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Accounting for soil respiration 
variability – Case study in a 
Mediterranean pine-dominated 
forest
Ottorino-Luca Pantani1*, Fabrizio Fioravanti1, Federico M. Stefanini   2, Rossella Berni   2 & 
Giacomo Certini1

The number of spots to monitor to evaluate soil respiration (Rs) is often chosen on an empirical or 
conventional basis. To obtain an insight into the necessary number of spots to account for Rs variability 
in a Mediterranean pine-dominated mixed forest, we measured Rs all year long on sixteen dates with a 
portable gas-analyser in 50 spots per date within an area 1/3 ha wide. Linear mixed-effects models with 
soil temperature and litter moisture as descriptors, were fitted to the collected data and then evaluated 
in a Monte Carlo simulation on a progressively decreasing number of spots to identify the minimum 
number required to estimate Rs with a given confidence interval. We found that monitoring less than 
14 spots would have resulted in a 10% probability of not fitting the model, while monitoring 20 spots 
would have reduced the same probability to about 5% and was the best compromise between field 
efforts and quality of the results. A simple rainfall index functional to select sampling dates during the 
summer drought is proposed.

Soils are the main carbon (C) reservoir of terrestrial ecosystems and contain about twice as much C as the atmos-
phere1. As a consequence, small changes in soil respiration (Rs) – the efflux of CO2 to the atmosphere resulting 
from biological activity in soil – may have important consequences on climate and in fact received much attention 
in recent years2,3. Gathering Rs measurements from different biomes around the world is essential for obtaining a 
reliable estimate of soil CO2 efflux on a global scale3,4.

Reliable Rs data can only arise from direct measurement in the field, which still presents many challenges 
despite the fact that it has been carried out for more than a century. The early measurements of Rs were based on 
chemical absorption of CO2 within a closed chamber by alkali solutions and successive titration. Nowadays, an 
infrared gas analyser (IRGA) which measures the CO2 concentration build-up inside a dynamic chamber is gen-
erally used. Although the IRGA system is not free from artefacts and biases – which can however be minimized3,5 
– it has the great advantage of allowing relatively fast measurements and, therefore, of measuring Rs in many 
different spots. Soil is actually a highly variable environment in terms of each of its features6–8. Features related to 
the soil biota are expected to be even more variable than the others9, both seasonally and spatially.

There is an extensive number of studies which have measured Rs in many ecosystem types (see the updated 
global dataset by Bond-Lambert and Thomson10); however, very few of them were concerned about how many 
spots should be measured in that specific environment to properly account for the intrinsic spatial variability of 
soil. One of these is the experiment set up by Saiz et al.11, who in a first rotation Sitka spruce chronosequence 
composed of four age classes in Ireland, first assessed that coefficients of variation in Rs varied largely during 
the year – being lowest during periods with highest Rs – then determined that on average the sampling strategy 
of 30 sampling spots per stand (of unspecified area) was adequate to obtain a Rs within 20% of its actual value 
with p = 0.05. Measuring Rs on a regular grid covering an area of 2400 m2 in a mature plantation of Cryptomeria 
japonica in Japan, Lee and Koizumi12 assessed that the spots required to produce a sample mean within ±10% 
of the full-population mean (p = 0.05) on three sampling dates were 75, 48, and 110. By random measurements, 
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Rochette et al.13 showed that in a wheat crop the number of spots needed to estimate the Rs on one single hectare 
within 10% of its mean value decreased from 190 at the time of seeding to 30 at the end of the growing season.

Rodeghiero and Cescatti14 evaluated a method based on initial measurements in a number of randomly 
selected spots; this number was later reduced by a stratified sampling to the minimum required to adequately 
estimate Rs. In practice, the spots were sorted according to their average Rs in the first three sampling dates and 
then equally divided into as many “strata” as the number of spots the researchers actually wanted to continue 
working on (to be selected randomly one per group). To evaluate the effectiveness of the random and stratified 
samplings, the authors re-sampled the experimental dataset with a Monte Carlo (MC) approach, varying the 
sub-sample size at each site. The stratified sampling was found to be effective only in those two ecosystems (of the 
three studied), where the temporal correlation of the fluxes was high. A similar approach has been used by Knohl 
et al.15, who measured Rs every 2 to 6 weeks for more than two years in a temperate mixed deciduous forest in 
Germany. Starting from several measurement sessions during the first year on 40–50 spots, aimed at capturing 
spatial variability in an area with unknown extension, the authors estimated that at least 8 spots were required 
to stay within ±20% of the expected mean with p = 0.05 and at least 44 to stay within ±10% of the same mean.

The fact is that every type of stratification inevitably causes some loss of information. Moreover, such an 
approach bases on the weak assumption that the spots chosen at the beginning of the experiment are constantly 
ranked in the same way in terms of Rs. From papers dealing with Rs determined by the IRGA device and report-
ing enough information to infer the sampling density, we drew up Supplementary Tab. 1. The listed works were 
carried out all around the world, in various environments experiencing diverse types of climates and undergoing 
different land uses (mostly forests). The majority of these works were observational, i.e., performed without alter-
ing the natural conditions, while a few ones were designed, i.e., performed by modifying some climatic or physical 
features to account for the effects of plausible environmental changes. The spots were distributed randomly or 
regularly, along a line (transect-based) or on a grid (grid-based) on areas ranging from few square meters to 65 ha. 
Sampling density ranged from 1.29 to 12,727 spots per hectare (ha), where values over 300 spots ha−1 resulted 
from monitored surfaces which were objectively too small (less than 0.1 ha) to adequately capture the Rs spatial 
variation. Physical and biological controlling factors of CO2 efflux may in fact be different at larger scales. In 
most of the papers listed in Supplementary Tab. 1 the choice of the sampling density appears to be random or not 
adequately explained.

There are several papers dealing with Rs assessment in forests growing in areas with a Mediterranean climate, 
where weather seasonality and the spatial variability of vegetation structure are generally higher than in other 
environments16–19; nevertheless, few of them paid adequate attention to soil variability and the necessity of work-
ing on a number of spots sufficient to obtain a reliable estimate of Rs.

The aim of this work is to get insight into the uncertainty in Rs assessment due to both the number of moni-
tored spots and the seasonal variation in a soil under a pine-dominated forest experiencing Mediterranean cli-
mate. The data gathered was thus used to answer to the question: how many spots should be measured to capture 
Rs variability in this environment? For this purpose, soil temperature, soil and litter moisture, and Rs were meas-
ured on 16 dates throughout one year with a portable gas-analyser at 50 spots per day within an area 1/3 ha wide, 
assuming that the above figures would yield a labour-expensive yet reasonable oversampling. Some linear mixed 
effects models describing the dependence of Rs on soil temperature and moisture were fitted to the collected 
dataset and a MC simulation was run for each model to check the effect of a progressive reduction of sampling 
density on model fitting and the associated uncertainty. A simple index based on cumulative rain was used to 
select beforehand the most convenient dates of sampling during summer droughts. The ultimate aim of this study 
is optimizing the allocation of efforts without missing the core of information of the experiment.

Results
The temporal distribution of Rs values is shown in Fig. 1a, along with climatic data (Fig. 1b) and litter and soil 
moisture. Soil respiration was highly variable during the year and between the spots (Supplementary Tab. 1), 
ranging from a minimum of 0.01 g CO2 m−2 h−1 – measured in May, July, October, and August, when the highest 
recorded values were instead 1.15. 1.05. 0.57 and 0.48 g CO2 m−2 h−1, respectively – to a maximum of 3.58 g CO2 
m−2 h−1 in April, when the lowest recorded value was 0.31 g CO2 m−2 h−1 (Supplementary Tab. 2). The time trend 
of Rs reflected that of litter moisture (solid and dashed lines in Fig. 1a, respectively), which supports the strong 
dependence of the first variable upon the second one. Only in December Rs did not rise with litter moisture, most 
probably because of temperatures being too low. At each date, the variability between the spots was high, with 
standard deviations ranging from 0.11 to 0.56 g CO2 m–2 h–1 (Supplementary Tab. 2). Boxplots in Fig. 1a show that 
Rs variability increased with increasing Rs

Re-sampling strategies and Monte Carlo simulations.  The relationship between the number of spots 
(hereafter MCspots) – i.e., 49, 48, … 6, 5 – and the converged/fitted model ratio is shown in Fig. 2. All models 
displayed similar behaviour as the MCspots decreased. One important outcome is that it is necessary to monitor 
at least 14 spots to sufficiently account for Rs variability; in fact, sampling fewer spots would imply that more 
than 10% of the attempted models fails to converge and this percentage would rise exponentially as the number 
of MCspots decreases. On the contrary, for sample sizes greater than 20 and 35 MCspots, the percentage of failed 
models would drop below 5% and 1%, respectively.

The surfaces shown in Fig. 3 are the result of uncertainty in prediction (z axis, CO2 flux in original units, g m−2 
h−1), based on the four models we tested as a function of both MCspots (x axis) and soil temperature (y axis). The 
models with the dummy variable show much lower uncertainty in prediction. This favourable feature was not 
evident either from the BIC values (Supplementary Tab. 3) or the shape of quantile-quantile plots (Supplementary 
Fig. 1). Since the models with dummy variables – log- or square root-transformed Rs – gave quite similar results 
both in BIC and quality of residuals, the log-transformed response is here used for the discussion. Due to the 
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presence of the dummy variable, it is possible to show the confidence interval for the two conditions, Moist and 
Dry (Figs. 4 and 5). The lowest and highest uncertainties were 0.06 and 0.64 CO2 g m−2 h−1 and occurred for Moist 
conditions at 5 °C for a sample size of 49, and for Dry conditions at 5 °C for a sample size of 5 spots, respectively. 
The surface for Dry conditions rises steeply in the corner with lower sample sizes and temperatures. While the 
effect of sample size is obvious, the effect of temperature may be due to the fewer measurement sessions under the 
Dry conditions (5 sessions vs. 11). Soil respiration peaked at 18 °C and 12 °C for Moist and Dry conditions (Fig. 5), 
where it amounted to 0.86 and 0.40 CO2 g m−2 h−1, respectively. The fluxes at the two moisture conditions were 
the same at about 9 °C, where both amounted to 0.38 CO2 g m−2 h−1.

Discussion
Comparison of Values.  The mean Rs we found lies on the higher side of the range of values shown in 
Supplementary Tab. 1 (min. 0.06, 1st quartile 0.26, median 0.43, mean 0.43, 3rd quartile 0.6, max 0. 99 g CO2 m−2 
h−1). As regards the Mediterranean ecosystems specifically, Emran et al.20 under Pinus pinea measured an annual 
mean Rs of 0.69 ± 0.47 g CO2 m−2 h−1, while in two plots of a Scots pine-dominated mixed forest, Barba et al.21 
measured an Rs of 0.44 g CO2 m−2 h−1 (0.04 CV, n = 97) and 0.35 (0.03 CV, n = 98) while Rey et al.17 reported a 
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Figure 1.  Top panel a) shows the CO2 fluxes measured at 16 dates (indicated as Julian days of 2008 on x axis) 
in the pine-dominated forest. Notches and dots in the boxplots are the median and the mean, respectively. 
The gray and white bodies indicate Moist and Dry conditions, respectively. The solid line connects the mean 
Rs, while the dashed and dotted lines above the boxplots indicate litter and soil moisture (% on wet weight), 
respectively. Bottom panel b) shows the daily precipitations (bars), the mean temperature of soil (dotted line) 
and air (dotted-dashed line). The gray bars highlight the 4 days before the CO2 measurements while numbers 
indicate the cumulative precipitation (mm).
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Figure 2.  The ratio of converged models/fitted models (1001 converged models obtained) increases 
exponentially with the number of sampled spots. Vertical dotted lines are drawn at number of spots to monitor 
in order to have a 90, 95, and 99 ratio of converged/fitted models. RH = Relative Humidity, Moisture in the text.
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Figure 3.  The uncertainty in prediction (l2-l1) calculated for four models.
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mean annual Rs of 0.46 g CO2 m−2 h−1 for a coppice of Quercus cerris L. The Mediterranean climate is charac-
terized by the alternation of a growing wet season and a non-growing dry season, which clearly have different 
mean seasonal Rs

22. As a consequence, every mean annual Rs to be meaningful should rely on as many as possible 
sampling campaigns distributed on the basis of the respective lengths of the two seasons. The mean Rs we found is 
thus perfectly aligned with the ones cited above. Additionally, the Rs range of values we measured is comparable 
with those found by Rey et al.17 (0.19 to 1.01 g CO2 m−2 h−1) and Joffre et al.18 and Asensio et al.23 in a Quercus ilex 
forest (0.06 to 0.80 g CO2 m−2 h−1 and 0.13 to 0.54 g CO2 m−2 h−1, respectively).

Land use is another factor of Rs variability in Mediterranean areas. In this regard, Oyonarte et al.24 in six different 
land uses (forest and agricultural sites) found values ranging from 0.06 g CO2 m−2 h−1 in the dry period (summer) 
to 0.28 g CO2 m−2 h−1 in the growing season (spring), while in a sparse Pinus halepensis forest, an olive grove, and 
an abandoned field, Almagro et al.19 found mean Rs of 0.33, 0.27, and 0.18 g CO2 m−2 h−1, respectively. Soils under 
pine woods, as the one we investigated, thus seem to release more CO2 than soils with different vegetation cover19,20.
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Figure 4.  The uncertainty in prediction (l2-l1) calculated by model [1]. Two surfaces are reported, as the model 
has a binary dummy variable “Moisture” with Moist and Dry levels. The greater prediction intervals under Dry 
conditions is a direct result of both the Mediterranean climate and of the fact that the spots, when monitored, 
were described by Moist more often than by Dry conditions.
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Considerations on sampling density and allocation of resources.  Supplementary Tab. 1 collates 
some relevant data from 38 papers including this one. The sampling densities range from 1.29 to 12,727 spots 
ha−1. Two aspects must be considered: the first one is that nine densities are above 288 spots ha−1 and result from 
designed experiments that involved areas from 0.04 to 0.006 ha. Working on so small areas of course does not 
allow reliably evaluating Rs variability at ecosystem level; on the other hand, such sampling densities if exported 
on rather large surfaces are impossible to manage. To achieve a higher density, some monitoring plans were based 
on the use of two or more IRGA devices or two or more days to collect data21,25,26; nevertheless, also these plans 
consisted of about 50 spots per day. Tedeschi et al.27 is the only exception with 100 spots per day per device, but 
these authors reduced the number of spots to 20 right after a first screening. A single operator can not monitor 
much more than 50 spots per day, therefore he must size the area to monitor on such a basis. Should the sampling 
campaign base on two or more devices, the instrumental error of the devices must be minimal and as similar as 
possible in order to work together. Furthermore, in the case of the Mediterranean climate, spreading the measure-
ment session over two days can imply dramatic changes in weather and, thus, in Rs values, especially depending 
upon rains (see next section).

Considerations on temperature and moisture.  As expected, temperature was a driving factor of Rs, to 
a varying extent depending upon Moist and Dry conditions (Table 1 and Figs. 2 and 5). The models describing 
the dependence of Rs on temperature are generally based on the Arrhenius equation, so exponential functions 
frequently occur in the literature19,28–31. Although we did not find significant differences between the log and 
square root transformations in our experiment, we used the log transformation because of its wider acceptance in 
the literature. Nevertheless, we used a parabolic equation on the right side of the models, since all our attempts to 
build a model in exponential form were unsatisfactory due to the bad shape of residuals and the poor significance 
of the model parameters. The purpose of this study was to find the relationship between Rs uncertainty and the 
number of sampled spots; hence, the building of the model was data-driven.

The dependence of Rs on litter and soil moisture was evident at our site, just as in other Mediterranean ecosys-
tems17,32,33. In particular, rain pulses were able to drastically increase Rs in the dry season (June 9th and September 
18th, see Fig. 1a). The infrequent rains in summer in Mediterranean climates have a substantial impact on Rs

32, 
so much to represent actual “hot moments” throughout the year34. Almagro et al.19 meaningfully proposed as a 
proxy for the effect of rain pulses on Rs the “rewetting index”, RWI = P/t, where P is the mm of precipitation and 

Date Coef. of variation 5% Coef. of variation 10%

25/02/2008 369 92

12/03/2008 164 41

01/04/2008 654 164

14/04/2008 334 83

30/04/2008 468 117

12/05/2008 459 115

23/05/2008 273 68

09/06/2008 152 38

30/06/2008 270 68

23/07/2008 880 220

29/08/2008 792 198

18/09/2008 237 59

14/10/2008 541 135

10/11/2008 147 37

17/12/2008 424 106

17/01/2009 334 83

Table 2.  Number of spots to monitor in 1/3 ha to restrain the variability within an uncertainty of 10% and 20% 
of the estimated mean value, according to the formula reported in Petersen and Calvin35.

Est. Coef. Std. Error DF t-value p-value

Moist conditions −3.1712 0.1335 726 −23.739 <10−3

Dry conditions 1.6214 0.3490 726 4.645 <10−3

Soil temperature, °C 0.3312 0.0161 726 20.481 <10−3

(Soil temperature, °C)2 −0.0090 0.0004 726 −18.070 <10−3

Dry conditions*Soil temperature, °C −0.2260 0.0452 726 −4.998 <10−3

Dry conditions*(Soil temperature, °C)2 0.00479 0.0013 726 3.438 <10−3

Table 1.  Estimated coefficients, standard errors, t-test, and p-values of soil respiration model based on soil 
temperature and litter moisture as a binary dummy variable. Graphical details of the model are reported in 
Supplementary Figs. 1, 3 and 4. BIC: 1029.74; logLik −431.615.
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t the days passed since the previous precipitation. Such a proxy actually accounted for Rs during the long lasting 
summer drought better than soil moisture. We based our model on an alternative proxy, the cumulative precipita-
tion exceeding 0.5 mm of the four previous days (cp): nonetheless, we cannot exclude that in regions with different 
climatic conditions, other timespans may work better.

Using indexes based on climate rather than physical measurements of soil moisture, allows for better compar-
ison between studies, since soil moisture measurements are little comparable. In fact, the various studies conduct 
soil moisture measurements using different 1) methods (from gravimetric to volumetric, discrete vs continu-
ous), 2) control sections, and 3) kinds of probes/sensors, which were often not calibrated to the local conditions. 
Another practical advantage of a climate index is that it can be calculated a priori and off-site. While soil/litter 
moisture must be measured each time in the field, cp can be easily monitored remotely and when it exceeds a 
critical value going to perform CO2 measurements.

Considerations on alternative models.  Using a model substantially reduces the number of spots to base 
on for measuring Rs. In fact we calculated, for each sampling date, the number of spots to monitor according to 
the formula proposed by Petersen and Calvin35 and used by several authors14,21,36,37

= ∗n t s /D2 2 2

where n is the sample size, t is the t-statistic (two-way test) for a given confidence level and degrees of freedom 
(95% in the present case), s is the standard deviation of the full population (50 spots per date in this case), and D is 
the specified error limit, i.e. the width of the desired interval around the full population mean in which a smaller 
sample mean is expected to fall35.

The results for 1/3 ha are shown in Table 2 and are much higher than those estimated by using model 1. From a 
predictive point of view there is no difference between using a model that considers only the mean35 and a model 
that considers more variables. On the other hand, the minor effort of recording variables such as soil temperature 
and moisture is worthwhile, since it dramatically reduces the number of spots to monitor in terms of CO2.

Conclusion
The methodology here described – data oversampling, model building, Monte Carlo simulations – allowed reach-
ing the principal goal of our work, i.e., to determine the number of spots necessary to capture Rs variability. This 
number turned out to not be less than 14 in 1/3 ha. Sampling more spots improves the precision of estimation, 
and 20 spots appeared to be the best compromise between field efforts and the quality of the result. In fact, in this 
case the probability of not finding a model dropped to less than 5%, while adding further spots does not bring any 
substantial benefit in terms of converged/fitted models ratio.

Another conclusion is that during the hot dry summer, a simple index based on cumulative precipitation can 
be used to establish the best dates to detect important CO2 pulses.

Overall, our findings encourage a more rational allocation of resources in both time and space for those aimed 
at measuring soil respiration in similar environments.

Materials and Methods
Study area.  The study area, Pianacci (43°44′31.81″N, 11°06′14.76″E), is a forest stand located about 10 km 
south of Florence, Italy. The stand is dominated by maritime pine (Pinus pinaster Aiton) and, in suborder, Italian 
cypress (Cupressus sempervirens L.), with manna ash (Fraxinus ornus L.) and holm oak (Quercus ilex L.) as ancil-
lary species (Supplementary Fig. 2). The climate is typically Mediterranean, with warm and dry summers and 
relatively cold and wet winters. Data from a weather station 3.5 km away from the study area and referring to the 
period 1994–2008 accounted for a mean annual precipitation of 764.3 mm, with November as rainiest month 
(119 mm) and July as the driest (24.4 mm), and a mean annual temperature of 14.8 °C, with January as coldest 
month (mean 6.5 °C) and July as the warmest (mean 24.2 °C). The terrain is located 216 to 224 m a.s.l. and has a 
mean slope of 5% and a west to southwest aspect. The soil formed on Oligocene sandstone chiefly composed of 
quartz, feldspars, and phyllosilicates and somewhere intercalated with thin siltstone layers comprising calcite, 
quartz, plagioclases, and phyllosilicates. It is a Brunic Arenosol of the World Reference Base for Soil Resources38 
and shows an O-A-Bw-BC-C sequence of horizons. Some basic characteristics determined in a soil profile opened 
approximately in the centre of the stand are shown in Table 3. The very low occurrence of rock fragments in the 
topsoil (A and B horizons) reveals past agricultural land use.

Monitoring strategy and Rs measurements.  Soil respiration was measured from February 2008 to 
January 2009, monthly except in April-May-June – the period of highest biological activity – when four extra 
measurement sessions were carried out (Fig. 1a). The CO2 efflux from soil was determined by an EGM-1 PP 
Systems portable gas analyser (Hitchin, UK) coupled with an SRC-1 closed air-circulation chamber 1.17 dm3 in 
volume. Within a 1/3 ha wide area we selected 50 spots to monitor throughout the year by a randomization pro-
cedure, excluding the outermost four-meter-wide strip of the stand to avoid any border effect. Based on the data 
of Supplementary Tab. 1 such a sampling density was assumed to be high enough to capture most Rs variability 
and to perform a Bootstrap resampling procedure aimed at finding the minimum number of spots necessary to 
estimate Rs with an uncertainty close to 10% of the mean of the population.

A stake was driven into the soil 10 cm north of each spot to localize it. We did not place permanent collars into 
the soil to prevent lateral gas leakage during measurement, as these have been shown to lead to greater under-
estimation of Rs due to their severing fine roots and the hyphae of mycorrhizal fungi and, possibly, modifying 
soil temperatures39–41. The Rs measurements were thus carried out by gently inserting the rimmed edge of the 
chamber 1 cm into the mineral soil and holding the chamber steady during the measurement, to virtually avoid 
uncontrolled exchanges of air to and from the chamber. At each spot, the temperature of both the atmosphere 
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at ground level and the soil at a depth of 10 cm were recorded. All measurement sessions started at about 11:00, 
proceeding non-stop in an ordered sequence from spot no. 1 to spot no. 50, which was approximately measured at 
about 16:00; hence, spending on average about 6 minutes per spot. At each measurement session, two composite 
samples of both litter layer (O horizon) and top mineral soil were assembled from throughout the area to gravi-
metrically determine moisture by oven drying at 105 °C to constant mass.

Statistical analysis and model building.  In the analysis of data, the CO2 flux (Y, response variable) was 
considered: 1) on the original scale; 2) after log transformation; 3) after square root transformation. Explanatory 
variables were: soil temperature, litter and soil moisture (water % on wet weight). Moisture variables were con-
sidered: (a) on the original quantitative scale and (b) after transformation into a binary dummy variable (more 
details here below). Fitting and examination of linear mixed-effect models were performed following Pinheiro 
and Bates42,43. In particular, within each model as in 1), 2), and 3) above-cited points, selection of linear predic-
tors for fixed effects was performed according to BIC (Bayesian Information Criterion) values44. In the case of 
litter moisture, fitted models also took into consideration the above-cited (i) and (ii) alternatives about moisture. 
Variance heteroscedasticity was considered by introducing random effects associated to sampling dates in all 
models.

For each best model on the chosen scale of the response (labels 1, 2, 3, above) the analysis of residuals45 was 
done to look for possible evidences of violations in model assumptions. The best models resulting from the above 
steps were then exploited in the MC simulation.

Litter moisture was found to be a better predictor than mineral soil moisture (Supplementary Tab. 4) and no 
further improvements of the model came either from the insertion of a cubic parameter or the elimination of the 
quadratic term (Supplementary Tab. 3).

Whatever the scale for the response variable, the final model matrix X after selecting the best model refers to 
the following fixed effects: (i) Moisture, defined as in labels (a) and (b) above; (ii) Soil Temperature and its square; 
(iii) the first order interaction term: Moisture * Soil Temperature, and (iv) Moisture * Soil Temperature2.

The matrix Z for random effects has the following hierarchical structure: (i) Sampled Spot and (ii) Soil 
Temperature within Sampled Spot.

Thus, the expected value of the response is:

~| + +

+ ∗ + ∗

E Y X Y Moisture Soil Temperature Soil Temperature
Moisture Soil Temperature Moisture Soil Temperature

[ , ]
a (1)

2

2

The random part of the model defines an intercept at a given date, which is randomly shifted from the value 
taken in the fixed part of the model. Random fluctuations of the coefficient for soil temperature are also intro-
duced within the sampling date. Such random effects are normally distributed with null expectation. A variance 
parameter was introduced at each sampling date, so that the variance-covariance matrix of residuals was diagonal 
but not constant.

Models for transformed responses (labels 1, 2, 3) were adopted with the aim of checking the assumption of 
normality. A binary dummy variable (label a) was obtained by the sum of the daily precipitations of four days 
before the sampling date (cp, cumulative precipitation); hence, if cp was less than 0.5 mm, the dummy variable was 
set to Dry, otherwise it was set to Moist. The “dry” dates were identified at first on an empirical basis, i.e., as those 
where low values of both litter moisture and Rs were observed, namely 02–25, 05–12, 07–23, 8–29, and 10–14 
(Fig. 1a). Sampling dates were those in which the cumulative precipitation was lower than 0.5 mm in the four 
previous days. Of course, using values other than 0.5 mm and 4 days, different “dry” dates resulted.

The combination of the CO2 flux (as such, log or square-root transformed) with the two variables (litter mois-
ture or the dummy variable) provided six candidate models for MC simulation (Supplementary Tab. 5 and Fig. 1). 
The analysis of residuals showed evidence of violation in the assumptions in models with non-transformed 
CO2 flux as response (Supplementary Fig. 1) and did not indicate any superiority of one model over the others. 
Therefore, only the four models with log- or square root-transformed underwent Bootstrap re-sampling and MC 
simulations.

Uncertainty associated with monitoring fewer spots.  The uncertainty associated with monitoring 
fewer spots was evaluated by Bootstrap resampling46,47. Several Bootstrap runs were performed by progres-
sively decreasing the number of spots (MCspots) down to 5: that is 49, 48, …6, 5. In each Bootstrap run, for a 
given MCspots value a random sample with replacement was drawn from the complete dataset (thus forming 
a Bootstrap Sample dataset, BSdataset); a model was fitted on this BSdataset and, if model fitting converged, 

Horizon

Depth
Rock 
fragments Sand Silt Clay C N

pHH2O pHKClcm % weight g kg−1 g kg−1 g kg−1 % %

O 2–0 2.0 na na na 11.66 0.49 5.15 4.33

A 0–10 2.6 816 181 3 0.84 0.02 5.97 4.28

B 10–24 1.8 873 112 15 0.58 nd 6.09 4.04

BC 24–39 20.5 878 111 11 0.43 nd 6.21 4.05

C 39+ 65.7 467 428 105 0.30 nd 6.38 4.33

Table 3.  Some basic characteristics of the soil at the study area. na = not applicable, nd = not detectable.
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confidence intervals were recorded. The stopping rule for resampling was 1001 models successfully fitted to 
Bootstrap samples (without errors due to convergence, aliasing, etc.).

Two main consequences were expected from the reduction of the MCspots value: (i) the failure of convergence 
during model fitting and (ii) the increase of uncertainty of parameter estimates, as captured by the difference 
between the two endpoints of the confidence interval (95%). The R software48 and its libraries, nlme49 and lat-
tice50, were used for data entry, model fitting, and MC simulations.

Data availability.  The dataset is available at https://doi.pangaea.de/10.1594/PANGAEA.896345
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