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Monodisperse cluster crystals: Classical and quantum dynamics
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We study the phases and dynamics of a gas of monodisperse particles interacting via soft-core potentials in two
spatial dimensions, which is of interest for soft-matter colloidal systems and quantum atomic gases. Using exact
theoretical methods, we demonstrate that the equilibrium low-temperature classical phase simultaneously breaks
continuous translational symmetry and dynamic space-time homogeneity, whose absence is usually associated
with out-of-equilibrium glassy phenomena. This results in an exotic self-assembled cluster crystal with coexisting
liquidlike long-time dynamical properties, which corresponds to a classical analog of supersolid behavior. We
demonstrate that the effects of quantum fluctuations and bosonic statistics on cluster-glassy crystals are separate
and competing: Zero-point motion tends to destabilize crystalline order, which can be restored by bosonic
statistics.
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I. INTRODUCTION

The discovery of novel phases of matter as a result of broken
symmetries is of main interest in condensed matter. In quantum
physics, a key example is the supersolid phase for bosonic
particles [1–3], where the rare simultaneous breaking of two
symmetries (i.e., continuous translational and global gauge
symmetry) leads to the coexistence of both crystalline and
superfluid properties [4–11]. Such a state of matter may be
realized for a monodisperse ensemble of particles with cluster-
forming interactions, at sufficiently low temperatures [7,9].

A phase that does not fall into the scheme of broken
symmetries is the glass phase, both classical and quantum,
which is a nonequilibrium and disordered, yet stable, phase
[12,13]. In analogy to the broken-symmetry picture, however,
the glass transition is often associated with breaking of
space-time homogeneity, or dynamic heterogeneity. The latter
is a result of frustration effects, known as self-caging [14],
and corresponds to a relaxation that is fast on a local scale
and exponentially slow on large ones [15–21]. The search
for novel mechanisms for caging and glass effects in both
the classical [22] and quantum [23–28] regimes is of central
interest in condensed matter as well as atomic and molecular
physics [29,30]. Interestingly, several works have pointed out
that mixtures of cluster-forming particles out-of-equilibrium
may realize glassy phases in the classical regime [22,23].
This opens the way to understand the relation between the
equilibrium and nonequilibrium properties of classical cluster-
forming particles compared to their quantum counterparts [22]
and thus to investigate the classical to quantum transition in
these systems. Indeed, a key question is whether glassiness
and supersolidity may be related at a fundamental level.

In this work we analyze the classical equilibrium phases,
and the effects of quantum fluctuations and bosonic statistics
on such phases, in a two-dimensional model system of ultrasoft
particles that, in the quantum regime, has been shown to
display the existence of a bosonic cluster supersolid [6–9]. In
such a state of matter superfluidity emerges in the presence
of a self-assembled cluster-crystalline structure. Here we
focus on the classical counterpart of this quantum phase and

investigate in detail both its static and dynamical properties
using exact theoretical techniques that are valid in the classical
and semiclassical regimes.

Specifically, we demonstrate theoretically the following.
(i) The low-temperature equilibrium classical phase is an
exotic ordered cluster crystal with a dynamical separation
between intracluster particle motion and intercluster hopping,
mimicking dynamic heterogeneity at equilibrium. This is
microscopically due to caging effects at the level of individual
clusters, which result in the coexistence of crystalline and
liquidlike properties, such as linear particle diffusion as a func-
tion of time t . This clarifies in what sense this thermodynamic
phase is the classical version of a cluster supersolid. (ii) By
means of a combination of numerically exact semiclassical and
fully quantum techniques, we elucidate the different effects of
quantum fluctuations and quantum statistics on the phenomena
described here. Surprisingly, we find that these are competing:
Zero-point motion tends to destabilize the cluster crystal in
favor of liquidlike phases, while bosonic quantum statistics
can have the opposite effect of enhancing crystalline behavior.
The latter effect is at odds with results for systems such as
He4 or dipolar crystals [27], where bosonic statistics always
favors a liquid behavior, while the former should be compared
to recent findings for polydispersed hard spheres [23,28,31],
where quantum fluctuations may help crystallization. Some
of these effects may be relevant for systems as diverse as
colloidal particles [22,32,33] as well as cold gases of Rydberg
atoms [34], where light-dressing techniques can be used to
tune effective interparticle interactions [35,36].

The remainder of this paper is organized as follows. In
Sec. II we present the Hamiltonian of interest for an ensemble
of particles interacting via ultrasoft cluster-forming potentials
and summarize known results in the quantum regime. In
Sec. III we present the computed classical phase diagram
for our model by introducing both static and dynamical
order parameters that allow us to characterize the classical
counterpart of the quantum cluster supersolid investigated
in Ref. [9]. In Sec. IV we introduce exact results for the
semiclassical real-time dynamics of our model, by excluding
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particle exchanges, as well as exact results for static properties
that include the effects of bosonic quantum statistics. In this
way, namely, by understanding the separate effect of zero-point
motion and bosonic quantum statistics on the classical phase,
we start elucidating the transition between the classical and
quantum scenarios. Finally, we outline the conclusions as well
as possible extensions of the present work.

II. HAMILTONIAN: ULTRASOFT PARTICLES

We consider a two-dimensional ensemble of N bosonic
particles with mass m, density ρ, and Hamiltonian

Ĥ = − �
2

2m

N∑
i=1

∇2
i +

N∑
i<j

V0

r
γ

ij + R
γ
c

. (1)

The interaction in Eq. (1) approaches a constant value V0/R
γ
c

as the interparticle distance r decreases below the soft-core
distance Rc and drops to zero for r > Rc. The case γ →
∞ yields the soft-disk model [37]. Here we focus on γ =
6, corresponding to soft-core van der Waals interactions of
relevance for ultracold atoms [6,38].

Particles with soft-core interactions have been studied
previously [39–43] in the classical high-temperature regime
(� = 0,T �= 0) and in the purely quantum zero-temperature
regime (� �= 0,T = 0) [6,7,9]. In the former case, it has been
shown that pair potentials with a negative Fourier component
[40] favor the formation of particle clusters, which in turn
can crystallize to form so-called classical cluster crystals.
While cluster formation has been intensively investigated in
the context of, e.g., colloids [44], it has been demonstrated that
bosonic quantum statistics can turn a cluster-solid phase into
a supersolid phase via a quantum phase transition at a critical
value αcs-ss � 40 where ρmV0/(�2R2

c ) ≡ α [9]. The supersolid
further melts into a superfluid phase via a first-order quantum
phase transition at αss-sf � 30.

Here we bridge the gap between the classical and quantum
regimes by first analyzing the static and dynamic properties
at the classical level and then studying the separate effects
of quantum fluctuations and statistics. We performed our
theoretical investigation by using different exact numerical
approaches that are appropriate for the various regimes of our
interest. Specifically, Langevin molecular dynamics [45] has
been employed to obtain the classical phase diagram of model
(1). Quantum effects on the classical phases have been studied
by means of path-integral molecular dynamics in the semi-
classical regime [31] and full path-integral quantum Monte
Carlo simulations [46]. The former allows for investigating
the real-time dynamics of quantum particles in the absence of
quantum statistics, while the latter provides exact results for
static properties of bosonic quantum systems.

III. CLASSICAL PHASE DIAGRAM

A. Static properties

The classical (� = 0,T �= 0) phases of model (1), as
obtained from Langevin molecular dynamics [45], have
been characterized by analyzing both static and dynamical
physical observables for systems comprising up to N = 3120
particles in a wide range of temperatures and densities. Here
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FIG. 1. (Color online) Phase diagram as a function of scaled
temperature T/(V0/R

6
c ) and density R2

c ρ for classical monodisperse
particles with soft-core interactions [see Eq. (1)] at equilibrium. Here
N/Ns is the average number of particles per cluster in the ground
state (upper x axis). The dashed vertical line marks R2

c ρ � 1.1 (see
Fig. 2).

thermodynamic equilibrium has been achieved by means of
a standard annealing procedure. The resulting equilibrium
phase diagram is shown in Fig. 1 as a function of temperature
T/(V0/R

6
c ) and the rescaled density R2

c ρ � 1. At low T we find
an ordered crystalline phase consisting of clusters arranged in
a triangular configuration, each cluster comprising an average
number of particles larger than one (see, e.g., Figs. 4 and 7)
and increasing with R2

c ρ. Long-range positional order is first
measured by estimating the static structure factor

S(k) = 1

N

˝∣∣∣∣∣∣
N∑
j

eik·rj

∣∣∣∣∣∣
2̨

. (2)

Here k is a wave vector, rj is the position of the j th particle,
and 〈· · · 〉 denotes averaging over many configurations. This
observable displays well-defined peaks in the low-T ordered
phase [Fig. 2, inset (a)], while, as expected, for high T we
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FIG. 2. (Color online) Cluster short-range orientational order �6

as a function of T at equilibrium for R2
c ρ � 1.1. The insets show

the static structure factor S(k) at the same rescaled density for (a)
T/(V0/R

6
c ) = 0.02 and (b) T/(V0/R

6
c ) = 0.09. In the former case the

system is a cluster crystal, in the latter, as indicated by the extremely
small value of �6 and the essentially featureless S(k), a liquid.
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find a normal liquid phase with no peaks in S(k) for k �= 0,
independently of R2

c ρ [Fig. 2, inset (b)].
We then characterize quantitatively the finite-T melting

transition between the cluster crystal and the normal liquid
phase by monitoring the hexatic (short-range) bond-order
parameter of the clusters, which, in analogy to regular
noncluster-forming crystals (see [47] and the Appendix for
details), we define as

�6 = 1

NcNj

˝∣∣∣∣∣∣
Nc∑
j

Nj∑
l

ei6θjl

∣∣∣∣∣∣
˛
. (3)

Here Nc is the total number of clusters, Nj is the number
of clusters neighboring the j th one, and θjl is the angle
between a reference axis and the segment joining the clusters
j and l (Fig. 7 in the Appendix). The parameter �6(T )
decreases from �6 = 1 at T = 0 to �6 � 0 in the liquid
phase and displays a sudden jump at the transition point
(see the main panel of Fig. 2 for an example). This observed
jump is system-size independent for N � 200 and consistent
with a first-order transition. We find that for R2

c ρ � 1 the
classical melting temperature TM grows essentially linearly
with R2

c ρ, with a scaling of the critical interaction strength
αcc-l ≡ ρV0/(TMR4

c ) � 0.16.
The precise measurement of �6 allows us to obtain the

complete phase diagram of Fig. 1 by monitoring static
properties within each phase. In the next section we show
that dynamical observables are necessary in order to fully
characterize the various phases of the model at equilibrium.

B. Dynamical properties

The dynamics of the equilibrium phases of Fig. 1 is
instead initially characterized by computing the mean square
displacement

MSD(t) = 〈�r2(t)〉 = 1

N

〈∑
j

∣∣rj (0) − rj (t)
∣∣2

〉
, (4)

as well as the time-dependent self-intermediate scatter func-
tion

Fs(k
∗,t) = 1

N

〈∑
j

eik∗[rj (0)−rj (t)]

〉
. (5)

Here k∗ = |k∗| refers to the characteristic wave vector of the
main peak in S(k) [29]. These quantities provide complemen-
tary information on particle mobility and time correlations
of particle positions within the crystal, respectively [49]:
For example, in the liquid phase, MSD(t) follows the linear
diffusion law MSD(t) ∝ t [50] typical of Brownian motion,
while Fs(k∗,t) decays exponentially.

For model (1) the situation is however strikingly different.
For T � TM the time evolution of both observables, shown in
Figs. 3(a) and 3(b), interpolates between the solid and liquid
regimes: An extended plateau is followed by linear diffusion
for MSD(t) and exponential decay for Fs(k∗,t), respectively,
with the size of the plateaus increasing with decreasing T . We
find that an analysis of the T -dependent relaxation time τα for
which Fs(k∗,τα) = 1/e reveals an Arrhenius-type exponential
dependence on 1/T without detectable saturation [see, e.g.,
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FIG. 3. (Color online) (a) Self-intermediate scatter function
Fs(k∗,t) vs time t for T/(V0/R

6
c ) × 102 = 0, 3.3, 4.4, 4.95, 5.5,

6.05, 7.15,7.70, 8.25, and 13.2 (top to bottom). (b) Mean square
displacement (in units of R2

c ) MSD(t) vs t ; symbols are the same as
in (a). (c) Relaxation time τα defined via Fs(k∗,τα) = e−1. The dashed
line is an exponential fitting function (see the text). Data refer to the
scaled density R2

c ρ = 1.1.

Fig. 3(c)]. This indicates that the liquidlike diffusion described
here is thermally activated and only vanishes at T = 0.

These results are interesting as the phenomenology reported
here, that is, the existence of plateaus in the time evolution
of MSD(t) and Fs(k∗,t), is typical of, e.g., glass-forming
liquids. In particular, the Arrhenius-type dynamics would
usually correspond to a peculiar strong-glass behavior. This
immediately calls for an explanation of the correspond-
ing microscopic dynamics responsible for this macroscopic
behavior.

By inspection of particle configurations, we determine that
the microscopic diffusion mechanism here corresponds to
hopping of particles between different clusters, leaving the
underlying crystal structure essentially unaltered. Examples
of this dynamics are given in the snapshots of Fig. 4. These
behaviors indicate the existence of liquidlike particle diffusion
within the crystalline phase at equilibrium. Specifically, for
the case of our interest, namely, R2

c ρ > 1, this hopping
mechanism occurs in the presence of bond orientational
order of the clusters for any temperature within the interval
0 � T � TM.

We further characterize the dynamical properties of our
system by estimating the following non-Gaussian parameter
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FIG. 4. (Color online) Snapshots of the sequential evolution of a
portion of the system, starting at t = t0. Particles belonging to sites
involved in a hopping process have been highlighted in red and blue.

[14,51]

α2(t) =
[ 〈�r4(t)〉

2〈�r2(t)〉2

]
− 1. (6)

The latter measures deviations from Gaussian fluctuations
in the distributions of displacements and thus is in general
α2(t) � 0 for all t in regular liquids and noncluster crystals
at equilibrium. Here, however, for T < TM and intermediate
times we obtain α2(t) �= 0 since the particles can be differenti-
ated into fast and slow due to deconfined intercluster hopping
and confined intracluster motion. This is demonstrated for
our model in Fig. 5, where, as before, all simulations have
been performed at equilibrium. The presence of a peak in
the non-Gaussian parameter mimics, in our model, the so-
called dynamic heterogeneity usually associated with glassy
dynamics where different time scales emerge.

We note that some of the general phenomena described
above, such as the deviation from the Gaussian distribution
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FIG. 5. (Color online) Non-Gaussian parameter α2(t) vs t for
T/(V0/R

6
c ) = 0.03 (black squares), 0.05 (red circles), 0.07 (green

stars), and 0.08 (blue triangles). Data refer to the scaled density
R2

c ρ = 1.1.

in the fluctuations of displacements, are characteristic of
all cluster-forming models and have been recently observed
numerically in three-dimensional situations of relevance to soft
matter [42]. In addition to analyzing the macroscopic order
parameters and the specific microscopic realization of these
effects in a two-dimensional model of direct experimental
interest for low-temperature atomic physics, here we explain
how (and in what sense) these cluster-forming crystals corre-
spond to the classical counterpart of the recently discovered
cluster supersolids in the quantum regime. In fact, although
the existence of a high-temperature crystalline phase related
to the supersolid phase was discussed previously [7,9], its
explanation in terms of dynamical properties is one of the
main results of this work.

In the following, we start bridging the gap between these
classical and quantum regimes, by investigating quantum
effects in the semiclassical and fully quantum cases, at equi-
librium. Specifically, we show that while zero-point motion
results in an enhancement of liquidlike properties, bosonic
quantum statistics favors crystalline ones. The analysis of these
separate competing roles is crucial to understanding how the
supersolid phase emerges from its classical analog.

IV. QUANTUM EFFECTS

Quantum effects (� �= 0,T > 0) on the phase diagram
of Fig. 1 are investigated numerically in the semiclassical
approximation using path-integral Langevin dynamics (PIMD)
[31] and fully quantum mechanically using exact quantum
path-integral Monte Carlo (PIMC) methods [46]. These
provide complementary information: PIMD neglects particle
exchange and the classical limit is the real-time dynamics of the
particles, while the PIMC method treats the bosonic statistics
exactly in imaginary time.

A. Semiclassical dynamics

Figure 6(a) shows results for Fs(k∗,t) defined above using
PIMD. We choose here scaled densities such as α � αcs-ss ,
so that the zero-temperature quantum phase is a cluster crystal
even in the quantum regime. In full generality, Fig. 6 shows that
semiclassical quantum fluctuations (e.g., zero-point motion)
cooperate with thermal fluctuations to enhance local mobility.
At low T , this effect tends to destabilize crystalline order.

Indeed, fluctuations can affect the equilibrium glassylike
dynamics discussed above leading to melting into a liquid
phase. As an example, the figure shows that for R2

c ρ = 0.8119
and T = 2.6 [in units of �

2/(mR2
c )] the relaxation time sen-

sibly decreases when the interaction strength is lowered from
mV0/(�2R4

c ) = 80 to mV0/(�2R4
c ) = 60. These semiclassical

results should be compared to those of Ref. [31] for a
gas of polydispersed hard-sphere liquids, where for certain
parameters quantum fluctuations may induce an increase of
glassiness, and thus a reentrant behavior, before melting.

B. Effects of bosonic statistics

The effects of bosonic quantum statistics are shown
in Fig. 6(b). There we present results for the radial
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FIG. 6. (Color online) (a) Function Fs(k∗,t) computed by path-
integral Langevin dynamics. Data are for R2

c ρ = 0.8119 and
mV0/(�2R4

c ) = 80 (circles) and 60 (triangles). The T values are 1.6
and 2.6 (full and empty symbols, respectively), in units of �

2/(mR2
c ).

(b) Function g(r) computed via path-integral Monte Carlo simulations
with and without bosonic quantum exchanges (solid and dashed
lines, respectively). Here T/[�2/(mR2

c )] = 10, mV0/(�2R4
c ) = 35,

and R2
c ρ = 2.029.

density-density correlation function defined as

g(r) = 1

N

〈∑
j

[δnj/(2πrδr)]

〉
, (7)

where δnj is the number of particles at a distance between r and
r + δr from particle j . Here g(r) is computed for Boltzmann
particles (i.e., no particle exchanges, dashed line) as well as
for Bose particles (i.e., including bosonic statistics, solid line)
[52]. As an example, we choose R2

c ρ = 2.029, mV0/(�2R4
c ) =

35, and T/[�2/(mR2
c )] = 10.

The figure shows that the density-density correlations in the
semiclassical case are liquidlike. In particular, oscillations of
g(r) beyond the first correlation shell are strongly damped and
the value of g(0) is approximately 2. However, this latter value
increases by a factor of about 2 when quantum statistics is taken
into account (solid line), i.e., in a fully quantum mechanical
calculation. In addition, g(r) displays more pronounced
oscillations at finite r , signaling the enhancement of solidlike
behavior. While less efficient for R2

c ρ < 1, we find that this
enhancement of solidlike properties is a general feature at
sufficiently high density (R2

c ρ � 1) [53]. This is in contrast
to the physics of noncluster crystals, such as purely dipolar
bosons [54,55] or He4 [2], where, as shown in Ref. [27],
bosonic statistics always enhances superfluid properties.

In summary, from the analysis above we conclude that,
surprisingly, the effects of quantum fluctuations and statistics
can be competing: Zero-point motion tends to destabilize the
cluster crystal in favor of liquidlike phases, while bosonic
quantum statistics can have the opposite effect of enhancing

crystalline behavior. Since PIMC simulations (as well as essen-
tially any other methods) do not allow for the investigation of
the real-time evolution of the interacting many-body problem
in the presence of quantum exchanges, it remains an open
question to determine the precise dynamics of these systems
in the quantum regime.

V. CONCLUSION AND OUTLOOK

We have demonstrated that a two-dimensional model of
monodisperse cluster forming particles can realize a classical
equilibrium phase that simultaneously breaks both transla-
tional symmetry and dynamic homogeneity. While the latter
phenomenon is usually associated with out-of-equilibrium
glassy physics, here we find it at equilibrium. This results
in the realization of a classical self-assembled cluster crystal
with coexisting liquidlike properties. This corresponds to a
classical analog of the quantum mechanical supersolid phase
of matter.

The coexistence of a cluster crystalline structure and
of particle diffusion has been explained here in terms of
a thermally activated hopping mechanism, where particles
delocalize without altering the underlying cluster crystalline
matrix. In addition, we have determined the competing effects
that quantum mechanical fluctuations and statistics produce
on a classical cluster crystal. As ultrasoft interactions are
now observable in experiments with Rydberg atoms, this work
may open up the exciting possibility of observing soft-matter
phenomena in the classical and quantum regimes in atomic
physics. Furthermore, interesting theoretical questions are still
open, including whether out-of-equilibrium quench dynamics
can suppress the structural order presented in this work and
what would be the resulting classical and quantum phases.
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COHERENCE, RYSQ, and computing time at the HPC-UdS,
ANR through “BLUESHIELD.”

APPENDIX: CLUSTERING TECHNIQUE

In order to calculate the hexatic (short-range) order of the
cluster crystal the first step is to distinguish between different
clusters. Here we use a hierarchical clustering technique
[56] that associates each particle to a single cluster in an
unambiguous way (Fig. 7 and text below).

For a given configuration of the system, the algorithm starts
with Nc = N one-particle clusters, corresponding to the N

single particles and their positions. Then an iterative step
consists in finding the minimum distance between all pair
of clusters, in order to merge the two nearest clusters into
a single one, and in relabeling the corresponding particles.
The position of the new cluster (formed by the union of the
previous two) is defined as the centroid of all the associated
particles. The procedure ends when the minimum distance
between pairs of clusters is greater than a fixed number dc.
The value of dc has been set to dc = 0.7Rc in our calculations,
roughly corresponding to half the value of the first peak in the
density-density correlation function. This peak remains at the
same position for all densities.
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Troyer, ibid. 104, 125302 (2010); B. Capogrosso-Sansone, C.
Trefzger, M. Lewenstein, P. Zoller, and G. Pupillo, ibid. 104,
125301 (2010).

[11] Y. Li, G. I. Martone, L. P. Pitaevskii, and S. Stringari, Phys. Rev.
Lett. 110, 235302 (2013).

[12] M. Merolle, J. P. Garrahan, and D. Chandler, Proc. Natl. Acad.
Sci. USA 102, 10837 (2005).

[13] M. S. Shell, P. G. Debenedetti, and F. H. Stillinger, J. Phys.:
Condens. Matter 17, S4035 (2005).

[14] P. Charbonneau, A. Ikeda, G. Parisi, and F. Zamponi, Proc. Natl.
Acad. Sci. USA 109, 13939 (2012).

[15] K. Binder and W. Kob, Glassy Materials and Disordered Solids
(World Scientific, London, 2011).

[16] P. G. Wolynes and V. Lubchenko, Structural Glasses and
Supercooled Liquids (Wiley, Hoboken, 2012).

[17] P. G. Debenedetti and F. H. Stillinger, Nature (London) 410, 259
(2001).

[18] G. L. Hunter and E. R. Weeks, Rep. Prog. Phys. 75, 066501
(2012).

[19] F. Sciortino, W. Kob, and P. Tartaglia, Phys. Rev. Lett. 83, 3214
(1999).

[20] W. Götze, J. Phys.: Condens. Matter 11, A1 (1999).

[21] H. Tanaka, T. Kawasaki, H. Shintani, and K. Watanabe, Nat.
Mater. 9, 324 (2010).

[22] F. Sciortino and E. Zaccarelli, Nature (London) 493, 30 (2013).
[23] F. Zamponi, Nat. Phys. 7, 99 (2011).
[24] G. Biroli, C. Chamon, and F. Zamponi, Phys. Rev. B 78, 224306

(2008).
[25] Z. Nussinov, Physics 1, 40 (2008).
[26] G. Carleo, M. Tarzia, and F. Zamponi, Phys. Rev. Lett. 103,

215302 (2009).
[27] M. Boninsegni, L. Pollet, N. Prokof’ev, and B. Svistunov, Phys.

Rev. Lett. 109, 025302 (2012).
[28] Z. Nussinov, P. Johnson, M. J. Graf, and A. V. Balatsky, Phys.

Rev. B 87, 184202 (2013).
[29] W. Lechner and P. Zoller, Phys. Rev. Lett. 111, 185306 (2013).
[30] I. Lesanovsky and J. P. Garrahan, Phys. Rev. Lett. 111, 215305

(2013).
[31] T. E. Markland, J. A. Morrone, B. J. Berne, K. Miyazaki, E.

Rabani, and D. R. Reichman, Nature Phys. 7, 134 (2011).
[32] A. Narros, A. J. Moreno, and C. N. Likos, Soft Matter 6, 2435

(2010).
[33] Y. Li, Y. D. Tseng, S. Y. Kwon, L. d’Espaux, J. S. Bunch, P. L.

McEuen, and D. Luo, Nat. Mater. 3, 38 (2003).
[34] N. Malossi, M. M. Valado, S. Scotto, P. Huillery, P. Pillet,

D. Ciampini, E. Arimondo, and O. Morsch, Phys. Rev. Lett.
113, 023006 (2014); H. Schempp, G. Günter, M. Robert-
de-Saint-Vincent, C. S. Hofmann, D. Breyel, A. Komnik,
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H. Labuhn, L. Béguin, A. Vernier, F. Nogrette, T. Lahaye,
and A. Browaeys, ibid. 112, 183002 (2014); D. Maxwell,
D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard,
A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams,
ibid. 110, 103001 (2013); T. Baluktsian, B. Huber, R. Löw, and
T. Pfau, ibid. 110, 123001 (2013); M. Viteau, P. Huillery, M. G.
Bason, N. Malossi, D. Ciampini, O. Morsch, E. Arimondo, D.
Comparat, and P. Pillet, ibid. 109, 053002 (2012); T. Peyronel,
O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov,
T. Pohl, M. D. Lukin, and V. Vuletic, Nature (London) 488,
57 (2012); P. Schauß, M. Cheneau, M. Endres, T. Fukuhara, S.
Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch, ibid.
491, 87 (2012).

052307-6

http://dx.doi.org/10.1103/Physics.4.109
http://dx.doi.org/10.1103/Physics.4.109
http://dx.doi.org/10.1103/Physics.4.109
http://dx.doi.org/10.1103/Physics.4.109
http://dx.doi.org/10.1103/RevModPhys.84.759
http://dx.doi.org/10.1103/RevModPhys.84.759
http://dx.doi.org/10.1103/RevModPhys.84.759
http://dx.doi.org/10.1103/RevModPhys.84.759
http://dx.doi.org/10.1007/s10909-013-0882-x
http://dx.doi.org/10.1007/s10909-013-0882-x
http://dx.doi.org/10.1007/s10909-013-0882-x
http://dx.doi.org/10.1007/s10909-013-0882-x
http://dx.doi.org/10.1103/PhysRev.106.161
http://dx.doi.org/10.1103/PhysRev.106.161
http://dx.doi.org/10.1103/PhysRev.106.161
http://dx.doi.org/10.1103/PhysRev.106.161
http://dx.doi.org/10.1103/PhysRevLett.108.175301
http://dx.doi.org/10.1103/PhysRevLett.108.175301
http://dx.doi.org/10.1103/PhysRevLett.108.175301
http://dx.doi.org/10.1103/PhysRevLett.108.175301
http://dx.doi.org/10.1103/PhysRevLett.104.195302
http://dx.doi.org/10.1103/PhysRevLett.104.195302
http://dx.doi.org/10.1103/PhysRevLett.104.195302
http://dx.doi.org/10.1103/PhysRevLett.104.195302
http://dx.doi.org/10.1103/PhysRevLett.105.135301
http://dx.doi.org/10.1103/PhysRevLett.105.135301
http://dx.doi.org/10.1103/PhysRevLett.105.135301
http://dx.doi.org/10.1103/PhysRevLett.105.135301
http://dx.doi.org/10.1103/PhysRevLett.108.265301
http://dx.doi.org/10.1103/PhysRevLett.108.265301
http://dx.doi.org/10.1103/PhysRevLett.108.265301
http://dx.doi.org/10.1103/PhysRevLett.108.265301
http://dx.doi.org/10.1038/ncomms4235
http://dx.doi.org/10.1038/ncomms4235
http://dx.doi.org/10.1038/ncomms4235
http://dx.doi.org/10.1038/ncomms4235
http://dx.doi.org/10.1103/PhysRevLett.103.225301
http://dx.doi.org/10.1103/PhysRevLett.103.225301
http://dx.doi.org/10.1103/PhysRevLett.103.225301
http://dx.doi.org/10.1103/PhysRevLett.103.225301
http://dx.doi.org/10.1103/PhysRevLett.104.125302
http://dx.doi.org/10.1103/PhysRevLett.104.125302
http://dx.doi.org/10.1103/PhysRevLett.104.125302
http://dx.doi.org/10.1103/PhysRevLett.104.125302
http://dx.doi.org/10.1103/PhysRevLett.104.125301
http://dx.doi.org/10.1103/PhysRevLett.104.125301
http://dx.doi.org/10.1103/PhysRevLett.104.125301
http://dx.doi.org/10.1103/PhysRevLett.104.125301
http://dx.doi.org/10.1103/PhysRevLett.110.235302
http://dx.doi.org/10.1103/PhysRevLett.110.235302
http://dx.doi.org/10.1103/PhysRevLett.110.235302
http://dx.doi.org/10.1103/PhysRevLett.110.235302
http://dx.doi.org/10.1073/pnas.0504820102
http://dx.doi.org/10.1073/pnas.0504820102
http://dx.doi.org/10.1073/pnas.0504820102
http://dx.doi.org/10.1073/pnas.0504820102
http://dx.doi.org/10.1088/0953-8984/17/49/002
http://dx.doi.org/10.1088/0953-8984/17/49/002
http://dx.doi.org/10.1088/0953-8984/17/49/002
http://dx.doi.org/10.1088/0953-8984/17/49/002
http://dx.doi.org/10.1073/pnas.1211825109
http://dx.doi.org/10.1073/pnas.1211825109
http://dx.doi.org/10.1073/pnas.1211825109
http://dx.doi.org/10.1073/pnas.1211825109
http://dx.doi.org/10.1038/35065704
http://dx.doi.org/10.1038/35065704
http://dx.doi.org/10.1038/35065704
http://dx.doi.org/10.1038/35065704
http://dx.doi.org/10.1088/0034-4885/75/6/066501
http://dx.doi.org/10.1088/0034-4885/75/6/066501
http://dx.doi.org/10.1088/0034-4885/75/6/066501
http://dx.doi.org/10.1088/0034-4885/75/6/066501
http://dx.doi.org/10.1103/PhysRevLett.83.3214
http://dx.doi.org/10.1103/PhysRevLett.83.3214
http://dx.doi.org/10.1103/PhysRevLett.83.3214
http://dx.doi.org/10.1103/PhysRevLett.83.3214
http://dx.doi.org/10.1088/0953-8984/11/10A/002
http://dx.doi.org/10.1088/0953-8984/11/10A/002
http://dx.doi.org/10.1088/0953-8984/11/10A/002
http://dx.doi.org/10.1088/0953-8984/11/10A/002
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1038/493030a
http://dx.doi.org/10.1038/493030a
http://dx.doi.org/10.1038/493030a
http://dx.doi.org/10.1038/493030a
http://dx.doi.org/10.1038/nphys1901
http://dx.doi.org/10.1038/nphys1901
http://dx.doi.org/10.1038/nphys1901
http://dx.doi.org/10.1038/nphys1901
http://dx.doi.org/10.1103/PhysRevB.78.224306
http://dx.doi.org/10.1103/PhysRevB.78.224306
http://dx.doi.org/10.1103/PhysRevB.78.224306
http://dx.doi.org/10.1103/PhysRevB.78.224306
http://dx.doi.org/10.1103/Physics.1.40
http://dx.doi.org/10.1103/Physics.1.40
http://dx.doi.org/10.1103/Physics.1.40
http://dx.doi.org/10.1103/Physics.1.40
http://dx.doi.org/10.1103/PhysRevLett.103.215302
http://dx.doi.org/10.1103/PhysRevLett.103.215302
http://dx.doi.org/10.1103/PhysRevLett.103.215302
http://dx.doi.org/10.1103/PhysRevLett.103.215302
http://dx.doi.org/10.1103/PhysRevLett.109.025302
http://dx.doi.org/10.1103/PhysRevLett.109.025302
http://dx.doi.org/10.1103/PhysRevLett.109.025302
http://dx.doi.org/10.1103/PhysRevLett.109.025302
http://dx.doi.org/10.1103/PhysRevB.87.184202
http://dx.doi.org/10.1103/PhysRevB.87.184202
http://dx.doi.org/10.1103/PhysRevB.87.184202
http://dx.doi.org/10.1103/PhysRevB.87.184202
http://dx.doi.org/10.1103/PhysRevLett.111.185306
http://dx.doi.org/10.1103/PhysRevLett.111.185306
http://dx.doi.org/10.1103/PhysRevLett.111.185306
http://dx.doi.org/10.1103/PhysRevLett.111.185306
http://dx.doi.org/10.1103/PhysRevLett.111.215305
http://dx.doi.org/10.1103/PhysRevLett.111.215305
http://dx.doi.org/10.1103/PhysRevLett.111.215305
http://dx.doi.org/10.1103/PhysRevLett.111.215305
http://dx.doi.org/10.1038/nphys1865
http://dx.doi.org/10.1038/nphys1865
http://dx.doi.org/10.1038/nphys1865
http://dx.doi.org/10.1038/nphys1865
http://dx.doi.org/10.1039/c001523g
http://dx.doi.org/10.1039/c001523g
http://dx.doi.org/10.1039/c001523g
http://dx.doi.org/10.1039/c001523g
http://dx.doi.org/10.1038/nmat1045
http://dx.doi.org/10.1038/nmat1045
http://dx.doi.org/10.1038/nmat1045
http://dx.doi.org/10.1038/nmat1045
http://dx.doi.org/10.1103/PhysRevLett.113.023006
http://dx.doi.org/10.1103/PhysRevLett.113.023006
http://dx.doi.org/10.1103/PhysRevLett.113.023006
http://dx.doi.org/10.1103/PhysRevLett.113.023006
http://dx.doi.org/10.1103/PhysRevLett.112.013002
http://dx.doi.org/10.1103/PhysRevLett.112.013002
http://dx.doi.org/10.1103/PhysRevLett.112.013002
http://dx.doi.org/10.1103/PhysRevLett.112.013002
http://dx.doi.org/10.1103/PhysRevLett.112.183002
http://dx.doi.org/10.1103/PhysRevLett.112.183002
http://dx.doi.org/10.1103/PhysRevLett.112.183002
http://dx.doi.org/10.1103/PhysRevLett.112.183002
http://dx.doi.org/10.1103/PhysRevLett.110.103001
http://dx.doi.org/10.1103/PhysRevLett.110.103001
http://dx.doi.org/10.1103/PhysRevLett.110.103001
http://dx.doi.org/10.1103/PhysRevLett.110.103001
http://dx.doi.org/10.1103/PhysRevLett.110.123001
http://dx.doi.org/10.1103/PhysRevLett.110.123001
http://dx.doi.org/10.1103/PhysRevLett.110.123001
http://dx.doi.org/10.1103/PhysRevLett.110.123001
http://dx.doi.org/10.1103/PhysRevLett.109.053002
http://dx.doi.org/10.1103/PhysRevLett.109.053002
http://dx.doi.org/10.1103/PhysRevLett.109.053002
http://dx.doi.org/10.1103/PhysRevLett.109.053002
http://dx.doi.org/10.1038/nature11361
http://dx.doi.org/10.1038/nature11361
http://dx.doi.org/10.1038/nature11361
http://dx.doi.org/10.1038/nature11361
http://dx.doi.org/10.1038/nature11596
http://dx.doi.org/10.1038/nature11596
http://dx.doi.org/10.1038/nature11596
http://dx.doi.org/10.1038/nature11596


MONODISPERSE CLUSTER CRYSTALS: CLASSICAL AND . . . PHYSICAL REVIEW E 92, 052307 (2015)

[35] L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein,
Phys. Rev. Lett. 85, 1791 (2000); G. Pupillo, A. Micheli, M.
Boninsegni, I. Lesanovsky, and P. Zoller, ibid. 104, 223002
(2010); J. Honer, H. Weimer, T. Pfau, and H. P. Büchler, ibid.
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