πL2 sinχ

R2
+

8L2χ sin 3χ

R2

− 4πL2 sin 3χ

R2
− 2

(
16L2

R2
+ 5

)
cosχ− 84χ sinχ+ 42π sinχ+ 12χ sin 3χ

− 6π sin 3χ+ 9 cos 3χ+ cos 5χ

)
(C.7)
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b4 =− 1

64

(
L2

R2
+ 1

)
tanχ sec8 χ

(
−112L2χ

R2
− 52L2 sin 2χ

R2
+

2L2 sin 4χ

R2

−8(π − 2χ)

(
5L2

R2
+ 6

)
cos 2χ+

56πL2

R2
− 84χ− 31 sin 2χ+ 14 sin 4χ

+ sin 6χ+ 6(π − 2χ) cos 4χ+ 42π

)
. (C.8)

We can also use eq. (C.2) to expand the renormalized area in terms of the above parameters

and, adopting the same prescription, one obtains

S√
λ

= µ− κ
√
− 1

a2 + 2b2
tanχ− 1

8κ

(
− 1

a2 + 2b2

)3/2

sec2 χ [4b2(π − 2χ) (a2 + 2b2)

+
(
a2

2 + a4 − 6b22
)

sin 2χ+ 2 (a2b2 + b4) sin 2χ+ a2(π − 2χ) (a2 + 2b2) cos 2χ
]

+O
(
κ−3/2

)
. (C.9)

The explicit form of the coefficients a2, a4, b2 and b4 leads to the following expansion for

the renormalized area

S√
λ

= −κR sinχ

L
−
R(2χ+ sin 2χ− π) sec3 χ

(
−2L2

R2 + cos 2χ− 1
)

16κL
+O

(
κ−2

)
. (C.10)

D The χ = π
2

Wilson loop

The value χ = π
2 is peculiar since it corresponds to the absence of motion on the internal

sphere S5. In fact, in this case θ already takes its maximum value at the boundary (σ = 0)

and thus it cannot be increased further. From eq. (2.20), this results in setting j = 0 and

consequently m ≤ −1. Therefore, we are in the region (B) of the allowed parameters. Since

j = 0, σ̃ becomes a free parameter and it can be determined by solving the equation for

the flux

sn

(√
− 1

m+ 1
σ̃

∣∣∣∣∣m
)2

=
m+ 1

2m
−
√
κ2(m+ 1)2 + (m− 1)2

2m
√
κ2 + 1

, (D.1)

and we get

√
nσ̃ =

√
− 1

m+ 1
σ̃ = sn−1

√m+ 1

2m
−
√
κ2(m+ 1)2 + (m− 1)2

2m
√
κ2 + 1

∣∣∣∣∣∣m
 . (D.2)

When m spans the entire interval from −1 to −∞, σ̃ runs from 0 to ∞. We can write η in

terms of m

η = tanh−1

√√√√ 2κ2

1 + κ2 +
√
κ2 + 1

√
κ2 + (m−1)2

(1+m)2


+

√
m

m+ 1

[√
nσ̃ −Π

(
1 +m; am(

√
nσ̃|m)

∣∣m)] (D.3)
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Figure 14. The behavior of the distance from the defect as a function of α ≡ arctan(m) at χ = π
2

is not qualitatively different from the one obtained for other values of the angle greater than χs.

All the curves display a maximum.
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Figure 15. The behavior of the area of the connected surface as a function of α ≡ arctan(m) at

χ = π
2 is not qualitatively different from the other values of the angle greater than χs. All the

curves display a maximum

with the combination
√
nσ̃ seen as a function of m is given in eq. (D.2). The behavior of

the distance with m is then displayed in figure 14 where as usual we have parametrized m

as tanα. All the curves (independently of the value of the flux) are not monotonic function

of m and display a maximum, which becomes steeper as the flux increases. The distance

from the defect always vanishes at m = −1. This property can be checked analytically by

means of the results of appendix A. Next, we examine the area given by eq. (3.13). Its

behavior is pictured in figure 15 and we again find that it is not a monotonic function of m.

When α = arctan(m) increases, it reaches a maximum exactly for the same value of α for

which the distance does and then it decreases to −∞. For α = −π
2 , namely m → −∞ all

the curves go to the same value: in this case −1. Therefore, we observe the same behavior

previously obtained for all the angles χ > χs.
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Figure 16. Plot of Lcric.

κR as function of κ. This quantity is decreasing with the flux, but always

greater than one.

Finally, we investigate the phase transition from the dome to the connected solution

when we vary the distance from the defect. For χ = π
2 the disconnected solution cannot

exist for all distances. In fact, when L
κR < 1, the dome solution is no more acceptable

because it intersects the (defect) brane. This phenomenus could provide a second putative

mechanism for the phase transition from a disconnected to a connected minimal surface:

even if the area of the latter might become dominant only when L
κR < 1, we are forced to

start using it at L
κR = 1. In this case the transition is of order zero.

However, this second mechanism remains inoperative if the area of the connected

solutions becomes smaller than −1 before the dome touches the brane. To explore this

point we have plotted in figure 16 the critical distance divided by κR for different values

of the flux. This quantity is monotonically decreasing with κ, but it is always greater than

one. Thus, the first-order transition always occurs before the dome touches the brane.

E Connected solution as correlator between two circles of different radii

In this appendix we show that our extremal surface can be viewed as the solution connecting

two coaxial circles of different radii and different couplings with the scalars. The former is

identified with the original one. The latter is located behind the defect, and the distance

from it is chosen so that the brane intersects the extremal surface orthogonally.

To begin with, we shall examine more carefully the geometric structure of our solution.

In AdS5 our connected solution is given by

y(σ) =
R cosh η√
1 + g2(σ)

sech[v(σ)− η] r(σ) = R cosh η
g(σ)√

1 + g2(σ)
sech[v(σ)− η]

x3(σ) = −R cosh η tanh[v(σ)− η],

(E.1)

and it is confined into a S3 inside AdS5. In fact

x2 + y2 + r2 =R2 cosh2 η

[
sech2[v(σ)− η]

1 + g2(σ)
+

g2(σ)

1 + g2(σ)
sech2[v(σ)− η] + tanh2[v(σ)− η]

]
=R2 cosh2 η =

√
L2 +R2. (E.2)
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The surface (E.1) intersects the boundary of AdS5 at σ = 0 and if we extend the range

of the world-sheet coordinate σ beyond σ̃, it reaches again the boundary at σ̂ = 2√
n
K(m)

for which

v(σ̂) = 2

√
ε0
n

[
K(m)−Π

(
− 1

n
,m

)]
. (E.3)

This second intersection with the boundary of AdS5 is again a circle of radius

R̂ = R cosh η sech

(
2

√
ε0
n

[
K(m)−Π

(
− 1

n
,m

)]
− η
)
. (E.4)

This second circle is located at

x3(σ̂) = −R cosh η tanh[v(σ̂)− η] = R sinh η −R sinh v(σ̂)sech (v(σ̂)− η)

=R sinh η − R̂sechη sinh v(σ̂)
(E.5)

and the distance ` in the transverse direction x3 between this circle and the one at σ = 0 is

` = R̂sechη sinh v(σ̂). (E.6)

The angle χ describing the scalars coupling to the two circles is different and the ∆χ

between the two loops is

∆χ = θ(σ̂)− θ(0) =
2j√
n
K(m). (E.7)

F Basis for chiral primary operators

As already pointed out in the original papers, the only operators built from scalars that

can have one-point functions different from zero are those invariant under SO(3) × SO(3).

If we consider the case of operator with classical dimension 2 we can construct only two

operators of this type: the famous Konishi operator

K(x) =
4π2

√
3

Tr(ΦIΦ
I) (F.1)

and the chiral primary operator

O1(x) =

√
1

6
Tr
[
Φ2

1 + Φ2
2 + Φ2

3 − Φ2
4 − Φ2

5 − Φ2
6

]
. (F.2)

The list of CPO’s is completed by 4 diagonal operators

O2(x) =

√
1

2
Tr
[
Φ2

1 − Φ2
3

]
O3(x) =

√
1

6
Tr
[
Φ2

1 − 2Φ2
2 + Φ2

3

]
O4(x) =

√
1

2
Tr
[
Φ2

4 − Φ2
6

]
O5(x) =

√
1

6
Tr
[
Φ2

4 − 2Φ2
5 + Φ2

6

] (F.3)

and 15 off-diagonal ones OIJ(x) =
√

2Tr [ΦIΦJ ] with i < j. When performing integrability

calculation, one usually computes the expectation values of the CPO Tr(Z2). We want to
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expand this operator in our basis and we find

Tr(Z2) = Tr(Φ2
3 − Φ2

6) + 2iTr(Φ3Φ6)

=

√
2

3
O1(x)−

√
1

2
O2(x) +

√
1

6
O3(x) +

√
1

2
O4(x)−

√
1

6
O5(x) +

√
2iO36(x).

(F.4)

Then, we have the following relation between the VEV’s:

〈O1(x)〉0 =

√
3

2
〈Tr(Z2)〉0. (F.5)

Actually in the Wilson loop operator appears the following linear combination of CPO

Y a(θ)Oa(x), where Y a(θ) = (CaIJθ
IθJ) =

(
−
√

1
6 , 0, 0,−

√
1
2 ,
√

1
6 ,0
)

is a 20 component

vector. The boldface zero indicates that the remaining 15 components vanishes and the

CaIJ form the basis of the symmetric traceless tensors that we used for constructing the

CPO. Then,

〈Y a(θ)Oa(x)〉 = 〈Y 1(θ)O1(x)〉 = 4
√

2π2〈Y 1(θ)O1(x)〉 = −4π2

√
2
〈Tr(Z2)〉 . (F.6)

Now if we use eq. (28) of [12], we find up to one-loop

〈Tr(Z2)〉 =− 1

12L2
k(1− k2)

+
g2

YM

8π2L2

(
k(N − k) +

(k − 1)

2
+

[ k−2
2 ]∑
i=0

(Hk−i−1 −Hi)(k − 2i− 1)

)

=− 1

12L2
k(1− k2) +

g2
YM

8π2L2

(
k(N − k) +

(k − 1)

2
+
k(k − 1)

2

)
=− 1

12L2
k(1− k2) +

g2
YM

8π2L2

(
k(N − k) +

k2 − 1

2

)
.

(F.7)

Therefore

〈Y a(θ)Oa(x)〉 = −4π2

√
2
〈Tr(Z2)〉 =

π2

3
√

2L2
k(1−k2)−

g2
YM

2
√

2L2

(
k(N − k) +

k2 − 1

2

)
. (F.8)

For the Konishi operator up to one-loop instead we have [12]

〈K(x)〉 = − π2

√
3L2

k(1− k2)−
√

3λ

4L2
k
(
1− k2

)(
ψ

(
k + 1

2

)
+ γE − log 2 +

5

6

)
. (F.9)
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